GNU Linux-libre 6.1.24-gnu
[releases.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514                                             struct blk_plug *plug,
515                                             blk_opf_t opf,
516                                             blk_mq_req_flags_t flags)
517 {
518         struct blk_mq_alloc_data data = {
519                 .q              = q,
520                 .flags          = flags,
521                 .cmd_flags      = opf,
522                 .nr_tags        = plug->nr_ios,
523                 .cached_rq      = &plug->cached_rq,
524         };
525         struct request *rq;
526
527         if (blk_queue_enter(q, flags))
528                 return NULL;
529
530         plug->nr_ios = 1;
531
532         rq = __blk_mq_alloc_requests(&data);
533         if (unlikely(!rq))
534                 blk_queue_exit(q);
535         return rq;
536 }
537
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539                                                    blk_opf_t opf,
540                                                    blk_mq_req_flags_t flags)
541 {
542         struct blk_plug *plug = current->plug;
543         struct request *rq;
544
545         if (!plug)
546                 return NULL;
547         if (rq_list_empty(plug->cached_rq)) {
548                 if (plug->nr_ios == 1)
549                         return NULL;
550                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551                 if (rq)
552                         goto got_it;
553                 return NULL;
554         }
555         rq = rq_list_peek(&plug->cached_rq);
556         if (!rq || rq->q != q)
557                 return NULL;
558
559         if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560                 return NULL;
561         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562                 return NULL;
563
564         plug->cached_rq = rq_list_next(rq);
565 got_it:
566         rq->cmd_flags = opf;
567         INIT_LIST_HEAD(&rq->queuelist);
568         return rq;
569 }
570
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572                 blk_mq_req_flags_t flags)
573 {
574         struct request *rq;
575
576         rq = blk_mq_alloc_cached_request(q, opf, flags);
577         if (!rq) {
578                 struct blk_mq_alloc_data data = {
579                         .q              = q,
580                         .flags          = flags,
581                         .cmd_flags      = opf,
582                         .nr_tags        = 1,
583                 };
584                 int ret;
585
586                 ret = blk_queue_enter(q, flags);
587                 if (ret)
588                         return ERR_PTR(ret);
589
590                 rq = __blk_mq_alloc_requests(&data);
591                 if (!rq)
592                         goto out_queue_exit;
593         }
594         rq->__data_len = 0;
595         rq->__sector = (sector_t) -1;
596         rq->bio = rq->biotail = NULL;
597         return rq;
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607         struct blk_mq_alloc_data data = {
608                 .q              = q,
609                 .flags          = flags,
610                 .cmd_flags      = opf,
611                 .nr_tags        = 1,
612         };
613         u64 alloc_time_ns = 0;
614         struct request *rq;
615         unsigned int cpu;
616         unsigned int tag;
617         int ret;
618
619         /* alloc_time includes depth and tag waits */
620         if (blk_queue_rq_alloc_time(q))
621                 alloc_time_ns = ktime_get_ns();
622
623         /*
624          * If the tag allocator sleeps we could get an allocation for a
625          * different hardware context.  No need to complicate the low level
626          * allocator for this for the rare use case of a command tied to
627          * a specific queue.
628          */
629         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
630             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
631                 return ERR_PTR(-EINVAL);
632
633         if (hctx_idx >= q->nr_hw_queues)
634                 return ERR_PTR(-EIO);
635
636         ret = blk_queue_enter(q, flags);
637         if (ret)
638                 return ERR_PTR(ret);
639
640         /*
641          * Check if the hardware context is actually mapped to anything.
642          * If not tell the caller that it should skip this queue.
643          */
644         ret = -EXDEV;
645         data.hctx = xa_load(&q->hctx_table, hctx_idx);
646         if (!blk_mq_hw_queue_mapped(data.hctx))
647                 goto out_queue_exit;
648         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
649         if (cpu >= nr_cpu_ids)
650                 goto out_queue_exit;
651         data.ctx = __blk_mq_get_ctx(q, cpu);
652
653         if (!q->elevator)
654                 blk_mq_tag_busy(data.hctx);
655         else
656                 data.rq_flags |= RQF_ELV;
657
658         if (flags & BLK_MQ_REQ_RESERVED)
659                 data.rq_flags |= RQF_RESV;
660
661         ret = -EWOULDBLOCK;
662         tag = blk_mq_get_tag(&data);
663         if (tag == BLK_MQ_NO_TAG)
664                 goto out_queue_exit;
665         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
666                                         alloc_time_ns);
667         rq->__data_len = 0;
668         rq->__sector = (sector_t) -1;
669         rq->bio = rq->biotail = NULL;
670         return rq;
671
672 out_queue_exit:
673         blk_queue_exit(q);
674         return ERR_PTR(ret);
675 }
676 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
677
678 static void __blk_mq_free_request(struct request *rq)
679 {
680         struct request_queue *q = rq->q;
681         struct blk_mq_ctx *ctx = rq->mq_ctx;
682         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
683         const int sched_tag = rq->internal_tag;
684
685         blk_crypto_free_request(rq);
686         blk_pm_mark_last_busy(rq);
687         rq->mq_hctx = NULL;
688         if (rq->tag != BLK_MQ_NO_TAG)
689                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
690         if (sched_tag != BLK_MQ_NO_TAG)
691                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
692         blk_mq_sched_restart(hctx);
693         blk_queue_exit(q);
694 }
695
696 void blk_mq_free_request(struct request *rq)
697 {
698         struct request_queue *q = rq->q;
699         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
700
701         if ((rq->rq_flags & RQF_ELVPRIV) &&
702             q->elevator->type->ops.finish_request)
703                 q->elevator->type->ops.finish_request(rq);
704
705         if (rq->rq_flags & RQF_MQ_INFLIGHT)
706                 __blk_mq_dec_active_requests(hctx);
707
708         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
709                 laptop_io_completion(q->disk->bdi);
710
711         rq_qos_done(q, rq);
712
713         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
714         if (req_ref_put_and_test(rq))
715                 __blk_mq_free_request(rq);
716 }
717 EXPORT_SYMBOL_GPL(blk_mq_free_request);
718
719 void blk_mq_free_plug_rqs(struct blk_plug *plug)
720 {
721         struct request *rq;
722
723         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
724                 blk_mq_free_request(rq);
725 }
726
727 void blk_dump_rq_flags(struct request *rq, char *msg)
728 {
729         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
730                 rq->q->disk ? rq->q->disk->disk_name : "?",
731                 (__force unsigned long long) rq->cmd_flags);
732
733         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
734                (unsigned long long)blk_rq_pos(rq),
735                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
736         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
737                rq->bio, rq->biotail, blk_rq_bytes(rq));
738 }
739 EXPORT_SYMBOL(blk_dump_rq_flags);
740
741 static void req_bio_endio(struct request *rq, struct bio *bio,
742                           unsigned int nbytes, blk_status_t error)
743 {
744         if (unlikely(error)) {
745                 bio->bi_status = error;
746         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
747                 /*
748                  * Partial zone append completions cannot be supported as the
749                  * BIO fragments may end up not being written sequentially.
750                  */
751                 if (bio->bi_iter.bi_size != nbytes)
752                         bio->bi_status = BLK_STS_IOERR;
753                 else
754                         bio->bi_iter.bi_sector = rq->__sector;
755         }
756
757         bio_advance(bio, nbytes);
758
759         if (unlikely(rq->rq_flags & RQF_QUIET))
760                 bio_set_flag(bio, BIO_QUIET);
761         /* don't actually finish bio if it's part of flush sequence */
762         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
763                 bio_endio(bio);
764 }
765
766 static void blk_account_io_completion(struct request *req, unsigned int bytes)
767 {
768         if (req->part && blk_do_io_stat(req)) {
769                 const int sgrp = op_stat_group(req_op(req));
770
771                 part_stat_lock();
772                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
773                 part_stat_unlock();
774         }
775 }
776
777 static void blk_print_req_error(struct request *req, blk_status_t status)
778 {
779         printk_ratelimited(KERN_ERR
780                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
781                 "phys_seg %u prio class %u\n",
782                 blk_status_to_str(status),
783                 req->q->disk ? req->q->disk->disk_name : "?",
784                 blk_rq_pos(req), (__force u32)req_op(req),
785                 blk_op_str(req_op(req)),
786                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
787                 req->nr_phys_segments,
788                 IOPRIO_PRIO_CLASS(req->ioprio));
789 }
790
791 /*
792  * Fully end IO on a request. Does not support partial completions, or
793  * errors.
794  */
795 static void blk_complete_request(struct request *req)
796 {
797         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
798         int total_bytes = blk_rq_bytes(req);
799         struct bio *bio = req->bio;
800
801         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
802
803         if (!bio)
804                 return;
805
806 #ifdef CONFIG_BLK_DEV_INTEGRITY
807         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
808                 req->q->integrity.profile->complete_fn(req, total_bytes);
809 #endif
810
811         blk_account_io_completion(req, total_bytes);
812
813         do {
814                 struct bio *next = bio->bi_next;
815
816                 /* Completion has already been traced */
817                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818
819                 if (req_op(req) == REQ_OP_ZONE_APPEND)
820                         bio->bi_iter.bi_sector = req->__sector;
821
822                 if (!is_flush)
823                         bio_endio(bio);
824                 bio = next;
825         } while (bio);
826
827         /*
828          * Reset counters so that the request stacking driver
829          * can find how many bytes remain in the request
830          * later.
831          */
832         if (!req->end_io) {
833                 req->bio = NULL;
834                 req->__data_len = 0;
835         }
836 }
837
838 /**
839  * blk_update_request - Complete multiple bytes without completing the request
840  * @req:      the request being processed
841  * @error:    block status code
842  * @nr_bytes: number of bytes to complete for @req
843  *
844  * Description:
845  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
846  *     the request structure even if @req doesn't have leftover.
847  *     If @req has leftover, sets it up for the next range of segments.
848  *
849  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
850  *     %false return from this function.
851  *
852  * Note:
853  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
854  *      except in the consistency check at the end of this function.
855  *
856  * Return:
857  *     %false - this request doesn't have any more data
858  *     %true  - this request has more data
859  **/
860 bool blk_update_request(struct request *req, blk_status_t error,
861                 unsigned int nr_bytes)
862 {
863         int total_bytes;
864
865         trace_block_rq_complete(req, error, nr_bytes);
866
867         if (!req->bio)
868                 return false;
869
870 #ifdef CONFIG_BLK_DEV_INTEGRITY
871         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
872             error == BLK_STS_OK)
873                 req->q->integrity.profile->complete_fn(req, nr_bytes);
874 #endif
875
876         if (unlikely(error && !blk_rq_is_passthrough(req) &&
877                      !(req->rq_flags & RQF_QUIET)) &&
878                      !test_bit(GD_DEAD, &req->q->disk->state)) {
879                 blk_print_req_error(req, error);
880                 trace_block_rq_error(req, error, nr_bytes);
881         }
882
883         blk_account_io_completion(req, nr_bytes);
884
885         total_bytes = 0;
886         while (req->bio) {
887                 struct bio *bio = req->bio;
888                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
889
890                 if (bio_bytes == bio->bi_iter.bi_size)
891                         req->bio = bio->bi_next;
892
893                 /* Completion has already been traced */
894                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
895                 req_bio_endio(req, bio, bio_bytes, error);
896
897                 total_bytes += bio_bytes;
898                 nr_bytes -= bio_bytes;
899
900                 if (!nr_bytes)
901                         break;
902         }
903
904         /*
905          * completely done
906          */
907         if (!req->bio) {
908                 /*
909                  * Reset counters so that the request stacking driver
910                  * can find how many bytes remain in the request
911                  * later.
912                  */
913                 req->__data_len = 0;
914                 return false;
915         }
916
917         req->__data_len -= total_bytes;
918
919         /* update sector only for requests with clear definition of sector */
920         if (!blk_rq_is_passthrough(req))
921                 req->__sector += total_bytes >> 9;
922
923         /* mixed attributes always follow the first bio */
924         if (req->rq_flags & RQF_MIXED_MERGE) {
925                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
926                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
927         }
928
929         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
930                 /*
931                  * If total number of sectors is less than the first segment
932                  * size, something has gone terribly wrong.
933                  */
934                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
935                         blk_dump_rq_flags(req, "request botched");
936                         req->__data_len = blk_rq_cur_bytes(req);
937                 }
938
939                 /* recalculate the number of segments */
940                 req->nr_phys_segments = blk_recalc_rq_segments(req);
941         }
942
943         return true;
944 }
945 EXPORT_SYMBOL_GPL(blk_update_request);
946
947 static void __blk_account_io_done(struct request *req, u64 now)
948 {
949         const int sgrp = op_stat_group(req_op(req));
950
951         part_stat_lock();
952         update_io_ticks(req->part, jiffies, true);
953         part_stat_inc(req->part, ios[sgrp]);
954         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
955         part_stat_unlock();
956 }
957
958 static inline void blk_account_io_done(struct request *req, u64 now)
959 {
960         /*
961          * Account IO completion.  flush_rq isn't accounted as a
962          * normal IO on queueing nor completion.  Accounting the
963          * containing request is enough.
964          */
965         if (blk_do_io_stat(req) && req->part &&
966             !(req->rq_flags & RQF_FLUSH_SEQ))
967                 __blk_account_io_done(req, now);
968 }
969
970 static void __blk_account_io_start(struct request *rq)
971 {
972         /*
973          * All non-passthrough requests are created from a bio with one
974          * exception: when a flush command that is part of a flush sequence
975          * generated by the state machine in blk-flush.c is cloned onto the
976          * lower device by dm-multipath we can get here without a bio.
977          */
978         if (rq->bio)
979                 rq->part = rq->bio->bi_bdev;
980         else
981                 rq->part = rq->q->disk->part0;
982
983         part_stat_lock();
984         update_io_ticks(rq->part, jiffies, false);
985         part_stat_unlock();
986 }
987
988 static inline void blk_account_io_start(struct request *req)
989 {
990         if (blk_do_io_stat(req))
991                 __blk_account_io_start(req);
992 }
993
994 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
995 {
996         if (rq->rq_flags & RQF_STATS) {
997                 blk_mq_poll_stats_start(rq->q);
998                 blk_stat_add(rq, now);
999         }
1000
1001         blk_mq_sched_completed_request(rq, now);
1002         blk_account_io_done(rq, now);
1003 }
1004
1005 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1006 {
1007         if (blk_mq_need_time_stamp(rq))
1008                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1009
1010         if (rq->end_io) {
1011                 rq_qos_done(rq->q, rq);
1012                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1013                         blk_mq_free_request(rq);
1014         } else {
1015                 blk_mq_free_request(rq);
1016         }
1017 }
1018 EXPORT_SYMBOL(__blk_mq_end_request);
1019
1020 void blk_mq_end_request(struct request *rq, blk_status_t error)
1021 {
1022         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1023                 BUG();
1024         __blk_mq_end_request(rq, error);
1025 }
1026 EXPORT_SYMBOL(blk_mq_end_request);
1027
1028 #define TAG_COMP_BATCH          32
1029
1030 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1031                                           int *tag_array, int nr_tags)
1032 {
1033         struct request_queue *q = hctx->queue;
1034
1035         /*
1036          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1037          * update hctx->nr_active in batch
1038          */
1039         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1040                 __blk_mq_sub_active_requests(hctx, nr_tags);
1041
1042         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1043         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1044 }
1045
1046 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1047 {
1048         int tags[TAG_COMP_BATCH], nr_tags = 0;
1049         struct blk_mq_hw_ctx *cur_hctx = NULL;
1050         struct request *rq;
1051         u64 now = 0;
1052
1053         if (iob->need_ts)
1054                 now = ktime_get_ns();
1055
1056         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1057                 prefetch(rq->bio);
1058                 prefetch(rq->rq_next);
1059
1060                 blk_complete_request(rq);
1061                 if (iob->need_ts)
1062                         __blk_mq_end_request_acct(rq, now);
1063
1064                 rq_qos_done(rq->q, rq);
1065
1066                 /*
1067                  * If end_io handler returns NONE, then it still has
1068                  * ownership of the request.
