1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to segment and merge handling
5 #include <linux/kernel.h>
6 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #include <linux/blk-cgroup.h>
12 #include <trace/events/block.h>
15 #include "blk-rq-qos.h"
17 static inline bool bio_will_gap(struct request_queue *q,
18 struct request *prev_rq, struct bio *prev, struct bio *next)
20 struct bio_vec pb, nb;
22 if (!bio_has_data(prev) || !queue_virt_boundary(q))
26 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
27 * is quite difficult to respect the sg gap limit. We work hard to
28 * merge a huge number of small single bios in case of mkfs.
31 bio_get_first_bvec(prev_rq->bio, &pb);
33 bio_get_first_bvec(prev, &pb);
34 if (pb.bv_offset & queue_virt_boundary(q))
38 * We don't need to worry about the situation that the merged segment
39 * ends in unaligned virt boundary:
41 * - if 'pb' ends aligned, the merged segment ends aligned
42 * - if 'pb' ends unaligned, the next bio must include
43 * one single bvec of 'nb', otherwise the 'nb' can't
46 bio_get_last_bvec(prev, &pb);
47 bio_get_first_bvec(next, &nb);
48 if (biovec_phys_mergeable(q, &pb, &nb))
50 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
53 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
55 return bio_will_gap(req->q, req, req->biotail, bio);
58 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
60 return bio_will_gap(req->q, NULL, bio, req->bio);
63 static struct bio *blk_bio_discard_split(struct request_queue *q,
68 unsigned int max_discard_sectors, granularity;
71 unsigned split_sectors;
75 /* Zero-sector (unknown) and one-sector granularities are the same. */
76 granularity = max(q->limits.discard_granularity >> 9, 1U);
78 max_discard_sectors = min(q->limits.max_discard_sectors,
79 bio_allowed_max_sectors(q));
80 max_discard_sectors -= max_discard_sectors % granularity;
82 if (unlikely(!max_discard_sectors)) {
87 if (bio_sectors(bio) <= max_discard_sectors)
90 split_sectors = max_discard_sectors;
93 * If the next starting sector would be misaligned, stop the discard at
94 * the previous aligned sector.
96 alignment = (q->limits.discard_alignment >> 9) % granularity;
98 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
99 tmp = sector_div(tmp, granularity);
101 if (split_sectors > tmp)
102 split_sectors -= tmp;
104 return bio_split(bio, split_sectors, GFP_NOIO, bs);
107 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
108 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
112 if (!q->limits.max_write_zeroes_sectors)
115 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
118 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
121 static struct bio *blk_bio_write_same_split(struct request_queue *q,
128 if (!q->limits.max_write_same_sectors)
131 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
134 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
138 * Return the maximum number of sectors from the start of a bio that may be
139 * submitted as a single request to a block device. If enough sectors remain,
140 * align the end to the physical block size. Otherwise align the end to the
141 * logical block size. This approach minimizes the number of non-aligned
142 * requests that are submitted to a block device if the start of a bio is not
143 * aligned to a physical block boundary.
145 static inline unsigned get_max_io_size(struct request_queue *q,
148 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
149 unsigned max_sectors = sectors;
150 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
151 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
152 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
154 max_sectors += start_offset;
155 max_sectors &= ~(pbs - 1);
156 if (max_sectors > start_offset)
157 return max_sectors - start_offset;
159 return sectors & ~(lbs - 1);
162 static inline unsigned get_max_segment_size(const struct request_queue *q,
163 struct page *start_page,
164 unsigned long offset)
166 unsigned long mask = queue_segment_boundary(q);
168 offset = mask & (page_to_phys(start_page) + offset);
171 * overflow may be triggered in case of zero page physical address
172 * on 32bit arch, use queue's max segment size when that happens.
