GNU Linux-libre 5.17.9-gnu
[releases.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75 }
76
77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78                 blk_qc_t qc)
79 {
80         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81
82         if (qc & BLK_QC_T_INTERNAL)
83                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84         return blk_mq_tag_to_rq(hctx->tags, tag);
85 }
86
87 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88 {
89         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90                 (rq->tag != -1 ?
91                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92 }
93
94 /*
95  * Check if any of the ctx, dispatch list or elevator
96  * have pending work in this hardware queue.
97  */
98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99 {
100         return !list_empty_careful(&hctx->dispatch) ||
101                 sbitmap_any_bit_set(&hctx->ctx_map) ||
102                         blk_mq_sched_has_work(hctx);
103 }
104
105 /*
106  * Mark this ctx as having pending work in this hardware queue
107  */
108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109                                      struct blk_mq_ctx *ctx)
110 {
111         const int bit = ctx->index_hw[hctx->type];
112
113         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114                 sbitmap_set_bit(&hctx->ctx_map, bit);
115 }
116
117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118                                       struct blk_mq_ctx *ctx)
119 {
120         const int bit = ctx->index_hw[hctx->type];
121
122         sbitmap_clear_bit(&hctx->ctx_map, bit);
123 }
124
125 struct mq_inflight {
126         struct block_device *part;
127         unsigned int inflight[2];
128 };
129
130 static bool blk_mq_check_inflight(struct request *rq, void *priv,
131                                   bool reserved)
132 {
133         struct mq_inflight *mi = priv;
134
135         if ((!mi->part->bd_partno || rq->part == mi->part) &&
136             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137                 mi->inflight[rq_data_dir(rq)]++;
138
139         return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143                 struct block_device *part)
144 {
145         struct mq_inflight mi = { .part = part };
146
147         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149         return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153                 unsigned int inflight[2])
154 {
155         struct mq_inflight mi = { .part = part };
156
157         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158         inflight[0] = mi.inflight[0];
159         inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164         mutex_lock(&q->mq_freeze_lock);
165         if (++q->mq_freeze_depth == 1) {
166                 percpu_ref_kill(&q->q_usage_counter);
167                 mutex_unlock(&q->mq_freeze_lock);
168                 if (queue_is_mq(q))
169                         blk_mq_run_hw_queues(q, false);
170         } else {
171                 mutex_unlock(&q->mq_freeze_lock);
172         }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183                                      unsigned long timeout)
184 {
185         return wait_event_timeout(q->mq_freeze_wq,
186                                         percpu_ref_is_zero(&q->q_usage_counter),
187                                         timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197         /*
198          * In the !blk_mq case we are only calling this to kill the
199          * q_usage_counter, otherwise this increases the freeze depth
200          * and waits for it to return to zero.  For this reason there is
201          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202          * exported to drivers as the only user for unfreeze is blk_mq.
203          */
204         blk_freeze_queue_start(q);
205         blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210         /*
211          * ...just an alias to keep freeze and unfreeze actions balanced
212          * in the blk_mq_* namespace
213          */
214         blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220         mutex_lock(&q->mq_freeze_lock);
221         if (force_atomic)
222                 q->q_usage_counter.data->force_atomic = true;
223         q->mq_freeze_depth--;
224         WARN_ON_ONCE(q->mq_freeze_depth < 0);
225         if (!q->mq_freeze_depth) {
226                 percpu_ref_resurrect(&q->q_usage_counter);
227                 wake_up_all(&q->mq_freeze_wq);
228         }
229         mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234         __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&q->queue_lock, flags);
247         if (!q->quiesce_depth++)
248                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249         spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262         if (blk_queue_has_srcu(q))
263                 synchronize_srcu(q->srcu);
264         else
265                 synchronize_rcu();
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268
269 /**
270  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271  * @q: request queue.
272  *
273  * Note: this function does not prevent that the struct request end_io()
274  * callback function is invoked. Once this function is returned, we make
275  * sure no dispatch can happen until the queue is unquiesced via
276  * blk_mq_unquiesce_queue().
277  */
278 void blk_mq_quiesce_queue(struct request_queue *q)
279 {
280         blk_mq_quiesce_queue_nowait(q);
281         blk_mq_wait_quiesce_done(q);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284
285 /*
286  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287  * @q: request queue.
288  *
289  * This function recovers queue into the state before quiescing
290  * which is done by blk_mq_quiesce_queue.
291  */
292 void blk_mq_unquiesce_queue(struct request_queue *q)
293 {
294         unsigned long flags;
295         bool run_queue = false;
296
297         spin_lock_irqsave(&q->queue_lock, flags);
298         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299                 ;
300         } else if (!--q->quiesce_depth) {
301                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302                 run_queue = true;
303         }
304         spin_unlock_irqrestore(&q->queue_lock, flags);
305
306         /* dispatch requests which are inserted during quiescing */
307         if (run_queue)
308                 blk_mq_run_hw_queues(q, true);
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311
312 void blk_mq_wake_waiters(struct request_queue *q)
313 {
314         struct blk_mq_hw_ctx *hctx;
315         unsigned int i;
316
317         queue_for_each_hw_ctx(q, hctx, i)
318                 if (blk_mq_hw_queue_mapped(hctx))
319                         blk_mq_tag_wakeup_all(hctx->tags, true);
320 }
321
322 void blk_rq_init(struct request_queue *q, struct request *rq)
323 {
324         memset(rq, 0, sizeof(*rq));
325
326         INIT_LIST_HEAD(&rq->queuelist);
327         rq->q = q;
328         rq->__sector = (sector_t) -1;
329         INIT_HLIST_NODE(&rq->hash);
330         RB_CLEAR_NODE(&rq->rb_node);
331         rq->tag = BLK_MQ_NO_TAG;
332         rq->internal_tag = BLK_MQ_NO_TAG;
333         rq->start_time_ns = ktime_get_ns();
334         rq->part = NULL;
335         blk_crypto_rq_set_defaults(rq);
336 }
337 EXPORT_SYMBOL(blk_rq_init);
338
339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
340                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
341 {
342         struct blk_mq_ctx *ctx = data->ctx;
343         struct blk_mq_hw_ctx *hctx = data->hctx;
344         struct request_queue *q = data->q;
345         struct request *rq = tags->static_rqs[tag];
346
347         rq->q = q;
348         rq->mq_ctx = ctx;
349         rq->mq_hctx = hctx;
350         rq->cmd_flags = data->cmd_flags;
351
352         if (data->flags & BLK_MQ_REQ_PM)
353                 data->rq_flags |= RQF_PM;
354         if (blk_queue_io_stat(q))
355                 data->rq_flags |= RQF_IO_STAT;
356         rq->rq_flags = data->rq_flags;
357
358         if (!(data->rq_flags & RQF_ELV)) {
359                 rq->tag = tag;
360                 rq->internal_tag = BLK_MQ_NO_TAG;
361         } else {
362                 rq->tag = BLK_MQ_NO_TAG;
363                 rq->internal_tag = tag;
364         }
365         rq->timeout = 0;
366
367         if (blk_mq_need_time_stamp(rq))
368                 rq->start_time_ns = ktime_get_ns();
369         else
370                 rq->start_time_ns = 0;
371         rq->part = NULL;
372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
373         rq->alloc_time_ns = alloc_time_ns;
374 #endif
375         rq->io_start_time_ns = 0;
376         rq->stats_sectors = 0;
377         rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379         rq->nr_integrity_segments = 0;
380 #endif
381         rq->end_io = NULL;
382         rq->end_io_data = NULL;
383
384         blk_crypto_rq_set_defaults(rq);
385         INIT_LIST_HEAD(&rq->queuelist);
386         /* tag was already set */
387         WRITE_ONCE(rq->deadline, 0);
388         req_ref_set(rq, 1);
389
390         if (rq->rq_flags & RQF_ELV) {
391                 struct elevator_queue *e = data->q->elevator;
392
393                 INIT_HLIST_NODE(&rq->hash);
394                 RB_CLEAR_NODE(&rq->rb_node);
395
396                 if (!op_is_flush(data->cmd_flags) &&
397                     e->type->ops.prepare_request) {
398                         e->type->ops.prepare_request(rq);
399                         rq->rq_flags |= RQF_ELVPRIV;
400                 }
401         }
402
403         return rq;
404 }
405
406 static inline struct request *
407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408                 u64 alloc_time_ns)
409 {
410         unsigned int tag, tag_offset;
411         struct blk_mq_tags *tags;
412         struct request *rq;
413         unsigned long tag_mask;
414         int i, nr = 0;
415
416         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417         if (unlikely(!tag_mask))
418                 return NULL;
419
420         tags = blk_mq_tags_from_data(data);
421         for (i = 0; tag_mask; i++) {
422                 if (!(tag_mask & (1UL << i)))
423                         continue;
424                 tag = tag_offset + i;
425                 prefetch(tags->static_rqs[tag]);
426                 tag_mask &= ~(1UL << i);
427                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
428                 rq_list_add(data->cached_rq, rq);
429                 nr++;
430         }
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 struct elevator_queue *e = q->elevator;
454
455                 data->rq_flags |= RQF_ELV;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list. Don't include reserved tags in the
460                  * limiting, as it isn't useful.
461                  */
462                 if (!op_is_flush(data->cmd_flags) &&
463                     !blk_op_is_passthrough(data->cmd_flags) &&
464                     e->type->ops.limit_depth &&
465                     !(data->flags & BLK_MQ_REQ_RESERVED))
466                         e->type->ops.limit_depth(data->cmd_flags, data);
467         }
468
469 retry:
470         data->ctx = blk_mq_get_ctx(q);
471         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
472         if (!(data->rq_flags & RQF_ELV))
473                 blk_mq_tag_busy(data->hctx);
474
475         /*
476          * Try batched alloc if we want more than 1 tag.
477          */
478         if (data->nr_tags > 1) {
479                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480                 if (rq)
481                         return rq;
482                 data->nr_tags = 1;
483         }
484
485         /*
486          * Waiting allocations only fail because of an inactive hctx.  In that
487          * case just retry the hctx assignment and tag allocation as CPU hotplug
488          * should have migrated us to an online CPU by now.
489          */
490         tag = blk_mq_get_tag(data);
491         if (tag == BLK_MQ_NO_TAG) {
492                 if (data->flags & BLK_MQ_REQ_NOWAIT)
493                         return NULL;
494                 /*
495                  * Give up the CPU and sleep for a random short time to
496                  * ensure that thread using a realtime scheduling class
497                  * are migrated off the CPU, and thus off the hctx that
498                  * is going away.
499                  */
500                 msleep(3);
501                 goto retry;
502         }
503
504         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505                                         alloc_time_ns);
506 }
507
508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
509                 blk_mq_req_flags_t flags)
510 {
511         struct blk_mq_alloc_data data = {
512                 .q              = q,
513                 .flags          = flags,
514                 .cmd_flags      = op,
515                 .nr_tags        = 1,
516         };
517         struct request *rq;
518         int ret;
519
520         ret = blk_queue_enter(q, flags);
521         if (ret)
522                 return ERR_PTR(ret);
523
524         rq = __blk_mq_alloc_requests(&data);
525         if (!rq)
526                 goto out_queue_exit;
527         rq->__data_len = 0;
528         rq->__sector = (sector_t) -1;
529         rq->bio = rq->biotail = NULL;
530         return rq;
531 out_queue_exit:
532         blk_queue_exit(q);
533         return ERR_PTR(-EWOULDBLOCK);
534 }
535 EXPORT_SYMBOL(blk_mq_alloc_request);
536
537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
538         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
539 {
540         struct blk_mq_alloc_data data = {
541                 .q              = q,
542                 .flags          = flags,
543                 .cmd_flags      = op,
544                 .nr_tags        = 1,
545         };
546         u64 alloc_time_ns = 0;
547         unsigned int cpu;
548         unsigned int tag;
549         int ret;
550
551         /* alloc_time includes depth and tag waits */
552         if (blk_queue_rq_alloc_time(q))
553                 alloc_time_ns = ktime_get_ns();
554
555         /*
556          * If the tag allocator sleeps we could get an allocation for a
557          * different hardware context.  No need to complicate the low level
558          * allocator for this for the rare use case of a command tied to
559          * a specific queue.
560          */
561         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
562                 return ERR_PTR(-EINVAL);
563
564         if (hctx_idx >= q->nr_hw_queues)
565                 return ERR_PTR(-EIO);
566
567         ret = blk_queue_enter(q, flags);
568         if (ret)
569                 return ERR_PTR(ret);
570
571         /*
572          * Check if the hardware context is actually mapped to anything.
573          * If not tell the caller that it should skip this queue.
574          */
575         ret = -EXDEV;
576         data.hctx = q->queue_hw_ctx[hctx_idx];
577         if (!blk_mq_hw_queue_mapped(data.hctx))
578                 goto out_queue_exit;
579         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580         data.ctx = __blk_mq_get_ctx(q, cpu);
581
582         if (!q->elevator)
583                 blk_mq_tag_busy(data.hctx);
584         else
585                 data.rq_flags |= RQF_ELV;
586
587         ret = -EWOULDBLOCK;
588         tag = blk_mq_get_tag(&data);
589         if (tag == BLK_MQ_NO_TAG)
590                 goto out_queue_exit;
591         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592                                         alloc_time_ns);
593
594 out_queue_exit:
595         blk_queue_exit(q);
596         return ERR_PTR(ret);
597 }
598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599
600 static void __blk_mq_free_request(struct request *rq)
601 {
602         struct request_queue *q = rq->q;
603         struct blk_mq_ctx *ctx = rq->mq_ctx;
604         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
605         const int sched_tag = rq->internal_tag;
606
607         blk_crypto_free_request(rq);
608         blk_pm_mark_last_busy(rq);
609         rq->mq_hctx = NULL;
610         if (rq->tag != BLK_MQ_NO_TAG)
611                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
612         if (sched_tag != BLK_MQ_NO_TAG)
613                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
614         blk_mq_sched_restart(hctx);
615         blk_queue_exit(q);
616 }
617
618 void blk_mq_free_request(struct request *rq)
619 {
620         struct request_queue *q = rq->q;
621         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
622
623         if ((rq->rq_flags & RQF_ELVPRIV) &&
624             q->elevator->type->ops.finish_request)
625                 q->elevator->type->ops.finish_request(rq);
626
627         if (rq->rq_flags & RQF_MQ_INFLIGHT)
628                 __blk_mq_dec_active_requests(hctx);
629
630         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
631                 laptop_io_completion(q->disk->bdi);
632
633         rq_qos_done(q, rq);
634
635         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
636         if (req_ref_put_and_test(rq))
637                 __blk_mq_free_request(rq);
638 }
639 EXPORT_SYMBOL_GPL(blk_mq_free_request);
640
641 void blk_mq_free_plug_rqs(struct blk_plug *plug)
642 {
643         struct request *rq;
644
645         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
646                 blk_mq_free_request(rq);
647 }
648
649 void blk_dump_rq_flags(struct request *rq, char *msg)
650 {
651         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
652                 rq->q->disk ? rq->q->disk->disk_name : "?",
653                 (unsigned long long) rq->cmd_flags);
654
655         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
656                (unsigned long long)blk_rq_pos(rq),
657                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
659                rq->bio, rq->biotail, blk_rq_bytes(rq));
660 }
661 EXPORT_SYMBOL(blk_dump_rq_flags);
662
663 static void req_bio_endio(struct request *rq, struct bio *bio,
664                           unsigned int nbytes, blk_status_t error)
665 {
666         if (unlikely(error)) {
667                 bio->bi_status = error;
668         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
669                 /*
670                  * Partial zone append completions cannot be supported as the
671                  * BIO fragments may end up not being written sequentially.
672                  */
673                 if (bio->bi_iter.bi_size != nbytes)
674                         bio->bi_status = BLK_STS_IOERR;
675                 else
676                         bio->bi_iter.bi_sector = rq->__sector;
677         }
678
679         bio_advance(bio, nbytes);
680
681         if (unlikely(rq->rq_flags & RQF_QUIET))
682                 bio_set_flag(bio, BIO_QUIET);
683         /* don't actually finish bio if it's part of flush sequence */
684         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685                 bio_endio(bio);
686 }
687
688 static void blk_account_io_completion(struct request *req, unsigned int bytes)
689 {
690         if (req->part && blk_do_io_stat(req)) {
691                 const int sgrp = op_stat_group(req_op(req));
692
693                 part_stat_lock();
694                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695                 part_stat_unlock();
696         }
697 }
698
699 static void blk_print_req_error(struct request *req, blk_status_t status)
700 {
701         printk_ratelimited(KERN_ERR
702                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703                 "phys_seg %u prio class %u\n",
704                 blk_status_to_str(status),
705                 req->q->disk ? req->q->disk->disk_name : "?",
706                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707                 req->cmd_flags & ~REQ_OP_MASK,
708                 req->nr_phys_segments,
709                 IOPRIO_PRIO_CLASS(req->ioprio));
710 }
711
712 /*
713  * Fully end IO on a request. Does not support partial completions, or
714  * errors.