1069                  */
1070                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1071                         continue;
1072
1073                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1074                 if (!req_ref_put_and_test(rq))
1075                         continue;
1076
1077                 blk_crypto_free_request(rq);
1078                 blk_pm_mark_last_busy(rq);
1079
1080                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1081                         if (cur_hctx)
1082                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1083                         nr_tags = 0;
1084                         cur_hctx = rq->mq_hctx;
1085                 }
1086                 tags[nr_tags++] = rq->tag;
1087         }
1088
1089         if (nr_tags)
1090                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1091 }
1092 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1093
1094 static void blk_complete_reqs(struct llist_head *list)
1095 {
1096         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1097         struct request *rq, *next;
1098
1099         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1100                 rq->q->mq_ops->complete(rq);
1101 }
1102
1103 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1104 {
1105         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1106 }
1107
1108 static int blk_softirq_cpu_dead(unsigned int cpu)
1109 {
1110         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1111         return 0;
1112 }
1113
1114 static void __blk_mq_complete_request_remote(void *data)
1115 {
1116         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1117 }
1118
1119 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1120 {
1121         int cpu = raw_smp_processor_id();
1122
1123         if (!IS_ENABLED(CONFIG_SMP) ||
1124             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1125                 return false;
1126         /*
1127          * With force threaded interrupts enabled, raising softirq from an SMP
1128          * function call will always result in waking the ksoftirqd thread.
1129          * This is probably worse than completing the request on a different
1130          * cache domain.
1131          */
1132         if (force_irqthreads())
1133                 return false;
1134
1135         /* same CPU or cache domain?  Complete locally */
1136         if (cpu == rq->mq_ctx->cpu ||
1137             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1138              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1139                 return false;
1140
1141         /* don't try to IPI to an offline CPU */
1142         return cpu_online(rq->mq_ctx->cpu);
1143 }
1144
1145 static void blk_mq_complete_send_ipi(struct request *rq)
1146 {
1147         struct llist_head *list;
1148         unsigned int cpu;
1149
1150         cpu = rq->mq_ctx->cpu;
1151         list = &per_cpu(blk_cpu_done, cpu);
1152         if (llist_add(&rq->ipi_list, list)) {
1153                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1154                 smp_call_function_single_async(cpu, &rq->csd);
1155         }
1156 }
1157
1158 static void blk_mq_raise_softirq(struct request *rq)
1159 {
1160         struct llist_head *list;
1161
1162         preempt_disable();
1163         list = this_cpu_ptr(&blk_cpu_done);
1164         if (llist_add(&rq->ipi_list, list))
1165                 raise_softirq(BLOCK_SOFTIRQ);
1166         preempt_enable();
1167 }
1168
1169 bool blk_mq_complete_request_remote(struct request *rq)
1170 {
1171         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1172
1173         /*
1174          * For request which hctx has only one ctx mapping,
1175          * or a polled request, always complete locally,
1176          * it's pointless to redirect the completion.
1177          */
1178         if (rq->mq_hctx->nr_ctx == 1 ||
1179                 rq->cmd_flags & REQ_POLLED)
1180                 return false;
1181
1182         if (blk_mq_complete_need_ipi(rq)) {
1183                 blk_mq_complete_send_ipi(rq);
1184                 return true;
1185         }
1186
1187         if (rq->q->nr_hw_queues == 1) {
1188                 blk_mq_raise_softirq(rq);
1189                 return true;
1190         }
1191         return false;
1192 }
1193 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1194
1195 /**
1196  * blk_mq_complete_request - end I/O on a request
1197  * @rq:         the request being processed
1198  *
1199  * Description:
1200  *      Complete a request by scheduling the ->complete_rq operation.
1201  **/
1202 void blk_mq_complete_request(struct request *rq)
1203 {
1204         if (!blk_mq_complete_request_remote(rq))
1205                 rq->q->mq_ops->complete(rq);
1206 }
1207 EXPORT_SYMBOL(blk_mq_complete_request);
1208
1209 /**
1210  * blk_mq_start_request - Start processing a request
1211  * @rq: Pointer to request to be started
1212  *
1213  * Function used by device drivers to notify the block layer that a request
1214  * is going to be processed now, so blk layer can do proper initializations
1215  * such as starting the timeout timer.
1216  */
1217 void blk_mq_start_request(struct request *rq)
1218 {
1219         struct request_queue *q = rq->q;
1220
1221         trace_block_rq_issue(rq);
1222
1223         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1224                 rq->io_start_time_ns = ktime_get_ns();
1225                 rq->stats_sectors = blk_rq_sectors(rq);
1226                 rq->rq_flags |= RQF_STATS;
1227                 rq_qos_issue(q, rq);
1228         }
1229
1230         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1231
1232         blk_add_timer(rq);
1233         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1234
1235 #ifdef CONFIG_BLK_DEV_INTEGRITY
1236         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1237                 q->integrity.profile->prepare_fn(rq);
1238 #endif
1239         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1240                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1241 }
1242 EXPORT_SYMBOL(blk_mq_start_request);
1243
1244 /*
1245  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1246  * queues. This is important for md arrays to benefit from merging
1247  * requests.
1248  */
1249 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1250 {
1251         if (plug->multiple_queues)
1252                 return BLK_MAX_REQUEST_COUNT * 2;
1253         return BLK_MAX_REQUEST_COUNT;
1254 }
1255
1256 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1257 {
1258         struct request *last = rq_list_peek(&plug->mq_list);
1259
1260         if (!plug->rq_count) {
1261                 trace_block_plug(rq->q);
1262         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1263                    (!blk_queue_nomerges(rq->q) &&
1264                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1265                 blk_mq_flush_plug_list(plug, false);
1266                 last = NULL;
1267                 trace_block_plug(rq->q);
1268         }
1269
1270         if (!plug->multiple_queues && last && last->q != rq->q)
1271                 plug->multiple_queues = true;
1272         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1273                 plug->has_elevator = true;
1274         rq->rq_next = NULL;
1275         rq_list_add(&plug->mq_list, rq);
1276         plug->rq_count++;
1277 }
1278
1279 /**
1280  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1281  * @rq:         request to insert
1282  * @at_head:    insert request at head or tail of queue
1283  *
1284  * Description:
1285  *    Insert a fully prepared request at the back of the I/O scheduler queue
1286  *    for execution.  Don't wait for completion.
1287  *
1288  * Note:
1289  *    This function will invoke @done directly if the queue is dead.
1290  */
1291 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1292 {
1293         WARN_ON(irqs_disabled());
1294         WARN_ON(!blk_rq_is_passthrough(rq));
1295
1296         blk_account_io_start(rq);
1297
1298         /*
1299          * As plugging can be enabled for passthrough requests on a zoned
1300          * device, directly accessing the plug instead of using blk_mq_plug()
1301          * should not have any consequences.
1302          */
1303         if (current->plug)
1304                 blk_add_rq_to_plug(current->plug, rq);
1305         else
1306                 blk_mq_sched_insert_request(rq, at_head, true, false);
1307 }
1308 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1309
1310 struct blk_rq_wait {
1311         struct completion done;
1312         blk_status_t ret;
1313 };
1314
1315 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1316 {
1317         struct blk_rq_wait *wait = rq->end_io_data;
1318
1319         wait->ret = ret;
1320         complete(&wait->done);
1321         return RQ_END_IO_NONE;
1322 }
1323
1324 bool blk_rq_is_poll(struct request *rq)
1325 {
1326         if (!rq->mq_hctx)
1327                 return false;
1328         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1329                 return false;
1330         return true;
1331 }
1332 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1333
1334 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1335 {
1336         do {
1337                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1338                 cond_resched();
1339         } while (!completion_done(wait));
1340 }
1341
1342 /**
1343  * blk_execute_rq - insert a request into queue for execution
1344  * @rq:         request to insert
1345  * @at_head:    insert request at head or tail of queue
1346  *
1347  * Description:
1348  *    Insert a fully prepared request at the back of the I/O scheduler queue
1349  *    for execution and wait for completion.
1350  * Return: The blk_status_t result provided to blk_mq_end_request().
1351  */
1352 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1353 {
1354         struct blk_rq_wait wait = {
1355                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1356         };
1357
1358         WARN_ON(irqs_disabled());
1359         WARN_ON(!blk_rq_is_passthrough(rq));
1360
1361         rq->end_io_data = &wait;
1362         rq->end_io = blk_end_sync_rq;
1363
1364         blk_account_io_start(rq);
1365         blk_mq_sched_insert_request(rq, at_head, true, false);
1366
1367         if (blk_rq_is_poll(rq)) {
1368                 blk_rq_poll_completion(rq, &wait.done);
1369         } else {
1370                 /*
1371                  * Prevent hang_check timer from firing at us during very long
1372                  * I/O
1373                  */
1374                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1375
1376                 if (hang_check)
1377                         while (!wait_for_completion_io_timeout(&wait.done,
1378                                         hang_check * (HZ/2)))
1379                                 ;
1380                 else
1381                         wait_for_completion_io(&wait.done);
1382         }
1383
1384         return wait.ret;
1385 }
1386 EXPORT_SYMBOL(blk_execute_rq);
1387
1388 static void __blk_mq_requeue_request(struct request *rq)
1389 {
1390         struct request_queue *q = rq->q;
1391
1392         blk_mq_put_driver_tag(rq);
1393
1394         trace_block_rq_requeue(rq);
1395         rq_qos_requeue(q, rq);
1396
1397         if (blk_mq_request_started(rq)) {
1398                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1399                 rq->rq_flags &= ~RQF_TIMED_OUT;
1400         }
1401 }
1402
1403 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1404 {
1405         __blk_mq_requeue_request(rq);
1406
1407         /* this request will be re-inserted to io scheduler queue */
1408         blk_mq_sched_requeue_request(rq);
1409
1410         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1411 }
1412 EXPORT_SYMBOL(blk_mq_requeue_request);
1413
1414 static void blk_mq_requeue_work(struct work_struct *work)
1415 {
1416         struct request_queue *q =
1417                 container_of(work, struct request_queue, requeue_work.work);
1418         LIST_HEAD(rq_list);
1419         struct request *rq, *next;
1420
1421         spin_lock_irq(&q->requeue_lock);
1422         list_splice_init(&q->requeue_list, &rq_list);
1423         spin_unlock_irq(&q->requeue_lock);
1424
1425         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1426                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1427                         continue;
1428
1429                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1430                 list_del_init(&rq->queuelist);
1431                 /*
1432                  * If RQF_DONTPREP, rq has contained some driver specific
1433                  * data, so insert it to hctx dispatch list to avoid any
1434                  * merge.
1435                  */
1436                 if (rq->rq_flags & RQF_DONTPREP)
1437                         blk_mq_request_bypass_insert(rq, false, false);
1438                 else
1439                         blk_mq_sched_insert_request(rq, true, false, false);
1440         }
1441
1442         while (!list_empty(&rq_list)) {
1443                 rq = list_entry(rq_list.next, struct request, queuelist);
1444                 list_del_init(&rq->queuelist);
1445                 blk_mq_sched_insert_request(rq, false, false, false);
1446         }
1447
1448         blk_mq_run_hw_queues(q, false);
1449 }
1450
1451 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1452                                 bool kick_requeue_list)
1453 {
1454         struct request_queue *q = rq->q;
1455         unsigned long flags;
1456
1457         /*
1458          * We abuse this flag that is otherwise used by the I/O scheduler to
1459          * request head insertion from the workqueue.
1460          */
1461         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1462
1463         spin_lock_irqsave(&q->requeue_lock, flags);
1464         if (at_head) {
1465                 rq->rq_flags |= RQF_SOFTBARRIER;
1466                 list_add(&rq->queuelist, &q->requeue_list);
1467         } else {
1468                 list_add_tail(&rq->queuelist, &q->requeue_list);
1469         }
1470         spin_unlock_irqrestore(&q->requeue_lock, flags);
1471
1472         if (kick_requeue_list)
1473                 blk_mq_kick_requeue_list(q);
1474 }
1475
1476 void blk_mq_kick_requeue_list(struct request_queue *q)
1477 {
1478         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1479 }
1480 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1481
1482 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1483                                     unsigned long msecs)
1484 {
1485         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1486                                     msecs_to_jiffies(msecs));
1487 }
1488 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1489
1490 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1491 {
1492         /*
1493          * If we find a request that isn't idle we know the queue is busy
1494          * as it's checked in the iter.
1495          * Return false to stop the iteration.
1496          */
1497         if (blk_mq_request_started(rq)) {
1498                 bool *busy = priv;
1499
1500                 *busy = true;
1501                 return false;
1502         }
1503
1504         return true;
1505 }
1506
1507 bool blk_mq_queue_inflight(struct request_queue *q)
1508 {
1509         bool busy = false;
1510
1511         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1512         return busy;
1513 }
1514 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1515
1516 static void blk_mq_rq_timed_out(struct request *req)
1517 {
1518         req->rq_flags |= RQF_TIMED_OUT;
1519         if (req->q->mq_ops->timeout) {
1520                 enum blk_eh_timer_return ret;
1521
1522                 ret = req->q->mq_ops->timeout(req);
1523                 if (ret == BLK_EH_DONE)
1524                         return;
1525                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1526         }
1527
1528         blk_add_timer(req);
1529 }
1530
1531 struct blk_expired_data {
1532         bool has_timedout_rq;
1533         unsigned long next;
1534         unsigned long timeout_start;
1535 };
1536
1537 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1538 {
1539         unsigned long deadline;
1540
1541         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1542                 return false;
1543         if (rq->rq_flags & RQF_TIMED_OUT)
1544                 return false;
1545
1546         deadline = READ_ONCE(rq->deadline);
1547         if (time_after_eq(expired->timeout_start, deadline))
1548                 return true;
1549
1550         if (expired->next == 0)
1551                 expired->next = deadline;
1552         else if (time_after(expired->next, deadline))
1553                 expired->next = deadline;
1554         return false;
1555 }
1556
1557 void blk_mq_put_rq_ref(struct request *rq)
1558 {
1559         if (is_flush_rq(rq)) {
1560                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1561                         blk_mq_free_request(rq);
1562         } else if (req_ref_put_and_test(rq)) {
1563                 __blk_mq_free_request(rq);
1564         }
1565 }
1566
1567 static bool blk_mq_check_expired(struct request *rq, void *priv)
1568 {
1569         struct blk_expired_data *expired = priv;
1570
1571         /*
1572          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1573          * be reallocated underneath the timeout handler's processing, then
1574          * the expire check is reliable. If the request is not expired, then
1575          * it was completed and reallocated as a new request after returning
1576          * from blk_mq_check_expired().
1577          */
1578         if (blk_mq_req_expired(rq, expired)) {
1579                 expired->has_timedout_rq = true;
1580                 return false;
1581         }
1582         return true;
1583 }
1584
1585 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1586 {
1587         struct blk_expired_data *expired = priv;
1588
1589         if (blk_mq_req_expired(rq, expired))
1590                 blk_mq_rq_timed_out(rq);
1591         return true;
1592 }
1593
1594 static void blk_mq_timeout_work(struct work_struct *work)
1595 {
1596         struct request_queue *q =
1597                 container_of(work, struct request_queue, timeout_work);
1598         struct blk_expired_data expired = {
1599                 .timeout_start = jiffies,
1600         };
1601         struct blk_mq_hw_ctx *hctx;
1602         unsigned long i;
1603
1604         /* A deadlock might occur if a request is stuck requiring a
1605          * timeout at the same time a queue freeze is waiting
1606          * completion, since the timeout code would not be able to
1607          * acquire the queue reference here.
1608          *
1609          * That's why we don't use blk_queue_enter here; instead, we use
1610          * percpu_ref_tryget directly, because we need to be able to
1611          * obtain a reference even in the short window between the queue
1612          * starting to freeze, by dropping the first reference in
1613          * blk_freeze_queue_start, and the moment the last request is
1614          * consumed, marked by the instant q_usage_counter reaches
1615          * zero.
1616          */
1617         if (!percpu_ref_tryget(&q->q_usage_counter))
1618                 return;
1619
1620         /* check if there is any timed-out request */
1621         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1622         if (expired.has_timedout_rq) {
1623                 /*
1624                  * Before walking tags, we must ensure any submit started
1625                  * before the current time has finished. Since the submit
1626                  * uses srcu or rcu, wait for a synchronization point to
1627                  * ensure all running submits have finished
1628                  */
1629                 blk_mq_wait_quiesce_done(q);
1630
1631                 expired.next = 0;
1632                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1633         }
1634
1635         if (expired.next != 0) {
1636                 mod_timer(&q->timeout, expired.next);
1637         } else {
1638                 /*
1639                  * Request timeouts are handled as a forward rolling timer. If
1640                  * we end up here it means that no requests are pending and
1641                  * also that no request has been pending for a while. Mark
1642                  * each hctx as idle.
