GNU Linux-libre 6.9-gnu
[releases.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235 };
236
237 enum {
238         /*
239          * As vtime is used to calculate the cost of each IO, it needs to
240          * be fairly high precision.  For example, it should be able to
241          * represent the cost of a single page worth of discard with
242          * suffificient accuracy.  At the same time, it should be able to
243          * represent reasonably long enough durations to be useful and
244          * convenient during operation.
245          *
246          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247          * granularity and days of wrap-around time even at extreme vrates.
248          */
249         VTIME_PER_SEC_SHIFT     = 37,
250         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
251         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
252         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
253
254         /* bound vrate adjustments within two orders of magnitude */
255         VRATE_MIN_PPM           = 10000,        /* 1% */
256         VRATE_MAX_PPM           = 100000000,    /* 10000% */
257
258         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259         VRATE_CLAMP_ADJ_PCT     = 4,
260
261         /* switch iff the conditions are met for longer than this */
262         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
263 };
264
265 enum {
266         /* if IOs end up waiting for requests, issue less */
267         RQ_WAIT_BUSY_PCT        = 5,
268
269         /* unbusy hysterisis */
270         UNBUSY_THR_PCT          = 75,
271
272         /*
273          * The effect of delay is indirect and non-linear and a huge amount of
274          * future debt can accumulate abruptly while unthrottled. Linearly scale
275          * up delay as debt is going up and then let it decay exponentially.
276          * This gives us quick ramp ups while delay is accumulating and long
277          * tails which can help reducing the frequency of debt explosions on
278          * unthrottle. The parameters are experimentally determined.
279          *
280          * The delay mechanism provides adequate protection and behavior in many
281          * cases. However, this is far from ideal and falls shorts on both
282          * fronts. The debtors are often throttled too harshly costing a
283          * significant level of fairness and possibly total work while the
284          * protection against their impacts on the system can be choppy and
285          * unreliable.
286          *
287          * The shortcoming primarily stems from the fact that, unlike for page
288          * cache, the kernel doesn't have well-defined back-pressure propagation
289          * mechanism and policies for anonymous memory. Fully addressing this
290          * issue will likely require substantial improvements in the area.
291          */
292         MIN_DELAY_THR_PCT       = 500,
293         MAX_DELAY_THR_PCT       = 25000,
294         MIN_DELAY               = 250,
295         MAX_DELAY               = 250 * USEC_PER_MSEC,
296
297         /* halve debts if avg usage over 100ms is under 50% */
298         DFGV_USAGE_PCT          = 50,
299         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
300
301         /* don't let cmds which take a very long time pin lagging for too long */
302         MAX_LAGGING_PERIODS     = 10,
303
304         /*
305          * Count IO size in 4k pages.  The 12bit shift helps keeping
306          * size-proportional components of cost calculation in closer
307          * numbers of digits to per-IO cost components.
308          */
309         IOC_PAGE_SHIFT          = 12,
310         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
311         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313         /* if apart further than 16M, consider randio for linear model */
314         LCOEF_RANDIO_PAGES      = 4096,
315 };
316
317 enum ioc_running {
318         IOC_IDLE,
319         IOC_RUNNING,
320         IOC_STOP,
321 };
322
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325         QOS_ENABLE,
326         QOS_CTRL,
327         NR_QOS_CTRL_PARAMS,
328 };
329
330 /* io.cost.qos params */
331 enum {
332         QOS_RPPM,
333         QOS_RLAT,
334         QOS_WPPM,
335         QOS_WLAT,
336         QOS_MIN,
337         QOS_MAX,
338         NR_QOS_PARAMS,
339 };
340
341 /* io.cost.model controls */
342 enum {
343         COST_CTRL,
344         COST_MODEL,
345         NR_COST_CTRL_PARAMS,
346 };
347
348 /* builtin linear cost model coefficients */
349 enum {
350         I_LCOEF_RBPS,
351         I_LCOEF_RSEQIOPS,
352         I_LCOEF_RRANDIOPS,
353         I_LCOEF_WBPS,
354         I_LCOEF_WSEQIOPS,
355         I_LCOEF_WRANDIOPS,
356         NR_I_LCOEFS,
357 };
358
359 enum {
360         LCOEF_RPAGE,
361         LCOEF_RSEQIO,
362         LCOEF_RRANDIO,
363         LCOEF_WPAGE,
364         LCOEF_WSEQIO,
365         LCOEF_WRANDIO,
366         NR_LCOEFS,
367 };
368
369 enum {
370         AUTOP_INVALID,
371         AUTOP_HDD,
372         AUTOP_SSD_QD1,
373         AUTOP_SSD_DFL,
374         AUTOP_SSD_FAST,
375 };
376
377 struct ioc_params {
378         u32                             qos[NR_QOS_PARAMS];
379         u64                             i_lcoefs[NR_I_LCOEFS];
380         u64                             lcoefs[NR_LCOEFS];
381         u32                             too_fast_vrate_pct;
382         u32                             too_slow_vrate_pct;
383 };
384
385 struct ioc_margins {
386         s64                             min;
387         s64                             low;
388         s64                             target;
389 };
390
391 struct ioc_missed {
392         local_t                         nr_met;
393         local_t                         nr_missed;
394         u32                             last_met;
395         u32                             last_missed;
396 };
397
398 struct ioc_pcpu_stat {
399         struct ioc_missed               missed[2];
400
401         local64_t                       rq_wait_ns;
402         u64                             last_rq_wait_ns;
403 };
404
405 /* per device */
406 struct ioc {
407         struct rq_qos                   rqos;
408
409         bool                            enabled;
410
411         struct ioc_params               params;
412         struct ioc_margins              margins;
413         u32                             period_us;
414         u32                             timer_slack_ns;
415         u64                             vrate_min;
416         u64                             vrate_max;
417
418         spinlock_t                      lock;
419         struct timer_list               timer;
420         struct list_head                active_iocgs;   /* active cgroups */
421         struct ioc_pcpu_stat __percpu   *pcpu_stat;
422
423         enum ioc_running                running;
424         atomic64_t                      vtime_rate;
425         u64                             vtime_base_rate;
426         s64                             vtime_err;
427
428         seqcount_spinlock_t             period_seqcount;
429         u64                             period_at;      /* wallclock starttime */
430         u64                             period_at_vtime; /* vtime starttime */
431
432         atomic64_t                      cur_period;     /* inc'd each period */
433         int                             busy_level;     /* saturation history */
434
435         bool                            weights_updated;
436         atomic_t                        hweight_gen;    /* for lazy hweights */
437
438         /* debt forgivness */
439         u64                             dfgv_period_at;
440         u64                             dfgv_period_rem;
441         u64                             dfgv_usage_us_sum;
442
443         u64                             autop_too_fast_at;
444         u64                             autop_too_slow_at;
445         int                             autop_idx;
446         bool                            user_qos_params:1;
447         bool                            user_cost_model:1;
448 };
449
450 struct iocg_pcpu_stat {
451         local64_t                       abs_vusage;
452 };
453
454 struct iocg_stat {
455         u64                             usage_us;
456         u64                             wait_us;
457         u64                             indebt_us;
458         u64                             indelay_us;
459 };
460
461 /* per device-cgroup pair */
462 struct ioc_gq {
463         struct blkg_policy_data         pd;
464         struct ioc                      *ioc;
465
466         /*
467          * A iocg can get its weight from two sources - an explicit
468          * per-device-cgroup configuration or the default weight of the
469          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470          * configuration.  `weight` is the effective considering both
471          * sources.
472          *
473          * When an idle cgroup becomes active its `active` goes from 0 to
474          * `weight`.  `inuse` is the surplus adjusted active weight.
475          * `active` and `inuse` are used to calculate `hweight_active` and
476          * `hweight_inuse`.
477          *
478          * `last_inuse` remembers `inuse` while an iocg is idle to persist
479          * surplus adjustments.
480          *
481          * `inuse` may be adjusted dynamically during period. `saved_*` are used
482          * to determine and track adjustments.
483          */
484         u32                             cfg_weight;
485         u32                             weight;
486         u32                             active;
487         u32                             inuse;
488
489         u32                             last_inuse;
490         s64                             saved_margin;
491
492         sector_t                        cursor;         /* to detect randio */
493
494         /*
495          * `vtime` is this iocg's vtime cursor which progresses as IOs are
496          * issued.  If lagging behind device vtime, the delta represents
497          * the currently available IO budget.  If running ahead, the
498          * overage.
499          *
500          * `vtime_done` is the same but progressed on completion rather
501          * than issue.  The delta behind `vtime` represents the cost of
502          * currently in-flight IOs.
503          */
504         atomic64_t                      vtime;
505         atomic64_t                      done_vtime;
506         u64                             abs_vdebt;
507
508         /* current delay in effect and when it started */
509         u64                             delay;
510         u64                             delay_at;
511
512         /*
513          * The period this iocg was last active in.  Used for deactivation
514          * and invalidating `vtime`.