715  */
716 static void blk_complete_request(struct request *req)
717 {
718         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719         int total_bytes = blk_rq_bytes(req);
720         struct bio *bio = req->bio;
721
722         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723
724         if (!bio)
725                 return;
726
727 #ifdef CONFIG_BLK_DEV_INTEGRITY
728         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729                 req->q->integrity.profile->complete_fn(req, total_bytes);
730 #endif
731
732         blk_account_io_completion(req, total_bytes);
733
734         do {
735                 struct bio *next = bio->bi_next;
736
737                 /* Completion has already been traced */
738                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739
740                 if (req_op(req) == REQ_OP_ZONE_APPEND)
741                         bio->bi_iter.bi_sector = req->__sector;
742
743                 if (!is_flush)
744                         bio_endio(bio);
745                 bio = next;
746         } while (bio);
747
748         /*
749          * Reset counters so that the request stacking driver
750          * can find how many bytes remain in the request
751          * later.
752          */
753         req->bio = NULL;
754         req->__data_len = 0;
755 }
756
757 /**
758  * blk_update_request - Complete multiple bytes without completing the request
759  * @req:      the request being processed
760  * @error:    block status code
761  * @nr_bytes: number of bytes to complete for @req
762  *
763  * Description:
764  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
765  *     the request structure even if @req doesn't have leftover.
766  *     If @req has leftover, sets it up for the next range of segments.
767  *
768  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
769  *     %false return from this function.
770  *
771  * Note:
772  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
773  *      except in the consistency check at the end of this function.
774  *
775  * Return:
776  *     %false - this request doesn't have any more data
777  *     %true  - this request has more data
778  **/
779 bool blk_update_request(struct request *req, blk_status_t error,
780                 unsigned int nr_bytes)
781 {
782         int total_bytes;
783
784         trace_block_rq_complete(req, error, nr_bytes);
785
786         if (!req->bio)
787                 return false;
788
789 #ifdef CONFIG_BLK_DEV_INTEGRITY
790         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
791             error == BLK_STS_OK)
792                 req->q->integrity.profile->complete_fn(req, nr_bytes);
793 #endif
794
795         if (unlikely(error && !blk_rq_is_passthrough(req) &&
796                      !(req->rq_flags & RQF_QUIET)))
797                 blk_print_req_error(req, error);
798
799         blk_account_io_completion(req, nr_bytes);
800
801         total_bytes = 0;
802         while (req->bio) {
803                 struct bio *bio = req->bio;
804                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
805
806                 if (bio_bytes == bio->bi_iter.bi_size)
807                         req->bio = bio->bi_next;
808
809                 /* Completion has already been traced */
810                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
811                 req_bio_endio(req, bio, bio_bytes, error);
812
813                 total_bytes += bio_bytes;
814                 nr_bytes -= bio_bytes;
815
816                 if (!nr_bytes)
817                         break;
818         }
819
820         /*
821          * completely done
822          */
823         if (!req->bio) {
824                 /*
825                  * Reset counters so that the request stacking driver
826                  * can find how many bytes remain in the request
827                  * later.
828                  */
829                 req->__data_len = 0;
830                 return false;
831         }
832
833         req->__data_len -= total_bytes;
834
835         /* update sector only for requests with clear definition of sector */
836         if (!blk_rq_is_passthrough(req))
837                 req->__sector += total_bytes >> 9;
838
839         /* mixed attributes always follow the first bio */
840         if (req->rq_flags & RQF_MIXED_MERGE) {
841                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
842                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
843         }
844
845         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
846                 /*
847                  * If total number of sectors is less than the first segment
848                  * size, something has gone terribly wrong.
849                  */
850                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
851                         blk_dump_rq_flags(req, "request botched");
852                         req->__data_len = blk_rq_cur_bytes(req);
853                 }
854
855                 /* recalculate the number of segments */
856                 req->nr_phys_segments = blk_recalc_rq_segments(req);
857         }
858
859         return true;
860 }
861 EXPORT_SYMBOL_GPL(blk_update_request);
862
863 static void __blk_account_io_done(struct request *req, u64 now)
864 {
865         const int sgrp = op_stat_group(req_op(req));
866
867         part_stat_lock();
868         update_io_ticks(req->part, jiffies, true);
869         part_stat_inc(req->part, ios[sgrp]);
870         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
871         part_stat_unlock();
872 }
873
874 static inline void blk_account_io_done(struct request *req, u64 now)
875 {
876         /*
877          * Account IO completion.  flush_rq isn't accounted as a
878          * normal IO on queueing nor completion.  Accounting the
879          * containing request is enough.
880          */
881         if (blk_do_io_stat(req) && req->part &&
882             !(req->rq_flags & RQF_FLUSH_SEQ))
883                 __blk_account_io_done(req, now);
884 }
885
886 static void __blk_account_io_start(struct request *rq)
887 {
888         /* passthrough requests can hold bios that do not have ->bi_bdev set */
889         if (rq->bio && rq->bio->bi_bdev)
890                 rq->part = rq->bio->bi_bdev;
891         else if (rq->q->disk)
892                 rq->part = rq->q->disk->part0;
893
894         part_stat_lock();
895         update_io_ticks(rq->part, jiffies, false);
896         part_stat_unlock();
897 }
898
899 static inline void blk_account_io_start(struct request *req)
900 {
901         if (blk_do_io_stat(req))
902                 __blk_account_io_start(req);
903 }
904
905 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
906 {
907         if (rq->rq_flags & RQF_STATS) {
908                 blk_mq_poll_stats_start(rq->q);
909                 blk_stat_add(rq, now);
910         }
911
912         blk_mq_sched_completed_request(rq, now);
913         blk_account_io_done(rq, now);
914 }
915
916 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
917 {
918         if (blk_mq_need_time_stamp(rq))
919                 __blk_mq_end_request_acct(rq, ktime_get_ns());
920
921         if (rq->end_io) {
922                 rq_qos_done(rq->q, rq);
923                 rq->end_io(rq, error);
924         } else {
925                 blk_mq_free_request(rq);
926         }
927 }
928 EXPORT_SYMBOL(__blk_mq_end_request);
929
930 void blk_mq_end_request(struct request *rq, blk_status_t error)
931 {
932         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
933                 BUG();
934         __blk_mq_end_request(rq, error);
935 }
936 EXPORT_SYMBOL(blk_mq_end_request);
937
938 #define TAG_COMP_BATCH          32
939
940 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
941                                           int *tag_array, int nr_tags)
942 {
943         struct request_queue *q = hctx->queue;
944
945         /*
946          * All requests should have been marked as RQF_MQ_INFLIGHT, so
947          * update hctx->nr_active in batch
948          */
949         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
950                 __blk_mq_sub_active_requests(hctx, nr_tags);
951
952         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
953         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
954 }
955
956 void blk_mq_end_request_batch(struct io_comp_batch *iob)
957 {
958         int tags[TAG_COMP_BATCH], nr_tags = 0;
959         struct blk_mq_hw_ctx *cur_hctx = NULL;
960         struct request *rq;
961         u64 now = 0;
962
963         if (iob->need_ts)
964                 now = ktime_get_ns();
965
966         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
967                 prefetch(rq->bio);
968                 prefetch(rq->rq_next);
969
970                 blk_complete_request(rq);
971                 if (iob->need_ts)
972                         __blk_mq_end_request_acct(rq, now);
973
974                 rq_qos_done(rq->q, rq);
975
976                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
977                 if (!req_ref_put_and_test(rq))
978                         continue;
979
980                 blk_crypto_free_request(rq);
981                 blk_pm_mark_last_busy(rq);
982
983                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
984                         if (cur_hctx)
985                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
986                         nr_tags = 0;
987                         cur_hctx = rq->mq_hctx;
988                 }
989                 tags[nr_tags++] = rq->tag;
990         }
991
992         if (nr_tags)
993                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
994 }
995 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
996
997 static void blk_complete_reqs(struct llist_head *list)
998 {
999         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1000         struct request *rq, *next;
1001
1002         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1003                 rq->q->mq_ops->complete(rq);
1004 }
1005
1006 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1007 {
1008         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1009 }
1010
1011 static int blk_softirq_cpu_dead(unsigned int cpu)
1012 {
1013         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1014         return 0;
1015 }
1016
1017 static void __blk_mq_complete_request_remote(void *data)
1018 {
1019         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1020 }
1021
1022 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1023 {
1024         int cpu = raw_smp_processor_id();
1025
1026         if (!IS_ENABLED(CONFIG_SMP) ||
1027             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1028                 return false;
1029         /*
1030          * With force threaded interrupts enabled, raising softirq from an SMP
1031          * function call will always result in waking the ksoftirqd thread.
1032          * This is probably worse than completing the request on a different
1033          * cache domain.
1034          */
1035         if (force_irqthreads())
1036                 return false;
1037
1038         /* same CPU or cache domain?  Complete locally */
1039         if (cpu == rq->mq_ctx->cpu ||
1040             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1041              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1042                 return false;
1043
1044         /* don't try to IPI to an offline CPU */
1045         return cpu_online(rq->mq_ctx->cpu);
1046 }
1047
1048 static void blk_mq_complete_send_ipi(struct request *rq)
1049 {
1050         struct llist_head *list;
1051         unsigned int cpu;
1052
1053         cpu = rq->mq_ctx->cpu;
1054         list = &per_cpu(blk_cpu_done, cpu);
1055         if (llist_add(&rq->ipi_list, list)) {
1056                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1057                 smp_call_function_single_async(cpu, &rq->csd);
1058         }
1059 }
1060
1061 static void blk_mq_raise_softirq(struct request *rq)
1062 {
1063         struct llist_head *list;
1064
1065         preempt_disable();
1066         list = this_cpu_ptr(&blk_cpu_done);
1067         if (llist_add(&rq->ipi_list, list))
1068                 raise_softirq(BLOCK_SOFTIRQ);
1069         preempt_enable();
1070 }
1071
1072 bool blk_mq_complete_request_remote(struct request *rq)
1073 {
1074         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1075
1076         /*
1077          * For a polled request, always complete locallly, it's pointless
1078          * to redirect the completion.
1079          */
1080         if (rq->cmd_flags & REQ_POLLED)
1081                 return false;
1082
1083         if (blk_mq_complete_need_ipi(rq)) {
1084                 blk_mq_complete_send_ipi(rq);
1085                 return true;
1086         }
1087
1088         if (rq->q->nr_hw_queues == 1) {
1089                 blk_mq_raise_softirq(rq);
1090                 return true;
1091         }
1092         return false;
1093 }
1094 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1095
1096 /**
1097  * blk_mq_complete_request - end I/O on a request
1098  * @rq:         the request being processed
1099  *
1100  * Description:
1101  *      Complete a request by scheduling the ->complete_rq operation.
1102  **/
1103 void blk_mq_complete_request(struct request *rq)
1104 {
1105         if (!blk_mq_complete_request_remote(rq))
1106                 rq->q->mq_ops->complete(rq);
1107 }
1108 EXPORT_SYMBOL(blk_mq_complete_request);
1109
1110 /**
1111  * blk_mq_start_request - Start processing a request
1112  * @rq: Pointer to request to be started
1113  *
1114  * Function used by device drivers to notify the block layer that a request
1115  * is going to be processed now, so blk layer can do proper initializations
1116  * such as starting the timeout timer.
1117  */
1118 void blk_mq_start_request(struct request *rq)
1119 {
1120         struct request_queue *q = rq->q;
1121
1122         trace_block_rq_issue(rq);
1123
1124         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1125                 rq->io_start_time_ns = ktime_get_ns();
1126                 rq->stats_sectors = blk_rq_sectors(rq);
1127                 rq->rq_flags |= RQF_STATS;
1128                 rq_qos_issue(q, rq);
1129         }
1130
1131         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1132
1133         blk_add_timer(rq);
1134         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1135
1136 #ifdef CONFIG_BLK_DEV_INTEGRITY
1137         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1138                 q->integrity.profile->prepare_fn(rq);
1139 #endif
1140         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1141                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1142 }
1143 EXPORT_SYMBOL(blk_mq_start_request);
1144
1145 /**
1146  * blk_end_sync_rq - executes a completion event on a request
1147  * @rq: request to complete
1148  * @error: end I/O status of the request
1149  */
1150 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1151 {
1152         struct completion *waiting = rq->end_io_data;
1153
1154         rq->end_io_data = (void *)(uintptr_t)error;
1155
1156         /*
1157          * complete last, if this is a stack request the process (and thus
1158          * the rq pointer) could be invalid right after this complete()
1159          */
1160         complete(waiting);
1161 }
1162
1163 /**
1164  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1165  * @rq:         request to insert
1166  * @at_head:    insert request at head or tail of queue
1167  * @done:       I/O completion handler
1168  *
1169  * Description:
1170  *    Insert a fully prepared request at the back of the I/O scheduler queue
1171  *    for execution.  Don't wait for completion.
1172  *
1173  * Note:
1174  *    This function will invoke @done directly if the queue is dead.
1175  */
1176 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1177 {
1178         WARN_ON(irqs_disabled());
1179         WARN_ON(!blk_rq_is_passthrough(rq));
1180
1181         rq->end_io = done;
1182
1183         blk_account_io_start(rq);
1184
1185         /*
1186          * don't check dying flag for MQ because the request won't
1187          * be reused after dying flag is set
1188          */
1189         blk_mq_sched_insert_request(rq, at_head, true, false);
1190 }
1191 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1192
1193 static bool blk_rq_is_poll(struct request *rq)
1194 {
1195         if (!rq->mq_hctx)
1196                 return false;
1197         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1198                 return false;
1199         if (WARN_ON_ONCE(!rq->bio))
1200                 return false;
1201         return true;
1202 }
1203
1204 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1205 {
1206         do {
1207                 bio_poll(rq->bio, NULL, 0);
1208                 cond_resched();
1209         } while (!completion_done(wait));
1210 }
1211
1212 /**
1213  * blk_execute_rq - insert a request into queue for execution
1214  * @rq:         request to insert
1215  * @at_head:    insert request at head or tail of queue
1216  *
1217  * Description:
1218  *    Insert a fully prepared request at the back of the I/O scheduler queue
1219  *    for execution and wait for completion.
1220  * Return: The blk_status_t result provided to blk_mq_end_request().
1221  */
1222 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1223 {
1224         DECLARE_COMPLETION_ONSTACK(wait);
1225         unsigned long hang_check;
1226
1227         rq->end_io_data = &wait;
1228         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1229
1230         /* Prevent hang_check timer from firing at us during very long I/O */
1231         hang_check = sysctl_hung_task_timeout_secs;
1232
1233         if (blk_rq_is_poll(rq))
1234                 blk_rq_poll_completion(rq, &wait);
1235         else if (hang_check)
1236                 while (!wait_for_completion_io_timeout(&wait,
1237                                 hang_check * (HZ/2)))
1238                         ;
1239         else
1240                 wait_for_completion_io(&wait);
1241
1242         return (blk_status_t)(uintptr_t)rq->end_io_data;
1243 }
1244 EXPORT_SYMBOL(blk_execute_rq);
1245
1246 static void __blk_mq_requeue_request(struct request *rq)
1247 {
1248         struct request_queue *q = rq->q;
1249
1250         blk_mq_put_driver_tag(rq);
1251
1252         trace_block_rq_requeue(rq);
1253         rq_qos_requeue(q, rq);
1254
1255         if (blk_mq_request_started(rq)) {
1256                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1257                 rq->rq_flags &= ~RQF_TIMED_OUT;
1258         }
1259 }
1260
1261 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1262 {
1263         __blk_mq_requeue_request(rq);
1264
1265         /* this request will be re-inserted to io scheduler queue */
1266         blk_mq_sched_requeue_request(rq);
1267
1268         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1269 }
1270 EXPORT_SYMBOL(blk_mq_requeue_request);
1271
1272 static void blk_mq_requeue_work(struct work_struct *work)
1273 {
1274         struct request_queue *q =
1275                 container_of(work, struct request_queue, requeue_work.work);
1276         LIST_HEAD(rq_list);
1277         struct request *rq, *next;
1278
1279         spin_lock_irq(&q->requeue_lock);
1280         list_splice_init(&q->requeue_list, &rq_list);
1281         spin_unlock_irq(&q->requeue_lock);
1282
1283         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1284                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1285                         continue;
1286
1287                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1288                 list_del_init(&rq->queuelist);
1289                 /*
1290                  * If RQF_DONTPREP, rq has contained some driver specific
1291                  * data, so insert it to hctx dispatch list to avoid any
1292                  * merge.