1643                  */
1644                 queue_for_each_hw_ctx(q, hctx, i) {
1645                         /* the hctx may be unmapped, so check it here */
1646                         if (blk_mq_hw_queue_mapped(hctx))
1647                                 blk_mq_tag_idle(hctx);
1648                 }
1649         }
1650         blk_queue_exit(q);
1651 }
1652
1653 struct flush_busy_ctx_data {
1654         struct blk_mq_hw_ctx *hctx;
1655         struct list_head *list;
1656 };
1657
1658 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1659 {
1660         struct flush_busy_ctx_data *flush_data = data;
1661         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1662         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1663         enum hctx_type type = hctx->type;
1664
1665         spin_lock(&ctx->lock);
1666         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1667         sbitmap_clear_bit(sb, bitnr);
1668         spin_unlock(&ctx->lock);
1669         return true;
1670 }
1671
1672 /*
1673  * Process software queues that have been marked busy, splicing them
1674  * to the for-dispatch
1675  */
1676 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1677 {
1678         struct flush_busy_ctx_data data = {
1679                 .hctx = hctx,
1680                 .list = list,
1681         };
1682
1683         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1684 }
1685 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1686
1687 struct dispatch_rq_data {
1688         struct blk_mq_hw_ctx *hctx;
1689         struct request *rq;
1690 };
1691
1692 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1693                 void *data)
1694 {
1695         struct dispatch_rq_data *dispatch_data = data;
1696         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1697         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1698         enum hctx_type type = hctx->type;
1699
1700         spin_lock(&ctx->lock);
1701         if (!list_empty(&ctx->rq_lists[type])) {
1702                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1703                 list_del_init(&dispatch_data->rq->queuelist);
1704                 if (list_empty(&ctx->rq_lists[type]))
1705                         sbitmap_clear_bit(sb, bitnr);
1706         }
1707         spin_unlock(&ctx->lock);
1708
1709         return !dispatch_data->rq;
1710 }
1711
1712 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1713                                         struct blk_mq_ctx *start)
1714 {
1715         unsigned off = start ? start->index_hw[hctx->type] : 0;
1716         struct dispatch_rq_data data = {
1717                 .hctx = hctx,
1718                 .rq   = NULL,
1719         };
1720
1721         __sbitmap_for_each_set(&hctx->ctx_map, off,
1722                                dispatch_rq_from_ctx, &data);
1723
1724         return data.rq;
1725 }
1726
1727 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1728 {
1729         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1730         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1731         int tag;
1732
1733         blk_mq_tag_busy(rq->mq_hctx);
1734
1735         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1736                 bt = &rq->mq_hctx->tags->breserved_tags;
1737                 tag_offset = 0;
1738         } else {
1739                 if (!hctx_may_queue(rq->mq_hctx, bt))
1740                         return false;
1741         }
1742
1743         tag = __sbitmap_queue_get(bt);
1744         if (tag == BLK_MQ_NO_TAG)
1745                 return false;
1746
1747         rq->tag = tag + tag_offset;
1748         return true;
1749 }
1750
1751 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1752 {
1753         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1754                 return false;
1755
1756         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1757                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1758                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1759                 __blk_mq_inc_active_requests(hctx);
1760         }
1761         hctx->tags->rqs[rq->tag] = rq;
1762         return true;
1763 }
1764
1765 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1766                                 int flags, void *key)
1767 {
1768         struct blk_mq_hw_ctx *hctx;
1769
1770         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1771
1772         spin_lock(&hctx->dispatch_wait_lock);
1773         if (!list_empty(&wait->entry)) {
1774                 struct sbitmap_queue *sbq;
1775
1776                 list_del_init(&wait->entry);
1777                 sbq = &hctx->tags->bitmap_tags;
1778                 atomic_dec(&sbq->ws_active);
1779         }
1780         spin_unlock(&hctx->dispatch_wait_lock);
1781
1782         blk_mq_run_hw_queue(hctx, true);
1783         return 1;
1784 }
1785
1786 /*
1787  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1788  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1789  * restart. For both cases, take care to check the condition again after
1790  * marking us as waiting.
1791  */
1792 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1793                                  struct request *rq)
1794 {
1795         struct sbitmap_queue *sbq;
1796         struct wait_queue_head *wq;
1797         wait_queue_entry_t *wait;
1798         bool ret;
1799
1800         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1801             !(blk_mq_is_shared_tags(hctx->flags))) {
1802                 blk_mq_sched_mark_restart_hctx(hctx);
1803
1804                 /*
1805                  * It's possible that a tag was freed in the window between the
1806                  * allocation failure and adding the hardware queue to the wait
1807                  * queue.
1808                  *
1809                  * Don't clear RESTART here, someone else could have set it.
1810                  * At most this will cost an extra queue run.
1811                  */
1812                 return blk_mq_get_driver_tag(rq);
1813         }
1814
1815         wait = &hctx->dispatch_wait;
1816         if (!list_empty_careful(&wait->entry))
1817                 return false;
1818
1819         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1820                 sbq = &hctx->tags->breserved_tags;
1821         else
1822                 sbq = &hctx->tags->bitmap_tags;
1823         wq = &bt_wait_ptr(sbq, hctx)->wait;
1824
1825         spin_lock_irq(&wq->lock);
1826         spin_lock(&hctx->dispatch_wait_lock);
1827         if (!list_empty(&wait->entry)) {
1828                 spin_unlock(&hctx->dispatch_wait_lock);
1829                 spin_unlock_irq(&wq->lock);
1830                 return false;
1831         }
1832
1833         atomic_inc(&sbq->ws_active);
1834         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1835         __add_wait_queue(wq, wait);
1836
1837         /*
1838          * It's possible that a tag was freed in the window between the
1839          * allocation failure and adding the hardware queue to the wait
1840          * queue.
1841          */
1842         ret = blk_mq_get_driver_tag(rq);
1843         if (!ret) {
1844                 spin_unlock(&hctx->dispatch_wait_lock);
1845                 spin_unlock_irq(&wq->lock);
1846                 return false;
1847         }
1848
1849         /*
1850          * We got a tag, remove ourselves from the wait queue to ensure
1851          * someone else gets the wakeup.
1852          */
1853         list_del_init(&wait->entry);
1854         atomic_dec(&sbq->ws_active);
1855         spin_unlock(&hctx->dispatch_wait_lock);
1856         spin_unlock_irq(&wq->lock);
1857
1858         return true;
1859 }
1860
1861 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1862 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1863 /*
1864  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1865  * - EWMA is one simple way to compute running average value
1866  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1867  * - take 4 as factor for avoiding to get too small(0) result, and this
1868  *   factor doesn't matter because EWMA decreases exponentially
1869  */
1870 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1871 {
1872         unsigned int ewma;
1873
1874         ewma = hctx->dispatch_busy;
1875
1876         if (!ewma && !busy)
1877                 return;
1878
1879         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1880         if (busy)
1881                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1882         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1883
1884         hctx->dispatch_busy = ewma;
1885 }
1886
1887 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1888
1889 static void blk_mq_handle_dev_resource(struct request *rq,
1890                                        struct list_head *list)
1891 {
1892         struct request *next =
1893                 list_first_entry_or_null(list, struct request, queuelist);
1894
1895         /*
1896          * If an I/O scheduler has been configured and we got a driver tag for
1897          * the next request already, free it.
1898          */
1899         if (next)
1900                 blk_mq_put_driver_tag(next);
1901
1902         list_add(&rq->queuelist, list);
1903         __blk_mq_requeue_request(rq);
1904 }
1905
1906 static void blk_mq_handle_zone_resource(struct request *rq,
1907                                         struct list_head *zone_list)
1908 {
1909         /*
1910          * If we end up here it is because we cannot dispatch a request to a
1911          * specific zone due to LLD level zone-write locking or other zone
1912          * related resource not being available. In this case, set the request
1913          * aside in zone_list for retrying it later.
1914          */
1915         list_add(&rq->queuelist, zone_list);
1916         __blk_mq_requeue_request(rq);
1917 }
1918
1919 enum prep_dispatch {
1920         PREP_DISPATCH_OK,
1921         PREP_DISPATCH_NO_TAG,
1922         PREP_DISPATCH_NO_BUDGET,
1923 };
1924
1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1926                                                   bool need_budget)
1927 {
1928         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1929         int budget_token = -1;
1930
1931         if (need_budget) {
1932                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1933                 if (budget_token < 0) {
1934                         blk_mq_put_driver_tag(rq);
1935                         return PREP_DISPATCH_NO_BUDGET;
1936                 }
1937                 blk_mq_set_rq_budget_token(rq, budget_token);
1938         }
1939
1940         if (!blk_mq_get_driver_tag(rq)) {
1941                 /*
1942                  * The initial allocation attempt failed, so we need to
1943                  * rerun the hardware queue when a tag is freed. The
1944                  * waitqueue takes care of that. If the queue is run
1945                  * before we add this entry back on the dispatch list,
1946                  * we'll re-run it below.
1947                  */
1948                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1949                         /*
1950                          * All budgets not got from this function will be put
1951                          * together during handling partial dispatch
1952                          */
1953                         if (need_budget)
1954                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1955                         return PREP_DISPATCH_NO_TAG;
1956                 }
1957         }
1958
1959         return PREP_DISPATCH_OK;
1960 }
1961
1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1963 static void blk_mq_release_budgets(struct request_queue *q,
1964                 struct list_head *list)
1965 {
1966         struct request *rq;
1967
1968         list_for_each_entry(rq, list, queuelist) {
1969                 int budget_token = blk_mq_get_rq_budget_token(rq);
1970
1971                 if (budget_token >= 0)
1972                         blk_mq_put_dispatch_budget(q, budget_token);
1973         }
1974 }
1975
1976 /*
1977  * Returns true if we did some work AND can potentially do more.
1978  */
1979 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1980                              unsigned int nr_budgets)
1981 {
1982         enum prep_dispatch prep;
1983         struct request_queue *q = hctx->queue;
1984         struct request *rq, *nxt;
1985         int errors, queued;
1986         blk_status_t ret = BLK_STS_OK;
1987         LIST_HEAD(zone_list);
1988         bool needs_resource = false;
1989
1990         if (list_empty(list))
1991                 return false;
1992
1993         /*
1994          * Now process all the entries, sending them to the driver.
1995          */
1996         errors = queued = 0;
1997         do {
1998                 struct blk_mq_queue_data bd;
1999
2000                 rq = list_first_entry(list, struct request, queuelist);
2001
2002                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2003                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2004                 if (prep != PREP_DISPATCH_OK)
2005                         break;
2006
2007                 list_del_init(&rq->queuelist);
2008
2009                 bd.rq = rq;
2010
2011                 /*
2012                  * Flag last if we have no more requests, or if we have more
2013                  * but can't assign a driver tag to it.
2014                  */
2015                 if (list_empty(list))
2016                         bd.last = true;
2017                 else {
2018                         nxt = list_first_entry(list, struct request, queuelist);
2019                         bd.last = !blk_mq_get_driver_tag(nxt);
2020                 }
2021
2022                 /*
2023                  * once the request is queued to lld, no need to cover the
2024                  * budget any more
2025                  */
2026                 if (nr_budgets)
2027                         nr_budgets--;
2028                 ret = q->mq_ops->queue_rq(hctx, &bd);
2029                 switch (ret) {
2030                 case BLK_STS_OK:
2031                         queued++;
2032                         break;
2033                 case BLK_STS_RESOURCE:
2034                         needs_resource = true;
2035                         fallthrough;
2036                 case BLK_STS_DEV_RESOURCE:
2037                         blk_mq_handle_dev_resource(rq, list);
2038                         goto out;
2039                 case BLK_STS_ZONE_RESOURCE:
2040                         /*
2041                          * Move the request to zone_list and keep going through
2042                          * the dispatch list to find more requests the drive can
2043                          * accept.
2044                          */
2045                         blk_mq_handle_zone_resource(rq, &zone_list);
2046                         needs_resource = true;
2047                         break;
2048                 default:
2049                         errors++;
2050                         blk_mq_end_request(rq, ret);
2051                 }
2052         } while (!list_empty(list));
2053 out:
2054         if (!list_empty(&zone_list))
2055                 list_splice_tail_init(&zone_list, list);
2056
2057         /* If we didn't flush the entire list, we could have told the driver
2058          * there was more coming, but that turned out to be a lie.
2059          */
2060         if ((!list_empty(list) || errors || needs_resource ||
2061              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2062                 q->mq_ops->commit_rqs(hctx);
2063         /*
2064          * Any items that need requeuing? Stuff them into hctx->dispatch,
2065          * that is where we will continue on next queue run.
2066          */
2067         if (!list_empty(list)) {
2068                 bool needs_restart;
2069                 /* For non-shared tags, the RESTART check will suffice */
2070                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2071                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2072                         blk_mq_is_shared_tags(hctx->flags));
2073
2074                 if (nr_budgets)
2075                         blk_mq_release_budgets(q, list);
2076
2077                 spin_lock(&hctx->lock);
2078                 list_splice_tail_init(list, &hctx->dispatch);
2079                 spin_unlock(&hctx->lock);
2080
2081                 /*
2082                  * Order adding requests to hctx->dispatch and checking
2083                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2084                  * in blk_mq_sched_restart(). Avoid restart code path to
2085                  * miss the new added requests to hctx->dispatch, meantime
2086                  * SCHED_RESTART is observed here.
2087                  */
2088                 smp_mb();
2089
2090                 /*
2091                  * If SCHED_RESTART was set by the caller of this function and
2092                  * it is no longer set that means that it was cleared by another
2093                  * thread and hence that a queue rerun is needed.
2094                  *
2095                  * If 'no_tag' is set, that means that we failed getting
2096                  * a driver tag with an I/O scheduler attached. If our dispatch
2097                  * waitqueue is no longer active, ensure that we run the queue
2098                  * AFTER adding our entries back to the list.
2099                  *
2100                  * If no I/O scheduler has been configured it is possible that
2101                  * the hardware queue got stopped and restarted before requests
2102                  * were pushed back onto the dispatch list. Rerun the queue to
2103                  * avoid starvation. Notes:
2104                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2105                  *   been stopped before rerunning a queue.
2106                  * - Some but not all block drivers stop a queue before
2107                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2108                  *   and dm-rq.
2109                  *
2110                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2111                  * bit is set, run queue after a delay to avoid IO stalls
2112                  * that could otherwise occur if the queue is idle.  We'll do
2113                  * similar if we couldn't get budget or couldn't lock a zone
2114                  * and SCHED_RESTART is set.
2115                  */
2116                 needs_restart = blk_mq_sched_needs_restart(hctx);
2117                 if (prep == PREP_DISPATCH_NO_BUDGET)
2118                         needs_resource = true;
2119                 if (!needs_restart ||
2120                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2121                         blk_mq_run_hw_queue(hctx, true);
2122                 else if (needs_resource)
2123                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2124
2125                 blk_mq_update_dispatch_busy(hctx, true);
2126                 return false;
2127         } else
2128                 blk_mq_update_dispatch_busy(hctx, false);
2129
2130         return (queued + errors) != 0;
2131 }
2132
2133 /**
2134  * __blk_mq_run_hw_queue - Run a hardware queue.
2135  * @hctx: Pointer to the hardware queue to run.
2136  *
2137  * Send pending requests to the hardware.
2138  */
2139 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2140 {
2141         /*
2142          * We can't run the queue inline with ints disabled. Ensure that
2143          * we catch bad users of this early.
2144          */
2145         WARN_ON_ONCE(in_interrupt());
2146
2147         blk_mq_run_dispatch_ops(hctx->queue,
2148                         blk_mq_sched_dispatch_requests(hctx));
2149 }
2150
2151 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2152 {
2153         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2154
2155         if (cpu >= nr_cpu_ids)
2156                 cpu = cpumask_first(hctx->cpumask);
2157         return cpu;
2158 }
2159
2160 /*
2161  * It'd be great if the workqueue API had a way to pass
2162  * in a mask and had some smarts for more clever placement.