174 return min_not_zero(mask - offset + 1,
175 (unsigned long)queue_max_segment_size(q));
179 * bvec_split_segs - verify whether or not a bvec should be split in the middle
180 * @q: [in] request queue associated with the bio associated with @bv
181 * @bv: [in] bvec to examine
182 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
183 * by the number of segments from @bv that may be appended to that
184 * bio without exceeding @max_segs
185 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
186 * by the number of sectors from @bv that may be appended to that
187 * bio without exceeding @max_sectors
188 * @max_segs: [in] upper bound for *@nsegs
189 * @max_sectors: [in] upper bound for *@sectors
191 * When splitting a bio, it can happen that a bvec is encountered that is too
192 * big to fit in a single segment and hence that it has to be split in the
193 * middle. This function verifies whether or not that should happen. The value
194 * %true is returned if and only if appending the entire @bv to a bio with
195 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
198 static bool bvec_split_segs(const struct request_queue *q,
199 const struct bio_vec *bv, unsigned *nsegs,
200 unsigned *sectors, unsigned max_segs,
201 unsigned max_sectors)
203 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
204 unsigned len = min(bv->bv_len, max_len);
205 unsigned total_len = 0;
206 unsigned seg_size = 0;
208 while (len && *nsegs < max_segs) {
209 seg_size = get_max_segment_size(q, bv->bv_page,
210 bv->bv_offset + total_len);
211 seg_size = min(seg_size, len);
214 total_len += seg_size;
217 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
221 *sectors += total_len >> 9;
223 /* tell the caller to split the bvec if it is too big to fit */
224 return len > 0 || bv->bv_len > max_len;
228 * blk_bio_segment_split - split a bio in two bios
229 * @q: [in] request queue pointer
230 * @bio: [in] bio to be split
231 * @bs: [in] bio set to allocate the clone from
232 * @segs: [out] number of segments in the bio with the first half of the sectors
234 * Clone @bio, update the bi_iter of the clone to represent the first sectors
235 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
236 * following is guaranteed for the cloned bio:
237 * - That it has at most get_max_io_size(@q, @bio) sectors.
238 * - That it has at most queue_max_segments(@q) segments.
240 * Except for discard requests the cloned bio will point at the bi_io_vec of
241 * the original bio. It is the responsibility of the caller to ensure that the
242 * original bio is not freed before the cloned bio. The caller is also
243 * responsible for ensuring that @bs is only destroyed after processing of the
244 * split bio has finished.
246 static struct bio *blk_bio_segment_split(struct request_queue *q,
251 struct bio_vec bv, bvprv, *bvprvp = NULL;
252 struct bvec_iter iter;
253 unsigned nsegs = 0, sectors = 0;
254 const unsigned max_sectors = get_max_io_size(q, bio);
255 const unsigned max_segs = queue_max_segments(q);
257 bio_for_each_bvec(bv, bio, iter) {
259 * If the queue doesn't support SG gaps and adding this
260 * offset would create a gap, disallow it.
262 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
265 if (nsegs < max_segs &&
266 sectors + (bv.bv_len >> 9) <= max_sectors &&
267 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
269 sectors += bv.bv_len >> 9;
270 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs,
283 return bio_split(bio, sectors, GFP_NOIO, bs);
287 * __blk_queue_split - split a bio and submit the second half
288 * @bio: [in, out] bio to be split
289 * @nr_segs: [out] number of segments in the first bio
291 * Split a bio into two bios, chain the two bios, submit the second half and
292 * store a pointer to the first half in *@bio. If the second bio is still too
293 * big it will be split by a recursive call to this function. Since this
294 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
295 * the responsibility of the caller to ensure that
296 * @bio->bi_disk->queue->bio_split is only released after processing of the
297 * split bio has finished.
299 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
301 struct request_queue *q = (*bio)->bi_disk->queue;
302 struct bio *split = NULL;
304 switch (bio_op(*bio)) {
306 case REQ_OP_SECURE_ERASE:
307 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
309 case REQ_OP_WRITE_ZEROES:
310 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
313 case REQ_OP_WRITE_SAME:
314 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
319 * All drivers must accept single-segments bios that are <=
320 * PAGE_SIZE. This is a quick and dirty check that relies on
321 * the fact that bi_io_vec[0] is always valid if a bio has data.
322 * The check might lead to occasional false negatives when bios
323 * are cloned, but compared to the performance impact of cloned
324 * bios themselves the loop below doesn't matter anyway.