515          */
516         atomic64_t                      active_period;
517         struct list_head                active_list;
518
519         /* see __propagate_weights() and current_hweight() for details */
520         u64                             child_active_sum;
521         u64                             child_inuse_sum;
522         u64                             child_adjusted_sum;
523         int                             hweight_gen;
524         u32                             hweight_active;
525         u32                             hweight_inuse;
526         u32                             hweight_donating;
527         u32                             hweight_after_donation;
528
529         struct list_head                walk_list;
530         struct list_head                surplus_list;
531
532         struct wait_queue_head          waitq;
533         struct hrtimer                  waitq_timer;
534
535         /* timestamp at the latest activation */
536         u64                             activated_at;
537
538         /* statistics */
539         struct iocg_pcpu_stat __percpu  *pcpu_stat;
540         struct iocg_stat                stat;
541         struct iocg_stat                last_stat;
542         u64                             last_stat_abs_vusage;
543         u64                             usage_delta_us;
544         u64                             wait_since;
545         u64                             indebt_since;
546         u64                             indelay_since;
547
548         /* this iocg's depth in the hierarchy and ancestors including self */
549         int                             level;
550         struct ioc_gq                   *ancestors[];
551 };
552
553 /* per cgroup */
554 struct ioc_cgrp {
555         struct blkcg_policy_data        cpd;
556         unsigned int                    dfl_weight;
557 };
558
559 struct ioc_now {
560         u64                             now_ns;
561         u64                             now;
562         u64                             vnow;
563 };
564
565 struct iocg_wait {
566         struct wait_queue_entry         wait;
567         struct bio                      *bio;
568         u64                             abs_cost;
569         bool                            committed;
570 };
571
572 struct iocg_wake_ctx {
573         struct ioc_gq                   *iocg;
574         u32                             hw_inuse;
575         s64                             vbudget;
576 };
577
578 static const struct ioc_params autop[] = {
579         [AUTOP_HDD] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =        250000, /* 250ms */
582                         [QOS_WLAT]              =        250000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =     174019176,
588                         [I_LCOEF_RSEQIOPS]      =         41708,
589                         [I_LCOEF_RRANDIOPS]     =           370,
590                         [I_LCOEF_WBPS]          =     178075866,
591                         [I_LCOEF_WSEQIOPS]      =         42705,
592                         [I_LCOEF_WRANDIOPS]     =           378,
593                 },
594         },
595         [AUTOP_SSD_QD1] = {
596                 .qos                            = {
597                         [QOS_RLAT]              =         25000, /* 25ms */
598                         [QOS_WLAT]              =         25000,
599                         [QOS_MIN]               = VRATE_MIN_PPM,
600                         [QOS_MAX]               = VRATE_MAX_PPM,
601                 },
602                 .i_lcoefs                       = {
603                         [I_LCOEF_RBPS]          =     245855193,
604                         [I_LCOEF_RSEQIOPS]      =         61575,
605                         [I_LCOEF_RRANDIOPS]     =          6946,
606                         [I_LCOEF_WBPS]          =     141365009,
607                         [I_LCOEF_WSEQIOPS]      =         33716,
608                         [I_LCOEF_WRANDIOPS]     =         26796,
609                 },
610         },
611         [AUTOP_SSD_DFL] = {
612                 .qos                            = {
613                         [QOS_RLAT]              =         25000, /* 25ms */
614                         [QOS_WLAT]              =         25000,
615                         [QOS_MIN]               = VRATE_MIN_PPM,
616                         [QOS_MAX]               = VRATE_MAX_PPM,
617                 },
618                 .i_lcoefs                       = {
619                         [I_LCOEF_RBPS]          =     488636629,
620                         [I_LCOEF_RSEQIOPS]      =          8932,
621                         [I_LCOEF_RRANDIOPS]     =          8518,
622                         [I_LCOEF_WBPS]          =     427891549,
623                         [I_LCOEF_WSEQIOPS]      =         28755,
624                         [I_LCOEF_WRANDIOPS]     =         21940,
625                 },
626                 .too_fast_vrate_pct             =           500,
627         },
628         [AUTOP_SSD_FAST] = {
629                 .qos                            = {
630                         [QOS_RLAT]              =          5000, /* 5ms */
631                         [QOS_WLAT]              =          5000,
632                         [QOS_MIN]               = VRATE_MIN_PPM,
633                         [QOS_MAX]               = VRATE_MAX_PPM,
634                 },
635                 .i_lcoefs                       = {
636                         [I_LCOEF_RBPS]          =    3102524156LLU,
637                         [I_LCOEF_RSEQIOPS]      =        724816,
638                         [I_LCOEF_RRANDIOPS]     =        778122,
639                         [I_LCOEF_WBPS]          =    1742780862LLU,
640                         [I_LCOEF_WSEQIOPS]      =        425702,
641                         [I_LCOEF_WRANDIOPS]     =        443193,
642                 },
643                 .too_slow_vrate_pct             =            10,
644         },
645 };
646
647 /*
648  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649  * vtime credit shortage and down on device saturation.
650  */
651 static u32 vrate_adj_pct[] =
652         { 0, 0, 0, 0,
653           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656
657 static struct blkcg_policy blkcg_policy_iocost;
658
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662         return container_of(rqos, struct ioc, rqos);
663 }
664
665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
671 {
672         struct gendisk *disk = ioc->rqos.disk;
673
674         if (!disk)
675                 return "<unknown>";
676         return disk->disk_name;
677 }
678
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
680 {
681         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
682 }
683
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
685 {
686         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
687 }
688
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
690 {
691         return pd_to_blkg(&iocg->pd);
692 }
693
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
695 {
696         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697                             struct ioc_cgrp, cpd);
698 }
699
700 /*
701  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
702  * weight, the more expensive each IO.  Must round up.
703  */
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
705 {
706         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
707 }
708
709 /*
710  * The inverse of abs_cost_to_cost().  Must round up.
711  */
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
713 {
714         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
715 }
716
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718                             u64 abs_cost, u64 cost)
719 {
720         struct iocg_pcpu_stat *gcs;
721
722         bio->bi_iocost_cost = cost;
723         atomic64_add(cost, &iocg->vtime);
724
725         gcs = get_cpu_ptr(iocg->pcpu_stat);
726         local64_add(abs_cost, &gcs->abs_vusage);
727         put_cpu_ptr(gcs);
728 }
729
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
731 {
732         if (lock_ioc) {
733                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
734                 spin_lock(&iocg->waitq.lock);
735         } else {
736                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
737         }
738 }
739
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
741 {
742         if (unlock_ioc) {
743                 spin_unlock(&iocg->waitq.lock);
744                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
745         } else {
746                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
747         }
748 }
749
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
752
753 static void ioc_refresh_margins(struct ioc *ioc)
754 {
755         struct ioc_margins *margins = &ioc->margins;
756         u32 period_us = ioc->period_us;
757         u64 vrate = ioc->vtime_base_rate;
758
759         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
762 }
763
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
766 {
767         u32 ppm, lat, multi, period_us;
768
769         lockdep_assert_held(&ioc->lock);
770
771         /* pick the higher latency target */
772         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773                 ppm = ioc->params.qos[QOS_RPPM];
774                 lat = ioc->params.qos[QOS_RLAT];
775         } else {
776                 ppm = ioc->params.qos[QOS_WPPM];
777                 lat = ioc->params.qos[QOS_WLAT];
778         }
779
780         /*
781          * We want the period to be long enough to contain a healthy number
782          * of IOs while short enough for granular control.  Define it as a
783          * multiple of the latency target.  Ideally, the multiplier should
784          * be scaled according to the percentile so that it would nominally
785          * contain a certain number of requests.  Let's be simpler and
786          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
787          */
788         if (ppm)
789                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
790         else
791                 multi = 2;
792         period_us = multi * lat;
793         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
794
795         /* calculate dependent params */
796         ioc->period_us = period_us;
797         ioc->timer_slack_ns = div64_u64(
798                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
799                 100);
800         ioc_refresh_margins(ioc);
801 }
802
803 /*
804  *  ioc->rqos.disk isn't initialized when this function is called from
805  *  the init path.
806  */
807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
808 {
809         int idx = ioc->autop_idx;
810         const struct ioc_params *p = &autop[idx];
811         u32 vrate_pct;
812         u64 now_ns;
813
814         /* rotational? */
815         if (!blk_queue_nonrot(disk->queue))
816                 return AUTOP_HDD;
817
818         /* handle SATA SSDs w/ broken NCQ */
819         if (blk_queue_depth(disk->queue) == 1)
820                 return AUTOP_SSD_QD1;
821
822         /* use one of the normal ssd sets */
823         if (idx < AUTOP_SSD_DFL)
824                 return AUTOP_SSD_DFL;
825
826         /* if user is overriding anything, maintain what was there */
827         if (ioc->user_qos_params || ioc->user_cost_model)
828                 return idx;
829
830         /* step up/down based on the vrate */
831         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832         now_ns = blk_time_get_ns();
833
834         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835                 if (!ioc->autop_too_fast_at)
836                         ioc->autop_too_fast_at = now_ns;
837                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838                         return idx + 1;
839         } else {
840                 ioc->autop_too_fast_at = 0;
841         }
842
843         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844                 if (!ioc->autop_too_slow_at)
845                         ioc->autop_too_slow_at = now_ns;
846                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847                         return idx - 1;
848         } else {
849                 ioc->autop_too_slow_at = 0;
850         }
851
852         return idx;
853 }
854
855 /*
856  * Take the followings as input
857  *
858  *  @bps        maximum sequential throughput
859  *  @seqiops    maximum sequential 4k iops
860  *  @randiops   maximum random 4k iops
861  *
862  * and calculate the linear model cost coefficients.
863  *
864  *  *@page      per-page cost           1s / (@bps / 4096)
865  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
866  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
867  */
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869                         u64 *page, u64 *seqio, u64 *randio)
870 {
871         u64 v;
872
873         *page = *seqio = *randio = 0;
874
875         if (bps) {
876                 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
877
878                 if (bps_pages)
879                         *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
880                 else
881                         *page = 1;
882         }
883
884         if (seqiops) {
885                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
886                 if (v > *page)
887                         *seqio = v - *page;
888         }
889
890         if (randiops) {
891                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
892                 if (v > *page)
893                         *randio = v - *page;
894         }
895 }
896
897 static void ioc_refresh_lcoefs(struct ioc *ioc)
898 {
899         u64 *u = ioc->params.i_lcoefs;
900         u64 *c = ioc->params.lcoefs;
901
902         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
906 }
907
908 /*
909  * struct gendisk is required as an argument because ioc->rqos.disk
910  * is not properly initialized when called from the init path.