1293                  */
1294                 if (rq->rq_flags & RQF_DONTPREP)
1295                         blk_mq_request_bypass_insert(rq, false, false);
1296                 else
1297                         blk_mq_sched_insert_request(rq, true, false, false);
1298         }
1299
1300         while (!list_empty(&rq_list)) {
1301                 rq = list_entry(rq_list.next, struct request, queuelist);
1302                 list_del_init(&rq->queuelist);
1303                 blk_mq_sched_insert_request(rq, false, false, false);
1304         }
1305
1306         blk_mq_run_hw_queues(q, false);
1307 }
1308
1309 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1310                                 bool kick_requeue_list)
1311 {
1312         struct request_queue *q = rq->q;
1313         unsigned long flags;
1314
1315         /*
1316          * We abuse this flag that is otherwise used by the I/O scheduler to
1317          * request head insertion from the workqueue.
1318          */
1319         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1320
1321         spin_lock_irqsave(&q->requeue_lock, flags);
1322         if (at_head) {
1323                 rq->rq_flags |= RQF_SOFTBARRIER;
1324                 list_add(&rq->queuelist, &q->requeue_list);
1325         } else {
1326                 list_add_tail(&rq->queuelist, &q->requeue_list);
1327         }
1328         spin_unlock_irqrestore(&q->requeue_lock, flags);
1329
1330         if (kick_requeue_list)
1331                 blk_mq_kick_requeue_list(q);
1332 }
1333
1334 void blk_mq_kick_requeue_list(struct request_queue *q)
1335 {
1336         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1337 }
1338 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1339
1340 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1341                                     unsigned long msecs)
1342 {
1343         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1344                                     msecs_to_jiffies(msecs));
1345 }
1346 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1347
1348 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1349                                bool reserved)
1350 {
1351         /*
1352          * If we find a request that isn't idle we know the queue is busy
1353          * as it's checked in the iter.
1354          * Return false to stop the iteration.
1355          */
1356         if (blk_mq_request_started(rq)) {
1357                 bool *busy = priv;
1358
1359                 *busy = true;
1360                 return false;
1361         }
1362
1363         return true;
1364 }
1365
1366 bool blk_mq_queue_inflight(struct request_queue *q)
1367 {
1368         bool busy = false;
1369
1370         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1371         return busy;
1372 }
1373 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1374
1375 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1376 {
1377         req->rq_flags |= RQF_TIMED_OUT;
1378         if (req->q->mq_ops->timeout) {
1379                 enum blk_eh_timer_return ret;
1380
1381                 ret = req->q->mq_ops->timeout(req, reserved);
1382                 if (ret == BLK_EH_DONE)
1383                         return;
1384                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1385         }
1386
1387         blk_add_timer(req);
1388 }
1389
1390 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1391 {
1392         unsigned long deadline;
1393
1394         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1395                 return false;
1396         if (rq->rq_flags & RQF_TIMED_OUT)
1397                 return false;
1398
1399         deadline = READ_ONCE(rq->deadline);
1400         if (time_after_eq(jiffies, deadline))
1401                 return true;
1402
1403         if (*next == 0)
1404                 *next = deadline;
1405         else if (time_after(*next, deadline))
1406                 *next = deadline;
1407         return false;
1408 }
1409
1410 void blk_mq_put_rq_ref(struct request *rq)
1411 {
1412         if (is_flush_rq(rq))
1413                 rq->end_io(rq, 0);
1414         else if (req_ref_put_and_test(rq))
1415                 __blk_mq_free_request(rq);
1416 }
1417
1418 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1419 {
1420         unsigned long *next = priv;
1421
1422         /*
1423          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1424          * be reallocated underneath the timeout handler's processing, then
1425          * the expire check is reliable. If the request is not expired, then
1426          * it was completed and reallocated as a new request after returning
1427          * from blk_mq_check_expired().
1428          */
1429         if (blk_mq_req_expired(rq, next))
1430                 blk_mq_rq_timed_out(rq, reserved);
1431         return true;
1432 }
1433
1434 static void blk_mq_timeout_work(struct work_struct *work)
1435 {
1436         struct request_queue *q =
1437                 container_of(work, struct request_queue, timeout_work);
1438         unsigned long next = 0;
1439         struct blk_mq_hw_ctx *hctx;
1440         int i;
1441
1442         /* A deadlock might occur if a request is stuck requiring a
1443          * timeout at the same time a queue freeze is waiting
1444          * completion, since the timeout code would not be able to
1445          * acquire the queue reference here.
1446          *
1447          * That's why we don't use blk_queue_enter here; instead, we use
1448          * percpu_ref_tryget directly, because we need to be able to
1449          * obtain a reference even in the short window between the queue
1450          * starting to freeze, by dropping the first reference in
1451          * blk_freeze_queue_start, and the moment the last request is
1452          * consumed, marked by the instant q_usage_counter reaches
1453          * zero.
1454          */
1455         if (!percpu_ref_tryget(&q->q_usage_counter))
1456                 return;
1457
1458         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1459
1460         if (next != 0) {
1461                 mod_timer(&q->timeout, next);
1462         } else {
1463                 /*
1464                  * Request timeouts are handled as a forward rolling timer. If
1465                  * we end up here it means that no requests are pending and
1466                  * also that no request has been pending for a while. Mark
1467                  * each hctx as idle.
1468                  */
1469                 queue_for_each_hw_ctx(q, hctx, i) {
1470                         /* the hctx may be unmapped, so check it here */
1471                         if (blk_mq_hw_queue_mapped(hctx))
1472                                 blk_mq_tag_idle(hctx);
1473                 }
1474         }
1475         blk_queue_exit(q);
1476 }
1477
1478 struct flush_busy_ctx_data {
1479         struct blk_mq_hw_ctx *hctx;
1480         struct list_head *list;
1481 };
1482
1483 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1484 {
1485         struct flush_busy_ctx_data *flush_data = data;
1486         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1487         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1488         enum hctx_type type = hctx->type;
1489
1490         spin_lock(&ctx->lock);
1491         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1492         sbitmap_clear_bit(sb, bitnr);
1493         spin_unlock(&ctx->lock);
1494         return true;
1495 }
1496
1497 /*
1498  * Process software queues that have been marked busy, splicing them
1499  * to the for-dispatch
1500  */
1501 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1502 {
1503         struct flush_busy_ctx_data data = {
1504                 .hctx = hctx,
1505                 .list = list,
1506         };
1507
1508         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1509 }
1510 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1511
1512 struct dispatch_rq_data {
1513         struct blk_mq_hw_ctx *hctx;
1514         struct request *rq;
1515 };
1516
1517 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1518                 void *data)
1519 {
1520         struct dispatch_rq_data *dispatch_data = data;
1521         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1522         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1523         enum hctx_type type = hctx->type;
1524
1525         spin_lock(&ctx->lock);
1526         if (!list_empty(&ctx->rq_lists[type])) {
1527                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1528                 list_del_init(&dispatch_data->rq->queuelist);
1529                 if (list_empty(&ctx->rq_lists[type]))
1530                         sbitmap_clear_bit(sb, bitnr);
1531         }
1532         spin_unlock(&ctx->lock);
1533
1534         return !dispatch_data->rq;
1535 }
1536
1537 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1538                                         struct blk_mq_ctx *start)
1539 {
1540         unsigned off = start ? start->index_hw[hctx->type] : 0;
1541         struct dispatch_rq_data data = {
1542                 .hctx = hctx,
1543                 .rq   = NULL,
1544         };
1545
1546         __sbitmap_for_each_set(&hctx->ctx_map, off,
1547                                dispatch_rq_from_ctx, &data);
1548
1549         return data.rq;
1550 }
1551
1552 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1553 {
1554         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1555         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1556         int tag;
1557
1558         blk_mq_tag_busy(rq->mq_hctx);
1559
1560         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1561                 bt = &rq->mq_hctx->tags->breserved_tags;
1562                 tag_offset = 0;
1563         } else {
1564                 if (!hctx_may_queue(rq->mq_hctx, bt))
1565                         return false;
1566         }
1567
1568         tag = __sbitmap_queue_get(bt);
1569         if (tag == BLK_MQ_NO_TAG)
1570                 return false;
1571
1572         rq->tag = tag + tag_offset;
1573         return true;
1574 }
1575
1576 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1577 {
1578         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1579                 return false;
1580
1581         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1582                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1583                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1584                 __blk_mq_inc_active_requests(hctx);
1585         }
1586         hctx->tags->rqs[rq->tag] = rq;
1587         return true;
1588 }
1589
1590 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1591                                 int flags, void *key)
1592 {
1593         struct blk_mq_hw_ctx *hctx;
1594
1595         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1596
1597         spin_lock(&hctx->dispatch_wait_lock);
1598         if (!list_empty(&wait->entry)) {
1599                 struct sbitmap_queue *sbq;
1600
1601                 list_del_init(&wait->entry);
1602                 sbq = &hctx->tags->bitmap_tags;
1603                 atomic_dec(&sbq->ws_active);
1604         }
1605         spin_unlock(&hctx->dispatch_wait_lock);
1606
1607         blk_mq_run_hw_queue(hctx, true);
1608         return 1;
1609 }
1610
1611 /*
1612  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1613  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1614  * restart. For both cases, take care to check the condition again after
1615  * marking us as waiting.
1616  */
1617 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1618                                  struct request *rq)
1619 {
1620         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1621         struct wait_queue_head *wq;
1622         wait_queue_entry_t *wait;
1623         bool ret;
1624
1625         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1626                 blk_mq_sched_mark_restart_hctx(hctx);
1627
1628                 /*
1629                  * It's possible that a tag was freed in the window between the
1630                  * allocation failure and adding the hardware queue to the wait
1631                  * queue.
1632                  *
1633                  * Don't clear RESTART here, someone else could have set it.
1634                  * At most this will cost an extra queue run.
1635                  */
1636                 return blk_mq_get_driver_tag(rq);
1637         }
1638
1639         wait = &hctx->dispatch_wait;
1640         if (!list_empty_careful(&wait->entry))
1641                 return false;
1642
1643         wq = &bt_wait_ptr(sbq, hctx)->wait;
1644
1645         spin_lock_irq(&wq->lock);
1646         spin_lock(&hctx->dispatch_wait_lock);
1647         if (!list_empty(&wait->entry)) {
1648                 spin_unlock(&hctx->dispatch_wait_lock);
1649                 spin_unlock_irq(&wq->lock);
1650                 return false;
1651         }
1652
1653         atomic_inc(&sbq->ws_active);
1654         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1655         __add_wait_queue(wq, wait);
1656
1657         /*
1658          * It's possible that a tag was freed in the window between the
1659          * allocation failure and adding the hardware queue to the wait
1660          * queue.
1661          */
1662         ret = blk_mq_get_driver_tag(rq);
1663         if (!ret) {
1664                 spin_unlock(&hctx->dispatch_wait_lock);
1665                 spin_unlock_irq(&wq->lock);
1666                 return false;
1667         }
1668
1669         /*
1670          * We got a tag, remove ourselves from the wait queue to ensure
1671          * someone else gets the wakeup.
1672          */
1673         list_del_init(&wait->entry);
1674         atomic_dec(&sbq->ws_active);
1675         spin_unlock(&hctx->dispatch_wait_lock);
1676         spin_unlock_irq(&wq->lock);
1677
1678         return true;
1679 }
1680
1681 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1682 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1683 /*
1684  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1685  * - EWMA is one simple way to compute running average value
1686  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1687  * - take 4 as factor for avoiding to get too small(0) result, and this
1688  *   factor doesn't matter because EWMA decreases exponentially
1689  */
1690 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1691 {
1692         unsigned int ewma;
1693
1694         ewma = hctx->dispatch_busy;
1695
1696         if (!ewma && !busy)
1697                 return;
1698
1699         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1700         if (busy)
1701                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1702         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1703
1704         hctx->dispatch_busy = ewma;
1705 }
1706
1707 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1708
1709 static void blk_mq_handle_dev_resource(struct request *rq,
1710                                        struct list_head *list)
1711 {
1712         struct request *next =
1713                 list_first_entry_or_null(list, struct request, queuelist);
1714
1715         /*
1716          * If an I/O scheduler has been configured and we got a driver tag for
1717          * the next request already, free it.
1718          */
1719         if (next)
1720                 blk_mq_put_driver_tag(next);
1721
1722         list_add(&rq->queuelist, list);
1723         __blk_mq_requeue_request(rq);
1724 }
1725
1726 static void blk_mq_handle_zone_resource(struct request *rq,
1727                                         struct list_head *zone_list)
1728 {
1729         /*
1730          * If we end up here it is because we cannot dispatch a request to a
1731          * specific zone due to LLD level zone-write locking or other zone
1732          * related resource not being available. In this case, set the request
1733          * aside in zone_list for retrying it later.
1734          */
1735         list_add(&rq->queuelist, zone_list);
1736         __blk_mq_requeue_request(rq);
1737 }
1738
1739 enum prep_dispatch {
1740         PREP_DISPATCH_OK,
1741         PREP_DISPATCH_NO_TAG,
1742         PREP_DISPATCH_NO_BUDGET,
1743 };
1744
1745 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1746                                                   bool need_budget)
1747 {
1748         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1749         int budget_token = -1;
1750
1751         if (need_budget) {
1752                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1753                 if (budget_token < 0) {
1754                         blk_mq_put_driver_tag(rq);
1755                         return PREP_DISPATCH_NO_BUDGET;
1756                 }
1757                 blk_mq_set_rq_budget_token(rq, budget_token);
1758         }
1759
1760         if (!blk_mq_get_driver_tag(rq)) {
1761                 /*
1762                  * The initial allocation attempt failed, so we need to
1763                  * rerun the hardware queue when a tag is freed. The
1764                  * waitqueue takes care of that. If the queue is run
1765                  * before we add this entry back on the dispatch list,
1766                  * we'll re-run it below.
1767                  */
1768                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1769                         /*
1770                          * All budgets not got from this function will be put
1771                          * together during handling partial dispatch
1772                          */
1773                         if (need_budget)
1774                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1775                         return PREP_DISPATCH_NO_TAG;
1776                 }
1777         }
1778
1779         return PREP_DISPATCH_OK;
1780 }
1781
1782 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1783 static void blk_mq_release_budgets(struct request_queue *q,
1784                 struct list_head *list)
1785 {
1786         struct request *rq;
1787
1788         list_for_each_entry(rq, list, queuelist) {
1789                 int budget_token = blk_mq_get_rq_budget_token(rq);
1790
1791                 if (budget_token >= 0)
1792                         blk_mq_put_dispatch_budget(q, budget_token);
1793         }
1794 }
1795
1796 /*
1797  * Returns true if we did some work AND can potentially do more.
1798  */
1799 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1800                              unsigned int nr_budgets)
1801 {
1802         enum prep_dispatch prep;
1803         struct request_queue *q = hctx->queue;
1804         struct request *rq, *nxt;
1805         int errors, queued;
1806         blk_status_t ret = BLK_STS_OK;
1807         LIST_HEAD(zone_list);
1808         bool needs_resource = false;
1809
1810         if (list_empty(list))
1811                 return false;
1812
1813         /*
1814          * Now process all the entries, sending them to the driver.
1815          */
1816         errors = queued = 0;
1817         do {
1818                 struct blk_mq_queue_data bd;
1819
1820                 rq = list_first_entry(list, struct request, queuelist);
1821
1822                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1823                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1824                 if (prep != PREP_DISPATCH_OK)
1825                         break;
1826
1827                 list_del_init(&rq->queuelist);
1828
1829                 bd.rq = rq;
1830
1831                 /*
1832                  * Flag last if we have no more requests, or if we have more
1833                  * but can't assign a driver tag to it.
1834                  */
1835                 if (list_empty(list))
1836                         bd.last = true;
1837                 else {
1838                         nxt = list_first_entry(list, struct request, queuelist);
1839                         bd.last = !blk_mq_get_driver_tag(nxt);
1840                 }
1841
1842                 /*
1843                  * once the request is queued to lld, no need to cover the
1844                  * budget any more
1845                  */
1846                 if (nr_budgets)
1847                         nr_budgets--;
1848                 ret = q->mq_ops->queue_rq(hctx, &bd);
1849                 switch (ret) {
1850                 case BLK_STS_OK:
1851                         queued++;
1852                         break;
1853                 case BLK_STS_RESOURCE:
1854                         needs_resource = true;
1855                         fallthrough;
1856                 case BLK_STS_DEV_RESOURCE:
1857                         blk_mq_handle_dev_resource(rq, list);
1858                         goto out;
1859                 case BLK_STS_ZONE_RESOURCE:
1860                         /*
1861                          * Move the request to zone_list and keep going through
1862                          * the dispatch list to find more requests the drive can
1863                          * accept.
1864                          */
1865                         blk_mq_handle_zone_resource(rq, &zone_list);
1866                         needs_resource = true;
1867                         break;
1868                 default:
1869                         errors++;
1870                         blk_mq_end_request(rq, ret);
1871                 }
1872         } while (!list_empty(list));
1873 out:
1874         if (!list_empty(&zone_list))
1875                 list_splice_tail_init(&zone_list, list);
1876
1877         /* If we didn't flush the entire list, we could have told the driver
1878          * there was more coming, but that turned out to be a lie.
1879          */
1880         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1881                 q->mq_ops->commit_rqs(hctx);
1882         /*
1883          * Any items that need requeuing? Stuff them into hctx->dispatch,
1884          * that is where we will continue on next queue run.