2163  * For now we just round-robin here, switching for every
2164  * BLK_MQ_CPU_WORK_BATCH queued items.
2165  */
2166 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2167 {
2168         bool tried = false;
2169         int next_cpu = hctx->next_cpu;
2170
2171         if (hctx->queue->nr_hw_queues == 1)
2172                 return WORK_CPU_UNBOUND;
2173
2174         if (--hctx->next_cpu_batch <= 0) {
2175 select_cpu:
2176                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2177                                 cpu_online_mask);
2178                 if (next_cpu >= nr_cpu_ids)
2179                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2180                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2181         }
2182
2183         /*
2184          * Do unbound schedule if we can't find a online CPU for this hctx,
2185          * and it should only happen in the path of handling CPU DEAD.
2186          */
2187         if (!cpu_online(next_cpu)) {
2188                 if (!tried) {
2189                         tried = true;
2190                         goto select_cpu;
2191                 }
2192
2193                 /*
2194                  * Make sure to re-select CPU next time once after CPUs
2195                  * in hctx->cpumask become online again.
2196                  */
2197                 hctx->next_cpu = next_cpu;
2198                 hctx->next_cpu_batch = 1;
2199                 return WORK_CPU_UNBOUND;
2200         }
2201
2202         hctx->next_cpu = next_cpu;
2203         return next_cpu;
2204 }
2205
2206 /**
2207  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2208  * @hctx: Pointer to the hardware queue to run.
2209  * @async: If we want to run the queue asynchronously.
2210  * @msecs: Milliseconds of delay to wait before running the queue.
2211  *
2212  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2213  * with a delay of @msecs.
2214  */
2215 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2216                                         unsigned long msecs)
2217 {
2218         if (unlikely(blk_mq_hctx_stopped(hctx)))
2219                 return;
2220
2221         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2222                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2223                         __blk_mq_run_hw_queue(hctx);
2224                         return;
2225                 }
2226         }
2227
2228         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2229                                     msecs_to_jiffies(msecs));
2230 }
2231
2232 /**
2233  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2234  * @hctx: Pointer to the hardware queue to run.
2235  * @msecs: Milliseconds of delay to wait before running the queue.
2236  *
2237  * Run a hardware queue asynchronously with a delay of @msecs.
2238  */
2239 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2240 {
2241         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2242 }
2243 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2244
2245 /**
2246  * blk_mq_run_hw_queue - Start to run a hardware queue.
2247  * @hctx: Pointer to the hardware queue to run.
2248  * @async: If we want to run the queue asynchronously.
2249  *
2250  * Check if the request queue is not in a quiesced state and if there are
2251  * pending requests to be sent. If this is true, run the queue to send requests
2252  * to hardware.
2253  */
2254 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2255 {
2256         bool need_run;
2257
2258         /*
2259          * When queue is quiesced, we may be switching io scheduler, or
2260          * updating nr_hw_queues, or other things, and we can't run queue
2261          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2262          *
2263          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2264          * quiesced.
2265          */
2266         __blk_mq_run_dispatch_ops(hctx->queue, false,
2267                 need_run = !blk_queue_quiesced(hctx->queue) &&
2268                 blk_mq_hctx_has_pending(hctx));
2269
2270         if (need_run)
2271                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2272 }
2273 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2274
2275 /*
2276  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2277  * scheduler.
2278  */
2279 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2280 {
2281         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2282         /*
2283          * If the IO scheduler does not respect hardware queues when
2284          * dispatching, we just don't bother with multiple HW queues and
2285          * dispatch from hctx for the current CPU since running multiple queues
2286          * just causes lock contention inside the scheduler and pointless cache
2287          * bouncing.
2288          */
2289         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2290
2291         if (!blk_mq_hctx_stopped(hctx))
2292                 return hctx;
2293         return NULL;
2294 }
2295
2296 /**
2297  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2298  * @q: Pointer to the request queue to run.
2299  * @async: If we want to run the queue asynchronously.
2300  */
2301 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2302 {
2303         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2304         unsigned long i;
2305
2306         sq_hctx = NULL;
2307         if (blk_queue_sq_sched(q))
2308                 sq_hctx = blk_mq_get_sq_hctx(q);
2309         queue_for_each_hw_ctx(q, hctx, i) {
2310                 if (blk_mq_hctx_stopped(hctx))
2311                         continue;
2312                 /*
2313                  * Dispatch from this hctx either if there's no hctx preferred
2314                  * by IO scheduler or if it has requests that bypass the
2315                  * scheduler.
2316                  */
2317                 if (!sq_hctx || sq_hctx == hctx ||
2318                     !list_empty_careful(&hctx->dispatch))
2319                         blk_mq_run_hw_queue(hctx, async);
2320         }
2321 }
2322 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2323
2324 /**
2325  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2326  * @q: Pointer to the request queue to run.
2327  * @msecs: Milliseconds of delay to wait before running the queues.
2328  */
2329 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2330 {
2331         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2332         unsigned long i;
2333
2334         sq_hctx = NULL;
2335         if (blk_queue_sq_sched(q))
2336                 sq_hctx = blk_mq_get_sq_hctx(q);
2337         queue_for_each_hw_ctx(q, hctx, i) {
2338                 if (blk_mq_hctx_stopped(hctx))
2339                         continue;
2340                 /*
2341                  * If there is already a run_work pending, leave the
2342                  * pending delay untouched. Otherwise, a hctx can stall
2343                  * if another hctx is re-delaying the other's work
2344                  * before the work executes.
2345                  */
2346                 if (delayed_work_pending(&hctx->run_work))
2347                         continue;
2348                 /*
2349                  * Dispatch from this hctx either if there's no hctx preferred
2350                  * by IO scheduler or if it has requests that bypass the
2351                  * scheduler.
2352                  */
2353                 if (!sq_hctx || sq_hctx == hctx ||
2354                     !list_empty_careful(&hctx->dispatch))
2355                         blk_mq_delay_run_hw_queue(hctx, msecs);
2356         }
2357 }
2358 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2359
2360 /*
2361  * This function is often used for pausing .queue_rq() by driver when
2362  * there isn't enough resource or some conditions aren't satisfied, and
2363  * BLK_STS_RESOURCE is usually returned.
2364  *
2365  * We do not guarantee that dispatch can be drained or blocked
2366  * after blk_mq_stop_hw_queue() returns. Please use
2367  * blk_mq_quiesce_queue() for that requirement.
2368  */
2369 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2370 {
2371         cancel_delayed_work(&hctx->run_work);
2372
2373         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2374 }
2375 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2376
2377 /*
2378  * This function is often used for pausing .queue_rq() by driver when
2379  * there isn't enough resource or some conditions aren't satisfied, and
2380  * BLK_STS_RESOURCE is usually returned.
2381  *
2382  * We do not guarantee that dispatch can be drained or blocked
2383  * after blk_mq_stop_hw_queues() returns. Please use
2384  * blk_mq_quiesce_queue() for that requirement.
2385  */
2386 void blk_mq_stop_hw_queues(struct request_queue *q)
2387 {
2388         struct blk_mq_hw_ctx *hctx;
2389         unsigned long i;
2390
2391         queue_for_each_hw_ctx(q, hctx, i)
2392                 blk_mq_stop_hw_queue(hctx);
2393 }
2394 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2395
2396 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2397 {
2398         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2399
2400         blk_mq_run_hw_queue(hctx, false);
2401 }
2402 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2403
2404 void blk_mq_start_hw_queues(struct request_queue *q)
2405 {
2406         struct blk_mq_hw_ctx *hctx;
2407         unsigned long i;
2408
2409         queue_for_each_hw_ctx(q, hctx, i)
2410                 blk_mq_start_hw_queue(hctx);
2411 }
2412 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2413
2414 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2415 {
2416         if (!blk_mq_hctx_stopped(hctx))
2417                 return;
2418
2419         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2420         blk_mq_run_hw_queue(hctx, async);
2421 }
2422 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2423
2424 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2425 {
2426         struct blk_mq_hw_ctx *hctx;
2427         unsigned long i;
2428
2429         queue_for_each_hw_ctx(q, hctx, i)
2430                 blk_mq_start_stopped_hw_queue(hctx, async);
2431 }
2432 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2433
2434 static void blk_mq_run_work_fn(struct work_struct *work)
2435 {
2436         struct blk_mq_hw_ctx *hctx;
2437
2438         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2439
2440         /*
2441          * If we are stopped, don't run the queue.
2442          */
2443         if (blk_mq_hctx_stopped(hctx))
2444                 return;
2445
2446         __blk_mq_run_hw_queue(hctx);
2447 }
2448
2449 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2450                                             struct request *rq,
2451                                             bool at_head)
2452 {
2453         struct blk_mq_ctx *ctx = rq->mq_ctx;
2454         enum hctx_type type = hctx->type;
2455
2456         lockdep_assert_held(&ctx->lock);
2457
2458         trace_block_rq_insert(rq);
2459
2460         if (at_head)
2461                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2462         else
2463                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2464 }
2465
2466 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2467                              bool at_head)
2468 {
2469         struct blk_mq_ctx *ctx = rq->mq_ctx;
2470
2471         lockdep_assert_held(&ctx->lock);
2472
2473         __blk_mq_insert_req_list(hctx, rq, at_head);
2474         blk_mq_hctx_mark_pending(hctx, ctx);
2475 }
2476
2477 /**
2478  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2479  * @rq: Pointer to request to be inserted.
2480  * @at_head: true if the request should be inserted at the head of the list.
2481  * @run_queue: If we should run the hardware queue after inserting the request.
2482  *
2483  * Should only be used carefully, when the caller knows we want to
2484  * bypass a potential IO scheduler on the target device.
2485  */
2486 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2487                                   bool run_queue)
2488 {
2489         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2490
2491         spin_lock(&hctx->lock);
2492         if (at_head)
2493                 list_add(&rq->queuelist, &hctx->dispatch);
2494         else
2495                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2496         spin_unlock(&hctx->lock);
2497
2498         if (run_queue)
2499                 blk_mq_run_hw_queue(hctx, false);
2500 }
2501
2502 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2503                             struct list_head *list)
2504
2505 {
2506         struct request *rq;
2507         enum hctx_type type = hctx->type;
2508
2509         /*
2510          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2511          * offline now
2512          */
2513         list_for_each_entry(rq, list, queuelist) {
2514                 BUG_ON(rq->mq_ctx != ctx);
2515                 trace_block_rq_insert(rq);
2516         }
2517
2518         spin_lock(&ctx->lock);
2519         list_splice_tail_init(list, &ctx->rq_lists[type]);
2520         blk_mq_hctx_mark_pending(hctx, ctx);
2521         spin_unlock(&ctx->lock);
2522 }
2523
2524 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2525                               bool from_schedule)
2526 {
2527         if (hctx->queue->mq_ops->commit_rqs) {
2528                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2529                 hctx->queue->mq_ops->commit_rqs(hctx);
2530         }
2531         *queued = 0;
2532 }
2533
2534 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2535                 unsigned int nr_segs)
2536 {
2537         int err;
2538
2539         if (bio->bi_opf & REQ_RAHEAD)
2540                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2541
2542         rq->__sector = bio->bi_iter.bi_sector;
2543         blk_rq_bio_prep(rq, bio, nr_segs);
2544
2545         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2546         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2547         WARN_ON_ONCE(err);
2548
2549         blk_account_io_start(rq);
2550 }
2551
2552 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2553                                             struct request *rq, bool last)
2554 {
2555         struct request_queue *q = rq->q;
2556         struct blk_mq_queue_data bd = {
2557                 .rq = rq,
2558                 .last = last,
2559         };
2560         blk_status_t ret;
2561
2562         /*
2563          * For OK queue, we are done. For error, caller may kill it.
2564          * Any other error (busy), just add it to our list as we
2565          * previously would have done.
2566          */
2567         ret = q->mq_ops->queue_rq(hctx, &bd);
2568         switch (ret) {
2569         case BLK_STS_OK:
2570                 blk_mq_update_dispatch_busy(hctx, false);
2571                 break;
2572         case BLK_STS_RESOURCE:
2573         case BLK_STS_DEV_RESOURCE:
2574                 blk_mq_update_dispatch_busy(hctx, true);
2575                 __blk_mq_requeue_request(rq);
2576                 break;
2577         default:
2578                 blk_mq_update_dispatch_busy(hctx, false);
2579                 break;
2580         }
2581
2582         return ret;
2583 }
2584
2585 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2586                                                 struct request *rq,
2587                                                 bool bypass_insert, bool last)
2588 {
2589         struct request_queue *q = rq->q;
2590         bool run_queue = true;
2591         int budget_token;
2592
2593         /*
2594          * RCU or SRCU read lock is needed before checking quiesced flag.
2595          *
2596          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2597          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2598          * and avoid driver to try to dispatch again.
2599          */
2600         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2601                 run_queue = false;
2602                 bypass_insert = false;
2603                 goto insert;
2604         }
2605
2606         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2607                 goto insert;
2608
2609         budget_token = blk_mq_get_dispatch_budget(q);
2610         if (budget_token < 0)
2611                 goto insert;
2612
2613         blk_mq_set_rq_budget_token(rq, budget_token);
2614
2615         if (!blk_mq_get_driver_tag(rq)) {
2616                 blk_mq_put_dispatch_budget(q, budget_token);
2617                 goto insert;
2618         }
2619
2620         return __blk_mq_issue_directly(hctx, rq, last);
2621 insert:
2622         if (bypass_insert)
2623                 return BLK_STS_RESOURCE;
2624
2625         blk_mq_sched_insert_request(rq, false, run_queue, false);
2626
2627         return BLK_STS_OK;
2628 }
2629
2630 /**
2631  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2632  * @hctx: Pointer of the associated hardware queue.
2633  * @rq: Pointer to request to be sent.
2634  *
2635  * If the device has enough resources to accept a new request now, send the
2636  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2637  * we can try send it another time in the future. Requests inserted at this
2638  * queue have higher priority.
2639  */
2640 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2641                 struct request *rq)
2642 {
2643         blk_status_t ret =
2644                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2645
2646         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2647                 blk_mq_request_bypass_insert(rq, false, true);
2648         else if (ret != BLK_STS_OK)
2649                 blk_mq_end_request(rq, ret);
2650 }
2651
2652 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2653 {
2654         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2655 }
2656
2657 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2658 {
2659         struct blk_mq_hw_ctx *hctx = NULL;
2660         struct request *rq;
2661         int queued = 0;
2662         int errors = 0;
2663
2664         while ((rq = rq_list_pop(&plug->mq_list))) {
2665                 bool last = rq_list_empty(plug->mq_list);
2666                 blk_status_t ret;
2667
2668                 if (hctx != rq->mq_hctx) {
2669                         if (hctx)
2670                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2671                         hctx = rq->mq_hctx;
2672                 }
2673
2674                 ret = blk_mq_request_issue_directly(rq, last);
2675                 switch (ret) {
2676                 case BLK_STS_OK:
2677                         queued++;
2678                         break;
2679                 case BLK_STS_RESOURCE:
2680                 case BLK_STS_DEV_RESOURCE:
2681                         blk_mq_request_bypass_insert(rq, false, true);
2682                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2683                         return;
2684                 default:
2685                         blk_mq_end_request(rq, ret);
2686                         errors++;
2687                         break;
2688                 }
2689         }
2690
2691         /*
2692          * If we didn't flush the entire list, we could have told the driver
2693          * there was more coming, but that turned out to be a lie.