911  */
912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913                                     struct gendisk *disk)
914 {
915         const struct ioc_params *p;
916         int idx;
917
918         lockdep_assert_held(&ioc->lock);
919
920         idx = ioc_autop_idx(ioc, disk);
921         p = &autop[idx];
922
923         if (idx == ioc->autop_idx && !force)
924                 return false;
925
926         if (idx != ioc->autop_idx) {
927                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928                 ioc->vtime_base_rate = VTIME_PER_USEC;
929         }
930
931         ioc->autop_idx = idx;
932         ioc->autop_too_fast_at = 0;
933         ioc->autop_too_slow_at = 0;
934
935         if (!ioc->user_qos_params)
936                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937         if (!ioc->user_cost_model)
938                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
939
940         ioc_refresh_period_us(ioc);
941         ioc_refresh_lcoefs(ioc);
942
943         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944                                             VTIME_PER_USEC, MILLION);
945         ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946                                             VTIME_PER_USEC, MILLION);
947
948         return true;
949 }
950
951 static bool ioc_refresh_params(struct ioc *ioc, bool force)
952 {
953         return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
954 }
955
956 /*
957  * When an iocg accumulates too much vtime or gets deactivated, we throw away
958  * some vtime, which lowers the overall device utilization. As the exact amount
959  * which is being thrown away is known, we can compensate by accelerating the
960  * vrate accordingly so that the extra vtime generated in the current period
961  * matches what got lost.
962  */
963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
964 {
965         s64 pleft = ioc->period_at + ioc->period_us - now->now;
966         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967         s64 vcomp, vcomp_min, vcomp_max;
968
969         lockdep_assert_held(&ioc->lock);
970
971         /* we need some time left in this period */
972         if (pleft <= 0)
973                 goto done;
974
975         /*
976          * Calculate how much vrate should be adjusted to offset the error.
977          * Limit the amount of adjustment and deduct the adjusted amount from
978          * the error.
979          */
980         vcomp = -div64_s64(ioc->vtime_err, pleft);
981         vcomp_min = -(ioc->vtime_base_rate >> 1);
982         vcomp_max = ioc->vtime_base_rate;
983         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
984
985         ioc->vtime_err += vcomp * pleft;
986
987         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
988 done:
989         /* bound how much error can accumulate */
990         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
991 }
992
993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994                                   int nr_lagging, int nr_shortages,
995                                   int prev_busy_level, u32 *missed_ppm)
996 {
997         u64 vrate = ioc->vtime_base_rate;
998         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
999
1000         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001                 if (ioc->busy_level != prev_busy_level || nr_lagging)
1002                         trace_iocost_ioc_vrate_adj(ioc, vrate,
1003                                                    missed_ppm, rq_wait_pct,
1004                                                    nr_lagging, nr_shortages);
1005
1006                 return;
1007         }
1008
1009         /*
1010          * If vrate is out of bounds, apply clamp gradually as the
1011          * bounds can change abruptly.  Otherwise, apply busy_level
1012          * based adjustment.
1013          */
1014         if (vrate < vrate_min) {
1015                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016                 vrate = min(vrate, vrate_min);
1017         } else if (vrate > vrate_max) {
1018                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019                 vrate = max(vrate, vrate_max);
1020         } else {
1021                 int idx = min_t(int, abs(ioc->busy_level),
1022                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1023                 u32 adj_pct = vrate_adj_pct[idx];
1024
1025                 if (ioc->busy_level > 0)
1026                         adj_pct = 100 - adj_pct;
1027                 else
1028                         adj_pct = 100 + adj_pct;
1029
1030                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031                               vrate_min, vrate_max);
1032         }
1033
1034         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035                                    nr_lagging, nr_shortages);
1036
1037         ioc->vtime_base_rate = vrate;
1038         ioc_refresh_margins(ioc);
1039 }
1040
1041 /* take a snapshot of the current [v]time and vrate */
1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1043 {
1044         unsigned seq;
1045         u64 vrate;
1046
1047         now->now_ns = blk_time_get_ns();
1048         now->now = ktime_to_us(now->now_ns);
1049         vrate = atomic64_read(&ioc->vtime_rate);
1050
1051         /*
1052          * The current vtime is
1053          *
1054          *   vtime at period start + (wallclock time since the start) * vrate
1055          *
1056          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057          * needed, they're seqcount protected.
1058          */
1059         do {
1060                 seq = read_seqcount_begin(&ioc->period_seqcount);
1061                 now->vnow = ioc->period_at_vtime +
1062                         (now->now - ioc->period_at) * vrate;
1063         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1064 }
1065
1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1067 {
1068         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1069
1070         write_seqcount_begin(&ioc->period_seqcount);
1071         ioc->period_at = now->now;
1072         ioc->period_at_vtime = now->vnow;
1073         write_seqcount_end(&ioc->period_seqcount);
1074
1075         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076         add_timer(&ioc->timer);
1077 }
1078
1079 /*
1080  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081  * weight sums and propagate upwards accordingly. If @save, the current margin
1082  * is saved to be used as reference for later inuse in-period adjustments.
1083  */
1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085                                 bool save, struct ioc_now *now)
1086 {
1087         struct ioc *ioc = iocg->ioc;
1088         int lvl;
1089
1090         lockdep_assert_held(&ioc->lock);
1091
1092         /*
1093          * For an active leaf node, its inuse shouldn't be zero or exceed
1094          * @active. An active internal node's inuse is solely determined by the
1095          * inuse to active ratio of its children regardless of @inuse.
1096          */
1097         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099                                            iocg->child_active_sum);
1100         } else {
1101                 inuse = clamp_t(u32, inuse, 1, active);
1102         }
1103
1104         iocg->last_inuse = iocg->inuse;
1105         if (save)
1106                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1107
1108         if (active == iocg->active && inuse == iocg->inuse)
1109                 return;
1110
1111         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1112                 struct ioc_gq *parent = iocg->ancestors[lvl];
1113                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1114                 u32 parent_active = 0, parent_inuse = 0;
1115
1116                 /* update the level sums */
1117                 parent->child_active_sum += (s32)(active - child->active);
1118                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1119                 /* apply the updates */
1120                 child->active = active;
1121                 child->inuse = inuse;
1122
1123                 /*
1124                  * The delta between inuse and active sums indicates that
1125                  * much of weight is being given away.  Parent's inuse
1126                  * and active should reflect the ratio.
1127                  */
1128                 if (parent->child_active_sum) {
1129                         parent_active = parent->weight;
1130                         parent_inuse = DIV64_U64_ROUND_UP(
1131                                 parent_active * parent->child_inuse_sum,
1132                                 parent->child_active_sum);
1133                 }
1134
1135                 /* do we need to keep walking up? */
1136                 if (parent_active == parent->active &&
1137                     parent_inuse == parent->inuse)
1138                         break;
1139
1140                 active = parent_active;
1141                 inuse = parent_inuse;
1142         }
1143
1144         ioc->weights_updated = true;
1145 }
1146
1147 static void commit_weights(struct ioc *ioc)
1148 {
1149         lockdep_assert_held(&ioc->lock);
1150
1151         if (ioc->weights_updated) {
1152                 /* paired with rmb in current_hweight(), see there */
1153                 smp_wmb();
1154                 atomic_inc(&ioc->hweight_gen);
1155                 ioc->weights_updated = false;
1156         }
1157 }
1158
1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1160                               bool save, struct ioc_now *now)
1161 {
1162         __propagate_weights(iocg, active, inuse, save, now);
1163         commit_weights(iocg->ioc);
1164 }
1165
1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1167 {
1168         struct ioc *ioc = iocg->ioc;
1169         int lvl;
1170         u32 hwa, hwi;
1171         int ioc_gen;
1172
1173         /* hot path - if uptodate, use cached */
1174         ioc_gen = atomic_read(&ioc->hweight_gen);
1175         if (ioc_gen == iocg->hweight_gen)
1176                 goto out;
1177
1178         /*
1179          * Paired with wmb in commit_weights(). If we saw the updated
1180          * hweight_gen, all the weight updates from __propagate_weights() are
1181          * visible too.
1182          *
1183          * We can race with weight updates during calculation and get it
1184          * wrong.  However, hweight_gen would have changed and a future
1185          * reader will recalculate and we're guaranteed to discard the
1186          * wrong result soon.
1187          */
1188         smp_rmb();
1189
1190         hwa = hwi = WEIGHT_ONE;
1191         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1192                 struct ioc_gq *parent = iocg->ancestors[lvl];
1193                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1194                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1195                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1196                 u32 active = READ_ONCE(child->active);
1197                 u32 inuse = READ_ONCE(child->inuse);
1198
1199                 /* we can race with deactivations and either may read as zero */
1200                 if (!active_sum || !inuse_sum)
1201                         continue;
1202
1203                 active_sum = max_t(u64, active, active_sum);
1204                 hwa = div64_u64((u64)hwa * active, active_sum);
1205
1206                 inuse_sum = max_t(u64, inuse, inuse_sum);
1207                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1208         }
1209
1210         iocg->hweight_active = max_t(u32, hwa, 1);
1211         iocg->hweight_inuse = max_t(u32, hwi, 1);
1212         iocg->hweight_gen = ioc_gen;
1213 out:
1214         if (hw_activep)
1215                 *hw_activep = iocg->hweight_active;
1216         if (hw_inusep)
1217                 *hw_inusep = iocg->hweight_inuse;
1218 }
1219
1220 /*
1221  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1222  * other weights stay unchanged.