1885          */
1886         if (!list_empty(list)) {
1887                 bool needs_restart;
1888                 /* For non-shared tags, the RESTART check will suffice */
1889                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1890                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1891
1892                 if (nr_budgets)
1893                         blk_mq_release_budgets(q, list);
1894
1895                 spin_lock(&hctx->lock);
1896                 list_splice_tail_init(list, &hctx->dispatch);
1897                 spin_unlock(&hctx->lock);
1898
1899                 /*
1900                  * Order adding requests to hctx->dispatch and checking
1901                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1902                  * in blk_mq_sched_restart(). Avoid restart code path to
1903                  * miss the new added requests to hctx->dispatch, meantime
1904                  * SCHED_RESTART is observed here.
1905                  */
1906                 smp_mb();
1907
1908                 /*
1909                  * If SCHED_RESTART was set by the caller of this function and
1910                  * it is no longer set that means that it was cleared by another
1911                  * thread and hence that a queue rerun is needed.
1912                  *
1913                  * If 'no_tag' is set, that means that we failed getting
1914                  * a driver tag with an I/O scheduler attached. If our dispatch
1915                  * waitqueue is no longer active, ensure that we run the queue
1916                  * AFTER adding our entries back to the list.
1917                  *
1918                  * If no I/O scheduler has been configured it is possible that
1919                  * the hardware queue got stopped and restarted before requests
1920                  * were pushed back onto the dispatch list. Rerun the queue to
1921                  * avoid starvation. Notes:
1922                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1923                  *   been stopped before rerunning a queue.
1924                  * - Some but not all block drivers stop a queue before
1925                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1926                  *   and dm-rq.
1927                  *
1928                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1929                  * bit is set, run queue after a delay to avoid IO stalls
1930                  * that could otherwise occur if the queue is idle.  We'll do
1931                  * similar if we couldn't get budget or couldn't lock a zone
1932                  * and SCHED_RESTART is set.
1933                  */
1934                 needs_restart = blk_mq_sched_needs_restart(hctx);
1935                 if (prep == PREP_DISPATCH_NO_BUDGET)
1936                         needs_resource = true;
1937                 if (!needs_restart ||
1938                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1939                         blk_mq_run_hw_queue(hctx, true);
1940                 else if (needs_restart && needs_resource)
1941                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1942
1943                 blk_mq_update_dispatch_busy(hctx, true);
1944                 return false;
1945         } else
1946                 blk_mq_update_dispatch_busy(hctx, false);
1947
1948         return (queued + errors) != 0;
1949 }
1950
1951 /**
1952  * __blk_mq_run_hw_queue - Run a hardware queue.
1953  * @hctx: Pointer to the hardware queue to run.
1954  *
1955  * Send pending requests to the hardware.
1956  */
1957 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1958 {
1959         /*
1960          * We can't run the queue inline with ints disabled. Ensure that
1961          * we catch bad users of this early.
1962          */
1963         WARN_ON_ONCE(in_interrupt());
1964
1965         blk_mq_run_dispatch_ops(hctx->queue,
1966                         blk_mq_sched_dispatch_requests(hctx));
1967 }
1968
1969 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1970 {
1971         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1972
1973         if (cpu >= nr_cpu_ids)
1974                 cpu = cpumask_first(hctx->cpumask);
1975         return cpu;
1976 }
1977
1978 /*
1979  * It'd be great if the workqueue API had a way to pass
1980  * in a mask and had some smarts for more clever placement.
1981  * For now we just round-robin here, switching for every
1982  * BLK_MQ_CPU_WORK_BATCH queued items.
1983  */
1984 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1985 {
1986         bool tried = false;
1987         int next_cpu = hctx->next_cpu;
1988
1989         if (hctx->queue->nr_hw_queues == 1)
1990                 return WORK_CPU_UNBOUND;
1991
1992         if (--hctx->next_cpu_batch <= 0) {
1993 select_cpu:
1994                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1995                                 cpu_online_mask);
1996                 if (next_cpu >= nr_cpu_ids)
1997                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1998                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1999         }
2000
2001         /*
2002          * Do unbound schedule if we can't find a online CPU for this hctx,
2003          * and it should only happen in the path of handling CPU DEAD.
2004          */
2005         if (!cpu_online(next_cpu)) {
2006                 if (!tried) {
2007                         tried = true;
2008                         goto select_cpu;
2009                 }
2010
2011                 /*
2012                  * Make sure to re-select CPU next time once after CPUs
2013                  * in hctx->cpumask become online again.
2014                  */
2015                 hctx->next_cpu = next_cpu;
2016                 hctx->next_cpu_batch = 1;
2017                 return WORK_CPU_UNBOUND;
2018         }
2019
2020         hctx->next_cpu = next_cpu;
2021         return next_cpu;
2022 }
2023
2024 /**
2025  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2026  * @hctx: Pointer to the hardware queue to run.
2027  * @async: If we want to run the queue asynchronously.
2028  * @msecs: Milliseconds of delay to wait before running the queue.
2029  *
2030  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2031  * with a delay of @msecs.
2032  */
2033 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2034                                         unsigned long msecs)
2035 {
2036         if (unlikely(blk_mq_hctx_stopped(hctx)))
2037                 return;
2038
2039         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2040                 int cpu = get_cpu();
2041                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2042                         __blk_mq_run_hw_queue(hctx);
2043                         put_cpu();
2044                         return;
2045                 }
2046
2047                 put_cpu();
2048         }
2049
2050         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2051                                     msecs_to_jiffies(msecs));
2052 }
2053
2054 /**
2055  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2056  * @hctx: Pointer to the hardware queue to run.
2057  * @msecs: Milliseconds of delay to wait before running the queue.
2058  *
2059  * Run a hardware queue asynchronously with a delay of @msecs.
2060  */
2061 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2062 {
2063         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2064 }
2065 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2066
2067 /**
2068  * blk_mq_run_hw_queue - Start to run a hardware queue.
2069  * @hctx: Pointer to the hardware queue to run.
2070  * @async: If we want to run the queue asynchronously.
2071  *
2072  * Check if the request queue is not in a quiesced state and if there are
2073  * pending requests to be sent. If this is true, run the queue to send requests
2074  * to hardware.
2075  */
2076 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2077 {
2078         bool need_run;
2079
2080         /*
2081          * When queue is quiesced, we may be switching io scheduler, or
2082          * updating nr_hw_queues, or other things, and we can't run queue
2083          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2084          *
2085          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2086          * quiesced.
2087          */
2088         __blk_mq_run_dispatch_ops(hctx->queue, false,
2089                 need_run = !blk_queue_quiesced(hctx->queue) &&
2090                 blk_mq_hctx_has_pending(hctx));
2091
2092         if (need_run)
2093                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2094 }
2095 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2096
2097 /*
2098  * Is the request queue handled by an IO scheduler that does not respect
2099  * hardware queues when dispatching?
2100  */
2101 static bool blk_mq_has_sqsched(struct request_queue *q)
2102 {
2103         struct elevator_queue *e = q->elevator;
2104
2105         if (e && e->type->ops.dispatch_request &&
2106             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2107                 return true;
2108         return false;
2109 }
2110
2111 /*
2112  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2113  * scheduler.
2114  */
2115 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2116 {
2117         struct blk_mq_hw_ctx *hctx;
2118
2119         /*
2120          * If the IO scheduler does not respect hardware queues when
2121          * dispatching, we just don't bother with multiple HW queues and
2122          * dispatch from hctx for the current CPU since running multiple queues
2123          * just causes lock contention inside the scheduler and pointless cache
2124          * bouncing.
2125          */
2126         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2127                                      raw_smp_processor_id());
2128         if (!blk_mq_hctx_stopped(hctx))
2129                 return hctx;
2130         return NULL;
2131 }
2132
2133 /**
2134  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2135  * @q: Pointer to the request queue to run.
2136  * @async: If we want to run the queue asynchronously.
2137  */
2138 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2139 {
2140         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2141         int i;
2142
2143         sq_hctx = NULL;
2144         if (blk_mq_has_sqsched(q))
2145                 sq_hctx = blk_mq_get_sq_hctx(q);
2146         queue_for_each_hw_ctx(q, hctx, i) {
2147                 if (blk_mq_hctx_stopped(hctx))
2148                         continue;
2149                 /*
2150                  * Dispatch from this hctx either if there's no hctx preferred
2151                  * by IO scheduler or if it has requests that bypass the
2152                  * scheduler.
2153                  */
2154                 if (!sq_hctx || sq_hctx == hctx ||
2155                     !list_empty_careful(&hctx->dispatch))
2156                         blk_mq_run_hw_queue(hctx, async);
2157         }
2158 }
2159 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2160
2161 /**
2162  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2163  * @q: Pointer to the request queue to run.
2164  * @msecs: Milliseconds of delay to wait before running the queues.
2165  */
2166 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2167 {
2168         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2169         int i;
2170
2171         sq_hctx = NULL;
2172         if (blk_mq_has_sqsched(q))
2173                 sq_hctx = blk_mq_get_sq_hctx(q);
2174         queue_for_each_hw_ctx(q, hctx, i) {
2175                 if (blk_mq_hctx_stopped(hctx))
2176                         continue;
2177                 /*
2178                  * Dispatch from this hctx either if there's no hctx preferred
2179                  * by IO scheduler or if it has requests that bypass the
2180                  * scheduler.
2181                  */
2182                 if (!sq_hctx || sq_hctx == hctx ||
2183                     !list_empty_careful(&hctx->dispatch))
2184                         blk_mq_delay_run_hw_queue(hctx, msecs);
2185         }
2186 }
2187 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2188
2189 /**
2190  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2191  * @q: request queue.
2192  *
2193  * The caller is responsible for serializing this function against
2194  * blk_mq_{start,stop}_hw_queue().
2195  */
2196 bool blk_mq_queue_stopped(struct request_queue *q)
2197 {
2198         struct blk_mq_hw_ctx *hctx;
2199         int i;
2200
2201         queue_for_each_hw_ctx(q, hctx, i)
2202                 if (blk_mq_hctx_stopped(hctx))
2203                         return true;
2204
2205         return false;
2206 }
2207 EXPORT_SYMBOL(blk_mq_queue_stopped);
2208
2209 /*
2210  * This function is often used for pausing .queue_rq() by driver when
2211  * there isn't enough resource or some conditions aren't satisfied, and
2212  * BLK_STS_RESOURCE is usually returned.
2213  *
2214  * We do not guarantee that dispatch can be drained or blocked
2215  * after blk_mq_stop_hw_queue() returns. Please use
2216  * blk_mq_quiesce_queue() for that requirement.
2217  */
2218 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2219 {
2220         cancel_delayed_work(&hctx->run_work);
2221
2222         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2223 }
2224 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2225
2226 /*
2227  * This function is often used for pausing .queue_rq() by driver when
2228  * there isn't enough resource or some conditions aren't satisfied, and
2229  * BLK_STS_RESOURCE is usually returned.
2230  *
2231  * We do not guarantee that dispatch can be drained or blocked
2232  * after blk_mq_stop_hw_queues() returns. Please use
2233  * blk_mq_quiesce_queue() for that requirement.
2234  */
2235 void blk_mq_stop_hw_queues(struct request_queue *q)
2236 {
2237         struct blk_mq_hw_ctx *hctx;
2238         int i;
2239
2240         queue_for_each_hw_ctx(q, hctx, i)
2241                 blk_mq_stop_hw_queue(hctx);
2242 }
2243 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2244
2245 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2246 {
2247         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2248
2249         blk_mq_run_hw_queue(hctx, false);
2250 }
2251 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2252
2253 void blk_mq_start_hw_queues(struct request_queue *q)
2254 {
2255         struct blk_mq_hw_ctx *hctx;
2256         int i;
2257
2258         queue_for_each_hw_ctx(q, hctx, i)
2259                 blk_mq_start_hw_queue(hctx);
2260 }
2261 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2262
2263 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2264 {
2265         if (!blk_mq_hctx_stopped(hctx))
2266                 return;
2267
2268         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2269         blk_mq_run_hw_queue(hctx, async);
2270 }
2271 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2272
2273 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2274 {
2275         struct blk_mq_hw_ctx *hctx;
2276         int i;
2277
2278         queue_for_each_hw_ctx(q, hctx, i)
2279                 blk_mq_start_stopped_hw_queue(hctx, async);
2280 }
2281 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2282
2283 static void blk_mq_run_work_fn(struct work_struct *work)
2284 {
2285         struct blk_mq_hw_ctx *hctx;
2286
2287         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2288
2289         /*
2290          * If we are stopped, don't run the queue.
2291          */
2292         if (blk_mq_hctx_stopped(hctx))
2293                 return;
2294
2295         __blk_mq_run_hw_queue(hctx);
2296 }
2297
2298 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2299                                             struct request *rq,
2300                                             bool at_head)
2301 {
2302         struct blk_mq_ctx *ctx = rq->mq_ctx;
2303         enum hctx_type type = hctx->type;
2304
2305         lockdep_assert_held(&ctx->lock);
2306
2307         trace_block_rq_insert(rq);
2308
2309         if (at_head)
2310                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2311         else
2312                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2313 }
2314
2315 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2316                              bool at_head)
2317 {
2318         struct blk_mq_ctx *ctx = rq->mq_ctx;
2319
2320         lockdep_assert_held(&ctx->lock);
2321
2322         __blk_mq_insert_req_list(hctx, rq, at_head);
2323         blk_mq_hctx_mark_pending(hctx, ctx);
2324 }
2325
2326 /**
2327  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2328  * @rq: Pointer to request to be inserted.
2329  * @at_head: true if the request should be inserted at the head of the list.
2330  * @run_queue: If we should run the hardware queue after inserting the request.
2331  *
2332  * Should only be used carefully, when the caller knows we want to
2333  * bypass a potential IO scheduler on the target device.
2334  */
2335 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2336                                   bool run_queue)
2337 {
2338         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2339
2340         spin_lock(&hctx->lock);
2341         if (at_head)
2342                 list_add(&rq->queuelist, &hctx->dispatch);
2343         else
2344                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2345         spin_unlock(&hctx->lock);
2346
2347         if (run_queue)
2348                 blk_mq_run_hw_queue(hctx, false);
2349 }
2350
2351 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2352                             struct list_head *list)
2353
2354 {
2355         struct request *rq;
2356         enum hctx_type type = hctx->type;
2357
2358         /*
2359          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2360          * offline now
2361          */
2362         list_for_each_entry(rq, list, queuelist) {
2363                 BUG_ON(rq->mq_ctx != ctx);
2364                 trace_block_rq_insert(rq);
2365         }
2366
2367         spin_lock(&ctx->lock);
2368         list_splice_tail_init(list, &ctx->rq_lists[type]);
2369         blk_mq_hctx_mark_pending(hctx, ctx);
2370         spin_unlock(&ctx->lock);
2371 }
2372
2373 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2374                               bool from_schedule)
2375 {
2376         if (hctx->queue->mq_ops->commit_rqs) {
2377                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2378                 hctx->queue->mq_ops->commit_rqs(hctx);
2379         }
2380         *queued = 0;
2381 }
2382
2383 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2384                 unsigned int nr_segs)
2385 {
2386         int err;
2387
2388         if (bio->bi_opf & REQ_RAHEAD)
2389                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2390
2391         rq->__sector = bio->bi_iter.bi_sector;
2392         rq->write_hint = bio->bi_write_hint;
2393         blk_rq_bio_prep(rq, bio, nr_segs);
2394
2395         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2396         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2397         WARN_ON_ONCE(err);
2398
2399         blk_account_io_start(rq);
2400 }
2401
2402 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2403                                             struct request *rq, bool last)
2404 {
2405         struct request_queue *q = rq->q;
2406         struct blk_mq_queue_data bd = {
2407                 .rq = rq,
2408                 .last = last,
2409         };
2410         blk_status_t ret;
2411
2412         /*
2413          * For OK queue, we are done. For error, caller may kill it.
2414          * Any other error (busy), just add it to our list as we
2415          * previously would have done.
2416          */
2417         ret = q->mq_ops->queue_rq(hctx, &bd);
2418         switch (ret) {
2419         case BLK_STS_OK:
2420                 blk_mq_update_dispatch_busy(hctx, false);
2421                 break;
2422         case BLK_STS_RESOURCE:
2423         case BLK_STS_DEV_RESOURCE:
2424                 blk_mq_update_dispatch_busy(hctx, true);
2425                 __blk_mq_requeue_request(rq);
2426                 break;
2427         default:
2428                 blk_mq_update_dispatch_busy(hctx, false);
2429                 break;
2430         }
2431
2432         return ret;
2433 }
2434
2435 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2436                                                 struct request *rq,
2437                                                 bool bypass_insert, bool last)
2438 {
2439         struct request_queue *q = rq->q;
2440         bool run_queue = true;
2441         int budget_token;
2442
2443         /*
2444          * RCU or SRCU read lock is needed before checking quiesced flag.