326 if (!q->limits.chunk_sectors &&
327 (*bio)->bi_vcnt == 1 &&
328 ((*bio)->bi_io_vec[0].bv_len +
329 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
333 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
338 /* there isn't chance to merge the splitted bio */
339 split->bi_opf |= REQ_NOMERGE;
341 bio_chain(split, *bio);
342 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
343 submit_bio_noacct(*bio);
346 blk_throtl_charge_bio_split(*bio);
351 * blk_queue_split - split a bio and submit the second half
352 * @bio: [in, out] bio to be split
354 * Split a bio into two bios, chains the two bios, submit the second half and
355 * store a pointer to the first half in *@bio. Since this function may allocate
356 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
357 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
358 * after processing of the split bio has finished.
360 void blk_queue_split(struct bio **bio)
362 unsigned int nr_segs;
364 __blk_queue_split(bio, &nr_segs);
366 EXPORT_SYMBOL(blk_queue_split);
368 unsigned int blk_recalc_rq_segments(struct request *rq)
370 unsigned int nr_phys_segs = 0;
371 unsigned int nr_sectors = 0;
372 struct req_iterator iter;
378 switch (bio_op(rq->bio)) {
380 case REQ_OP_SECURE_ERASE:
381 if (queue_max_discard_segments(rq->q) > 1) {
382 struct bio *bio = rq->bio;
389 case REQ_OP_WRITE_ZEROES:
391 case REQ_OP_WRITE_SAME:
395 rq_for_each_bvec(bv, rq, iter)
396 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
401 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
402 struct scatterlist *sglist)
408 * If the driver previously mapped a shorter list, we could see a
409 * termination bit prematurely unless it fully inits the sg table
410 * on each mapping. We KNOW that there must be more entries here
411 * or the driver would be buggy, so force clear the termination bit
412 * to avoid doing a full sg_init_table() in drivers for each command.
418 static unsigned blk_bvec_map_sg(struct request_queue *q,
419 struct bio_vec *bvec, struct scatterlist *sglist,
420 struct scatterlist **sg)
422 unsigned nbytes = bvec->bv_len;
423 unsigned nsegs = 0, total = 0;
426 unsigned offset = bvec->bv_offset + total;
427 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
429 struct page *page = bvec->bv_page;
432 * Unfortunately a fair number of drivers barf on scatterlists
433 * that have an offset larger than PAGE_SIZE, despite other
434 * subsystems dealing with that invariant just fine. For now
435 * stick to the legacy format where we never present those from
436 * the block layer, but the code below should be removed once
437 * these offenders (mostly MMC/SD drivers) are fixed.
439 page += (offset >> PAGE_SHIFT);
440 offset &= ~PAGE_MASK;
442 *sg = blk_next_sg(sg, sglist);
443 sg_set_page(*sg, page, len, offset);
453 static inline int __blk_bvec_map_sg(struct bio_vec bv,
454 struct scatterlist *sglist, struct scatterlist **sg)
456 *sg = blk_next_sg(sg, sglist);
457 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
461 /* only try to merge bvecs into one sg if they are from two bios */
463 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
464 struct bio_vec *bvprv, struct scatterlist **sg)
467 int nbytes = bvec->bv_len;
472 if ((*sg)->length + nbytes > queue_max_segment_size(q))
475 if (!biovec_phys_mergeable(q, bvprv, bvec))
478 (*sg)->length += nbytes;
483 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
484 struct scatterlist *sglist,
485 struct scatterlist **sg)
487 struct bio_vec bvec, bvprv = { NULL };
488 struct bvec_iter iter;
490 bool new_bio = false;
493 bio_for_each_bvec(bvec, bio, iter) {
495 * Only try to merge bvecs from two bios given we
496 * have done bio internal merge when adding pages
500 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
503 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
504 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
506 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
510 if (likely(bio->bi_iter.bi_size)) {
520 * map a request to scatterlist, return number of sg entries setup. Caller
521 * must make sure sg can hold rq->nr_phys_segments entries
523 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
524 struct scatterlist *sglist, struct scatterlist **last_sg)
528 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
529 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
530 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
531 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
533 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
536 sg_mark_end(*last_sg);
539 * Something must have been wrong if the figured number of
540 * segment is bigger than number of req's physical segments
542 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