2694          */
2695         if (errors)
2696                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2697 }
2698
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700                                      struct blk_plug *plug)
2701 {
2702         if (blk_queue_quiesced(q))
2703                 return;
2704         q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709         struct blk_mq_hw_ctx *this_hctx = NULL;
2710         struct blk_mq_ctx *this_ctx = NULL;
2711         struct request *requeue_list = NULL;
2712         struct request **requeue_lastp = &requeue_list;
2713         unsigned int depth = 0;
2714         LIST_HEAD(list);
2715
2716         do {
2717                 struct request *rq = rq_list_pop(&plug->mq_list);
2718
2719                 if (!this_hctx) {
2720                         this_hctx = rq->mq_hctx;
2721                         this_ctx = rq->mq_ctx;
2722                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2723                         rq_list_add_tail(&requeue_lastp, rq);
2724                         continue;
2725                 }
2726                 list_add(&rq->queuelist, &list);
2727                 depth++;
2728         } while (!rq_list_empty(plug->mq_list));
2729
2730         plug->mq_list = requeue_list;
2731         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2732         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2733 }
2734
2735 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2736 {
2737         struct request *rq;
2738
2739         if (rq_list_empty(plug->mq_list))
2740                 return;
2741         plug->rq_count = 0;
2742
2743         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2744                 struct request_queue *q;
2745
2746                 rq = rq_list_peek(&plug->mq_list);
2747                 q = rq->q;
2748
2749                 /*
2750                  * Peek first request and see if we have a ->queue_rqs() hook.
2751                  * If we do, we can dispatch the whole plug list in one go. We
2752                  * already know at this point that all requests belong to the
2753                  * same queue, caller must ensure that's the case.
2754                  *
2755                  * Since we pass off the full list to the driver at this point,
2756                  * we do not increment the active request count for the queue.
2757                  * Bypass shared tags for now because of that.
2758                  */
2759                 if (q->mq_ops->queue_rqs &&
2760                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2761                         blk_mq_run_dispatch_ops(q,
2762                                 __blk_mq_flush_plug_list(q, plug));
2763                         if (rq_list_empty(plug->mq_list))
2764                                 return;
2765                 }
2766
2767                 blk_mq_run_dispatch_ops(q,
2768                                 blk_mq_plug_issue_direct(plug, false));
2769                 if (rq_list_empty(plug->mq_list))
2770                         return;
2771         }
2772
2773         do {
2774                 blk_mq_dispatch_plug_list(plug, from_schedule);
2775         } while (!rq_list_empty(plug->mq_list));
2776 }
2777
2778 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2779                 struct list_head *list)
2780 {
2781         int queued = 0;
2782         int errors = 0;
2783
2784         while (!list_empty(list)) {
2785                 blk_status_t ret;
2786                 struct request *rq = list_first_entry(list, struct request,
2787                                 queuelist);
2788
2789                 list_del_init(&rq->queuelist);
2790                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2791                 if (ret != BLK_STS_OK) {
2792                         errors++;
2793                         if (ret == BLK_STS_RESOURCE ||
2794                                         ret == BLK_STS_DEV_RESOURCE) {
2795                                 blk_mq_request_bypass_insert(rq, false,
2796                                                         list_empty(list));
2797                                 break;
2798                         }
2799                         blk_mq_end_request(rq, ret);
2800                 } else
2801                         queued++;
2802         }
2803
2804         /*
2805          * If we didn't flush the entire list, we could have told
2806          * the driver there was more coming, but that turned out to
2807          * be a lie.
2808          */
2809         if ((!list_empty(list) || errors) &&
2810              hctx->queue->mq_ops->commit_rqs && queued)
2811                 hctx->queue->mq_ops->commit_rqs(hctx);
2812 }
2813
2814 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2815                                      struct bio *bio, unsigned int nr_segs)
2816 {
2817         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2818                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2819                         return true;
2820                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2821                         return true;
2822         }
2823         return false;
2824 }
2825
2826 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2827                                                struct blk_plug *plug,
2828                                                struct bio *bio,
2829                                                unsigned int nsegs)
2830 {
2831         struct blk_mq_alloc_data data = {
2832                 .q              = q,
2833                 .nr_tags        = 1,
2834                 .cmd_flags      = bio->bi_opf,
2835         };
2836         struct request *rq;
2837
2838         if (unlikely(bio_queue_enter(bio)))
2839                 return NULL;
2840
2841         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2842                 goto queue_exit;
2843
2844         rq_qos_throttle(q, bio);
2845
2846         if (plug) {
2847                 data.nr_tags = plug->nr_ios;
2848                 plug->nr_ios = 1;
2849                 data.cached_rq = &plug->cached_rq;
2850         }
2851
2852         rq = __blk_mq_alloc_requests(&data);
2853         if (rq)
2854                 return rq;
2855         rq_qos_cleanup(q, bio);
2856         if (bio->bi_opf & REQ_NOWAIT)
2857                 bio_wouldblock_error(bio);
2858 queue_exit:
2859         blk_queue_exit(q);
2860         return NULL;
2861 }
2862
2863 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2864                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2865 {
2866         struct request *rq;
2867         enum hctx_type type, hctx_type;
2868
2869         if (!plug)
2870                 return NULL;
2871         rq = rq_list_peek(&plug->cached_rq);
2872         if (!rq || rq->q != q)
2873                 return NULL;
2874
2875         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2876                 *bio = NULL;
2877                 return NULL;
2878         }
2879
2880         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2881         hctx_type = rq->mq_hctx->type;
2882         if (type != hctx_type &&
2883             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2884                 return NULL;
2885         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2886                 return NULL;
2887
2888         /*
2889          * If any qos ->throttle() end up blocking, we will have flushed the
2890          * plug and hence killed the cached_rq list as well. Pop this entry
2891          * before we throttle.
2892          */
2893         plug->cached_rq = rq_list_next(rq);
2894         rq_qos_throttle(q, *bio);
2895
2896         rq->cmd_flags = (*bio)->bi_opf;
2897         INIT_LIST_HEAD(&rq->queuelist);
2898         return rq;
2899 }
2900
2901 static void bio_set_ioprio(struct bio *bio)
2902 {
2903         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2904         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2905                 bio->bi_ioprio = get_current_ioprio();
2906         blkcg_set_ioprio(bio);
2907 }
2908
2909 /**
2910  * blk_mq_submit_bio - Create and send a request to block device.
2911  * @bio: Bio pointer.
2912  *
2913  * Builds up a request structure from @q and @bio and send to the device. The
2914  * request may not be queued directly to hardware if:
2915  * * This request can be merged with another one
2916  * * We want to place request at plug queue for possible future merging
2917  * * There is an IO scheduler active at this queue
2918  *
2919  * It will not queue the request if there is an error with the bio, or at the
2920  * request creation.
2921  */
2922 void blk_mq_submit_bio(struct bio *bio)
2923 {
2924         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2925         struct blk_plug *plug = blk_mq_plug(bio);
2926         const int is_sync = op_is_sync(bio->bi_opf);
2927         struct request *rq;
2928         unsigned int nr_segs = 1;
2929         blk_status_t ret;
2930
2931         bio = blk_queue_bounce(bio, q);
2932         if (bio_may_exceed_limits(bio, &q->limits)) {
2933                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2934                 if (!bio)
2935                         return;
2936         }
2937
2938         if (!bio_integrity_prep(bio))
2939                 return;
2940
2941         bio_set_ioprio(bio);
2942
2943         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2944         if (!rq) {
2945                 if (!bio)
2946                         return;
2947                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2948                 if (unlikely(!rq))
2949                         return;
2950         }
2951
2952         trace_block_getrq(bio);
2953
2954         rq_qos_track(q, rq, bio);
2955
2956         blk_mq_bio_to_request(rq, bio, nr_segs);
2957
2958         ret = blk_crypto_init_request(rq);
2959         if (ret != BLK_STS_OK) {
2960                 bio->bi_status = ret;
2961                 bio_endio(bio);
2962                 blk_mq_free_request(rq);
2963                 return;
2964         }
2965
2966         if (op_is_flush(bio->bi_opf)) {
2967                 blk_insert_flush(rq);
2968                 return;
2969         }
2970
2971         if (plug)
2972                 blk_add_rq_to_plug(plug, rq);
2973         else if ((rq->rq_flags & RQF_ELV) ||
2974                  (rq->mq_hctx->dispatch_busy &&
2975                   (q->nr_hw_queues == 1 || !is_sync)))
2976                 blk_mq_sched_insert_request(rq, false, true, true);
2977         else
2978                 blk_mq_run_dispatch_ops(rq->q,
2979                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2980 }
2981
2982 #ifdef CONFIG_BLK_MQ_STACKING
2983 /**
2984  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2985  * @rq: the request being queued
2986  */
2987 blk_status_t blk_insert_cloned_request(struct request *rq)
2988 {
2989         struct request_queue *q = rq->q;
2990         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2991         blk_status_t ret;
2992
2993         if (blk_rq_sectors(rq) > max_sectors) {
2994                 /*
2995                  * SCSI device does not have a good way to return if
2996                  * Write Same/Zero is actually supported. If a device rejects
2997                  * a non-read/write command (discard, write same,etc.) the
2998                  * low-level device driver will set the relevant queue limit to
2999                  * 0 to prevent blk-lib from issuing more of the offending
3000                  * operations. Commands queued prior to the queue limit being
3001                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3002                  * errors being propagated to upper layers.
3003                  */
3004                 if (max_sectors == 0)
3005                         return BLK_STS_NOTSUPP;
3006
3007                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3008                         __func__, blk_rq_sectors(rq), max_sectors);
3009                 return BLK_STS_IOERR;
3010         }
3011
3012         /*
3013          * The queue settings related to segment counting may differ from the
3014          * original queue.
3015          */
3016         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3017         if (rq->nr_phys_segments > queue_max_segments(q)) {
3018                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3019                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3020                 return BLK_STS_IOERR;
3021         }
3022
3023         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3024                 return BLK_STS_IOERR;
3025
3026         if (blk_crypto_insert_cloned_request(rq))
3027                 return BLK_STS_IOERR;
3028
3029         blk_account_io_start(rq);
3030
3031         /*
3032          * Since we have a scheduler attached on the top device,
3033          * bypass a potential scheduler on the bottom device for
3034          * insert.
3035          */
3036         blk_mq_run_dispatch_ops(q,
3037                         ret = blk_mq_request_issue_directly(rq, true));
3038         if (ret)
3039                 blk_account_io_done(rq, ktime_get_ns());
3040         return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3043
3044 /**
3045  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3046  * @rq: the clone request to be cleaned up
3047  *
3048  * Description:
3049  *     Free all bios in @rq for a cloned request.
3050  */
3051 void blk_rq_unprep_clone(struct request *rq)
3052 {
3053         struct bio *bio;
3054
3055         while ((bio = rq->bio) != NULL) {
3056                 rq->bio = bio->bi_next;
3057
3058                 bio_put(bio);
3059         }
3060 }
3061 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3062
3063 /**
3064  * blk_rq_prep_clone - Helper function to setup clone request
3065  * @rq: the request to be setup
3066  * @rq_src: original request to be cloned
3067  * @bs: bio_set that bios for clone are allocated from
3068  * @gfp_mask: memory allocation mask for bio
3069  * @bio_ctr: setup function to be called for each clone bio.
3070  *           Returns %0 for success, non %0 for failure.
3071  * @data: private data to be passed to @bio_ctr
3072  *
3073  * Description:
3074  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3075  *     Also, pages which the original bios are pointing to are not copied
3076  *     and the cloned bios just point same pages.
3077  *     So cloned bios must be completed before original bios, which means
3078  *     the caller must complete @rq before @rq_src.
3079  */
3080 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3081                       struct bio_set *bs, gfp_t gfp_mask,
3082                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3083                       void *data)
3084 {
3085         struct bio *bio, *bio_src;
3086
3087         if (!bs)
3088                 bs = &fs_bio_set;
3089
3090         __rq_for_each_bio(bio_src, rq_src) {
3091                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3092                                       bs);
3093                 if (!bio)
3094                         goto free_and_out;
3095
3096                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3097                         goto free_and_out;
3098
3099                 if (rq->bio) {
3100                         rq->biotail->bi_next = bio;
3101                         rq->biotail = bio;
3102                 } else {
3103                         rq->bio = rq->biotail = bio;
3104                 }
3105                 bio = NULL;
3106         }
3107
3108         /* Copy attributes of the original request to the clone request. */
3109         rq->__sector = blk_rq_pos(rq_src);
3110         rq->__data_len = blk_rq_bytes(rq_src);
3111         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3112                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3113                 rq->special_vec = rq_src->special_vec;
3114         }
3115         rq->nr_phys_segments = rq_src->nr_phys_segments;
3116         rq->ioprio = rq_src->ioprio;
3117
3118         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3119                 goto free_and_out;
3120
3121         return 0;
3122
3123 free_and_out:
3124         if (bio)
3125                 bio_put(bio);
3126         blk_rq_unprep_clone(rq);
3127
3128         return -ENOMEM;
3129 }
3130 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3131 #endif /* CONFIG_BLK_MQ_STACKING */
3132
3133 /*
3134  * Steal bios from a request and add them to a bio list.
3135  * The request must not have been partially completed before.
3136  */
3137 void blk_steal_bios(struct bio_list *list, struct request *rq)
3138 {
3139         if (rq->bio) {
3140                 if (list->tail)
3141                         list->tail->bi_next = rq->bio;
3142                 else
3143                         list->head = rq->bio;
3144                 list->tail = rq->biotail;
3145
3146                 rq->bio = NULL;
3147                 rq->biotail = NULL;
3148         }
3149
3150         rq->__data_len = 0;
3151 }
3152 EXPORT_SYMBOL_GPL(blk_steal_bios);
3153
3154 static size_t order_to_size(unsigned int order)
3155 {
3156         return (size_t)PAGE_SIZE << order;
3157 }
3158
3159 /* called before freeing request pool in @tags */
3160 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3161                                     struct blk_mq_tags *tags)
3162 {
3163         struct page *page;
3164         unsigned long flags;
3165
3166         /*
3167          * There is no need to clear mapping if driver tags is not initialized
3168          * or the mapping belongs to the driver tags.
3169          */
3170         if (!drv_tags || drv_tags == tags)
3171                 return;
3172
3173         list_for_each_entry(page, &tags->page_list, lru) {
3174                 unsigned long start = (unsigned long)page_address(page);
3175                 unsigned long end = start + order_to_size(page->private);
3176                 int i;
3177
3178                 for (i = 0; i < drv_tags->nr_tags; i++) {
3179                         struct request *rq = drv_tags->rqs[i];
3180                         unsigned long rq_addr = (unsigned long)rq;
3181
3182                         if (rq_addr >= start && rq_addr < end) {
3183                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3184                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3185                         }
3186                 }
3187         }
3188
3189         /*
3190          * Wait until all pending iteration is done.
3191          *
3192          * Request reference is cleared and it is guaranteed to be observed
3193          * after the ->lock is released.
3194          */
3195         spin_lock_irqsave(&drv_tags->lock, flags);
3196         spin_unlock_irqrestore(&drv_tags->lock, flags);
3197 }
3198
3199 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3200                      unsigned int hctx_idx)
3201 {
3202         struct blk_mq_tags *drv_tags;
3203         struct page *page;
3204
3205         if (list_empty(&tags->page_list))
3206                 return;
3207
3208         if (blk_mq_is_shared_tags(set->flags))
3209                 drv_tags = set->shared_tags;
3210         else
3211                 drv_tags = set->tags[hctx_idx];
3212
3213         if (tags->static_rqs && set->ops->exit_request) {
3214                 int i;
3215
3216                 for (i = 0; i < tags->nr_tags; i++) {
3217                         struct request *rq = tags->static_rqs[i];
3218
3219                         if (!rq)
3220                                 continue;
3221                         set->ops->exit_request(set, rq, hctx_idx);
3222                         tags->static_rqs[i] = NULL;
3223                 }
3224         }
3225
3226         blk_mq_clear_rq_mapping(drv_tags, tags);
3227
3228         while (!list_empty(&tags->page_list)) {
3229                 page = list_first_entry(&tags->page_list, struct page, lru);
3230                 list_del_init(&page->lru);
3231                 /*
3232                  * Remove kmemleak object previously allocated in
3233                  * blk_mq_alloc_rqs().