2445          *
2446          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2447          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2448          * and avoid driver to try to dispatch again.
2449          */
2450         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2451                 run_queue = false;
2452                 bypass_insert = false;
2453                 goto insert;
2454         }
2455
2456         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2457                 goto insert;
2458
2459         budget_token = blk_mq_get_dispatch_budget(q);
2460         if (budget_token < 0)
2461                 goto insert;
2462
2463         blk_mq_set_rq_budget_token(rq, budget_token);
2464
2465         if (!blk_mq_get_driver_tag(rq)) {
2466                 blk_mq_put_dispatch_budget(q, budget_token);
2467                 goto insert;
2468         }
2469
2470         return __blk_mq_issue_directly(hctx, rq, last);
2471 insert:
2472         if (bypass_insert)
2473                 return BLK_STS_RESOURCE;
2474
2475         blk_mq_sched_insert_request(rq, false, run_queue, false);
2476
2477         return BLK_STS_OK;
2478 }
2479
2480 /**
2481  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2482  * @hctx: Pointer of the associated hardware queue.
2483  * @rq: Pointer to request to be sent.
2484  *
2485  * If the device has enough resources to accept a new request now, send the
2486  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2487  * we can try send it another time in the future. Requests inserted at this
2488  * queue have higher priority.
2489  */
2490 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2491                 struct request *rq)
2492 {
2493         blk_status_t ret =
2494                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2495
2496         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2497                 blk_mq_request_bypass_insert(rq, false, true);
2498         else if (ret != BLK_STS_OK)
2499                 blk_mq_end_request(rq, ret);
2500 }
2501
2502 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2503 {
2504         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2505 }
2506
2507 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2508 {
2509         struct blk_mq_hw_ctx *hctx = NULL;
2510         struct request *rq;
2511         int queued = 0;
2512         int errors = 0;
2513
2514         while ((rq = rq_list_pop(&plug->mq_list))) {
2515                 bool last = rq_list_empty(plug->mq_list);
2516                 blk_status_t ret;
2517
2518                 if (hctx != rq->mq_hctx) {
2519                         if (hctx)
2520                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2521                         hctx = rq->mq_hctx;
2522                 }
2523
2524                 ret = blk_mq_request_issue_directly(rq, last);
2525                 switch (ret) {
2526                 case BLK_STS_OK:
2527                         queued++;
2528                         break;
2529                 case BLK_STS_RESOURCE:
2530                 case BLK_STS_DEV_RESOURCE:
2531                         blk_mq_request_bypass_insert(rq, false, last);
2532                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2533                         return;
2534                 default:
2535                         blk_mq_end_request(rq, ret);
2536                         errors++;
2537                         break;
2538                 }
2539         }
2540
2541         /*
2542          * If we didn't flush the entire list, we could have told the driver
2543          * there was more coming, but that turned out to be a lie.
2544          */
2545         if (errors)
2546                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2547 }
2548
2549 static void __blk_mq_flush_plug_list(struct request_queue *q,
2550                                      struct blk_plug *plug)
2551 {
2552         if (blk_queue_quiesced(q))
2553                 return;
2554         q->mq_ops->queue_rqs(&plug->mq_list);
2555 }
2556
2557 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2558 {
2559         struct blk_mq_hw_ctx *this_hctx = NULL;
2560         struct blk_mq_ctx *this_ctx = NULL;
2561         struct request *requeue_list = NULL;
2562         unsigned int depth = 0;
2563         LIST_HEAD(list);
2564
2565         do {
2566                 struct request *rq = rq_list_pop(&plug->mq_list);
2567
2568                 if (!this_hctx) {
2569                         this_hctx = rq->mq_hctx;
2570                         this_ctx = rq->mq_ctx;
2571                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2572                         rq_list_add(&requeue_list, rq);
2573                         continue;
2574                 }
2575                 list_add_tail(&rq->queuelist, &list);
2576                 depth++;
2577         } while (!rq_list_empty(plug->mq_list));
2578
2579         plug->mq_list = requeue_list;
2580         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2581         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2582 }
2583
2584 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2585 {
2586         struct request *rq;
2587
2588         if (rq_list_empty(plug->mq_list))
2589                 return;
2590         plug->rq_count = 0;
2591
2592         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2593                 struct request_queue *q;
2594
2595                 rq = rq_list_peek(&plug->mq_list);
2596                 q = rq->q;
2597
2598                 /*
2599                  * Peek first request and see if we have a ->queue_rqs() hook.
2600                  * If we do, we can dispatch the whole plug list in one go. We
2601                  * already know at this point that all requests belong to the
2602                  * same queue, caller must ensure that's the case.
2603                  *
2604                  * Since we pass off the full list to the driver at this point,
2605                  * we do not increment the active request count for the queue.
2606                  * Bypass shared tags for now because of that.
2607                  */
2608                 if (q->mq_ops->queue_rqs &&
2609                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2610                         blk_mq_run_dispatch_ops(q,
2611                                 __blk_mq_flush_plug_list(q, plug));
2612                         if (rq_list_empty(plug->mq_list))
2613                                 return;
2614                 }
2615
2616                 blk_mq_run_dispatch_ops(q,
2617                                 blk_mq_plug_issue_direct(plug, false));
2618                 if (rq_list_empty(plug->mq_list))
2619                         return;
2620         }
2621
2622         do {
2623                 blk_mq_dispatch_plug_list(plug, from_schedule);
2624         } while (!rq_list_empty(plug->mq_list));
2625 }
2626
2627 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2628                 struct list_head *list)
2629 {
2630         int queued = 0;
2631         int errors = 0;
2632
2633         while (!list_empty(list)) {
2634                 blk_status_t ret;
2635                 struct request *rq = list_first_entry(list, struct request,
2636                                 queuelist);
2637
2638                 list_del_init(&rq->queuelist);
2639                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2640                 if (ret != BLK_STS_OK) {
2641                         if (ret == BLK_STS_RESOURCE ||
2642                                         ret == BLK_STS_DEV_RESOURCE) {
2643                                 blk_mq_request_bypass_insert(rq, false,
2644                                                         list_empty(list));
2645                                 break;
2646                         }
2647                         blk_mq_end_request(rq, ret);
2648                         errors++;
2649                 } else
2650                         queued++;
2651         }
2652
2653         /*
2654          * If we didn't flush the entire list, we could have told
2655          * the driver there was more coming, but that turned out to
2656          * be a lie.
2657          */
2658         if ((!list_empty(list) || errors) &&
2659              hctx->queue->mq_ops->commit_rqs && queued)
2660                 hctx->queue->mq_ops->commit_rqs(hctx);
2661 }
2662
2663 /*
2664  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2665  * queues. This is important for md arrays to benefit from merging
2666  * requests.
2667  */
2668 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2669 {
2670         if (plug->multiple_queues)
2671                 return BLK_MAX_REQUEST_COUNT * 2;
2672         return BLK_MAX_REQUEST_COUNT;
2673 }
2674
2675 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2676 {
2677         struct request *last = rq_list_peek(&plug->mq_list);
2678
2679         if (!plug->rq_count) {
2680                 trace_block_plug(rq->q);
2681         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2682                    (!blk_queue_nomerges(rq->q) &&
2683                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2684                 blk_mq_flush_plug_list(plug, false);
2685                 trace_block_plug(rq->q);
2686         }
2687
2688         if (!plug->multiple_queues && last && last->q != rq->q)
2689                 plug->multiple_queues = true;
2690         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2691                 plug->has_elevator = true;
2692         rq->rq_next = NULL;
2693         rq_list_add(&plug->mq_list, rq);
2694         plug->rq_count++;
2695 }
2696
2697 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2698                                      struct bio *bio, unsigned int nr_segs)
2699 {
2700         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2701                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2702                         return true;
2703                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2704                         return true;
2705         }
2706         return false;
2707 }
2708
2709 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2710                                                struct blk_plug *plug,
2711                                                struct bio *bio,
2712                                                unsigned int nsegs)
2713 {
2714         struct blk_mq_alloc_data data = {
2715                 .q              = q,
2716                 .nr_tags        = 1,
2717                 .cmd_flags      = bio->bi_opf,
2718         };
2719         struct request *rq;
2720
2721         if (unlikely(bio_queue_enter(bio)))
2722                 return NULL;
2723
2724         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2725                 goto queue_exit;
2726
2727         rq_qos_throttle(q, bio);
2728
2729         if (plug) {
2730                 data.nr_tags = plug->nr_ios;
2731                 plug->nr_ios = 1;
2732                 data.cached_rq = &plug->cached_rq;
2733         }
2734
2735         rq = __blk_mq_alloc_requests(&data);
2736         if (rq)
2737                 return rq;
2738         rq_qos_cleanup(q, bio);
2739         if (bio->bi_opf & REQ_NOWAIT)
2740                 bio_wouldblock_error(bio);
2741 queue_exit:
2742         blk_queue_exit(q);
2743         return NULL;
2744 }
2745
2746 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2747                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2748 {
2749         struct request *rq;
2750
2751         if (!plug)
2752                 return NULL;
2753         rq = rq_list_peek(&plug->cached_rq);
2754         if (!rq || rq->q != q)
2755                 return NULL;
2756
2757         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2758                 *bio = NULL;
2759                 return NULL;
2760         }
2761
2762         rq_qos_throttle(q, *bio);
2763
2764         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2765                 return NULL;
2766         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2767                 return NULL;
2768
2769         rq->cmd_flags = (*bio)->bi_opf;
2770         plug->cached_rq = rq_list_next(rq);
2771         INIT_LIST_HEAD(&rq->queuelist);
2772         return rq;
2773 }
2774
2775 /**
2776  * blk_mq_submit_bio - Create and send a request to block device.
2777  * @bio: Bio pointer.
2778  *
2779  * Builds up a request structure from @q and @bio and send to the device. The
2780  * request may not be queued directly to hardware if:
2781  * * This request can be merged with another one
2782  * * We want to place request at plug queue for possible future merging
2783  * * There is an IO scheduler active at this queue
2784  *
2785  * It will not queue the request if there is an error with the bio, or at the
2786  * request creation.
2787  */
2788 void blk_mq_submit_bio(struct bio *bio)
2789 {
2790         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2791         struct blk_plug *plug = blk_mq_plug(q, bio);
2792         const int is_sync = op_is_sync(bio->bi_opf);
2793         struct request *rq;
2794         unsigned int nr_segs = 1;
2795         blk_status_t ret;
2796
2797         if (unlikely(!blk_crypto_bio_prep(&bio)))
2798                 return;
2799
2800         blk_queue_bounce(q, &bio);
2801         if (blk_may_split(q, bio))
2802                 __blk_queue_split(q, &bio, &nr_segs);
2803
2804         if (!bio_integrity_prep(bio))
2805                 return;
2806
2807         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2808         if (!rq) {
2809                 if (!bio)
2810                         return;
2811                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2812                 if (unlikely(!rq))
2813                         return;
2814         }
2815
2816         trace_block_getrq(bio);
2817
2818         rq_qos_track(q, rq, bio);
2819
2820         blk_mq_bio_to_request(rq, bio, nr_segs);
2821
2822         ret = blk_crypto_init_request(rq);
2823         if (ret != BLK_STS_OK) {
2824                 bio->bi_status = ret;
2825                 bio_endio(bio);
2826                 blk_mq_free_request(rq);
2827                 return;
2828         }
2829
2830         if (op_is_flush(bio->bi_opf)) {
2831                 blk_insert_flush(rq);
2832                 return;
2833         }
2834
2835         if (plug)
2836                 blk_add_rq_to_plug(plug, rq);
2837         else if ((rq->rq_flags & RQF_ELV) ||
2838                  (rq->mq_hctx->dispatch_busy &&
2839                   (q->nr_hw_queues == 1 || !is_sync)))
2840                 blk_mq_sched_insert_request(rq, false, true, true);
2841         else
2842                 blk_mq_run_dispatch_ops(rq->q,
2843                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2844 }
2845
2846 /**
2847  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2848  *                              for the new queue limits
2849  * @q:  the queue
2850  * @rq: the request being checked
2851  *
2852  * Description:
2853  *    @rq may have been made based on weaker limitations of upper-level queues
2854  *    in request stacking drivers, and it may violate the limitation of @q.
2855  *    Since the block layer and the underlying device driver trust @rq
2856  *    after it is inserted to @q, it should be checked against @q before
2857  *    the insertion using this generic function.
2858  *
2859  *    Request stacking drivers like request-based dm may change the queue
2860  *    limits when retrying requests on other queues. Those requests need
2861  *    to be checked against the new queue limits again during dispatch.
2862  */
2863 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
2864                                       struct request *rq)
2865 {
2866         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2867
2868         if (blk_rq_sectors(rq) > max_sectors) {
2869                 /*
2870                  * SCSI device does not have a good way to return if
2871                  * Write Same/Zero is actually supported. If a device rejects
2872                  * a non-read/write command (discard, write same,etc.) the
2873                  * low-level device driver will set the relevant queue limit to
2874                  * 0 to prevent blk-lib from issuing more of the offending
2875                  * operations. Commands queued prior to the queue limit being
2876                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2877                  * errors being propagated to upper layers.
2878                  */
2879                 if (max_sectors == 0)
2880                         return BLK_STS_NOTSUPP;
2881
2882                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2883                         __func__, blk_rq_sectors(rq), max_sectors);
2884                 return BLK_STS_IOERR;
2885         }
2886
2887         /*
2888          * The queue settings related to segment counting may differ from the
2889          * original queue.
2890          */
2891         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2892         if (rq->nr_phys_segments > queue_max_segments(q)) {
2893                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2894                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2895                 return BLK_STS_IOERR;
2896         }
2897
2898         return BLK_STS_OK;
2899 }
2900
2901 /**
2902  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2903  * @q:  the queue to submit the request
2904  * @rq: the request being queued
2905  */
2906 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2907 {
2908         blk_status_t ret;
2909
2910         ret = blk_cloned_rq_check_limits(q, rq);
2911         if (ret != BLK_STS_OK)
2912                 return ret;
2913
2914         if (rq->q->disk &&
2915             should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq)))
2916                 return BLK_STS_IOERR;
2917
2918         if (blk_crypto_insert_cloned_request(rq))
2919                 return BLK_STS_IOERR;
2920
2921         blk_account_io_start(rq);
2922
2923         /*
2924          * Since we have a scheduler attached on the top device,
2925          * bypass a potential scheduler on the bottom device for
2926          * insert.
2927          */
2928         blk_mq_run_dispatch_ops(rq->q,
2929                         ret = blk_mq_request_issue_directly(rq, true));
2930         if (ret)
2931                 blk_account_io_done(rq, ktime_get_ns());
2932         return ret;
2933 }
2934 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2935
2936 /**
2937  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2938  * @rq: the clone request to be cleaned up
2939  *
2940  * Description:
2941  *     Free all bios in @rq for a cloned request.
2942  */
2943 void blk_rq_unprep_clone(struct request *rq)
2944 {
2945         struct bio *bio;
2946
2947         while ((bio = rq->bio) != NULL) {
2948                 rq->bio = bio->bi_next;
2949
2950                 bio_put(bio);
2951         }
2952 }
2953 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2954
2955 /**
2956  * blk_rq_prep_clone - Helper function to setup clone request
2957  * @rq: the request to be setup
2958  * @rq_src: original request to be cloned
2959  * @bs: bio_set that bios for clone are allocated from
2960  * @gfp_mask: memory allocation mask for bio
2961  * @bio_ctr: setup function to be called for each clone bio.
2962  *           Returns %0 for success, non %0 for failure.
2963  * @data: private data to be passed to @bio_ctr
2964  *
2965  * Description:
2966  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2967  *     Also, pages which the original bios are pointing to are not copied
2968  *     and the cloned bios just point same pages.
2969  *     So cloned bios must be completed before original bios, which means
2970  *     the caller must complete @rq before @rq_src.
2971  */
2972 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2973                       struct bio_set *bs, gfp_t gfp_mask,
2974                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2975                       void *data)
2976 {
2977         struct bio *bio, *bio_src;
2978
2979         if (!bs)
2980                 bs = &fs_bio_set;
2981
2982         __rq_for_each_bio(bio_src, rq_src) {
2983                 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2984                 if (!bio)
2985                         goto free_and_out;
2986                 bio->bi_bdev = rq->q->disk->part0;
2987
2988                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2989                         goto free_and_out;
2990
2991                 if (rq->bio) {
2992                         rq->biotail->bi_next = bio;
2993                         rq->biotail = bio;
2994                 } else {
2995                         rq->bio = rq->biotail = bio;
2996                 }
2997                 bio = NULL;
2998         }
2999
3000         /* Copy attributes of the original request to the clone request. */
3001         rq->__sector = blk_rq_pos(rq_src);
3002         rq->__data_len = blk_rq_bytes(rq_src);
3003         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3004                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3005                 rq->special_vec = rq_src->special_vec;
3006         }
3007         rq->nr_phys_segments = rq_src->nr_phys_segments;
3008         rq->ioprio = rq_src->ioprio;
3009
3010         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3011                 goto free_and_out;
3012
3013         return 0;
3014
3015 free_and_out:
3016         if (bio)
3017                 bio_put(bio);
3018         blk_rq_unprep_clone(rq);
3019
3020         return -ENOMEM;
3021 }
3022 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3023
3024 /*
3025  * Steal bios from a request and add them to a bio list.