546 EXPORT_SYMBOL(__blk_rq_map_sg);
548 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
550 if (req_op(rq) == REQ_OP_DISCARD)
551 return queue_max_discard_segments(rq->q);
552 return queue_max_segments(rq->q);
555 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
556 unsigned int nr_phys_segs)
558 if (!blk_cgroup_mergeable(req, bio))
561 if (blk_integrity_merge_bio(req->q, req, bio) == false)
564 /* discard request merge won't add new segment */
565 if (req_op(req) == REQ_OP_DISCARD)
568 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
572 * This will form the start of a new hw segment. Bump both
575 req->nr_phys_segments += nr_phys_segs;
579 req_set_nomerge(req->q, req);
583 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
585 if (req_gap_back_merge(req, bio))
587 if (blk_integrity_rq(req) &&
588 integrity_req_gap_back_merge(req, bio))
590 if (!bio_crypt_ctx_back_mergeable(req, bio))
592 if (blk_rq_sectors(req) + bio_sectors(bio) >
593 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
594 req_set_nomerge(req->q, req);
598 return ll_new_hw_segment(req, bio, nr_segs);
601 static int ll_front_merge_fn(struct request *req, struct bio *bio,
602 unsigned int nr_segs)
604 if (req_gap_front_merge(req, bio))
606 if (blk_integrity_rq(req) &&
607 integrity_req_gap_front_merge(req, bio))
609 if (!bio_crypt_ctx_front_mergeable(req, bio))
611 if (blk_rq_sectors(req) + bio_sectors(bio) >
612 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
613 req_set_nomerge(req->q, req);
617 return ll_new_hw_segment(req, bio, nr_segs);
620 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
621 struct request *next)
623 unsigned short segments = blk_rq_nr_discard_segments(req);
625 if (segments >= queue_max_discard_segments(q))
627 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
628 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
631 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
634 req_set_nomerge(q, req);
638 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
639 struct request *next)
641 int total_phys_segments;
643 if (req_gap_back_merge(req, next->bio))
647 * Will it become too large?
649 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
650 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
653 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
654 if (total_phys_segments > blk_rq_get_max_segments(req))
657 if (!blk_cgroup_mergeable(req, next->bio))
660 if (blk_integrity_merge_rq(q, req, next) == false)
663 if (!bio_crypt_ctx_merge_rq(req, next))
667 req->nr_phys_segments = total_phys_segments;
672 * blk_rq_set_mixed_merge - mark a request as mixed merge
673 * @rq: request to mark as mixed merge
676 * @rq is about to be mixed merged. Make sure the attributes
677 * which can be mixed are set in each bio and mark @rq as mixed
680 void blk_rq_set_mixed_merge(struct request *rq)
682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
685 if (rq->rq_flags & RQF_MIXED_MERGE)
689 * @rq will no longer represent mixable attributes for all the
690 * contained bios. It will just track those of the first one.
691 * Distributes the attributs to each bio.
693 for (bio = rq->bio; bio; bio = bio->bi_next) {
694 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
695 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
698 rq->rq_flags |= RQF_MIXED_MERGE;
701 static void blk_account_io_merge_request(struct request *req)
703 if (blk_do_io_stat(req)) {
705 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
708 hd_struct_put(req->part);
712 static enum elv_merge blk_try_req_merge(struct request *req,
713 struct request *next)
715 if (blk_discard_mergable(req))
716 return ELEVATOR_DISCARD_MERGE;
717 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
718 return ELEVATOR_BACK_MERGE;
720 return ELEVATOR_NO_MERGE;
724 * For non-mq, this has to be called with the request spinlock acquired.
725 * For mq with scheduling, the appropriate queue wide lock should be held.
727 static struct request *attempt_merge(struct request_queue *q,
728 struct request *req, struct request *next)
730 if (!rq_mergeable(req) || !rq_mergeable(next))
733 if (req_op(req) != req_op(next))
736 if (rq_data_dir(req) != rq_data_dir(next)
737 || req->rq_disk != next->rq_disk)
740 if (req_op(req) == REQ_OP_WRITE_SAME &&
741 !blk_write_same_mergeable(req->bio, next->bio))
745 * Don't allow merge of different write hints, or for a hint with
748 if (req->write_hint != next->write_hint)
751 if (req->ioprio != next->ioprio)
755 * If we are allowed to merge, then append bio list
756 * from next to rq and release next. merge_requests_fn
757 * will have updated segment counts, update sector
758 * counts here. Handle DISCARDs separately, as they
759 * have separate settings.