3234                  */
3235                 kmemleak_free(page_address(page));
3236                 __free_pages(page, page->private);
3237         }
3238 }
3239
3240 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3241 {
3242         kfree(tags->rqs);
3243         tags->rqs = NULL;
3244         kfree(tags->static_rqs);
3245         tags->static_rqs = NULL;
3246
3247         blk_mq_free_tags(tags);
3248 }
3249
3250 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3251                 unsigned int hctx_idx)
3252 {
3253         int i;
3254
3255         for (i = 0; i < set->nr_maps; i++) {
3256                 unsigned int start = set->map[i].queue_offset;
3257                 unsigned int end = start + set->map[i].nr_queues;
3258
3259                 if (hctx_idx >= start && hctx_idx < end)
3260                         break;
3261         }
3262
3263         if (i >= set->nr_maps)
3264                 i = HCTX_TYPE_DEFAULT;
3265
3266         return i;
3267 }
3268
3269 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3270                 unsigned int hctx_idx)
3271 {
3272         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3273
3274         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3275 }
3276
3277 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3278                                                unsigned int hctx_idx,
3279                                                unsigned int nr_tags,
3280                                                unsigned int reserved_tags)
3281 {
3282         int node = blk_mq_get_hctx_node(set, hctx_idx);
3283         struct blk_mq_tags *tags;
3284
3285         if (node == NUMA_NO_NODE)
3286                 node = set->numa_node;
3287
3288         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3289                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3290         if (!tags)
3291                 return NULL;
3292
3293         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3294                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3295                                  node);
3296         if (!tags->rqs) {
3297                 blk_mq_free_tags(tags);
3298                 return NULL;
3299         }
3300
3301         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3302                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3303                                         node);
3304         if (!tags->static_rqs) {
3305                 kfree(tags->rqs);
3306                 blk_mq_free_tags(tags);
3307                 return NULL;
3308         }
3309
3310         return tags;
3311 }
3312
3313 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3314                                unsigned int hctx_idx, int node)
3315 {
3316         int ret;
3317
3318         if (set->ops->init_request) {
3319                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3320                 if (ret)
3321                         return ret;
3322         }
3323
3324         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3325         return 0;
3326 }
3327
3328 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3329                             struct blk_mq_tags *tags,
3330                             unsigned int hctx_idx, unsigned int depth)
3331 {
3332         unsigned int i, j, entries_per_page, max_order = 4;
3333         int node = blk_mq_get_hctx_node(set, hctx_idx);
3334         size_t rq_size, left;
3335
3336         if (node == NUMA_NO_NODE)
3337                 node = set->numa_node;
3338
3339         INIT_LIST_HEAD(&tags->page_list);
3340
3341         /*
3342          * rq_size is the size of the request plus driver payload, rounded
3343          * to the cacheline size
3344          */
3345         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3346                                 cache_line_size());
3347         left = rq_size * depth;
3348
3349         for (i = 0; i < depth; ) {
3350                 int this_order = max_order;
3351                 struct page *page;
3352                 int to_do;
3353                 void *p;
3354
3355                 while (this_order && left < order_to_size(this_order - 1))
3356                         this_order--;
3357
3358                 do {
3359                         page = alloc_pages_node(node,
3360                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3361                                 this_order);
3362                         if (page)
3363                                 break;
3364                         if (!this_order--)
3365                                 break;
3366                         if (order_to_size(this_order) < rq_size)
3367                                 break;
3368                 } while (1);
3369
3370                 if (!page)
3371                         goto fail;
3372
3373                 page->private = this_order;
3374                 list_add_tail(&page->lru, &tags->page_list);
3375
3376                 p = page_address(page);
3377                 /*
3378                  * Allow kmemleak to scan these pages as they contain pointers
3379                  * to additional allocations like via ops->init_request().
3380                  */
3381                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3382                 entries_per_page = order_to_size(this_order) / rq_size;
3383                 to_do = min(entries_per_page, depth - i);
3384                 left -= to_do * rq_size;
3385                 for (j = 0; j < to_do; j++) {
3386                         struct request *rq = p;
3387
3388                         tags->static_rqs[i] = rq;
3389                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3390                                 tags->static_rqs[i] = NULL;
3391                                 goto fail;
3392                         }
3393
3394                         p += rq_size;
3395                         i++;
3396                 }
3397         }
3398         return 0;
3399
3400 fail:
3401         blk_mq_free_rqs(set, tags, hctx_idx);
3402         return -ENOMEM;
3403 }
3404
3405 struct rq_iter_data {
3406         struct blk_mq_hw_ctx *hctx;
3407         bool has_rq;
3408 };
3409
3410 static bool blk_mq_has_request(struct request *rq, void *data)
3411 {
3412         struct rq_iter_data *iter_data = data;
3413
3414         if (rq->mq_hctx != iter_data->hctx)
3415                 return true;
3416         iter_data->has_rq = true;
3417         return false;
3418 }
3419
3420 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3421 {
3422         struct blk_mq_tags *tags = hctx->sched_tags ?
3423                         hctx->sched_tags : hctx->tags;
3424         struct rq_iter_data data = {
3425                 .hctx   = hctx,
3426         };
3427
3428         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3429         return data.has_rq;
3430 }
3431
3432 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3433                 struct blk_mq_hw_ctx *hctx)
3434 {
3435         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3436                 return false;
3437         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3438                 return false;
3439         return true;
3440 }
3441
3442 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3443 {
3444         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3445                         struct blk_mq_hw_ctx, cpuhp_online);
3446
3447         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3448             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3449                 return 0;
3450
3451         /*
3452          * Prevent new request from being allocated on the current hctx.
3453          *
3454          * The smp_mb__after_atomic() Pairs with the implied barrier in
3455          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3456          * seen once we return from the tag allocator.
3457          */
3458         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3459         smp_mb__after_atomic();
3460
3461         /*
3462          * Try to grab a reference to the queue and wait for any outstanding
3463          * requests.  If we could not grab a reference the queue has been
3464          * frozen and there are no requests.
3465          */
3466         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3467                 while (blk_mq_hctx_has_requests(hctx))
3468                         msleep(5);
3469                 percpu_ref_put(&hctx->queue->q_usage_counter);
3470         }
3471
3472         return 0;
3473 }
3474
3475 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3476 {
3477         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3478                         struct blk_mq_hw_ctx, cpuhp_online);
3479
3480         if (cpumask_test_cpu(cpu, hctx->cpumask))
3481                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3482         return 0;
3483 }
3484
3485 /*
3486  * 'cpu' is going away. splice any existing rq_list entries from this
3487  * software queue to the hw queue dispatch list, and ensure that it
3488  * gets run.
3489  */
3490 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3491 {
3492         struct blk_mq_hw_ctx *hctx;
3493         struct blk_mq_ctx *ctx;
3494         LIST_HEAD(tmp);
3495         enum hctx_type type;
3496
3497         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3498         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3499                 return 0;
3500
3501         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3502         type = hctx->type;
3503
3504         spin_lock(&ctx->lock);
3505         if (!list_empty(&ctx->rq_lists[type])) {
3506                 list_splice_init(&ctx->rq_lists[type], &tmp);
3507                 blk_mq_hctx_clear_pending(hctx, ctx);
3508         }
3509         spin_unlock(&ctx->lock);
3510
3511         if (list_empty(&tmp))
3512                 return 0;
3513
3514         spin_lock(&hctx->lock);
3515         list_splice_tail_init(&tmp, &hctx->dispatch);
3516         spin_unlock(&hctx->lock);
3517
3518         blk_mq_run_hw_queue(hctx, true);
3519         return 0;
3520 }
3521
3522 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3523 {
3524         if (!(hctx->flags & BLK_MQ_F_STACKING))
3525                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3526                                                     &hctx->cpuhp_online);
3527         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3528                                             &hctx->cpuhp_dead);
3529 }
3530
3531 /*
3532  * Before freeing hw queue, clearing the flush request reference in
3533  * tags->rqs[] for avoiding potential UAF.
3534  */
3535 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3536                 unsigned int queue_depth, struct request *flush_rq)
3537 {
3538         int i;
3539         unsigned long flags;
3540
3541         /* The hw queue may not be mapped yet */
3542         if (!tags)
3543                 return;
3544
3545         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3546
3547         for (i = 0; i < queue_depth; i++)
3548                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3549
3550         /*
3551          * Wait until all pending iteration is done.
3552          *
3553          * Request reference is cleared and it is guaranteed to be observed
3554          * after the ->lock is released.
3555          */
3556         spin_lock_irqsave(&tags->lock, flags);
3557         spin_unlock_irqrestore(&tags->lock, flags);
3558 }
3559
3560 /* hctx->ctxs will be freed in queue's release handler */
3561 static void blk_mq_exit_hctx(struct request_queue *q,
3562                 struct blk_mq_tag_set *set,
3563                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3564 {
3565         struct request *flush_rq = hctx->fq->flush_rq;
3566
3567         if (blk_mq_hw_queue_mapped(hctx))
3568                 blk_mq_tag_idle(hctx);
3569
3570         if (blk_queue_init_done(q))
3571                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3572                                 set->queue_depth, flush_rq);
3573         if (set->ops->exit_request)
3574                 set->ops->exit_request(set, flush_rq, hctx_idx);
3575
3576         if (set->ops->exit_hctx)
3577                 set->ops->exit_hctx(hctx, hctx_idx);
3578
3579         blk_mq_remove_cpuhp(hctx);
3580
3581         xa_erase(&q->hctx_table, hctx_idx);
3582
3583         spin_lock(&q->unused_hctx_lock);
3584         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3585         spin_unlock(&q->unused_hctx_lock);
3586 }
3587
3588 static void blk_mq_exit_hw_queues(struct request_queue *q,
3589                 struct blk_mq_tag_set *set, int nr_queue)
3590 {
3591         struct blk_mq_hw_ctx *hctx;
3592         unsigned long i;
3593
3594         queue_for_each_hw_ctx(q, hctx, i) {
3595                 if (i == nr_queue)
3596                         break;
3597                 blk_mq_exit_hctx(q, set, hctx, i);
3598         }
3599 }
3600
3601 static int blk_mq_init_hctx(struct request_queue *q,
3602                 struct blk_mq_tag_set *set,
3603                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3604 {
3605         hctx->queue_num = hctx_idx;
3606
3607         if (!(hctx->flags & BLK_MQ_F_STACKING))
3608                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3609                                 &hctx->cpuhp_online);
3610         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3611
3612         hctx->tags = set->tags[hctx_idx];
3613
3614         if (set->ops->init_hctx &&
3615             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3616                 goto unregister_cpu_notifier;
3617
3618         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3619                                 hctx->numa_node))
3620                 goto exit_hctx;
3621
3622         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3623                 goto exit_flush_rq;
3624
3625         return 0;
3626
3627  exit_flush_rq:
3628         if (set->ops->exit_request)
3629                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3630  exit_hctx:
3631         if (set->ops->exit_hctx)
3632                 set->ops->exit_hctx(hctx, hctx_idx);
3633  unregister_cpu_notifier:
3634         blk_mq_remove_cpuhp(hctx);
3635         return -1;
3636 }
3637
3638 static struct blk_mq_hw_ctx *
3639 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3640                 int node)
3641 {
3642         struct blk_mq_hw_ctx *hctx;
3643         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3644
3645         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3646         if (!hctx)
3647                 goto fail_alloc_hctx;
3648
3649         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3650                 goto free_hctx;
3651
3652         atomic_set(&hctx->nr_active, 0);
3653         if (node == NUMA_NO_NODE)
3654                 node = set->numa_node;
3655         hctx->numa_node = node;
3656
3657         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3658         spin_lock_init(&hctx->lock);
3659         INIT_LIST_HEAD(&hctx->dispatch);
3660         hctx->queue = q;
3661         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3662
3663         INIT_LIST_HEAD(&hctx->hctx_list);
3664
3665         /*
3666          * Allocate space for all possible cpus to avoid allocation at
3667          * runtime
3668          */
3669         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3670                         gfp, node);
3671         if (!hctx->ctxs)
3672                 goto free_cpumask;
3673
3674         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3675                                 gfp, node, false, false))
3676                 goto free_ctxs;
3677         hctx->nr_ctx = 0;
3678
3679         spin_lock_init(&hctx->dispatch_wait_lock);
3680         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3681         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3682
3683         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3684         if (!hctx->fq)
3685                 goto free_bitmap;
3686
3687         blk_mq_hctx_kobj_init(hctx);
3688
3689         return hctx;
3690
3691  free_bitmap:
3692         sbitmap_free(&hctx->ctx_map);
3693  free_ctxs:
3694         kfree(hctx->ctxs);
3695  free_cpumask:
3696         free_cpumask_var(hctx->cpumask);
3697  free_hctx:
3698         kfree(hctx);
3699  fail_alloc_hctx:
3700         return NULL;
3701 }
3702
3703 static void blk_mq_init_cpu_queues(struct request_queue *q,
3704                                    unsigned int nr_hw_queues)
3705 {
3706         struct blk_mq_tag_set *set = q->tag_set;
3707         unsigned int i, j;
3708
3709         for_each_possible_cpu(i) {
3710                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3711                 struct blk_mq_hw_ctx *hctx;
3712                 int k;
3713
3714                 __ctx->cpu = i;
3715                 spin_lock_init(&__ctx->lock);
3716                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3717                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3718
3719                 __ctx->queue = q;
3720
3721                 /*
3722                  * Set local node, IFF we have more than one hw queue. If
3723                  * not, we remain on the home node of the device
3724                  */
3725                 for (j = 0; j < set->nr_maps; j++) {
3726                         hctx = blk_mq_map_queue_type(q, j, i);
3727                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3728                                 hctx->numa_node = cpu_to_node(i);
3729                 }
3730         }
3731 }
3732
3733 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3734                                              unsigned int hctx_idx,
3735                                              unsigned int depth)
3736 {
3737         struct blk_mq_tags *tags;
3738         int ret;
3739
3740         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3741         if (!tags)
3742                 return NULL;
3743
3744         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3745         if (ret) {
3746                 blk_mq_free_rq_map(tags);
3747                 return NULL;
3748         }
3749
3750         return tags;
3751 }
3752
3753 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3754                                        int hctx_idx)
3755 {
3756         if (blk_mq_is_shared_tags(set->flags)) {
3757                 set->tags[hctx_idx] = set->shared_tags;
3758
3759                 return true;
3760         }
3761
3762         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3763                                                        set->queue_depth);
3764
3765         return set->tags[hctx_idx];
3766 }
3767
3768 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3769                              struct blk_mq_tags *tags,
3770                              unsigned int hctx_idx)
3771 {
3772         if (tags) {
3773                 blk_mq_free_rqs(set, tags, hctx_idx);
3774                 blk_mq_free_rq_map(tags);
3775         }
3776 }
3777
3778 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3779                                       unsigned int hctx_idx)
3780 {
3781         if (!blk_mq_is_shared_tags(set->flags))
3782                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3783
3784         set->tags[hctx_idx] = NULL;
3785 }
3786
3787 static void blk_mq_map_swqueue(struct request_queue *q)
3788 {
3789         unsigned int j, hctx_idx;
3790         unsigned long i;
3791         struct blk_mq_hw_ctx *hctx;
3792         struct blk_mq_ctx *ctx;
3793         struct blk_mq_tag_set *set = q->tag_set;
3794
3795         queue_for_each_hw_ctx(q, hctx, i) {
3796                 cpumask_clear(hctx->cpumask);
3797                 hctx->nr_ctx = 0;
3798                 hctx->dispatch_from = NULL;
3799         }
3800
3801         /*
3802          * Map software to hardware queues.
3803          *
3804          * If the cpu isn't present, the cpu is mapped to first hctx.
3805          */
3806         for_each_possible_cpu(i) {
3807
3808                 ctx = per_cpu_ptr(q->queue_ctx, i);
3809                 for (j = 0; j < set->nr_maps; j++) {
3810                         if (!set->map[j].nr_queues) {
3811                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3812                                                 HCTX_TYPE_DEFAULT, i);
3813                                 continue;
3814                         }
3815                         hctx_idx = set->map[j].mq_map[i];
3816                         /* unmapped hw queue can be remapped after CPU topo changed */
3817                         if (!set->tags[hctx_idx] &&
3818                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3819                                 /*
3820                                  * If tags initialization fail for some hctx,
3821                                  * that hctx won't be brought online.  In this
3822                                  * case, remap the current ctx to hctx[0] which
3823                                  * is guaranteed to always have tags allocated
3824                                  */
3825                                 set->map[j].mq_map[i] = 0;
3826                         }
3827
3828                         hctx = blk_mq_map_queue_type(q, j, i);
3829                         ctx->hctxs[j] = hctx;
3830                         /*
3831                          * If the CPU is already set in the mask, then we've
3832                          * mapped this one already. This can happen if
3833                          * devices share queues across queue maps.