3026  * The request must not have been partially completed before.
3027  */
3028 void blk_steal_bios(struct bio_list *list, struct request *rq)
3029 {
3030         if (rq->bio) {
3031                 if (list->tail)
3032                         list->tail->bi_next = rq->bio;
3033                 else
3034                         list->head = rq->bio;
3035                 list->tail = rq->biotail;
3036
3037                 rq->bio = NULL;
3038                 rq->biotail = NULL;
3039         }
3040
3041         rq->__data_len = 0;
3042 }
3043 EXPORT_SYMBOL_GPL(blk_steal_bios);
3044
3045 static size_t order_to_size(unsigned int order)
3046 {
3047         return (size_t)PAGE_SIZE << order;
3048 }
3049
3050 /* called before freeing request pool in @tags */
3051 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3052                                     struct blk_mq_tags *tags)
3053 {
3054         struct page *page;
3055         unsigned long flags;
3056
3057         /* There is no need to clear a driver tags own mapping */
3058         if (drv_tags == tags)
3059                 return;
3060
3061         list_for_each_entry(page, &tags->page_list, lru) {
3062                 unsigned long start = (unsigned long)page_address(page);
3063                 unsigned long end = start + order_to_size(page->private);
3064                 int i;
3065
3066                 for (i = 0; i < drv_tags->nr_tags; i++) {
3067                         struct request *rq = drv_tags->rqs[i];
3068                         unsigned long rq_addr = (unsigned long)rq;
3069
3070                         if (rq_addr >= start && rq_addr < end) {
3071                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3072                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3073                         }
3074                 }
3075         }
3076
3077         /*
3078          * Wait until all pending iteration is done.
3079          *
3080          * Request reference is cleared and it is guaranteed to be observed
3081          * after the ->lock is released.
3082          */
3083         spin_lock_irqsave(&drv_tags->lock, flags);
3084         spin_unlock_irqrestore(&drv_tags->lock, flags);
3085 }
3086
3087 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3088                      unsigned int hctx_idx)
3089 {
3090         struct blk_mq_tags *drv_tags;
3091         struct page *page;
3092
3093         if (blk_mq_is_shared_tags(set->flags))
3094                 drv_tags = set->shared_tags;
3095         else
3096                 drv_tags = set->tags[hctx_idx];
3097
3098         if (tags->static_rqs && set->ops->exit_request) {
3099                 int i;
3100
3101                 for (i = 0; i < tags->nr_tags; i++) {
3102                         struct request *rq = tags->static_rqs[i];
3103
3104                         if (!rq)
3105                                 continue;
3106                         set->ops->exit_request(set, rq, hctx_idx);
3107                         tags->static_rqs[i] = NULL;
3108                 }
3109         }
3110
3111         blk_mq_clear_rq_mapping(drv_tags, tags);
3112
3113         while (!list_empty(&tags->page_list)) {
3114                 page = list_first_entry(&tags->page_list, struct page, lru);
3115                 list_del_init(&page->lru);
3116                 /*
3117                  * Remove kmemleak object previously allocated in
3118                  * blk_mq_alloc_rqs().
3119                  */
3120                 kmemleak_free(page_address(page));
3121                 __free_pages(page, page->private);
3122         }
3123 }
3124
3125 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3126 {
3127         kfree(tags->rqs);
3128         tags->rqs = NULL;
3129         kfree(tags->static_rqs);
3130         tags->static_rqs = NULL;
3131
3132         blk_mq_free_tags(tags);
3133 }
3134
3135 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3136                                                unsigned int hctx_idx,
3137                                                unsigned int nr_tags,
3138                                                unsigned int reserved_tags)
3139 {
3140         struct blk_mq_tags *tags;
3141         int node;
3142
3143         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3144         if (node == NUMA_NO_NODE)
3145                 node = set->numa_node;
3146
3147         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3148                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3149         if (!tags)
3150                 return NULL;
3151
3152         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3153                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3154                                  node);
3155         if (!tags->rqs) {
3156                 blk_mq_free_tags(tags);
3157                 return NULL;
3158         }
3159
3160         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3161                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3162                                         node);
3163         if (!tags->static_rqs) {
3164                 kfree(tags->rqs);
3165                 blk_mq_free_tags(tags);
3166                 return NULL;
3167         }
3168
3169         return tags;
3170 }
3171
3172 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3173                                unsigned int hctx_idx, int node)
3174 {
3175         int ret;
3176
3177         if (set->ops->init_request) {
3178                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3179                 if (ret)
3180                         return ret;
3181         }
3182
3183         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3184         return 0;
3185 }
3186
3187 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3188                             struct blk_mq_tags *tags,
3189                             unsigned int hctx_idx, unsigned int depth)
3190 {
3191         unsigned int i, j, entries_per_page, max_order = 4;
3192         size_t rq_size, left;
3193         int node;
3194
3195         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3196         if (node == NUMA_NO_NODE)
3197                 node = set->numa_node;
3198
3199         INIT_LIST_HEAD(&tags->page_list);
3200
3201         /*
3202          * rq_size is the size of the request plus driver payload, rounded
3203          * to the cacheline size
3204          */
3205         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3206                                 cache_line_size());
3207         left = rq_size * depth;
3208
3209         for (i = 0; i < depth; ) {
3210                 int this_order = max_order;
3211                 struct page *page;
3212                 int to_do;
3213                 void *p;
3214
3215                 while (this_order && left < order_to_size(this_order - 1))
3216                         this_order--;
3217
3218                 do {
3219                         page = alloc_pages_node(node,
3220                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3221                                 this_order);
3222                         if (page)
3223                                 break;
3224                         if (!this_order--)
3225                                 break;
3226                         if (order_to_size(this_order) < rq_size)
3227                                 break;
3228                 } while (1);
3229
3230                 if (!page)
3231                         goto fail;
3232
3233                 page->private = this_order;
3234                 list_add_tail(&page->lru, &tags->page_list);
3235
3236                 p = page_address(page);
3237                 /*
3238                  * Allow kmemleak to scan these pages as they contain pointers
3239                  * to additional allocations like via ops->init_request().
3240                  */
3241                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3242                 entries_per_page = order_to_size(this_order) / rq_size;
3243                 to_do = min(entries_per_page, depth - i);
3244                 left -= to_do * rq_size;
3245                 for (j = 0; j < to_do; j++) {
3246                         struct request *rq = p;
3247
3248                         tags->static_rqs[i] = rq;
3249                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3250                                 tags->static_rqs[i] = NULL;
3251                                 goto fail;
3252                         }
3253
3254                         p += rq_size;
3255                         i++;
3256                 }
3257         }
3258         return 0;
3259
3260 fail:
3261         blk_mq_free_rqs(set, tags, hctx_idx);
3262         return -ENOMEM;
3263 }
3264
3265 struct rq_iter_data {
3266         struct blk_mq_hw_ctx *hctx;
3267         bool has_rq;
3268 };
3269
3270 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3271 {
3272         struct rq_iter_data *iter_data = data;
3273
3274         if (rq->mq_hctx != iter_data->hctx)
3275                 return true;
3276         iter_data->has_rq = true;
3277         return false;
3278 }
3279
3280 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3281 {
3282         struct blk_mq_tags *tags = hctx->sched_tags ?
3283                         hctx->sched_tags : hctx->tags;
3284         struct rq_iter_data data = {
3285                 .hctx   = hctx,
3286         };
3287
3288         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3289         return data.has_rq;
3290 }
3291
3292 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3293                 struct blk_mq_hw_ctx *hctx)
3294 {
3295         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3296                 return false;
3297         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3298                 return false;
3299         return true;
3300 }
3301
3302 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3303 {
3304         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3305                         struct blk_mq_hw_ctx, cpuhp_online);
3306
3307         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3308             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3309                 return 0;
3310
3311         /*
3312          * Prevent new request from being allocated on the current hctx.
3313          *
3314          * The smp_mb__after_atomic() Pairs with the implied barrier in
3315          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3316          * seen once we return from the tag allocator.
3317          */
3318         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3319         smp_mb__after_atomic();
3320
3321         /*
3322          * Try to grab a reference to the queue and wait for any outstanding
3323          * requests.  If we could not grab a reference the queue has been
3324          * frozen and there are no requests.
3325          */
3326         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3327                 while (blk_mq_hctx_has_requests(hctx))
3328                         msleep(5);
3329                 percpu_ref_put(&hctx->queue->q_usage_counter);
3330         }
3331
3332         return 0;
3333 }
3334
3335 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3336 {
3337         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3338                         struct blk_mq_hw_ctx, cpuhp_online);
3339
3340         if (cpumask_test_cpu(cpu, hctx->cpumask))
3341                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3342         return 0;
3343 }
3344
3345 /*
3346  * 'cpu' is going away. splice any existing rq_list entries from this
3347  * software queue to the hw queue dispatch list, and ensure that it
3348  * gets run.
3349  */
3350 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3351 {
3352         struct blk_mq_hw_ctx *hctx;
3353         struct blk_mq_ctx *ctx;
3354         LIST_HEAD(tmp);
3355         enum hctx_type type;
3356
3357         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3358         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3359                 return 0;
3360
3361         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3362         type = hctx->type;
3363
3364         spin_lock(&ctx->lock);
3365         if (!list_empty(&ctx->rq_lists[type])) {
3366                 list_splice_init(&ctx->rq_lists[type], &tmp);
3367                 blk_mq_hctx_clear_pending(hctx, ctx);
3368         }
3369         spin_unlock(&ctx->lock);
3370
3371         if (list_empty(&tmp))
3372                 return 0;
3373
3374         spin_lock(&hctx->lock);
3375         list_splice_tail_init(&tmp, &hctx->dispatch);
3376         spin_unlock(&hctx->lock);
3377
3378         blk_mq_run_hw_queue(hctx, true);
3379         return 0;
3380 }
3381
3382 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3383 {
3384         if (!(hctx->flags & BLK_MQ_F_STACKING))
3385                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3386                                                     &hctx->cpuhp_online);
3387         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3388                                             &hctx->cpuhp_dead);
3389 }
3390
3391 /*
3392  * Before freeing hw queue, clearing the flush request reference in
3393  * tags->rqs[] for avoiding potential UAF.
3394  */
3395 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3396                 unsigned int queue_depth, struct request *flush_rq)
3397 {
3398         int i;
3399         unsigned long flags;
3400
3401         /* The hw queue may not be mapped yet */
3402         if (!tags)
3403                 return;
3404
3405         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3406
3407         for (i = 0; i < queue_depth; i++)
3408                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3409
3410         /*
3411          * Wait until all pending iteration is done.
3412          *
3413          * Request reference is cleared and it is guaranteed to be observed
3414          * after the ->lock is released.
3415          */
3416         spin_lock_irqsave(&tags->lock, flags);
3417         spin_unlock_irqrestore(&tags->lock, flags);
3418 }
3419
3420 /* hctx->ctxs will be freed in queue's release handler */
3421 static void blk_mq_exit_hctx(struct request_queue *q,
3422                 struct blk_mq_tag_set *set,
3423                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3424 {
3425         struct request *flush_rq = hctx->fq->flush_rq;
3426
3427         if (blk_mq_hw_queue_mapped(hctx))
3428                 blk_mq_tag_idle(hctx);
3429
3430         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3431                         set->queue_depth, flush_rq);
3432         if (set->ops->exit_request)
3433                 set->ops->exit_request(set, flush_rq, hctx_idx);
3434
3435         if (set->ops->exit_hctx)
3436                 set->ops->exit_hctx(hctx, hctx_idx);
3437
3438         blk_mq_remove_cpuhp(hctx);
3439
3440         spin_lock(&q->unused_hctx_lock);
3441         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3442         spin_unlock(&q->unused_hctx_lock);
3443 }
3444
3445 static void blk_mq_exit_hw_queues(struct request_queue *q,
3446                 struct blk_mq_tag_set *set, int nr_queue)
3447 {
3448         struct blk_mq_hw_ctx *hctx;
3449         unsigned int i;
3450
3451         queue_for_each_hw_ctx(q, hctx, i) {
3452                 if (i == nr_queue)
3453                         break;
3454                 blk_mq_debugfs_unregister_hctx(hctx);
3455                 blk_mq_exit_hctx(q, set, hctx, i);
3456         }
3457 }
3458
3459 static int blk_mq_init_hctx(struct request_queue *q,
3460                 struct blk_mq_tag_set *set,
3461                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3462 {
3463         hctx->queue_num = hctx_idx;
3464
3465         if (!(hctx->flags & BLK_MQ_F_STACKING))
3466                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3467                                 &hctx->cpuhp_online);
3468         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3469
3470         hctx->tags = set->tags[hctx_idx];
3471
3472         if (set->ops->init_hctx &&
3473             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3474                 goto unregister_cpu_notifier;
3475
3476         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3477                                 hctx->numa_node))
3478                 goto exit_hctx;
3479         return 0;
3480
3481  exit_hctx:
3482         if (set->ops->exit_hctx)
3483                 set->ops->exit_hctx(hctx, hctx_idx);
3484  unregister_cpu_notifier:
3485         blk_mq_remove_cpuhp(hctx);
3486         return -1;
3487 }
3488
3489 static struct blk_mq_hw_ctx *
3490 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3491                 int node)
3492 {
3493         struct blk_mq_hw_ctx *hctx;
3494         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3495
3496         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3497         if (!hctx)
3498                 goto fail_alloc_hctx;
3499
3500         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3501                 goto free_hctx;
3502
3503         atomic_set(&hctx->nr_active, 0);
3504         if (node == NUMA_NO_NODE)
3505                 node = set->numa_node;
3506         hctx->numa_node = node;
3507
3508         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3509         spin_lock_init(&hctx->lock);
3510         INIT_LIST_HEAD(&hctx->dispatch);
3511         hctx->queue = q;
3512         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3513
3514         INIT_LIST_HEAD(&hctx->hctx_list);
3515
3516         /*
3517          * Allocate space for all possible cpus to avoid allocation at
3518          * runtime
3519          */
3520         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3521                         gfp, node);
3522         if (!hctx->ctxs)
3523                 goto free_cpumask;
3524
3525         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3526                                 gfp, node, false, false))
3527                 goto free_ctxs;
3528         hctx->nr_ctx = 0;
3529
3530         spin_lock_init(&hctx->dispatch_wait_lock);
3531         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3532         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3533
3534         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3535         if (!hctx->fq)
3536                 goto free_bitmap;
3537
3538         blk_mq_hctx_kobj_init(hctx);
3539
3540         return hctx;
3541
3542  free_bitmap:
3543         sbitmap_free(&hctx->ctx_map);
3544  free_ctxs:
3545         kfree(hctx->ctxs);
3546  free_cpumask:
3547         free_cpumask_var(hctx->cpumask);
3548  free_hctx:
3549         kfree(hctx);
3550  fail_alloc_hctx:
3551         return NULL;
3552 }
3553
3554 static void blk_mq_init_cpu_queues(struct request_queue *q,
3555                                    unsigned int nr_hw_queues)
3556 {
3557         struct blk_mq_tag_set *set = q->tag_set;
3558         unsigned int i, j;
3559
3560         for_each_possible_cpu(i) {
3561                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3562                 struct blk_mq_hw_ctx *hctx;
3563                 int k;
3564
3565                 __ctx->cpu = i;
3566                 spin_lock_init(&__ctx->lock);
3567                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3568                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3569
3570                 __ctx->queue = q;
3571
3572                 /*
3573                  * Set local node, IFF we have more than one hw queue. If
3574                  * not, we remain on the home node of the device
3575                  */
3576                 for (j = 0; j < set->nr_maps; j++) {
3577                         hctx = blk_mq_map_queue_type(q, j, i);
3578                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3579                                 hctx->numa_node = cpu_to_node(i);
3580                 }
3581         }
3582 }
3583
3584 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3585                                              unsigned int hctx_idx,
3586                                              unsigned int depth)
3587 {
3588         struct blk_mq_tags *tags;
3589         int ret;
3590
3591         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3592         if (!tags)
3593                 return NULL;
3594
3595         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3596         if (ret) {
3597                 blk_mq_free_rq_map(tags);
3598                 return NULL;
3599         }
3600
3601         return tags;
3602 }
3603
3604 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3605                                        int hctx_idx)
3606 {
3607         if (blk_mq_is_shared_tags(set->flags)) {
3608                 set->tags[hctx_idx] = set->shared_tags;
3609
3610                 return true;
3611         }
3612
3613         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3614                                                        set->queue_depth);
3615
3616         return set->tags[hctx_idx];
3617 }
3618
3619 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3620                              struct blk_mq_tags *tags,
3621                              unsigned int hctx_idx)
3622 {
3623         if (tags) {
3624                 blk_mq_free_rqs(set, tags, hctx_idx);
3625                 blk_mq_free_rq_map(tags);
3626         }
3627 }
3628
3629 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3630                                       unsigned int hctx_idx)
3631 {
3632         if (!blk_mq_is_shared_tags(set->flags))
3633                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3634
3635         set->tags[hctx_idx] = NULL;
3636 }
3637
3638 static void blk_mq_map_swqueue(struct request_queue *q)
3639 {
3640         unsigned int i, j, hctx_idx;
3641         struct blk_mq_hw_ctx *hctx;
3642         struct blk_mq_ctx *ctx;
3643         struct blk_mq_tag_set *set = q->tag_set;
3644
3645         queue_for_each_hw_ctx(q, hctx, i) {
3646                 cpumask_clear(hctx->cpumask);
3647                 hctx->nr_ctx = 0;
3648                 hctx->dispatch_from = NULL;
3649         }
3650
3651         /*
3652          * Map software to hardware queues.