1223  */
1224 static u32 current_hweight_max(struct ioc_gq *iocg)
1225 {
1226         u32 hwm = WEIGHT_ONE;
1227         u32 inuse = iocg->active;
1228         u64 child_inuse_sum;
1229         int lvl;
1230
1231         lockdep_assert_held(&iocg->ioc->lock);
1232
1233         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1234                 struct ioc_gq *parent = iocg->ancestors[lvl];
1235                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1236
1237                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1238                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1239                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1240                                            parent->child_active_sum);
1241         }
1242
1243         return max_t(u32, hwm, 1);
1244 }
1245
1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1247 {
1248         struct ioc *ioc = iocg->ioc;
1249         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1250         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1251         u32 weight;
1252
1253         lockdep_assert_held(&ioc->lock);
1254
1255         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1256         if (weight != iocg->weight && iocg->active)
1257                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1258         iocg->weight = weight;
1259 }
1260
1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1262 {
1263         struct ioc *ioc = iocg->ioc;
1264         u64 __maybe_unused last_period, cur_period;
1265         u64 vtime, vtarget;
1266         int i;
1267
1268         /*
1269          * If seem to be already active, just update the stamp to tell the
1270          * timer that we're still active.  We don't mind occassional races.
1271          */
1272         if (!list_empty(&iocg->active_list)) {
1273                 ioc_now(ioc, now);
1274                 cur_period = atomic64_read(&ioc->cur_period);
1275                 if (atomic64_read(&iocg->active_period) != cur_period)
1276                         atomic64_set(&iocg->active_period, cur_period);
1277                 return true;
1278         }
1279
1280         /* racy check on internal node IOs, treat as root level IOs */
1281         if (iocg->child_active_sum)
1282                 return false;
1283
1284         spin_lock_irq(&ioc->lock);
1285
1286         ioc_now(ioc, now);
1287
1288         /* update period */
1289         cur_period = atomic64_read(&ioc->cur_period);
1290         last_period = atomic64_read(&iocg->active_period);
1291         atomic64_set(&iocg->active_period, cur_period);
1292
1293         /* already activated or breaking leaf-only constraint? */
1294         if (!list_empty(&iocg->active_list))
1295                 goto succeed_unlock;
1296         for (i = iocg->level - 1; i > 0; i--)
1297                 if (!list_empty(&iocg->ancestors[i]->active_list))
1298                         goto fail_unlock;
1299
1300         if (iocg->child_active_sum)
1301                 goto fail_unlock;
1302
1303         /*
1304          * Always start with the target budget. On deactivation, we throw away
1305          * anything above it.
1306          */
1307         vtarget = now->vnow - ioc->margins.target;
1308         vtime = atomic64_read(&iocg->vtime);
1309
1310         atomic64_add(vtarget - vtime, &iocg->vtime);
1311         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1312         vtime = vtarget;
1313
1314         /*
1315          * Activate, propagate weight and start period timer if not
1316          * running.  Reset hweight_gen to avoid accidental match from
1317          * wrapping.
1318          */
1319         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1320         list_add(&iocg->active_list, &ioc->active_iocgs);
1321
1322         propagate_weights(iocg, iocg->weight,
1323                           iocg->last_inuse ?: iocg->weight, true, now);
1324
1325         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1326                         last_period, cur_period, vtime);
1327
1328         iocg->activated_at = now->now;
1329
1330         if (ioc->running == IOC_IDLE) {
1331                 ioc->running = IOC_RUNNING;
1332                 ioc->dfgv_period_at = now->now;
1333                 ioc->dfgv_period_rem = 0;
1334                 ioc_start_period(ioc, now);
1335         }
1336
1337 succeed_unlock:
1338         spin_unlock_irq(&ioc->lock);
1339         return true;
1340
1341 fail_unlock:
1342         spin_unlock_irq(&ioc->lock);
1343         return false;
1344 }
1345
1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1347 {
1348         struct ioc *ioc = iocg->ioc;
1349         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1350         u64 tdelta, delay, new_delay, shift;
1351         s64 vover, vover_pct;
1352         u32 hwa;
1353
1354         lockdep_assert_held(&iocg->waitq.lock);
1355
1356         /*
1357          * If the delay is set by another CPU, we may be in the past. No need to
1358          * change anything if so. This avoids decay calculation underflow.
1359          */
1360         if (time_before64(now->now, iocg->delay_at))
1361                 return false;
1362
1363         /* calculate the current delay in effect - 1/2 every second */
1364         tdelta = now->now - iocg->delay_at;
1365         shift = div64_u64(tdelta, USEC_PER_SEC);
1366         if (iocg->delay && shift < BITS_PER_LONG)
1367                 delay = iocg->delay >> shift;
1368         else
1369                 delay = 0;
1370
1371         /* calculate the new delay from the debt amount */
1372         current_hweight(iocg, &hwa, NULL);
1373         vover = atomic64_read(&iocg->vtime) +
1374                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1375         vover_pct = div64_s64(100 * vover,
1376                               ioc->period_us * ioc->vtime_base_rate);
1377
1378         if (vover_pct <= MIN_DELAY_THR_PCT)
1379                 new_delay = 0;
1380         else if (vover_pct >= MAX_DELAY_THR_PCT)
1381                 new_delay = MAX_DELAY;
1382         else
1383                 new_delay = MIN_DELAY +
1384                         div_u64((MAX_DELAY - MIN_DELAY) *
1385                                 (vover_pct - MIN_DELAY_THR_PCT),
1386                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1387
1388         /* pick the higher one and apply */
1389         if (new_delay > delay) {
1390                 iocg->delay = new_delay;
1391                 iocg->delay_at = now->now;
1392                 delay = new_delay;
1393         }
1394
1395         if (delay >= MIN_DELAY) {
1396                 if (!iocg->indelay_since)
1397                         iocg->indelay_since = now->now;
1398                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1399                 return true;
1400         } else {
1401                 if (iocg->indelay_since) {
1402                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1403                         iocg->indelay_since = 0;
1404                 }
1405                 iocg->delay = 0;
1406                 blkcg_clear_delay(blkg);
1407                 return false;
1408         }
1409 }
1410
1411 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1412                             struct ioc_now *now)
1413 {
1414         struct iocg_pcpu_stat *gcs;
1415
1416         lockdep_assert_held(&iocg->ioc->lock);
1417         lockdep_assert_held(&iocg->waitq.lock);
1418         WARN_ON_ONCE(list_empty(&iocg->active_list));
1419
1420         /*
1421          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1422          * inuse donating all of it share to others until its debt is paid off.
1423          */
1424         if (!iocg->abs_vdebt && abs_cost) {
1425                 iocg->indebt_since = now->now;
1426                 propagate_weights(iocg, iocg->active, 0, false, now);
1427         }
1428
1429         iocg->abs_vdebt += abs_cost;
1430
1431         gcs = get_cpu_ptr(iocg->pcpu_stat);
1432         local64_add(abs_cost, &gcs->abs_vusage);
1433         put_cpu_ptr(gcs);
1434 }
1435
1436 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1437                           struct ioc_now *now)
1438 {
1439         lockdep_assert_held(&iocg->ioc->lock);
1440         lockdep_assert_held(&iocg->waitq.lock);
1441
1442         /*
1443          * make sure that nobody messed with @iocg. Check iocg->pd.online
1444          * to avoid warn when removing blkcg or disk.
1445          */
1446         WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online);
1447         WARN_ON_ONCE(iocg->inuse > 1);
1448
1449         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1450
1451         /* if debt is paid in full, restore inuse */
1452         if (!iocg->abs_vdebt) {
1453                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1454                 iocg->indebt_since = 0;
1455
1456                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1457                                   false, now);
1458         }
1459 }
1460
1461 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1462                         int flags, void *key)
1463 {
1464         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1465         struct iocg_wake_ctx *ctx = key;
1466         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1467
1468         ctx->vbudget -= cost;
1469
1470         if (ctx->vbudget < 0)
1471                 return -1;
1472
1473         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1474         wait->committed = true;
1475
1476         /*
1477          * autoremove_wake_function() removes the wait entry only when it
1478          * actually changed the task state. We want the wait always removed.
1479          * Remove explicitly and use default_wake_function(). Note that the
1480          * order of operations is important as finish_wait() tests whether
1481          * @wq_entry is removed without grabbing the lock.
1482          */
1483         default_wake_function(wq_entry, mode, flags, key);
1484         list_del_init_careful(&wq_entry->entry);
1485         return 0;
1486 }
1487
1488 /*
1489  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1490  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1491  * addition to iocg->waitq.lock.
1492  */
1493 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1494                             struct ioc_now *now)
1495 {
1496         struct ioc *ioc = iocg->ioc;
1497         struct iocg_wake_ctx ctx = { .iocg = iocg };
1498         u64 vshortage, expires, oexpires;
1499         s64 vbudget;
1500         u32 hwa;
1501
1502         lockdep_assert_held(&iocg->waitq.lock);
1503
1504         current_hweight(iocg, &hwa, NULL);
1505         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1506
1507         /* pay off debt */
1508         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1509                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1510                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1511                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1512
1513                 lockdep_assert_held(&ioc->lock);
1514
1515                 atomic64_add(vpay, &iocg->vtime);
1516                 atomic64_add(vpay, &iocg->done_vtime);
1517                 iocg_pay_debt(iocg, abs_vpay, now);
1518                 vbudget -= vpay;
1519         }
1520
1521         if (iocg->abs_vdebt || iocg->delay)
1522                 iocg_kick_delay(iocg, now);
1523
1524         /*
1525          * Debt can still be outstanding if we haven't paid all yet or the
1526          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1527          * under debt. Make sure @vbudget reflects the outstanding amount and is
1528          * not positive.
1529          */
1530         if (iocg->abs_vdebt) {
1531                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1532                 vbudget = min_t(s64, 0, vbudget - vdebt);
1533         }
1534
1535         /*
1536          * Wake up the ones which are due and see how much vtime we'll need for
1537          * the next one. As paying off debt restores hw_inuse, it must be read
1538          * after the above debt payment.