3834                          */
3835                         if (cpumask_test_cpu(i, hctx->cpumask))
3836                                 continue;
3837
3838                         cpumask_set_cpu(i, hctx->cpumask);
3839                         hctx->type = j;
3840                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3841                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3842
3843                         /*
3844                          * If the nr_ctx type overflows, we have exceeded the
3845                          * amount of sw queues we can support.
3846                          */
3847                         BUG_ON(!hctx->nr_ctx);
3848                 }
3849
3850                 for (; j < HCTX_MAX_TYPES; j++)
3851                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3852                                         HCTX_TYPE_DEFAULT, i);
3853         }
3854
3855         queue_for_each_hw_ctx(q, hctx, i) {
3856                 /*
3857                  * If no software queues are mapped to this hardware queue,
3858                  * disable it and free the request entries.
3859                  */
3860                 if (!hctx->nr_ctx) {
3861                         /* Never unmap queue 0.  We need it as a
3862                          * fallback in case of a new remap fails
3863                          * allocation
3864                          */
3865                         if (i)
3866                                 __blk_mq_free_map_and_rqs(set, i);
3867
3868                         hctx->tags = NULL;
3869                         continue;
3870                 }
3871
3872                 hctx->tags = set->tags[i];
3873                 WARN_ON(!hctx->tags);
3874
3875                 /*
3876                  * Set the map size to the number of mapped software queues.
3877                  * This is more accurate and more efficient than looping
3878                  * over all possibly mapped software queues.
3879                  */
3880                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3881
3882                 /*
3883                  * Initialize batch roundrobin counts
3884                  */
3885                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3886                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3887         }
3888 }
3889
3890 /*
3891  * Caller needs to ensure that we're either frozen/quiesced, or that
3892  * the queue isn't live yet.
3893  */
3894 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3895 {
3896         struct blk_mq_hw_ctx *hctx;
3897         unsigned long i;
3898
3899         queue_for_each_hw_ctx(q, hctx, i) {
3900                 if (shared) {
3901                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3902                 } else {
3903                         blk_mq_tag_idle(hctx);
3904                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3905                 }
3906         }
3907 }
3908
3909 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3910                                          bool shared)
3911 {
3912         struct request_queue *q;
3913
3914         lockdep_assert_held(&set->tag_list_lock);
3915
3916         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3917                 blk_mq_freeze_queue(q);
3918                 queue_set_hctx_shared(q, shared);
3919                 blk_mq_unfreeze_queue(q);
3920         }
3921 }
3922
3923 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3924 {
3925         struct blk_mq_tag_set *set = q->tag_set;
3926
3927         mutex_lock(&set->tag_list_lock);
3928         list_del(&q->tag_set_list);
3929         if (list_is_singular(&set->tag_list)) {
3930                 /* just transitioned to unshared */
3931                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3932                 /* update existing queue */
3933                 blk_mq_update_tag_set_shared(set, false);
3934         }
3935         mutex_unlock(&set->tag_list_lock);
3936         INIT_LIST_HEAD(&q->tag_set_list);
3937 }
3938
3939 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3940                                      struct request_queue *q)
3941 {
3942         mutex_lock(&set->tag_list_lock);
3943
3944         /*
3945          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3946          */
3947         if (!list_empty(&set->tag_list) &&
3948             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3949                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3950                 /* update existing queue */
3951                 blk_mq_update_tag_set_shared(set, true);
3952         }
3953         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3954                 queue_set_hctx_shared(q, true);
3955         list_add_tail(&q->tag_set_list, &set->tag_list);
3956
3957         mutex_unlock(&set->tag_list_lock);
3958 }
3959
3960 /* All allocations will be freed in release handler of q->mq_kobj */
3961 static int blk_mq_alloc_ctxs(struct request_queue *q)
3962 {
3963         struct blk_mq_ctxs *ctxs;
3964         int cpu;
3965
3966         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3967         if (!ctxs)
3968                 return -ENOMEM;
3969
3970         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3971         if (!ctxs->queue_ctx)
3972                 goto fail;
3973
3974         for_each_possible_cpu(cpu) {
3975                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3976                 ctx->ctxs = ctxs;
3977         }
3978
3979         q->mq_kobj = &ctxs->kobj;
3980         q->queue_ctx = ctxs->queue_ctx;
3981
3982         return 0;
3983  fail:
3984         kfree(ctxs);
3985         return -ENOMEM;
3986 }
3987
3988 /*
3989  * It is the actual release handler for mq, but we do it from
3990  * request queue's release handler for avoiding use-after-free
3991  * and headache because q->mq_kobj shouldn't have been introduced,
3992  * but we can't group ctx/kctx kobj without it.
3993  */
3994 void blk_mq_release(struct request_queue *q)
3995 {
3996         struct blk_mq_hw_ctx *hctx, *next;
3997         unsigned long i;
3998
3999         queue_for_each_hw_ctx(q, hctx, i)
4000                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4001
4002         /* all hctx are in .unused_hctx_list now */
4003         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4004                 list_del_init(&hctx->hctx_list);
4005                 kobject_put(&hctx->kobj);
4006         }
4007
4008         xa_destroy(&q->hctx_table);
4009
4010         /*
4011          * release .mq_kobj and sw queue's kobject now because
4012          * both share lifetime with request queue.
4013          */
4014         blk_mq_sysfs_deinit(q);
4015 }
4016
4017 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4018                 void *queuedata)
4019 {
4020         struct request_queue *q;
4021         int ret;
4022
4023         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
4024         if (!q)
4025                 return ERR_PTR(-ENOMEM);
4026         q->queuedata = queuedata;
4027         ret = blk_mq_init_allocated_queue(set, q);
4028         if (ret) {
4029                 blk_put_queue(q);
4030                 return ERR_PTR(ret);
4031         }
4032         return q;
4033 }
4034
4035 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4036 {
4037         return blk_mq_init_queue_data(set, NULL);
4038 }
4039 EXPORT_SYMBOL(blk_mq_init_queue);
4040
4041 /**
4042  * blk_mq_destroy_queue - shutdown a request queue
4043  * @q: request queue to shutdown
4044  *
4045  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4046  * the initial reference.  All future requests will failed with -ENODEV.
4047  *
4048  * Context: can sleep
4049  */
4050 void blk_mq_destroy_queue(struct request_queue *q)
4051 {
4052         WARN_ON_ONCE(!queue_is_mq(q));
4053         WARN_ON_ONCE(blk_queue_registered(q));
4054
4055         might_sleep();
4056
4057         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4058         blk_queue_start_drain(q);
4059         blk_freeze_queue(q);
4060
4061         blk_sync_queue(q);
4062         blk_mq_cancel_work_sync(q);
4063         blk_mq_exit_queue(q);
4064
4065         /* @q is and will stay empty, shutdown and put */
4066         blk_put_queue(q);
4067 }
4068 EXPORT_SYMBOL(blk_mq_destroy_queue);
4069
4070 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4071                 struct lock_class_key *lkclass)
4072 {
4073         struct request_queue *q;
4074         struct gendisk *disk;
4075
4076         q = blk_mq_init_queue_data(set, queuedata);
4077         if (IS_ERR(q))
4078                 return ERR_CAST(q);
4079
4080         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4081         if (!disk) {
4082                 blk_mq_destroy_queue(q);
4083                 return ERR_PTR(-ENOMEM);
4084         }
4085         set_bit(GD_OWNS_QUEUE, &disk->state);
4086         return disk;
4087 }
4088 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4089
4090 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4091                 struct lock_class_key *lkclass)
4092 {
4093         struct gendisk *disk;
4094
4095         if (!blk_get_queue(q))
4096                 return NULL;
4097         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4098         if (!disk)
4099                 blk_put_queue(q);
4100         return disk;
4101 }
4102 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4103
4104 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4105                 struct blk_mq_tag_set *set, struct request_queue *q,
4106                 int hctx_idx, int node)
4107 {
4108         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4109
4110         /* reuse dead hctx first */
4111         spin_lock(&q->unused_hctx_lock);
4112         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4113                 if (tmp->numa_node == node) {
4114                         hctx = tmp;
4115                         break;
4116                 }
4117         }
4118         if (hctx)
4119                 list_del_init(&hctx->hctx_list);
4120         spin_unlock(&q->unused_hctx_lock);
4121
4122         if (!hctx)
4123                 hctx = blk_mq_alloc_hctx(q, set, node);
4124         if (!hctx)
4125                 goto fail;
4126
4127         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4128                 goto free_hctx;
4129
4130         return hctx;
4131
4132  free_hctx:
4133         kobject_put(&hctx->kobj);
4134  fail:
4135         return NULL;
4136 }
4137
4138 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4139                                                 struct request_queue *q)
4140 {
4141         struct blk_mq_hw_ctx *hctx;
4142         unsigned long i, j;
4143
4144         /* protect against switching io scheduler  */
4145         mutex_lock(&q->sysfs_lock);
4146         for (i = 0; i < set->nr_hw_queues; i++) {
4147                 int old_node;
4148                 int node = blk_mq_get_hctx_node(set, i);
4149                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4150
4151                 if (old_hctx) {
4152                         old_node = old_hctx->numa_node;
4153                         blk_mq_exit_hctx(q, set, old_hctx, i);
4154                 }
4155
4156                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4157                         if (!old_hctx)
4158                                 break;
4159                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4160                                         node, old_node);
4161                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4162                         WARN_ON_ONCE(!hctx);
4163                 }
4164         }
4165         /*
4166          * Increasing nr_hw_queues fails. Free the newly allocated
4167          * hctxs and keep the previous q->nr_hw_queues.
4168          */
4169         if (i != set->nr_hw_queues) {
4170                 j = q->nr_hw_queues;
4171         } else {
4172                 j = i;
4173                 q->nr_hw_queues = set->nr_hw_queues;
4174         }
4175
4176         xa_for_each_start(&q->hctx_table, j, hctx, j)
4177                 blk_mq_exit_hctx(q, set, hctx, j);
4178         mutex_unlock(&q->sysfs_lock);
4179 }
4180
4181 static void blk_mq_update_poll_flag(struct request_queue *q)
4182 {
4183         struct blk_mq_tag_set *set = q->tag_set;
4184
4185         if (set->nr_maps > HCTX_TYPE_POLL &&
4186             set->map[HCTX_TYPE_POLL].nr_queues)
4187                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4188         else
4189                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4190 }
4191
4192 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4193                 struct request_queue *q)
4194 {
4195         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4196                         !!(set->flags & BLK_MQ_F_BLOCKING));
4197
4198         /* mark the queue as mq asap */
4199         q->mq_ops = set->ops;
4200
4201         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4202                                              blk_mq_poll_stats_bkt,
4203                                              BLK_MQ_POLL_STATS_BKTS, q);
4204         if (!q->poll_cb)
4205                 goto err_exit;
4206
4207         if (blk_mq_alloc_ctxs(q))
4208                 goto err_poll;
4209
4210         /* init q->mq_kobj and sw queues' kobjects */
4211         blk_mq_sysfs_init(q);
4212
4213         INIT_LIST_HEAD(&q->unused_hctx_list);
4214         spin_lock_init(&q->unused_hctx_lock);
4215
4216         xa_init(&q->hctx_table);
4217
4218         blk_mq_realloc_hw_ctxs(set, q);
4219         if (!q->nr_hw_queues)
4220                 goto err_hctxs;
4221
4222         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4223         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4224
4225         q->tag_set = set;
4226
4227         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4228         blk_mq_update_poll_flag(q);
4229
4230         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4231         INIT_LIST_HEAD(&q->requeue_list);
4232         spin_lock_init(&q->requeue_lock);
4233
4234         q->nr_requests = set->queue_depth;
4235
4236         /*
4237          * Default to classic polling
4238          */
4239         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4240
4241         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4242         blk_mq_add_queue_tag_set(set, q);
4243         blk_mq_map_swqueue(q);
4244         return 0;
4245
4246 err_hctxs:
4247         blk_mq_release(q);
4248 err_poll:
4249         blk_stat_free_callback(q->poll_cb);
4250         q->poll_cb = NULL;
4251 err_exit:
4252         q->mq_ops = NULL;
4253         return -ENOMEM;
4254 }
4255 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4256
4257 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4258 void blk_mq_exit_queue(struct request_queue *q)
4259 {
4260         struct blk_mq_tag_set *set = q->tag_set;
4261
4262         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4263         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4264         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4265         blk_mq_del_queue_tag_set(q);
4266 }
4267
4268 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4269 {
4270         int i;
4271
4272         if (blk_mq_is_shared_tags(set->flags)) {
4273                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4274                                                 BLK_MQ_NO_HCTX_IDX,
4275                                                 set->queue_depth);
4276                 if (!set->shared_tags)
4277                         return -ENOMEM;
4278         }
4279
4280         for (i = 0; i < set->nr_hw_queues; i++) {
4281                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4282                         goto out_unwind;
4283                 cond_resched();
4284         }
4285
4286         return 0;
4287
4288 out_unwind:
4289         while (--i >= 0)
4290                 __blk_mq_free_map_and_rqs(set, i);
4291
4292         if (blk_mq_is_shared_tags(set->flags)) {
4293                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4294                                         BLK_MQ_NO_HCTX_IDX);
4295         }
4296
4297         return -ENOMEM;
4298 }
4299
4300 /*
4301  * Allocate the request maps associated with this tag_set. Note that this
4302  * may reduce the depth asked for, if memory is tight. set->queue_depth
4303  * will be updated to reflect the allocated depth.
4304  */
4305 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4306 {
4307         unsigned int depth;
4308         int err;
4309
4310         depth = set->queue_depth;
4311         do {
4312                 err = __blk_mq_alloc_rq_maps(set);
4313                 if (!err)
4314                         break;
4315
4316                 set->queue_depth >>= 1;
4317                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4318                         err = -ENOMEM;
4319                         break;
4320                 }
4321         } while (set->queue_depth);
4322
4323         if (!set->queue_depth || err) {
4324                 pr_err("blk-mq: failed to allocate request map\n");
4325                 return -ENOMEM;
4326         }
4327
4328         if (depth != set->queue_depth)
4329                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4330                                                 depth, set->queue_depth);
4331
4332         return 0;
4333 }
4334
4335 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4336 {
4337         /*
4338          * blk_mq_map_queues() and multiple .map_queues() implementations
4339          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4340          * number of hardware queues.
4341          */
4342         if (set->nr_maps == 1)
4343                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4344
4345         if (set->ops->map_queues && !is_kdump_kernel()) {
4346                 int i;
4347
4348                 /*
4349                  * transport .map_queues is usually done in the following
4350                  * way:
4351                  *
4352                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4353                  *      mask = get_cpu_mask(queue)
4354                  *      for_each_cpu(cpu, mask)
4355                  *              set->map[x].mq_map[cpu] = queue;
4356                  * }
4357                  *
4358                  * When we need to remap, the table has to be cleared for
4359                  * killing stale mapping since one CPU may not be mapped
4360                  * to any hw queue.
4361                  */
4362                 for (i = 0; i < set->nr_maps; i++)
4363                         blk_mq_clear_mq_map(&set->map[i]);
4364
4365                 set->ops->map_queues(set);
4366         } else {
4367                 BUG_ON(set->nr_maps > 1);
4368                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4369         }
4370 }
4371
4372 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4373                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4374 {
4375         struct blk_mq_tags **new_tags;
4376
4377         if (cur_nr_hw_queues >= new_nr_hw_queues)
4378                 return 0;
4379
4380         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4381                                 GFP_KERNEL, set->numa_node);
4382         if (!new_tags)
4383                 return -ENOMEM;
4384
4385         if (set->tags)
4386                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4387                        sizeof(*set->tags));
4388         kfree(set->tags);
4389         set->tags = new_tags;
4390         set->nr_hw_queues = new_nr_hw_queues;
4391
4392         return 0;
4393 }
4394
4395 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4396                                 int new_nr_hw_queues)
4397 {
4398         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4399 }
4400
4401 /*
4402  * Alloc a tag set to be associated with one or more request queues.
4403  * May fail with EINVAL for various error conditions. May adjust the
4404  * requested depth down, if it's too large. In that case, the set
4405  * value will be stored in set->queue_depth.