762 switch (blk_try_req_merge(req, next)) {
763 case ELEVATOR_DISCARD_MERGE:
764 if (!req_attempt_discard_merge(q, req, next))
767 case ELEVATOR_BACK_MERGE:
768 if (!ll_merge_requests_fn(q, req, next))
776 * If failfast settings disagree or any of the two is already
777 * a mixed merge, mark both as mixed before proceeding. This
778 * makes sure that all involved bios have mixable attributes
781 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
782 (req->cmd_flags & REQ_FAILFAST_MASK) !=
783 (next->cmd_flags & REQ_FAILFAST_MASK)) {
784 blk_rq_set_mixed_merge(req);
785 blk_rq_set_mixed_merge(next);
789 * At this point we have either done a back merge or front merge. We
790 * need the smaller start_time_ns of the merged requests to be the
791 * current request for accounting purposes.
793 if (next->start_time_ns < req->start_time_ns)
794 req->start_time_ns = next->start_time_ns;
796 req->biotail->bi_next = next->bio;
797 req->biotail = next->biotail;
799 req->__data_len += blk_rq_bytes(next);
801 if (!blk_discard_mergable(req))
802 elv_merge_requests(q, req, next);
804 blk_crypto_rq_put_keyslot(next);
807 * 'next' is going away, so update stats accordingly
809 blk_account_io_merge_request(next);
811 trace_block_rq_merge(next);
814 * ownership of bio passed from next to req, return 'next' for
821 static struct request *attempt_back_merge(struct request_queue *q,
824 struct request *next = elv_latter_request(q, rq);
827 return attempt_merge(q, rq, next);
832 static struct request *attempt_front_merge(struct request_queue *q,
835 struct request *prev = elv_former_request(q, rq);
838 return attempt_merge(q, prev, rq);
843 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
844 struct request *next)
846 struct request *free;
848 free = attempt_merge(q, rq, next);
850 blk_put_request(free);
857 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
859 if (!rq_mergeable(rq) || !bio_mergeable(bio))
862 if (req_op(rq) != bio_op(bio))
865 /* different data direction or already started, don't merge */
866 if (bio_data_dir(bio) != rq_data_dir(rq))
869 /* must be same device */
870 if (rq->rq_disk != bio->bi_disk)
873 /* don't merge across cgroup boundaries */
874 if (!blk_cgroup_mergeable(rq, bio))
877 /* only merge integrity protected bio into ditto rq */
878 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
881 /* Only merge if the crypt contexts are compatible */
882 if (!bio_crypt_rq_ctx_compatible(rq, bio))
885 /* must be using the same buffer */
886 if (req_op(rq) == REQ_OP_WRITE_SAME &&
887 !blk_write_same_mergeable(rq->bio, bio))
891 * Don't allow merge of different write hints, or for a hint with
894 if (rq->write_hint != bio->bi_write_hint)
897 if (rq->ioprio != bio_prio(bio))
903 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
905 if (blk_discard_mergable(rq))
906 return ELEVATOR_DISCARD_MERGE;
907 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
908 return ELEVATOR_BACK_MERGE;
909 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
910 return ELEVATOR_FRONT_MERGE;
911 return ELEVATOR_NO_MERGE;
914 static void blk_account_io_merge_bio(struct request *req)
916 if (!blk_do_io_stat(req))
920 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
924 enum bio_merge_status {
930 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
931 struct bio *bio, unsigned int nr_segs)
933 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
935 if (!ll_back_merge_fn(req, bio, nr_segs))
936 return BIO_MERGE_FAILED;
938 trace_block_bio_backmerge(req->q, req, bio);
939 rq_qos_merge(req->q, req, bio);
941 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
942 blk_rq_set_mixed_merge(req);
944 req->biotail->bi_next = bio;
946 req->__data_len += bio->bi_iter.bi_size;
948 bio_crypt_free_ctx(bio);
950 blk_account_io_merge_bio(req);
954 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
955 struct bio *bio, unsigned int nr_segs)
957 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
959 if (!ll_front_merge_fn(req, bio, nr_segs))
960 return BIO_MERGE_FAILED;
962 trace_block_bio_frontmerge(req->q, req, bio);
963 rq_qos_merge(req->q, req, bio);
965 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
966 blk_rq_set_mixed_merge(req);