1539          */
1540         ctx.vbudget = vbudget;
1541         current_hweight(iocg, NULL, &ctx.hw_inuse);
1542
1543         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1544
1545         if (!waitqueue_active(&iocg->waitq)) {
1546                 if (iocg->wait_since) {
1547                         iocg->stat.wait_us += now->now - iocg->wait_since;
1548                         iocg->wait_since = 0;
1549                 }
1550                 return;
1551         }
1552
1553         if (!iocg->wait_since)
1554                 iocg->wait_since = now->now;
1555
1556         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1557                 return;
1558
1559         /* determine next wakeup, add a timer margin to guarantee chunking */
1560         vshortage = -ctx.vbudget;
1561         expires = now->now_ns +
1562                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1563                 NSEC_PER_USEC;
1564         expires += ioc->timer_slack_ns;
1565
1566         /* if already active and close enough, don't bother */
1567         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1568         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1569             abs(oexpires - expires) <= ioc->timer_slack_ns)
1570                 return;
1571
1572         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1573                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1574 }
1575
1576 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1577 {
1578         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1579         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1580         struct ioc_now now;
1581         unsigned long flags;
1582
1583         ioc_now(iocg->ioc, &now);
1584
1585         iocg_lock(iocg, pay_debt, &flags);
1586         iocg_kick_waitq(iocg, pay_debt, &now);
1587         iocg_unlock(iocg, pay_debt, &flags);
1588
1589         return HRTIMER_NORESTART;
1590 }
1591
1592 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1593 {
1594         u32 nr_met[2] = { };
1595         u32 nr_missed[2] = { };
1596         u64 rq_wait_ns = 0;
1597         int cpu, rw;
1598
1599         for_each_online_cpu(cpu) {
1600                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1601                 u64 this_rq_wait_ns;
1602
1603                 for (rw = READ; rw <= WRITE; rw++) {
1604                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1605                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1606
1607                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1608                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1609                         stat->missed[rw].last_met = this_met;
1610                         stat->missed[rw].last_missed = this_missed;
1611                 }
1612
1613                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1614                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1615                 stat->last_rq_wait_ns = this_rq_wait_ns;
1616         }
1617
1618         for (rw = READ; rw <= WRITE; rw++) {
1619                 if (nr_met[rw] + nr_missed[rw])
1620                         missed_ppm_ar[rw] =
1621                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1622                                                    nr_met[rw] + nr_missed[rw]);
1623                 else
1624                         missed_ppm_ar[rw] = 0;
1625         }
1626
1627         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1628                                    ioc->period_us * NSEC_PER_USEC);
1629 }
1630
1631 /* was iocg idle this period? */
1632 static bool iocg_is_idle(struct ioc_gq *iocg)
1633 {
1634         struct ioc *ioc = iocg->ioc;
1635
1636         /* did something get issued this period? */
1637         if (atomic64_read(&iocg->active_period) ==
1638             atomic64_read(&ioc->cur_period))
1639                 return false;
1640
1641         /* is something in flight? */
1642         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1643                 return false;
1644
1645         return true;
1646 }
1647
1648 /*
1649  * Call this function on the target leaf @iocg's to build pre-order traversal
1650  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1651  * ->walk_list and the caller is responsible for dissolving the list after use.
1652  */
1653 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1654                                   struct list_head *inner_walk)
1655 {
1656         int lvl;
1657
1658         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1659
1660         /* find the first ancestor which hasn't been visited yet */
1661         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1662                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1663                         break;
1664         }
1665
1666         /* walk down and visit the inner nodes to get pre-order traversal */
1667         while (++lvl <= iocg->level - 1) {
1668                 struct ioc_gq *inner = iocg->ancestors[lvl];
1669
1670                 /* record traversal order */
1671                 list_add_tail(&inner->walk_list, inner_walk);
1672         }
1673 }
1674
1675 /* propagate the deltas to the parent */
1676 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1677 {
1678         if (iocg->level > 0) {
1679                 struct iocg_stat *parent_stat =
1680                         &iocg->ancestors[iocg->level - 1]->stat;
1681
1682                 parent_stat->usage_us +=
1683                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1684                 parent_stat->wait_us +=
1685                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1686                 parent_stat->indebt_us +=
1687                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1688                 parent_stat->indelay_us +=
1689                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1690         }
1691
1692         iocg->last_stat = iocg->stat;
1693 }
1694
1695 /* collect per-cpu counters and propagate the deltas to the parent */
1696 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1697 {
1698         struct ioc *ioc = iocg->ioc;
1699         u64 abs_vusage = 0;
1700         u64 vusage_delta;
1701         int cpu;
1702
1703         lockdep_assert_held(&iocg->ioc->lock);
1704
1705         /* collect per-cpu counters */
1706         for_each_possible_cpu(cpu) {
1707                 abs_vusage += local64_read(
1708                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1709         }
1710         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1711         iocg->last_stat_abs_vusage = abs_vusage;
1712
1713         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1714         iocg->stat.usage_us += iocg->usage_delta_us;
1715
1716         iocg_flush_stat_upward(iocg);
1717 }
1718
1719 /* get stat counters ready for reading on all active iocgs */
1720 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1721 {
1722         LIST_HEAD(inner_walk);
1723         struct ioc_gq *iocg, *tiocg;
1724
1725         /* flush leaves and build inner node walk list */
1726         list_for_each_entry(iocg, target_iocgs, active_list) {
1727                 iocg_flush_stat_leaf(iocg, now);
1728                 iocg_build_inner_walk(iocg, &inner_walk);
1729         }
1730
1731         /* keep flushing upwards by walking the inner list backwards */
1732         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1733                 iocg_flush_stat_upward(iocg);
1734                 list_del_init(&iocg->walk_list);
1735         }
1736 }
1737
1738 /*
1739  * Determine what @iocg's hweight_inuse should be after donating unused
1740  * capacity. @hwm is the upper bound and used to signal no donation. This
1741  * function also throws away @iocg's excess budget.
1742  */
1743 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1744                                   u32 usage, struct ioc_now *now)
1745 {
1746         struct ioc *ioc = iocg->ioc;
1747         u64 vtime = atomic64_read(&iocg->vtime);
1748         s64 excess, delta, target, new_hwi;
1749
1750         /* debt handling owns inuse for debtors */
1751         if (iocg->abs_vdebt)
1752                 return 1;
1753
1754         /* see whether minimum margin requirement is met */
1755         if (waitqueue_active(&iocg->waitq) ||
1756             time_after64(vtime, now->vnow - ioc->margins.min))
1757                 return hwm;
1758
1759         /* throw away excess above target */
1760         excess = now->vnow - vtime - ioc->margins.target;
1761         if (excess > 0) {
1762                 atomic64_add(excess, &iocg->vtime);
1763                 atomic64_add(excess, &iocg->done_vtime);
1764                 vtime += excess;
1765                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1766         }
1767
1768         /*
1769          * Let's say the distance between iocg's and device's vtimes as a
1770          * fraction of period duration is delta. Assuming that the iocg will
1771          * consume the usage determined above, we want to determine new_hwi so
1772          * that delta equals MARGIN_TARGET at the end of the next period.
1773          *
1774          * We need to execute usage worth of IOs while spending the sum of the
1775          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1776          * (delta):
1777          *
1778          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1779          *
1780          * Therefore, the new_hwi is:
1781          *
1782          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1783          */
1784         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1785                           now->vnow - ioc->period_at_vtime);
1786         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1787         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1788
1789         return clamp_t(s64, new_hwi, 1, hwm);
1790 }
1791
1792 /*
1793  * For work-conservation, an iocg which isn't using all of its share should
1794  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1795  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1796  *
1797  * #1 is mathematically simpler but has the drawback of requiring synchronous
1798  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1799  * change due to donation snapbacks as it has the possibility of grossly
1800  * overshooting what's allowed by the model and vrate.
1801  *
1802  * #2 is inherently safe with local operations. The donating iocg can easily
1803  * snap back to higher weights when needed without worrying about impacts on
1804  * other nodes as the impacts will be inherently correct. This also makes idle
1805  * iocg activations safe. The only effect activations have is decreasing
1806  * hweight_inuse of others, the right solution to which is for those iocgs to
1807  * snap back to higher weights.
1808  *
1809  * So, we go with #2. The challenge is calculating how each donating iocg's
1810  * inuse should be adjusted to achieve the target donation amounts. This is done
1811  * using Andy's method described in the following pdf.
1812  *
1813  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1814  *
1815  * Given the weights and target after-donation hweight_inuse values, Andy's
1816  * method determines how the proportional distribution should look like at each
1817  * sibling level to maintain the relative relationship between all non-donating
1818  * pairs. To roughly summarize, it divides the tree into donating and
1819  * non-donating parts, calculates global donation rate which is used to
1820  * determine the target hweight_inuse for each node, and then derives per-level
1821  * proportions.
1822  *
1823  * The following pdf shows that global distribution calculated this way can be
1824  * achieved by scaling inuse weights of donating leaves and propagating the
1825  * adjustments upwards proportionally.
1826  *
1827  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1828  *
1829  * Combining the above two, we can determine how each leaf iocg's inuse should
1830  * be adjusted to achieve the target donation.
1831  *
1832  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1833  *
1834  * The inline comments use symbols from the last pdf.
1835  *
1836  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1837  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1838  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1839  *   w is the weight of the node. w = w_f + w_t
1840  *   w_f is the non-donating portion of w. w_f = w * f / b
1841  *   w_b is the donating portion of w. w_t = w * t / b
1842  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1843  *   s_f and s_t are the non-donating and donating portions of s.
1844  *
1845  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1846  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1847  * after adjustments. Subscript r denotes the root node's values.