4406  */
4407 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4408 {
4409         int i, ret;
4410
4411         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4412
4413         if (!set->nr_hw_queues)
4414                 return -EINVAL;
4415         if (!set->queue_depth)
4416                 return -EINVAL;
4417         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4418                 return -EINVAL;
4419
4420         if (!set->ops->queue_rq)
4421                 return -EINVAL;
4422
4423         if (!set->ops->get_budget ^ !set->ops->put_budget)
4424                 return -EINVAL;
4425
4426         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4427                 pr_info("blk-mq: reduced tag depth to %u\n",
4428                         BLK_MQ_MAX_DEPTH);
4429                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4430         }
4431
4432         if (!set->nr_maps)
4433                 set->nr_maps = 1;
4434         else if (set->nr_maps > HCTX_MAX_TYPES)
4435                 return -EINVAL;
4436
4437         /*
4438          * If a crashdump is active, then we are potentially in a very
4439          * memory constrained environment. Limit us to 1 queue and
4440          * 64 tags to prevent using too much memory.
4441          */
4442         if (is_kdump_kernel()) {
4443                 set->nr_hw_queues = 1;
4444                 set->nr_maps = 1;
4445                 set->queue_depth = min(64U, set->queue_depth);
4446         }
4447         /*
4448          * There is no use for more h/w queues than cpus if we just have
4449          * a single map
4450          */
4451         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4452                 set->nr_hw_queues = nr_cpu_ids;
4453
4454         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4455                 return -ENOMEM;
4456
4457         ret = -ENOMEM;
4458         for (i = 0; i < set->nr_maps; i++) {
4459                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4460                                                   sizeof(set->map[i].mq_map[0]),
4461                                                   GFP_KERNEL, set->numa_node);
4462                 if (!set->map[i].mq_map)
4463                         goto out_free_mq_map;
4464                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4465         }
4466
4467         blk_mq_update_queue_map(set);
4468
4469         ret = blk_mq_alloc_set_map_and_rqs(set);
4470         if (ret)
4471                 goto out_free_mq_map;
4472
4473         mutex_init(&set->tag_list_lock);
4474         INIT_LIST_HEAD(&set->tag_list);
4475
4476         return 0;
4477
4478 out_free_mq_map:
4479         for (i = 0; i < set->nr_maps; i++) {
4480                 kfree(set->map[i].mq_map);
4481                 set->map[i].mq_map = NULL;
4482         }
4483         kfree(set->tags);
4484         set->tags = NULL;
4485         return ret;
4486 }
4487 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4488
4489 /* allocate and initialize a tagset for a simple single-queue device */
4490 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4491                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4492                 unsigned int set_flags)
4493 {
4494         memset(set, 0, sizeof(*set));
4495         set->ops = ops;
4496         set->nr_hw_queues = 1;
4497         set->nr_maps = 1;
4498         set->queue_depth = queue_depth;
4499         set->numa_node = NUMA_NO_NODE;
4500         set->flags = set_flags;
4501         return blk_mq_alloc_tag_set(set);
4502 }
4503 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4504
4505 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4506 {
4507         int i, j;
4508
4509         for (i = 0; i < set->nr_hw_queues; i++)
4510                 __blk_mq_free_map_and_rqs(set, i);
4511
4512         if (blk_mq_is_shared_tags(set->flags)) {
4513                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4514                                         BLK_MQ_NO_HCTX_IDX);
4515         }
4516
4517         for (j = 0; j < set->nr_maps; j++) {
4518                 kfree(set->map[j].mq_map);
4519                 set->map[j].mq_map = NULL;
4520         }
4521
4522         kfree(set->tags);
4523         set->tags = NULL;
4524 }
4525 EXPORT_SYMBOL(blk_mq_free_tag_set);
4526
4527 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4528 {
4529         struct blk_mq_tag_set *set = q->tag_set;
4530         struct blk_mq_hw_ctx *hctx;
4531         int ret;
4532         unsigned long i;
4533
4534         if (!set)
4535                 return -EINVAL;
4536
4537         if (q->nr_requests == nr)
4538                 return 0;
4539
4540         blk_mq_freeze_queue(q);
4541         blk_mq_quiesce_queue(q);
4542
4543         ret = 0;
4544         queue_for_each_hw_ctx(q, hctx, i) {
4545                 if (!hctx->tags)
4546                         continue;
4547                 /*
4548                  * If we're using an MQ scheduler, just update the scheduler
4549                  * queue depth. This is similar to what the old code would do.
4550                  */
4551                 if (hctx->sched_tags) {
4552                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4553                                                       nr, true);
4554                 } else {
4555                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4556                                                       false);
4557                 }
4558                 if (ret)
4559                         break;
4560                 if (q->elevator && q->elevator->type->ops.depth_updated)
4561                         q->elevator->type->ops.depth_updated(hctx);
4562         }
4563         if (!ret) {
4564                 q->nr_requests = nr;
4565                 if (blk_mq_is_shared_tags(set->flags)) {
4566                         if (q->elevator)
4567                                 blk_mq_tag_update_sched_shared_tags(q);
4568                         else
4569                                 blk_mq_tag_resize_shared_tags(set, nr);
4570                 }
4571         }
4572
4573         blk_mq_unquiesce_queue(q);
4574         blk_mq_unfreeze_queue(q);
4575
4576         return ret;
4577 }
4578
4579 /*
4580  * request_queue and elevator_type pair.
4581  * It is just used by __blk_mq_update_nr_hw_queues to cache
4582  * the elevator_type associated with a request_queue.
4583  */
4584 struct blk_mq_qe_pair {
4585         struct list_head node;
4586         struct request_queue *q;
4587         struct elevator_type *type;
4588 };
4589
4590 /*
4591  * Cache the elevator_type in qe pair list and switch the
4592  * io scheduler to 'none'
4593  */
4594 static bool blk_mq_elv_switch_none(struct list_head *head,
4595                 struct request_queue *q)
4596 {
4597         struct blk_mq_qe_pair *qe;
4598
4599         if (!q->elevator)
4600                 return true;
4601
4602         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4603         if (!qe)
4604                 return false;
4605
4606         /* q->elevator needs protection from ->sysfs_lock */
4607         mutex_lock(&q->sysfs_lock);
4608
4609         INIT_LIST_HEAD(&qe->node);
4610         qe->q = q;
4611         qe->type = q->elevator->type;
4612         list_add(&qe->node, head);
4613
4614         /*
4615          * After elevator_switch, the previous elevator_queue will be
4616          * released by elevator_release. The reference of the io scheduler
4617          * module get by elevator_get will also be put. So we need to get
4618          * a reference of the io scheduler module here to prevent it to be
4619          * removed.
4620          */
4621         __module_get(qe->type->elevator_owner);
4622         elevator_switch(q, NULL);
4623         mutex_unlock(&q->sysfs_lock);
4624
4625         return true;
4626 }
4627
4628 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4629                                                 struct request_queue *q)
4630 {
4631         struct blk_mq_qe_pair *qe;
4632
4633         list_for_each_entry(qe, head, node)
4634                 if (qe->q == q)
4635                         return qe;
4636
4637         return NULL;
4638 }
4639
4640 static void blk_mq_elv_switch_back(struct list_head *head,
4641                                   struct request_queue *q)
4642 {
4643         struct blk_mq_qe_pair *qe;
4644         struct elevator_type *t;
4645
4646         qe = blk_lookup_qe_pair(head, q);
4647         if (!qe)
4648                 return;
4649         t = qe->type;
4650         list_del(&qe->node);
4651         kfree(qe);
4652
4653         mutex_lock(&q->sysfs_lock);
4654         elevator_switch(q, t);
4655         mutex_unlock(&q->sysfs_lock);
4656 }
4657
4658 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4659                                                         int nr_hw_queues)
4660 {
4661         struct request_queue *q;
4662         LIST_HEAD(head);
4663         int prev_nr_hw_queues;
4664
4665         lockdep_assert_held(&set->tag_list_lock);
4666
4667         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4668                 nr_hw_queues = nr_cpu_ids;
4669         if (nr_hw_queues < 1)
4670                 return;
4671         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4672                 return;
4673
4674         list_for_each_entry(q, &set->tag_list, tag_set_list)
4675                 blk_mq_freeze_queue(q);
4676         /*
4677          * Switch IO scheduler to 'none', cleaning up the data associated
4678          * with the previous scheduler. We will switch back once we are done
4679          * updating the new sw to hw queue mappings.
4680          */
4681         list_for_each_entry(q, &set->tag_list, tag_set_list)
4682                 if (!blk_mq_elv_switch_none(&head, q))
4683                         goto switch_back;
4684
4685         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4686                 blk_mq_debugfs_unregister_hctxs(q);
4687                 blk_mq_sysfs_unregister_hctxs(q);
4688         }
4689
4690         prev_nr_hw_queues = set->nr_hw_queues;
4691         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4692             0)
4693                 goto reregister;
4694
4695         set->nr_hw_queues = nr_hw_queues;
4696 fallback:
4697         blk_mq_update_queue_map(set);
4698         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4699                 blk_mq_realloc_hw_ctxs(set, q);
4700                 blk_mq_update_poll_flag(q);
4701                 if (q->nr_hw_queues != set->nr_hw_queues) {
4702                         int i = prev_nr_hw_queues;
4703
4704                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4705                                         nr_hw_queues, prev_nr_hw_queues);
4706                         for (; i < set->nr_hw_queues; i++)
4707                                 __blk_mq_free_map_and_rqs(set, i);
4708
4709                         set->nr_hw_queues = prev_nr_hw_queues;
4710                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4711                         goto fallback;
4712                 }
4713                 blk_mq_map_swqueue(q);
4714         }
4715
4716 reregister:
4717         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4718                 blk_mq_sysfs_register_hctxs(q);
4719                 blk_mq_debugfs_register_hctxs(q);
4720         }
4721
4722 switch_back:
4723         list_for_each_entry(q, &set->tag_list, tag_set_list)
4724                 blk_mq_elv_switch_back(&head, q);
4725
4726         list_for_each_entry(q, &set->tag_list, tag_set_list)
4727                 blk_mq_unfreeze_queue(q);
4728 }
4729
4730 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4731 {
4732         mutex_lock(&set->tag_list_lock);
4733         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4734         mutex_unlock(&set->tag_list_lock);
4735 }
4736 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4737
4738 /* Enable polling stats and return whether they were already enabled. */
4739 static bool blk_poll_stats_enable(struct request_queue *q)
4740 {
4741         if (q->poll_stat)
4742                 return true;
4743
4744         return blk_stats_alloc_enable(q);
4745 }
4746
4747 static void blk_mq_poll_stats_start(struct request_queue *q)
4748 {
4749         /*
4750          * We don't arm the callback if polling stats are not enabled or the
4751          * callback is already active.
4752          */
4753         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4754                 return;
4755
4756         blk_stat_activate_msecs(q->poll_cb, 100);
4757 }
4758
4759 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4760 {
4761         struct request_queue *q = cb->data;
4762         int bucket;
4763
4764         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4765                 if (cb->stat[bucket].nr_samples)
4766                         q->poll_stat[bucket] = cb->stat[bucket];
4767         }
4768 }
4769
4770 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4771                                        struct request *rq)
4772 {
4773         unsigned long ret = 0;
4774         int bucket;
4775
4776         /*
4777          * If stats collection isn't on, don't sleep but turn it on for
4778          * future users
4779          */
4780         if (!blk_poll_stats_enable(q))
4781                 return 0;
4782
4783         /*
4784          * As an optimistic guess, use half of the mean service time
4785          * for this type of request. We can (and should) make this smarter.
4786          * For instance, if the completion latencies are tight, we can
4787          * get closer than just half the mean. This is especially
4788          * important on devices where the completion latencies are longer
4789          * than ~10 usec. We do use the stats for the relevant IO size
4790          * if available which does lead to better estimates.
4791          */
4792         bucket = blk_mq_poll_stats_bkt(rq);
4793         if (bucket < 0)
4794                 return ret;
4795
4796         if (q->poll_stat[bucket].nr_samples)
4797                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4798
4799         return ret;
4800 }
4801
4802 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4803 {
4804         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4805         struct request *rq = blk_qc_to_rq(hctx, qc);
4806         struct hrtimer_sleeper hs;
4807         enum hrtimer_mode mode;
4808         unsigned int nsecs;
4809         ktime_t kt;
4810
4811         /*
4812          * If a request has completed on queue that uses an I/O scheduler, we
4813          * won't get back a request from blk_qc_to_rq.
4814          */
4815         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4816                 return false;
4817
4818         /*
4819          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4820          *
4821          *  0:  use half of prev avg
4822          * >0:  use this specific value
4823          */
4824         if (q->poll_nsec > 0)
4825                 nsecs = q->poll_nsec;
4826         else
4827                 nsecs = blk_mq_poll_nsecs(q, rq);
4828
4829         if (!nsecs)
4830                 return false;
4831
4832         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4833
4834         /*
4835          * This will be replaced with the stats tracking code, using
4836          * 'avg_completion_time / 2' as the pre-sleep target.
4837          */
4838         kt = nsecs;
4839
4840         mode = HRTIMER_MODE_REL;
4841         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4842         hrtimer_set_expires(&hs.timer, kt);
4843
4844         do {
4845                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4846                         break;
4847                 set_current_state(TASK_UNINTERRUPTIBLE);
4848                 hrtimer_sleeper_start_expires(&hs, mode);
4849                 if (hs.task)
4850                         io_schedule();
4851                 hrtimer_cancel(&hs.timer);
4852                 mode = HRTIMER_MODE_ABS;
4853         } while (hs.task && !signal_pending(current));
4854
4855         __set_current_state(TASK_RUNNING);
4856         destroy_hrtimer_on_stack(&hs.timer);
4857
4858         /*
4859          * If we sleep, have the caller restart the poll loop to reset the
4860          * state.  Like for the other success return cases, the caller is
4861          * responsible for checking if the IO completed.  If the IO isn't
4862          * complete, we'll get called again and will go straight to the busy
4863          * poll loop.
4864          */
4865         return true;
4866 }
4867
4868 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4869                                struct io_comp_batch *iob, unsigned int flags)
4870 {
4871         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4872         long state = get_current_state();
4873         int ret;
4874
4875         do {
4876                 ret = q->mq_ops->poll(hctx, iob);
4877                 if (ret > 0) {
4878                         __set_current_state(TASK_RUNNING);
4879                         return ret;
4880                 }
4881
4882                 if (signal_pending_state(state, current))
4883                         __set_current_state(TASK_RUNNING);
4884                 if (task_is_running(current))
4885                         return 1;
4886
4887                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4888                         break;
4889                 cpu_relax();
4890         } while (!need_resched());
4891
4892         __set_current_state(TASK_RUNNING);
4893         return 0;
4894 }
4895
4896 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4897                 unsigned int flags)
4898 {
4899         if (!(flags & BLK_POLL_NOSLEEP) &&
4900             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4901                 if (blk_mq_poll_hybrid(q, cookie))
4902                         return 1;
4903         }
4904         return blk_mq_poll_classic(q, cookie, iob, flags);
4905 }
4906
4907 unsigned int blk_mq_rq_cpu(struct request *rq)
4908 {
4909         return rq->mq_ctx->cpu;
4910 }
4911 EXPORT_SYMBOL(blk_mq_rq_cpu);
4912
4913 void blk_mq_cancel_work_sync(struct request_queue *q)
4914 {
4915         if (queue_is_mq(q)) {
4916                 struct blk_mq_hw_ctx *hctx;
4917                 unsigned long i;
4918
4919                 cancel_delayed_work_sync(&q->requeue_work);
4920
4921                 queue_for_each_hw_ctx(q, hctx, i)
4922                         cancel_delayed_work_sync(&hctx->run_work);
4923         }
4924 }
4925
4926 static int __init blk_mq_init(void)
4927 {
4928         int i;
4929
4930         for_each_possible_cpu(i)
4931                 init_llist_head(&per_cpu(blk_cpu_done, i));
4932         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4933
4934         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4935                                   "block/softirq:dead", NULL,
4936                                   blk_softirq_cpu_dead);
4937         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4938                                 blk_mq_hctx_notify_dead);
4939         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4940                                 blk_mq_hctx_notify_online,
4941                                 blk_mq_hctx_notify_offline);
4942         return 0;
4943 }
4944 subsys_initcall(blk_mq_init);