3653          *
3654          * If the cpu isn't present, the cpu is mapped to first hctx.
3655          */
3656         for_each_possible_cpu(i) {
3657
3658                 ctx = per_cpu_ptr(q->queue_ctx, i);
3659                 for (j = 0; j < set->nr_maps; j++) {
3660                         if (!set->map[j].nr_queues) {
3661                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3662                                                 HCTX_TYPE_DEFAULT, i);
3663                                 continue;
3664                         }
3665                         hctx_idx = set->map[j].mq_map[i];
3666                         /* unmapped hw queue can be remapped after CPU topo changed */
3667                         if (!set->tags[hctx_idx] &&
3668                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3669                                 /*
3670                                  * If tags initialization fail for some hctx,
3671                                  * that hctx won't be brought online.  In this
3672                                  * case, remap the current ctx to hctx[0] which
3673                                  * is guaranteed to always have tags allocated
3674                                  */
3675                                 set->map[j].mq_map[i] = 0;
3676                         }
3677
3678                         hctx = blk_mq_map_queue_type(q, j, i);
3679                         ctx->hctxs[j] = hctx;
3680                         /*
3681                          * If the CPU is already set in the mask, then we've
3682                          * mapped this one already. This can happen if
3683                          * devices share queues across queue maps.
3684                          */
3685                         if (cpumask_test_cpu(i, hctx->cpumask))
3686                                 continue;
3687
3688                         cpumask_set_cpu(i, hctx->cpumask);
3689                         hctx->type = j;
3690                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3691                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3692
3693                         /*
3694                          * If the nr_ctx type overflows, we have exceeded the
3695                          * amount of sw queues we can support.
3696                          */
3697                         BUG_ON(!hctx->nr_ctx);
3698                 }
3699
3700                 for (; j < HCTX_MAX_TYPES; j++)
3701                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3702                                         HCTX_TYPE_DEFAULT, i);
3703         }
3704
3705         queue_for_each_hw_ctx(q, hctx, i) {
3706                 /*
3707                  * If no software queues are mapped to this hardware queue,
3708                  * disable it and free the request entries.
3709                  */
3710                 if (!hctx->nr_ctx) {
3711                         /* Never unmap queue 0.  We need it as a
3712                          * fallback in case of a new remap fails
3713                          * allocation
3714                          */
3715                         if (i)
3716                                 __blk_mq_free_map_and_rqs(set, i);
3717
3718                         hctx->tags = NULL;
3719                         continue;
3720                 }
3721
3722                 hctx->tags = set->tags[i];
3723                 WARN_ON(!hctx->tags);
3724
3725                 /*
3726                  * Set the map size to the number of mapped software queues.
3727                  * This is more accurate and more efficient than looping
3728                  * over all possibly mapped software queues.
3729                  */
3730                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3731
3732                 /*
3733                  * Initialize batch roundrobin counts
3734                  */
3735                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3736                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3737         }
3738 }
3739
3740 /*
3741  * Caller needs to ensure that we're either frozen/quiesced, or that
3742  * the queue isn't live yet.
3743  */
3744 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3745 {
3746         struct blk_mq_hw_ctx *hctx;
3747         int i;
3748
3749         queue_for_each_hw_ctx(q, hctx, i) {
3750                 if (shared) {
3751                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3752                 } else {
3753                         blk_mq_tag_idle(hctx);
3754                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3755                 }
3756         }
3757 }
3758
3759 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3760                                          bool shared)
3761 {
3762         struct request_queue *q;
3763
3764         lockdep_assert_held(&set->tag_list_lock);
3765
3766         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3767                 blk_mq_freeze_queue(q);
3768                 queue_set_hctx_shared(q, shared);
3769                 blk_mq_unfreeze_queue(q);
3770         }
3771 }
3772
3773 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3774 {
3775         struct blk_mq_tag_set *set = q->tag_set;
3776
3777         mutex_lock(&set->tag_list_lock);
3778         list_del(&q->tag_set_list);
3779         if (list_is_singular(&set->tag_list)) {
3780                 /* just transitioned to unshared */
3781                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3782                 /* update existing queue */
3783                 blk_mq_update_tag_set_shared(set, false);
3784         }
3785         mutex_unlock(&set->tag_list_lock);
3786         INIT_LIST_HEAD(&q->tag_set_list);
3787 }
3788
3789 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3790                                      struct request_queue *q)
3791 {
3792         mutex_lock(&set->tag_list_lock);
3793
3794         /*
3795          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3796          */
3797         if (!list_empty(&set->tag_list) &&
3798             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3799                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3800                 /* update existing queue */
3801                 blk_mq_update_tag_set_shared(set, true);
3802         }
3803         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3804                 queue_set_hctx_shared(q, true);
3805         list_add_tail(&q->tag_set_list, &set->tag_list);
3806
3807         mutex_unlock(&set->tag_list_lock);
3808 }
3809
3810 /* All allocations will be freed in release handler of q->mq_kobj */
3811 static int blk_mq_alloc_ctxs(struct request_queue *q)
3812 {
3813         struct blk_mq_ctxs *ctxs;
3814         int cpu;
3815
3816         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3817         if (!ctxs)
3818                 return -ENOMEM;
3819
3820         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3821         if (!ctxs->queue_ctx)
3822                 goto fail;
3823
3824         for_each_possible_cpu(cpu) {
3825                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3826                 ctx->ctxs = ctxs;
3827         }
3828
3829         q->mq_kobj = &ctxs->kobj;
3830         q->queue_ctx = ctxs->queue_ctx;
3831
3832         return 0;
3833  fail:
3834         kfree(ctxs);
3835         return -ENOMEM;
3836 }
3837
3838 /*
3839  * It is the actual release handler for mq, but we do it from
3840  * request queue's release handler for avoiding use-after-free
3841  * and headache because q->mq_kobj shouldn't have been introduced,
3842  * but we can't group ctx/kctx kobj without it.
3843  */
3844 void blk_mq_release(struct request_queue *q)
3845 {
3846         struct blk_mq_hw_ctx *hctx, *next;
3847         int i;
3848
3849         queue_for_each_hw_ctx(q, hctx, i)
3850                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3851
3852         /* all hctx are in .unused_hctx_list now */
3853         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3854                 list_del_init(&hctx->hctx_list);
3855                 kobject_put(&hctx->kobj);
3856         }
3857
3858         kfree(q->queue_hw_ctx);
3859
3860         /*
3861          * release .mq_kobj and sw queue's kobject now because
3862          * both share lifetime with request queue.
3863          */
3864         blk_mq_sysfs_deinit(q);
3865 }
3866
3867 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3868                 void *queuedata)
3869 {
3870         struct request_queue *q;
3871         int ret;
3872
3873         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3874         if (!q)
3875                 return ERR_PTR(-ENOMEM);
3876         q->queuedata = queuedata;
3877         ret = blk_mq_init_allocated_queue(set, q);
3878         if (ret) {
3879                 blk_cleanup_queue(q);
3880                 return ERR_PTR(ret);
3881         }
3882         return q;
3883 }
3884
3885 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3886 {
3887         return blk_mq_init_queue_data(set, NULL);
3888 }
3889 EXPORT_SYMBOL(blk_mq_init_queue);
3890
3891 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3892                 struct lock_class_key *lkclass)
3893 {
3894         struct request_queue *q;
3895         struct gendisk *disk;
3896
3897         q = blk_mq_init_queue_data(set, queuedata);
3898         if (IS_ERR(q))
3899                 return ERR_CAST(q);
3900
3901         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3902         if (!disk) {
3903                 blk_cleanup_queue(q);
3904                 return ERR_PTR(-ENOMEM);
3905         }
3906         return disk;
3907 }
3908 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3909
3910 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3911                 struct blk_mq_tag_set *set, struct request_queue *q,
3912                 int hctx_idx, int node)
3913 {
3914         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3915
3916         /* reuse dead hctx first */
3917         spin_lock(&q->unused_hctx_lock);
3918         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3919                 if (tmp->numa_node == node) {
3920                         hctx = tmp;
3921                         break;
3922                 }
3923         }
3924         if (hctx)
3925                 list_del_init(&hctx->hctx_list);
3926         spin_unlock(&q->unused_hctx_lock);
3927
3928         if (!hctx)
3929                 hctx = blk_mq_alloc_hctx(q, set, node);
3930         if (!hctx)
3931                 goto fail;
3932
3933         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3934                 goto free_hctx;
3935
3936         return hctx;
3937
3938  free_hctx:
3939         kobject_put(&hctx->kobj);
3940  fail:
3941         return NULL;
3942 }
3943
3944 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3945                                                 struct request_queue *q)
3946 {
3947         int i, j, end;
3948         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3949
3950         if (q->nr_hw_queues < set->nr_hw_queues) {
3951                 struct blk_mq_hw_ctx **new_hctxs;
3952
3953                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3954                                        sizeof(*new_hctxs), GFP_KERNEL,
3955                                        set->numa_node);
3956                 if (!new_hctxs)
3957                         return;
3958                 if (hctxs)
3959                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3960                                sizeof(*hctxs));
3961                 q->queue_hw_ctx = new_hctxs;
3962                 kfree(hctxs);
3963                 hctxs = new_hctxs;
3964         }
3965
3966         /* protect against switching io scheduler  */
3967         mutex_lock(&q->sysfs_lock);
3968         for (i = 0; i < set->nr_hw_queues; i++) {
3969                 int node;
3970                 struct blk_mq_hw_ctx *hctx;
3971
3972                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3973                 /*
3974                  * If the hw queue has been mapped to another numa node,
3975                  * we need to realloc the hctx. If allocation fails, fallback
3976                  * to use the previous one.
3977                  */
3978                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3979                         continue;
3980
3981                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3982                 if (hctx) {
3983                         if (hctxs[i])
3984                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3985                         hctxs[i] = hctx;
3986                 } else {
3987                         if (hctxs[i])
3988                                 pr_warn("Allocate new hctx on node %d fails,\
3989                                                 fallback to previous one on node %d\n",
3990                                                 node, hctxs[i]->numa_node);
3991                         else
3992                                 break;
3993                 }
3994         }
3995         /*
3996          * Increasing nr_hw_queues fails. Free the newly allocated
3997          * hctxs and keep the previous q->nr_hw_queues.
3998          */
3999         if (i != set->nr_hw_queues) {
4000                 j = q->nr_hw_queues;
4001                 end = i;
4002         } else {
4003                 j = i;
4004                 end = q->nr_hw_queues;
4005                 q->nr_hw_queues = set->nr_hw_queues;
4006         }
4007
4008         for (; j < end; j++) {
4009                 struct blk_mq_hw_ctx *hctx = hctxs[j];
4010
4011                 if (hctx) {
4012                         blk_mq_exit_hctx(q, set, hctx, j);
4013                         hctxs[j] = NULL;
4014                 }
4015         }
4016         mutex_unlock(&q->sysfs_lock);
4017 }
4018
4019 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4020                 struct request_queue *q)
4021 {
4022         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4023                         !!(set->flags & BLK_MQ_F_BLOCKING));
4024
4025         /* mark the queue as mq asap */
4026         q->mq_ops = set->ops;
4027
4028         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4029                                              blk_mq_poll_stats_bkt,
4030                                              BLK_MQ_POLL_STATS_BKTS, q);
4031         if (!q->poll_cb)
4032                 goto err_exit;
4033
4034         if (blk_mq_alloc_ctxs(q))
4035                 goto err_poll;
4036
4037         /* init q->mq_kobj and sw queues' kobjects */
4038         blk_mq_sysfs_init(q);
4039
4040         INIT_LIST_HEAD(&q->unused_hctx_list);
4041         spin_lock_init(&q->unused_hctx_lock);
4042
4043         blk_mq_realloc_hw_ctxs(set, q);
4044         if (!q->nr_hw_queues)
4045                 goto err_hctxs;
4046
4047         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4048         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4049
4050         q->tag_set = set;
4051
4052         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4053         if (set->nr_maps > HCTX_TYPE_POLL &&
4054             set->map[HCTX_TYPE_POLL].nr_queues)
4055                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4056
4057         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4058         INIT_LIST_HEAD(&q->requeue_list);
4059         spin_lock_init(&q->requeue_lock);
4060
4061         q->nr_requests = set->queue_depth;
4062
4063         /*
4064          * Default to classic polling
4065          */
4066         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4067
4068         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4069         blk_mq_add_queue_tag_set(set, q);
4070         blk_mq_map_swqueue(q);
4071         return 0;
4072
4073 err_hctxs:
4074         kfree(q->queue_hw_ctx);
4075         q->nr_hw_queues = 0;
4076         blk_mq_sysfs_deinit(q);
4077 err_poll:
4078         blk_stat_free_callback(q->poll_cb);
4079         q->poll_cb = NULL;
4080 err_exit:
4081         q->mq_ops = NULL;
4082         return -ENOMEM;
4083 }
4084 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4085
4086 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4087 void blk_mq_exit_queue(struct request_queue *q)
4088 {
4089         struct blk_mq_tag_set *set = q->tag_set;
4090
4091         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4092         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4093         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4094         blk_mq_del_queue_tag_set(q);
4095 }
4096
4097 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4098 {
4099         int i;
4100
4101         if (blk_mq_is_shared_tags(set->flags)) {
4102                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4103                                                 BLK_MQ_NO_HCTX_IDX,
4104                                                 set->queue_depth);
4105                 if (!set->shared_tags)
4106                         return -ENOMEM;
4107         }
4108
4109         for (i = 0; i < set->nr_hw_queues; i++) {
4110                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4111                         goto out_unwind;
4112                 cond_resched();
4113         }
4114
4115         return 0;
4116
4117 out_unwind:
4118         while (--i >= 0)
4119                 __blk_mq_free_map_and_rqs(set, i);
4120
4121         if (blk_mq_is_shared_tags(set->flags)) {
4122                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4123                                         BLK_MQ_NO_HCTX_IDX);
4124         }
4125
4126         return -ENOMEM;
4127 }
4128
4129 /*
4130  * Allocate the request maps associated with this tag_set. Note that this
4131  * may reduce the depth asked for, if memory is tight. set->queue_depth
4132  * will be updated to reflect the allocated depth.
4133  */
4134 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4135 {
4136         unsigned int depth;
4137         int err;
4138
4139         depth = set->queue_depth;
4140         do {
4141                 err = __blk_mq_alloc_rq_maps(set);
4142                 if (!err)
4143                         break;
4144
4145                 set->queue_depth >>= 1;
4146                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4147                         err = -ENOMEM;
4148                         break;
4149                 }
4150         } while (set->queue_depth);
4151
4152         if (!set->queue_depth || err) {
4153                 pr_err("blk-mq: failed to allocate request map\n");
4154                 return -ENOMEM;
4155         }
4156
4157         if (depth != set->queue_depth)
4158                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4159                                                 depth, set->queue_depth);
4160
4161         return 0;
4162 }
4163
4164 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4165 {
4166         /*
4167          * blk_mq_map_queues() and multiple .map_queues() implementations
4168          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4169          * number of hardware queues.
4170          */
4171         if (set->nr_maps == 1)
4172                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4173
4174         if (set->ops->map_queues && !is_kdump_kernel()) {
4175                 int i;
4176
4177                 /*
4178                  * transport .map_queues is usually done in the following
4179                  * way:
4180                  *
4181                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4182                  *      mask = get_cpu_mask(queue)
4183                  *      for_each_cpu(cpu, mask)
4184                  *              set->map[x].mq_map[cpu] = queue;
4185                  * }
4186                  *
4187                  * When we need to remap, the table has to be cleared for
4188                  * killing stale mapping since one CPU may not be mapped
4189                  * to any hw queue.