1848  */
1849 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1850 {
1851         LIST_HEAD(over_hwa);
1852         LIST_HEAD(inner_walk);
1853         struct ioc_gq *iocg, *tiocg, *root_iocg;
1854         u32 after_sum, over_sum, over_target, gamma;
1855
1856         /*
1857          * It's pretty unlikely but possible for the total sum of
1858          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1859          * confuse the following calculations. If such condition is detected,
1860          * scale down everyone over its full share equally to keep the sum below
1861          * WEIGHT_ONE.
1862          */
1863         after_sum = 0;
1864         over_sum = 0;
1865         list_for_each_entry(iocg, surpluses, surplus_list) {
1866                 u32 hwa;
1867
1868                 current_hweight(iocg, &hwa, NULL);
1869                 after_sum += iocg->hweight_after_donation;
1870
1871                 if (iocg->hweight_after_donation > hwa) {
1872                         over_sum += iocg->hweight_after_donation;
1873                         list_add(&iocg->walk_list, &over_hwa);
1874                 }
1875         }
1876
1877         if (after_sum >= WEIGHT_ONE) {
1878                 /*
1879                  * The delta should be deducted from the over_sum, calculate
1880                  * target over_sum value.
1881                  */
1882                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1883                 WARN_ON_ONCE(over_sum <= over_delta);
1884                 over_target = over_sum - over_delta;
1885         } else {
1886                 over_target = 0;
1887         }
1888
1889         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1890                 if (over_target)
1891                         iocg->hweight_after_donation =
1892                                 div_u64((u64)iocg->hweight_after_donation *
1893                                         over_target, over_sum);
1894                 list_del_init(&iocg->walk_list);
1895         }
1896
1897         /*
1898          * Build pre-order inner node walk list and prepare for donation
1899          * adjustment calculations.
1900          */
1901         list_for_each_entry(iocg, surpluses, surplus_list) {
1902                 iocg_build_inner_walk(iocg, &inner_walk);
1903         }
1904
1905         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1906         WARN_ON_ONCE(root_iocg->level > 0);
1907
1908         list_for_each_entry(iocg, &inner_walk, walk_list) {
1909                 iocg->child_adjusted_sum = 0;
1910                 iocg->hweight_donating = 0;
1911                 iocg->hweight_after_donation = 0;
1912         }
1913
1914         /*
1915          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1916          * up the hierarchy.
1917          */
1918         list_for_each_entry(iocg, surpluses, surplus_list) {
1919                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1920
1921                 parent->hweight_donating += iocg->hweight_donating;
1922                 parent->hweight_after_donation += iocg->hweight_after_donation;
1923         }
1924
1925         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1926                 if (iocg->level > 0) {
1927                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1928
1929                         parent->hweight_donating += iocg->hweight_donating;
1930                         parent->hweight_after_donation += iocg->hweight_after_donation;
1931                 }
1932         }
1933
1934         /*
1935          * Calculate inner hwa's (b) and make sure the donation values are
1936          * within the accepted ranges as we're doing low res calculations with
1937          * roundups.
1938          */
1939         list_for_each_entry(iocg, &inner_walk, walk_list) {
1940                 if (iocg->level) {
1941                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1942
1943                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1944                                 (u64)parent->hweight_active * iocg->active,
1945                                 parent->child_active_sum);
1946
1947                 }
1948
1949                 iocg->hweight_donating = min(iocg->hweight_donating,
1950                                              iocg->hweight_active);
1951                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1952                                                    iocg->hweight_donating - 1);
1953                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1954                                  iocg->hweight_donating <= 1 ||
1955                                  iocg->hweight_after_donation == 0)) {
1956                         pr_warn("iocg: invalid donation weights in ");
1957                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1958                         pr_cont(": active=%u donating=%u after=%u\n",
1959                                 iocg->hweight_active, iocg->hweight_donating,
1960                                 iocg->hweight_after_donation);
1961                 }
1962         }
1963
1964         /*
1965          * Calculate the global donation rate (gamma) - the rate to adjust
1966          * non-donating budgets by.
1967          *
1968          * No need to use 64bit multiplication here as the first operand is
1969          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1970          *
1971          * We know that there are beneficiary nodes and the sum of the donating
1972          * hweights can't be whole; however, due to the round-ups during hweight
1973          * calculations, root_iocg->hweight_donating might still end up equal to
1974          * or greater than whole. Limit the range when calculating the divider.
1975          *
1976          * gamma = (1 - t_r') / (1 - t_r)
1977          */
1978         gamma = DIV_ROUND_UP(
1979                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1980                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1981
1982         /*
1983          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1984          * nodes.
1985          */
1986         list_for_each_entry(iocg, &inner_walk, walk_list) {
1987                 struct ioc_gq *parent;
1988                 u32 inuse, wpt, wptp;
1989                 u64 st, sf;
1990
1991                 if (iocg->level == 0) {
1992                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1993                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1994                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1995                                 WEIGHT_ONE - iocg->hweight_after_donation);
1996                         continue;
1997                 }
1998
1999                 parent = iocg->ancestors[iocg->level - 1];
2000
2001                 /* b' = gamma * b_f + b_t' */
2002                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
2003                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
2004                         WEIGHT_ONE) + iocg->hweight_after_donation;
2005
2006                 /* w' = s' * b' / b'_p */
2007                 inuse = DIV64_U64_ROUND_UP(
2008                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2009                         parent->hweight_inuse);
2010
2011                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2012                 st = DIV64_U64_ROUND_UP(
2013                         iocg->child_active_sum * iocg->hweight_donating,
2014                         iocg->hweight_active);
2015                 sf = iocg->child_active_sum - st;
2016                 wpt = DIV64_U64_ROUND_UP(
2017                         (u64)iocg->active * iocg->hweight_donating,
2018                         iocg->hweight_active);
2019                 wptp = DIV64_U64_ROUND_UP(
2020                         (u64)inuse * iocg->hweight_after_donation,
2021                         iocg->hweight_inuse);
2022
2023                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2024         }
2025
2026         /*
2027          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2028          * we can finally determine leaf adjustments.
2029          */
2030         list_for_each_entry(iocg, surpluses, surplus_list) {
2031                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2032                 u32 inuse;
2033
2034                 /*
2035                  * In-debt iocgs participated in the donation calculation with
2036                  * the minimum target hweight_inuse. Configuring inuse
2037                  * accordingly would work fine but debt handling expects
2038                  * @iocg->inuse stay at the minimum and we don't wanna
2039                  * interfere.
2040                  */
2041                 if (iocg->abs_vdebt) {
2042                         WARN_ON_ONCE(iocg->inuse > 1);
2043                         continue;
2044                 }
2045
2046                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2047                 inuse = DIV64_U64_ROUND_UP(
2048                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2049                         parent->hweight_inuse);
2050
2051                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2052                                 iocg->inuse, inuse,
2053                                 iocg->hweight_inuse,
2054                                 iocg->hweight_after_donation);
2055
2056                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2057         }
2058
2059         /* walk list should be dissolved after use */
2060         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2061                 list_del_init(&iocg->walk_list);
2062 }
2063
2064 /*
2065  * A low weight iocg can amass a large amount of debt, for example, when
2066  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2067  * memory paired with a slow IO device, the debt can span multiple seconds or
2068  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2069  * up blocked paying its debt while the IO device is idle.
2070  *
2071  * The following protects against such cases. If the device has been
2072  * sufficiently idle for a while, the debts are halved and delays are
2073  * recalculated.
2074  */
2075 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2076                               struct ioc_now *now)
2077 {
2078         struct ioc_gq *iocg;
2079         u64 dur, usage_pct, nr_cycles;
2080
2081         /* if no debtor, reset the cycle */
2082         if (!nr_debtors) {
2083                 ioc->dfgv_period_at = now->now;
2084                 ioc->dfgv_period_rem = 0;
2085                 ioc->dfgv_usage_us_sum = 0;
2086                 return;
2087         }
2088
2089         /*
2090          * Debtors can pass through a lot of writes choking the device and we
2091          * don't want to be forgiving debts while the device is struggling from
2092          * write bursts. If we're missing latency targets, consider the device
2093          * fully utilized.
2094          */
2095         if (ioc->busy_level > 0)
2096                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2097
2098         ioc->dfgv_usage_us_sum += usage_us_sum;
2099         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2100                 return;
2101
2102         /*
2103          * At least DFGV_PERIOD has passed since the last period. Calculate the
2104          * average usage and reset the period counters.
2105          */
2106         dur = now->now - ioc->dfgv_period_at;
2107         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2108
2109         ioc->dfgv_period_at = now->now;
2110         ioc->dfgv_usage_us_sum = 0;
2111
2112         /* if was too busy, reset everything */
2113         if (usage_pct > DFGV_USAGE_PCT) {
2114                 ioc->dfgv_period_rem = 0;
2115                 return;
2116         }
2117
2118         /*
2119          * Usage is lower than threshold. Let's forgive some debts. Debt
2120          * forgiveness runs off of the usual ioc timer but its period usually
2121          * doesn't match ioc's. Compensate the difference by performing the
2122          * reduction as many times as would fit in the duration since the last
2123          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2124          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2125          * reductions is doubled.
2126          */
2127         nr_cycles = dur + ioc->dfgv_period_rem;
2128         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2129
2130         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2131                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2132
2133                 if (!iocg->abs_vdebt && !iocg->delay)
2134                         continue;
2135
2136                 spin_lock(&iocg->waitq.lock);
2137
2138                 old_debt = iocg->abs_vdebt;
2139                 old_delay = iocg->delay;
2140
2141                 if (iocg->abs_vdebt)
2142                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2143                 if (iocg->delay)
2144                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2145
2146                 iocg_kick_waitq(iocg, true, now);
2147
2148                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2149                                 old_debt, iocg->abs_vdebt,
2150                                 old_delay, iocg->delay);
2151
2152                 spin_unlock(&iocg->waitq.lock);
2153         }
2154 }
2155
2156 /*
2157  * Check the active iocgs' state to avoid oversleeping and deactive
2158  * idle iocgs.