968 bio->bi_next = req->bio;
971 req->__sector = bio->bi_iter.bi_sector;
972 req->__data_len += bio->bi_iter.bi_size;
974 bio_crypt_do_front_merge(req, bio);
976 blk_account_io_merge_bio(req);
980 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
981 struct request *req, struct bio *bio)
983 unsigned short segments = blk_rq_nr_discard_segments(req);
985 if (segments >= queue_max_discard_segments(q))
987 if (blk_rq_sectors(req) + bio_sectors(bio) >
988 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
991 rq_qos_merge(q, req, bio);
993 req->biotail->bi_next = bio;
995 req->__data_len += bio->bi_iter.bi_size;
996 req->nr_phys_segments = segments + 1;
998 blk_account_io_merge_bio(req);
1001 req_set_nomerge(q, req);
1002 return BIO_MERGE_FAILED;
1005 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1008 unsigned int nr_segs,
1009 bool sched_allow_merge)
1011 if (!blk_rq_merge_ok(rq, bio))
1012 return BIO_MERGE_NONE;
1014 switch (blk_try_merge(rq, bio)) {
1015 case ELEVATOR_BACK_MERGE:
1016 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1017 return bio_attempt_back_merge(rq, bio, nr_segs);
1019 case ELEVATOR_FRONT_MERGE:
1020 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1021 return bio_attempt_front_merge(rq, bio, nr_segs);
1023 case ELEVATOR_DISCARD_MERGE:
1024 return bio_attempt_discard_merge(q, rq, bio);
1026 return BIO_MERGE_NONE;
1029 return BIO_MERGE_FAILED;
1033 * blk_attempt_plug_merge - try to merge with %current's plugged list
1034 * @q: request_queue new bio is being queued at
1035 * @bio: new bio being queued
1036 * @nr_segs: number of segments in @bio
1037 * @same_queue_rq: pointer to &struct request that gets filled in when
1038 * another request associated with @q is found on the plug list
1039 * (optional, may be %NULL)
1041 * Determine whether @bio being queued on @q can be merged with a request
1042 * on %current's plugged list. Returns %true if merge was successful,
1045 * Plugging coalesces IOs from the same issuer for the same purpose without
1046 * going through @q->queue_lock. As such it's more of an issuing mechanism
1047 * than scheduling, and the request, while may have elvpriv data, is not
1048 * added on the elevator at this point. In addition, we don't have
1049 * reliable access to the elevator outside queue lock. Only check basic
1050 * merging parameters without querying the elevator.
1052 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1054 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1055 unsigned int nr_segs, struct request **same_queue_rq)
1057 struct blk_plug *plug;
1059 struct list_head *plug_list;
1061 plug = blk_mq_plug(q, bio);
1065 plug_list = &plug->mq_list;
1067 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1068 if (rq->q == q && same_queue_rq) {
1070 * Only blk-mq multiple hardware queues case checks the
1071 * rq in the same queue, there should be only one such
1074 *same_queue_rq = rq;
1080 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1089 * Iterate list of requests and see if we can merge this bio with any
1092 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1093 struct bio *bio, unsigned int nr_segs)
1098 list_for_each_entry_reverse(rq, list, queuelist) {
1102 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1103 case BIO_MERGE_NONE:
1107 case BIO_MERGE_FAILED:
1115 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1117 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1118 unsigned int nr_segs, struct request **merged_request)
1122 switch (elv_merge(q, &rq, bio)) {
1123 case ELEVATOR_BACK_MERGE:
1124 if (!blk_mq_sched_allow_merge(q, rq, bio))
1126 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1128 *merged_request = attempt_back_merge(q, rq);
1129 if (!*merged_request)
1130 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1132 case ELEVATOR_FRONT_MERGE:
1133 if (!blk_mq_sched_allow_merge(q, rq, bio))
1135 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1137 *merged_request = attempt_front_merge(q, rq);
1138 if (!*merged_request)
1139 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1141 case ELEVATOR_DISCARD_MERGE:
1142 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1147 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);