4190                  */
4191                 for (i = 0; i < set->nr_maps; i++)
4192                         blk_mq_clear_mq_map(&set->map[i]);
4193
4194                 return set->ops->map_queues(set);
4195         } else {
4196                 BUG_ON(set->nr_maps > 1);
4197                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4198         }
4199 }
4200
4201 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4202                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4203 {
4204         struct blk_mq_tags **new_tags;
4205
4206         if (cur_nr_hw_queues >= new_nr_hw_queues)
4207                 return 0;
4208
4209         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4210                                 GFP_KERNEL, set->numa_node);
4211         if (!new_tags)
4212                 return -ENOMEM;
4213
4214         if (set->tags)
4215                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4216                        sizeof(*set->tags));
4217         kfree(set->tags);
4218         set->tags = new_tags;
4219         set->nr_hw_queues = new_nr_hw_queues;
4220
4221         return 0;
4222 }
4223
4224 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4225                                 int new_nr_hw_queues)
4226 {
4227         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4228 }
4229
4230 /*
4231  * Alloc a tag set to be associated with one or more request queues.
4232  * May fail with EINVAL for various error conditions. May adjust the
4233  * requested depth down, if it's too large. In that case, the set
4234  * value will be stored in set->queue_depth.
4235  */
4236 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4237 {
4238         int i, ret;
4239
4240         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4241
4242         if (!set->nr_hw_queues)
4243                 return -EINVAL;
4244         if (!set->queue_depth)
4245                 return -EINVAL;
4246         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4247                 return -EINVAL;
4248
4249         if (!set->ops->queue_rq)
4250                 return -EINVAL;
4251
4252         if (!set->ops->get_budget ^ !set->ops->put_budget)
4253                 return -EINVAL;
4254
4255         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4256                 pr_info("blk-mq: reduced tag depth to %u\n",
4257                         BLK_MQ_MAX_DEPTH);
4258                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4259         }
4260
4261         if (!set->nr_maps)
4262                 set->nr_maps = 1;
4263         else if (set->nr_maps > HCTX_MAX_TYPES)
4264                 return -EINVAL;
4265
4266         /*
4267          * If a crashdump is active, then we are potentially in a very
4268          * memory constrained environment. Limit us to 1 queue and
4269          * 64 tags to prevent using too much memory.
4270          */
4271         if (is_kdump_kernel()) {
4272                 set->nr_hw_queues = 1;
4273                 set->nr_maps = 1;
4274                 set->queue_depth = min(64U, set->queue_depth);
4275         }
4276         /*
4277          * There is no use for more h/w queues than cpus if we just have
4278          * a single map
4279          */
4280         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4281                 set->nr_hw_queues = nr_cpu_ids;
4282
4283         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4284                 return -ENOMEM;
4285
4286         ret = -ENOMEM;
4287         for (i = 0; i < set->nr_maps; i++) {
4288                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4289                                                   sizeof(set->map[i].mq_map[0]),
4290                                                   GFP_KERNEL, set->numa_node);
4291                 if (!set->map[i].mq_map)
4292                         goto out_free_mq_map;
4293                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4294         }
4295
4296         ret = blk_mq_update_queue_map(set);
4297         if (ret)
4298                 goto out_free_mq_map;
4299
4300         ret = blk_mq_alloc_set_map_and_rqs(set);
4301         if (ret)
4302                 goto out_free_mq_map;
4303
4304         mutex_init(&set->tag_list_lock);
4305         INIT_LIST_HEAD(&set->tag_list);
4306
4307         return 0;
4308
4309 out_free_mq_map:
4310         for (i = 0; i < set->nr_maps; i++) {
4311                 kfree(set->map[i].mq_map);
4312                 set->map[i].mq_map = NULL;
4313         }
4314         kfree(set->tags);
4315         set->tags = NULL;
4316         return ret;
4317 }
4318 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4319
4320 /* allocate and initialize a tagset for a simple single-queue device */
4321 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4322                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4323                 unsigned int set_flags)
4324 {
4325         memset(set, 0, sizeof(*set));
4326         set->ops = ops;
4327         set->nr_hw_queues = 1;
4328         set->nr_maps = 1;
4329         set->queue_depth = queue_depth;
4330         set->numa_node = NUMA_NO_NODE;
4331         set->flags = set_flags;
4332         return blk_mq_alloc_tag_set(set);
4333 }
4334 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4335
4336 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4337 {
4338         int i, j;
4339
4340         for (i = 0; i < set->nr_hw_queues; i++)
4341                 __blk_mq_free_map_and_rqs(set, i);
4342
4343         if (blk_mq_is_shared_tags(set->flags)) {
4344                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4345                                         BLK_MQ_NO_HCTX_IDX);
4346         }
4347
4348         for (j = 0; j < set->nr_maps; j++) {
4349                 kfree(set->map[j].mq_map);
4350                 set->map[j].mq_map = NULL;
4351         }
4352
4353         kfree(set->tags);
4354         set->tags = NULL;
4355 }
4356 EXPORT_SYMBOL(blk_mq_free_tag_set);
4357
4358 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4359 {
4360         struct blk_mq_tag_set *set = q->tag_set;
4361         struct blk_mq_hw_ctx *hctx;
4362         int i, ret;
4363
4364         if (!set)
4365                 return -EINVAL;
4366
4367         if (q->nr_requests == nr)
4368                 return 0;
4369
4370         blk_mq_freeze_queue(q);
4371         blk_mq_quiesce_queue(q);
4372
4373         ret = 0;
4374         queue_for_each_hw_ctx(q, hctx, i) {
4375                 if (!hctx->tags)
4376                         continue;
4377                 /*
4378                  * If we're using an MQ scheduler, just update the scheduler
4379                  * queue depth. This is similar to what the old code would do.
4380                  */
4381                 if (hctx->sched_tags) {
4382                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4383                                                       nr, true);
4384                 } else {
4385                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4386                                                       false);
4387                 }
4388                 if (ret)
4389                         break;
4390                 if (q->elevator && q->elevator->type->ops.depth_updated)
4391                         q->elevator->type->ops.depth_updated(hctx);
4392         }
4393         if (!ret) {
4394                 q->nr_requests = nr;
4395                 if (blk_mq_is_shared_tags(set->flags)) {
4396                         if (q->elevator)
4397                                 blk_mq_tag_update_sched_shared_tags(q);
4398                         else
4399                                 blk_mq_tag_resize_shared_tags(set, nr);
4400                 }
4401         }
4402
4403         blk_mq_unquiesce_queue(q);
4404         blk_mq_unfreeze_queue(q);
4405
4406         return ret;
4407 }
4408
4409 /*
4410  * request_queue and elevator_type pair.
4411  * It is just used by __blk_mq_update_nr_hw_queues to cache
4412  * the elevator_type associated with a request_queue.
4413  */
4414 struct blk_mq_qe_pair {
4415         struct list_head node;
4416         struct request_queue *q;
4417         struct elevator_type *type;
4418 };
4419
4420 /*
4421  * Cache the elevator_type in qe pair list and switch the
4422  * io scheduler to 'none'
4423  */
4424 static bool blk_mq_elv_switch_none(struct list_head *head,
4425                 struct request_queue *q)
4426 {
4427         struct blk_mq_qe_pair *qe;
4428
4429         if (!q->elevator)
4430                 return true;
4431
4432         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4433         if (!qe)
4434                 return false;
4435
4436         INIT_LIST_HEAD(&qe->node);
4437         qe->q = q;
4438         qe->type = q->elevator->type;
4439         list_add(&qe->node, head);
4440
4441         mutex_lock(&q->sysfs_lock);
4442         /*
4443          * After elevator_switch_mq, the previous elevator_queue will be
4444          * released by elevator_release. The reference of the io scheduler
4445          * module get by elevator_get will also be put. So we need to get
4446          * a reference of the io scheduler module here to prevent it to be
4447          * removed.
4448          */
4449         __module_get(qe->type->elevator_owner);
4450         elevator_switch_mq(q, NULL);
4451         mutex_unlock(&q->sysfs_lock);
4452
4453         return true;
4454 }
4455
4456 static void blk_mq_elv_switch_back(struct list_head *head,
4457                 struct request_queue *q)
4458 {
4459         struct blk_mq_qe_pair *qe;
4460         struct elevator_type *t = NULL;
4461
4462         list_for_each_entry(qe, head, node)
4463                 if (qe->q == q) {
4464                         t = qe->type;
4465                         break;
4466                 }
4467
4468         if (!t)
4469                 return;
4470
4471         list_del(&qe->node);
4472         kfree(qe);
4473
4474         mutex_lock(&q->sysfs_lock);
4475         elevator_switch_mq(q, t);
4476         mutex_unlock(&q->sysfs_lock);
4477 }
4478
4479 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4480                                                         int nr_hw_queues)
4481 {
4482         struct request_queue *q;
4483         LIST_HEAD(head);
4484         int prev_nr_hw_queues;
4485
4486         lockdep_assert_held(&set->tag_list_lock);
4487
4488         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4489                 nr_hw_queues = nr_cpu_ids;
4490         if (nr_hw_queues < 1)
4491                 return;
4492         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4493                 return;
4494
4495         list_for_each_entry(q, &set->tag_list, tag_set_list)
4496                 blk_mq_freeze_queue(q);
4497         /*
4498          * Switch IO scheduler to 'none', cleaning up the data associated
4499          * with the previous scheduler. We will switch back once we are done
4500          * updating the new sw to hw queue mappings.
4501          */
4502         list_for_each_entry(q, &set->tag_list, tag_set_list)
4503                 if (!blk_mq_elv_switch_none(&head, q))
4504                         goto switch_back;
4505
4506         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4507                 blk_mq_debugfs_unregister_hctxs(q);
4508                 blk_mq_sysfs_unregister(q);
4509         }
4510
4511         prev_nr_hw_queues = set->nr_hw_queues;
4512         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4513             0)
4514                 goto reregister;
4515
4516         set->nr_hw_queues = nr_hw_queues;
4517 fallback:
4518         blk_mq_update_queue_map(set);
4519         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4520                 blk_mq_realloc_hw_ctxs(set, q);
4521                 if (q->nr_hw_queues != set->nr_hw_queues) {
4522                         int i = prev_nr_hw_queues;
4523
4524                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4525                                         nr_hw_queues, prev_nr_hw_queues);
4526                         for (; i < set->nr_hw_queues; i++)
4527                                 __blk_mq_free_map_and_rqs(set, i);
4528
4529                         set->nr_hw_queues = prev_nr_hw_queues;
4530                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4531                         goto fallback;
4532                 }
4533                 blk_mq_map_swqueue(q);
4534         }
4535
4536 reregister:
4537         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4538                 blk_mq_sysfs_register(q);
4539                 blk_mq_debugfs_register_hctxs(q);
4540         }
4541
4542 switch_back:
4543         list_for_each_entry(q, &set->tag_list, tag_set_list)
4544                 blk_mq_elv_switch_back(&head, q);
4545
4546         list_for_each_entry(q, &set->tag_list, tag_set_list)
4547                 blk_mq_unfreeze_queue(q);
4548 }
4549
4550 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4551 {
4552         mutex_lock(&set->tag_list_lock);
4553         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4554         mutex_unlock(&set->tag_list_lock);
4555 }
4556 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4557
4558 /* Enable polling stats and return whether they were already enabled. */
4559 static bool blk_poll_stats_enable(struct request_queue *q)
4560 {
4561         if (q->poll_stat)
4562                 return true;
4563
4564         return blk_stats_alloc_enable(q);
4565 }
4566
4567 static void blk_mq_poll_stats_start(struct request_queue *q)
4568 {
4569         /*
4570          * We don't arm the callback if polling stats are not enabled or the
4571          * callback is already active.
4572          */
4573         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4574                 return;
4575
4576         blk_stat_activate_msecs(q->poll_cb, 100);
4577 }
4578
4579 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4580 {
4581         struct request_queue *q = cb->data;
4582         int bucket;
4583
4584         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4585                 if (cb->stat[bucket].nr_samples)
4586                         q->poll_stat[bucket] = cb->stat[bucket];
4587         }
4588 }
4589
4590 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4591                                        struct request *rq)
4592 {
4593         unsigned long ret = 0;
4594         int bucket;
4595
4596         /*
4597          * If stats collection isn't on, don't sleep but turn it on for
4598          * future users
4599          */
4600         if (!blk_poll_stats_enable(q))
4601                 return 0;
4602
4603         /*
4604          * As an optimistic guess, use half of the mean service time
4605          * for this type of request. We can (and should) make this smarter.
4606          * For instance, if the completion latencies are tight, we can
4607          * get closer than just half the mean. This is especially
4608          * important on devices where the completion latencies are longer
4609          * than ~10 usec. We do use the stats for the relevant IO size
4610          * if available which does lead to better estimates.
4611          */
4612         bucket = blk_mq_poll_stats_bkt(rq);
4613         if (bucket < 0)
4614                 return ret;
4615
4616         if (q->poll_stat[bucket].nr_samples)
4617                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4618
4619         return ret;
4620 }
4621
4622 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4623 {
4624         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4625         struct request *rq = blk_qc_to_rq(hctx, qc);
4626         struct hrtimer_sleeper hs;
4627         enum hrtimer_mode mode;
4628         unsigned int nsecs;
4629         ktime_t kt;
4630
4631         /*
4632          * If a request has completed on queue that uses an I/O scheduler, we
4633          * won't get back a request from blk_qc_to_rq.
4634          */
4635         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4636                 return false;
4637
4638         /*
4639          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4640          *
4641          *  0:  use half of prev avg
4642          * >0:  use this specific value
4643          */
4644         if (q->poll_nsec > 0)
4645                 nsecs = q->poll_nsec;
4646         else
4647                 nsecs = blk_mq_poll_nsecs(q, rq);
4648
4649         if (!nsecs)
4650                 return false;
4651
4652         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4653
4654         /*
4655          * This will be replaced with the stats tracking code, using
4656          * 'avg_completion_time / 2' as the pre-sleep target.
4657          */
4658         kt = nsecs;
4659
4660         mode = HRTIMER_MODE_REL;
4661         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4662         hrtimer_set_expires(&hs.timer, kt);
4663
4664         do {
4665                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4666                         break;
4667                 set_current_state(TASK_UNINTERRUPTIBLE);
4668                 hrtimer_sleeper_start_expires(&hs, mode);
4669                 if (hs.task)
4670                         io_schedule();
4671                 hrtimer_cancel(&hs.timer);
4672                 mode = HRTIMER_MODE_ABS;
4673         } while (hs.task && !signal_pending(current));
4674
4675         __set_current_state(TASK_RUNNING);
4676         destroy_hrtimer_on_stack(&hs.timer);
4677
4678         /*
4679          * If we sleep, have the caller restart the poll loop to reset the
4680          * state.  Like for the other success return cases, the caller is
4681          * responsible for checking if the IO completed.  If the IO isn't
4682          * complete, we'll get called again and will go straight to the busy
4683          * poll loop.
4684          */
4685         return true;
4686 }
4687
4688 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4689                                struct io_comp_batch *iob, unsigned int flags)
4690 {
4691         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4692         long state = get_current_state();
4693         int ret;
4694
4695         do {
4696                 ret = q->mq_ops->poll(hctx, iob);
4697                 if (ret > 0) {
4698                         __set_current_state(TASK_RUNNING);
4699                         return ret;
4700                 }
4701
4702                 if (signal_pending_state(state, current))
4703                         __set_current_state(TASK_RUNNING);
4704                 if (task_is_running(current))
4705                         return 1;
4706
4707                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4708                         break;
4709                 cpu_relax();
4710         } while (!need_resched());
4711
4712         __set_current_state(TASK_RUNNING);
4713         return 0;
4714 }
4715
4716 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4717                 unsigned int flags)
4718 {
4719         if (!(flags & BLK_POLL_NOSLEEP) &&
4720             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4721                 if (blk_mq_poll_hybrid(q, cookie))
4722                         return 1;
4723         }
4724         return blk_mq_poll_classic(q, cookie, iob, flags);
4725 }
4726
4727 unsigned int blk_mq_rq_cpu(struct request *rq)
4728 {
4729         return rq->mq_ctx->cpu;
4730 }
4731 EXPORT_SYMBOL(blk_mq_rq_cpu);
4732
4733 void blk_mq_cancel_work_sync(struct request_queue *q)
4734 {
4735         if (queue_is_mq(q)) {
4736                 struct blk_mq_hw_ctx *hctx;
4737                 int i;
4738
4739                 cancel_delayed_work_sync(&q->requeue_work);
4740
4741                 queue_for_each_hw_ctx(q, hctx, i)
4742                         cancel_delayed_work_sync(&hctx->run_work);
4743         }
4744 }
4745
4746 static int __init blk_mq_init(void)
4747 {
4748         int i;
4749
4750         for_each_possible_cpu(i)
4751                 init_llist_head(&per_cpu(blk_cpu_done, i));
4752         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4753
4754         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4755                                   "block/softirq:dead", NULL,
4756                                   blk_softirq_cpu_dead);
4757         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4758                                 blk_mq_hctx_notify_dead);
4759         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4760                                 blk_mq_hctx_notify_online,
4761                                 blk_mq_hctx_notify_offline);
4762         return 0;
4763 }
4764 subsys_initcall(blk_mq_init);