2159  *
2160  * Since waiters determine the sleep durations based on the vrate
2161  * they saw at the time of sleep, if vrate has increased, some
2162  * waiters could be sleeping for too long. Wake up tardy waiters
2163  * which should have woken up in the last period and expire idle
2164  * iocgs.
2165  */
2166 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2167 {
2168         int nr_debtors = 0;
2169         struct ioc_gq *iocg, *tiocg;
2170
2171         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2172                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2173                     !iocg->delay && !iocg_is_idle(iocg))
2174                         continue;
2175
2176                 spin_lock(&iocg->waitq.lock);
2177
2178                 /* flush wait and indebt stat deltas */
2179                 if (iocg->wait_since) {
2180                         iocg->stat.wait_us += now->now - iocg->wait_since;
2181                         iocg->wait_since = now->now;
2182                 }
2183                 if (iocg->indebt_since) {
2184                         iocg->stat.indebt_us +=
2185                                 now->now - iocg->indebt_since;
2186                         iocg->indebt_since = now->now;
2187                 }
2188                 if (iocg->indelay_since) {
2189                         iocg->stat.indelay_us +=
2190                                 now->now - iocg->indelay_since;
2191                         iocg->indelay_since = now->now;
2192                 }
2193
2194                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2195                     iocg->delay) {
2196                         /* might be oversleeping vtime / hweight changes, kick */
2197                         iocg_kick_waitq(iocg, true, now);
2198                         if (iocg->abs_vdebt || iocg->delay)
2199                                 nr_debtors++;
2200                 } else if (iocg_is_idle(iocg)) {
2201                         /* no waiter and idle, deactivate */
2202                         u64 vtime = atomic64_read(&iocg->vtime);
2203                         s64 excess;
2204
2205                         /*
2206                          * @iocg has been inactive for a full duration and will
2207                          * have a high budget. Account anything above target as
2208                          * error and throw away. On reactivation, it'll start
2209                          * with the target budget.
2210                          */
2211                         excess = now->vnow - vtime - ioc->margins.target;
2212                         if (excess > 0) {
2213                                 u32 old_hwi;
2214
2215                                 current_hweight(iocg, NULL, &old_hwi);
2216                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2217                                                             WEIGHT_ONE);
2218                         }
2219
2220                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2221                                         atomic64_read(&iocg->active_period),
2222                                         atomic64_read(&ioc->cur_period), vtime);
2223                         __propagate_weights(iocg, 0, 0, false, now);
2224                         list_del_init(&iocg->active_list);
2225                 }
2226
2227                 spin_unlock(&iocg->waitq.lock);
2228         }
2229
2230         commit_weights(ioc);
2231         return nr_debtors;
2232 }
2233
2234 static void ioc_timer_fn(struct timer_list *timer)
2235 {
2236         struct ioc *ioc = container_of(timer, struct ioc, timer);
2237         struct ioc_gq *iocg, *tiocg;
2238         struct ioc_now now;
2239         LIST_HEAD(surpluses);
2240         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2241         u64 usage_us_sum = 0;
2242         u32 ppm_rthr;
2243         u32 ppm_wthr;
2244         u32 missed_ppm[2], rq_wait_pct;
2245         u64 period_vtime;
2246         int prev_busy_level;
2247
2248         /* how were the latencies during the period? */
2249         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2250
2251         /* take care of active iocgs */
2252         spin_lock_irq(&ioc->lock);
2253
2254         ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2255         ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2256         ioc_now(ioc, &now);
2257
2258         period_vtime = now.vnow - ioc->period_at_vtime;
2259         if (WARN_ON_ONCE(!period_vtime)) {
2260                 spin_unlock_irq(&ioc->lock);
2261                 return;
2262         }
2263
2264         nr_debtors = ioc_check_iocgs(ioc, &now);
2265
2266         /*
2267          * Wait and indebt stat are flushed above and the donation calculation
2268          * below needs updated usage stat. Let's bring stat up-to-date.
2269          */
2270         iocg_flush_stat(&ioc->active_iocgs, &now);
2271
2272         /* calc usage and see whether some weights need to be moved around */
2273         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2274                 u64 vdone, vtime, usage_us;
2275                 u32 hw_active, hw_inuse;
2276
2277                 /*
2278                  * Collect unused and wind vtime closer to vnow to prevent
2279                  * iocgs from accumulating a large amount of budget.
2280                  */
2281                 vdone = atomic64_read(&iocg->done_vtime);
2282                 vtime = atomic64_read(&iocg->vtime);
2283                 current_hweight(iocg, &hw_active, &hw_inuse);
2284
2285                 /*
2286                  * Latency QoS detection doesn't account for IOs which are
2287                  * in-flight for longer than a period.  Detect them by
2288                  * comparing vdone against period start.  If lagging behind
2289                  * IOs from past periods, don't increase vrate.
2290                  */
2291                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2292                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2293                     time_after64(vtime, vdone) &&
2294                     time_after64(vtime, now.vnow -
2295                                  MAX_LAGGING_PERIODS * period_vtime) &&
2296                     time_before64(vdone, now.vnow - period_vtime))
2297                         nr_lagging++;
2298
2299                 /*
2300                  * Determine absolute usage factoring in in-flight IOs to avoid
2301                  * high-latency completions appearing as idle.
2302                  */
2303                 usage_us = iocg->usage_delta_us;
2304                 usage_us_sum += usage_us;
2305
2306                 /* see whether there's surplus vtime */
2307                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2308                 if (hw_inuse < hw_active ||
2309                     (!waitqueue_active(&iocg->waitq) &&
2310                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2311                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2312                         u64 usage_dur;
2313
2314                         if (vdone != vtime) {
2315                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2316                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2317                                         ioc->vtime_base_rate);
2318
2319                                 usage_us = max(usage_us, inflight_us);
2320                         }
2321
2322                         /* convert to hweight based usage ratio */
2323                         if (time_after64(iocg->activated_at, ioc->period_at))
2324                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2325                         else
2326                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2327
2328                         usage = clamp_t(u32,
2329                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2330                                                    usage_dur),
2331                                 1, WEIGHT_ONE);
2332
2333                         /*
2334                          * Already donating or accumulated enough to start.
2335                          * Determine the donation amount.
2336                          */
2337                         current_hweight(iocg, &hwa, &old_hwi);
2338                         hwm = current_hweight_max(iocg);
2339                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2340                                                          usage, &now);
2341                         /*
2342                          * Donation calculation assumes hweight_after_donation
2343                          * to be positive, a condition that a donor w/ hwa < 2
2344                          * can't meet. Don't bother with donation if hwa is
2345                          * below 2. It's not gonna make a meaningful difference
2346                          * anyway.
2347                          */
2348                         if (new_hwi < hwm && hwa >= 2) {
2349                                 iocg->hweight_donating = hwa;
2350                                 iocg->hweight_after_donation = new_hwi;
2351                                 list_add(&iocg->surplus_list, &surpluses);
2352                         } else if (!iocg->abs_vdebt) {
2353                                 /*
2354                                  * @iocg doesn't have enough to donate. Reset
2355                                  * its inuse to active.
2356                                  *
2357                                  * Don't reset debtors as their inuse's are
2358                                  * owned by debt handling. This shouldn't affect
2359                                  * donation calculuation in any meaningful way
2360                                  * as @iocg doesn't have a meaningful amount of
2361                                  * share anyway.
2362                                  */
2363                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2364                                                 iocg->inuse, iocg->active,
2365                                                 iocg->hweight_inuse, new_hwi);
2366
2367                                 __propagate_weights(iocg, iocg->active,
2368                                                     iocg->active, true, &now);
2369                                 nr_shortages++;
2370                         }
2371                 } else {
2372                         /* genuinely short on vtime */
2373                         nr_shortages++;
2374                 }
2375         }
2376
2377         if (!list_empty(&surpluses) && nr_shortages)
2378                 transfer_surpluses(&surpluses, &now);
2379
2380         commit_weights(ioc);
2381
2382         /* surplus list should be dissolved after use */
2383         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2384                 list_del_init(&iocg->surplus_list);
2385
2386         /*
2387          * If q is getting clogged or we're missing too much, we're issuing
2388          * too much IO and should lower vtime rate.  If we're not missing
2389          * and experiencing shortages but not surpluses, we're too stingy
2390          * and should increase vtime rate.
2391          */
2392         prev_busy_level = ioc->busy_level;
2393         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2394             missed_ppm[READ] > ppm_rthr ||
2395             missed_ppm[WRITE] > ppm_wthr) {
2396                 /* clearly missing QoS targets, slow down vrate */
2397                 ioc->busy_level = max(ioc->busy_level, 0);
2398                 ioc->busy_level++;
2399         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2400                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2401                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2402                 /* QoS targets are being met with >25% margin */
2403                 if (nr_shortages) {
2404                         /*
2405                          * We're throttling while the device has spare
2406                          * capacity.  If vrate was being slowed down, stop.
2407                          */
2408                         ioc->busy_level = min(ioc->busy_level, 0);
2409
2410                         /*
2411                          * If there are IOs spanning multiple periods, wait
2412                          * them out before pushing the device harder.
2413                          */
2414                         if (!nr_lagging)
2415                                 ioc->busy_level--;
2416                 } else {
2417                         /*
2418                          * Nobody is being throttled and the users aren't
2419                          * issuing enough IOs to saturate the device.  We
2420                          * simply don't know how close the device is to
2421                          * saturation.  Coast.
2422                          */
2423                         ioc->busy_level = 0;
2424                 }
2425         } else {
2426                 /* inside the hysterisis margin, we're good */
2427                 ioc->busy_level = 0;
2428         }
2429
2430         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2431
2432         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2433                               prev_busy_level, missed_ppm);
2434
2435         ioc_refresh_params(ioc, false);
2436
2437         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2438
2439         /*
2440          * This period is done.  Move onto the next one.  If nothing's
2441          * going on with the device, stop the timer.
2442          */
2443         atomic64_inc(&ioc->cur_period);
2444
2445         if (ioc->running != IOC_STOP) {
2446                 if (!list_empty(&ioc->active_iocgs)) {
2447                         ioc_start_period(ioc, &now);
2448                 } else {
2449                         ioc->busy_level = 0;
2450                         ioc->vtime_err = 0;
2451                         ioc->running = IOC_IDLE;
2452                 }
2453
2454                 ioc_refresh_vrate(ioc, &now);
2455         }
2456
2457         spin_unlock_irq(&ioc->lock);
2458 }
2459
2460 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2461                                       u64 abs_cost, struct ioc_now *now)
2462 {
2463         struct ioc *ioc = iocg->ioc;
2464         struct ioc_margins *margins = &ioc->margins;
2465         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2466         u32 hwi, adj_step;
2467         s64 margin;
2468         u64 cost, new_inuse;
2469         unsigned long flags;
2470
2471         current_hweight(iocg, NULL, &hwi);
2472         old_hwi = hwi;
2473         cost = abs_cost_to_cost(abs_cost, hwi);
2474         margin = now->vnow - vtime - cost;
2475
2476         /* debt handling owns inuse for debtors */
2477         if (iocg->abs_vdebt)
2478                 return cost;
2479
2480         /*
2481          * We only increase inuse during period and do so if the margin has
2482          * deteriorated since the previous adjustment.
2483          */
2484         if (margin >= iocg->saved_margin || margin >= margins->low ||
2485             iocg->inuse == iocg->active)
2486                 return cost;
2487
2488         spin_lock_irqsave(&ioc->lock, flags);
2489
2490         /* we own inuse only when @iocg is in the normal active state */
2491         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2492                 spin_unlock_irqrestore(&ioc->lock, flags);
2493                 return cost;
2494         }
2495
2496         /*
2497          * Bump up inuse till @abs_cost fits in the existing budget.
2498          * adj_step must be determined after acquiring ioc->lock - we might
2499          * have raced and lost to another thread for activation and could
2500          * be reading 0 iocg->active before ioc->lock which will lead to
2501          * infinite loop.
2502          */
2503         new_inuse = iocg->inuse;
2504         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2505         do {
2506                 new_inuse = new_inuse + adj_step;
2507                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2508                 current_hweight(iocg, NULL, &hwi);
2509                 cost = abs_cost_to_cost(abs_cost, hwi);
2510         } while (time_after64(vtime + cost, now->vnow) &&
2511                  iocg->inuse != iocg->active);
2512
2513         spin_unlock_irqrestore(&ioc->lock, flags);
2514
2515         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2516                         old_inuse, iocg->inuse, old_hwi, hwi);
2517
2518         return cost;
2519 }
2520
2521 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2522                                     bool is_merge, u64 *costp)
2523 {
2524         struct ioc *ioc = iocg->ioc;
2525         u64 coef_seqio, coef_randio, coef_page;
2526         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2527         u64 seek_pages = 0;
2528         u64 cost = 0;
2529
2530         /* Can't calculate cost for empty bio */
2531         if (!bio->bi_iter.bi_size)
2532                 goto out;
2533
2534         switch (bio_op(bio)) {
2535         case REQ_OP_READ:
2536                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2537                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2538                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2539                 break;
2540         case REQ_OP_WRITE:
2541                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2542                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2543                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2544                 break;
2545         default:
2546                 goto out;
2547         }
2548
2549         if (iocg->cursor) {
2550                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2551                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2552         }
2553
2554         if (!is_merge) {
2555                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2556                         cost += coef_randio;
2557                 } else {
2558                         cost += coef_seqio;
2559                 }
2560         }
2561         cost += pages * coef_page;
2562 out:
2563         *costp = cost;
2564 }
2565
2566 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2567 {
2568         u64 cost;
2569
2570         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2571         return cost;
2572 }
2573
2574 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2575                                          u64 *costp)
2576 {
2577         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2578
2579         switch (req_op(rq)) {
2580         case REQ_OP_READ:
2581                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2582                 break;
2583         case REQ_OP_WRITE:
2584                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2585                 break;
2586         default:
2587                 *costp = 0;
2588         }
2589 }
2590
2591 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2592 {
2593         u64 cost;
2594
2595         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2596         return cost;
2597 }
2598
2599 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2600 {
2601         struct blkcg_gq *blkg = bio->bi_blkg;
2602         struct ioc *ioc = rqos_to_ioc(rqos);
2603         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2604         struct ioc_now now;
2605         struct iocg_wait wait;
2606         u64 abs_cost, cost, vtime;
2607         bool use_debt, ioc_locked;
2608         unsigned long flags;
2609
2610         /* bypass IOs if disabled, still initializing, or for root cgroup */
2611         if (!ioc->enabled || !iocg || !iocg->level)
2612                 return;
2613
2614         /* calculate the absolute vtime cost */
2615         abs_cost = calc_vtime_cost(bio, iocg, false);
2616         if (!abs_cost)
2617                 return;
2618
2619         if (!iocg_activate(iocg, &now))
2620                 return;
2621
2622         iocg->cursor = bio_end_sector(bio);
2623         vtime = atomic64_read(&iocg->vtime);
2624         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2625
2626         /*
2627          * If no one's waiting and within budget, issue right away.  The
2628          * tests are racy but the races aren't systemic - we only miss once
2629          * in a while which is fine.
2630          */
2631         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2632             time_before_eq64(vtime + cost, now.vnow)) {
2633                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2634                 return;
2635         }
2636
2637         /*
2638          * We're over budget. This can be handled in two ways. IOs which may
2639          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2640          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2641          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2642          * whether debt handling is needed and acquire locks accordingly.
2643          */
2644         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2645         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2646 retry_lock:
2647         iocg_lock(iocg, ioc_locked, &flags);
2648
2649         /*
2650          * @iocg must stay activated for debt and waitq handling. Deactivation
2651          * is synchronized against both ioc->lock and waitq.lock and we won't
2652          * get deactivated as long as we're waiting or has debt, so we're good
2653          * if we're activated here. In the unlikely cases that we aren't, just
2654          * issue the IO.
2655          */
2656         if (unlikely(list_empty(&iocg->active_list))) {
2657                 iocg_unlock(iocg, ioc_locked, &flags);
2658                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2659                 return;
2660         }
2661
2662         /*
2663          * We're over budget. If @bio has to be issued regardless, remember
2664          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2665          * off the debt before waking more IOs.
2666          *
2667          * This way, the debt is continuously paid off each period with the
2668          * actual budget available to the cgroup. If we just wound vtime, we
2669          * would incorrectly use the current hw_inuse for the entire amount
2670          * which, for example, can lead to the cgroup staying blocked for a
2671          * long time even with substantially raised hw_inuse.
2672          *
2673          * An iocg with vdebt should stay online so that the timer can keep
2674          * deducting its vdebt and [de]activate use_delay mechanism
2675          * accordingly. We don't want to race against the timer trying to
2676          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2677          * penalizing the cgroup and its descendants.
2678          */
2679         if (use_debt) {
2680                 iocg_incur_debt(iocg, abs_cost, &now);
2681                 if (iocg_kick_delay(iocg, &now))
2682                         blkcg_schedule_throttle(rqos->disk,
2683                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2684                 iocg_unlock(iocg, ioc_locked, &flags);
2685                 return;
2686         }
2687
2688         /* guarantee that iocgs w/ waiters have maximum inuse */
2689         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2690                 if (!ioc_locked) {
2691                         iocg_unlock(iocg, false, &flags);
2692                         ioc_locked = true;
2693                         goto retry_lock;
2694                 }
2695                 propagate_weights(iocg, iocg->active, iocg->active, true,
2696                                   &now);
2697         }
2698
2699         /*
2700          * Append self to the waitq and schedule the wakeup timer if we're
2701          * the first waiter.  The timer duration is calculated based on the
2702          * current vrate.  vtime and hweight changes can make it too short
2703          * or too long.  Each wait entry records the absolute cost it's
2704          * waiting for to allow re-evaluation using a custom wait entry.
2705          *
2706          * If too short, the timer simply reschedules itself.  If too long,
2707          * the period timer will notice and trigger wakeups.
2708          *
2709          * All waiters are on iocg->waitq and the wait states are
2710          * synchronized using waitq.lock.
2711          */
2712         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2713         wait.wait.private = current;
2714         wait.bio = bio;
2715         wait.abs_cost = abs_cost;
2716         wait.committed = false; /* will be set true by waker */
2717
2718         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2719         iocg_kick_waitq(iocg, ioc_locked, &now);
2720
2721         iocg_unlock(iocg, ioc_locked, &flags);
2722
2723         while (true) {
2724                 set_current_state(TASK_UNINTERRUPTIBLE);
2725                 if (wait.committed)
2726                         break;
2727                 io_schedule();
2728         }
2729
2730         /* waker already committed us, proceed */
2731         finish_wait(&iocg->waitq, &wait.wait);
2732 }
2733
2734 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2735                            struct bio *bio)
2736 {
2737         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2738         struct ioc *ioc = rqos_to_ioc(rqos);
2739         sector_t bio_end = bio_end_sector(bio);
2740         struct ioc_now now;
2741         u64 vtime, abs_cost, cost;
2742         unsigned long flags;
2743
2744         /* bypass if disabled, still initializing, or for root cgroup */
2745         if (!ioc->enabled || !iocg || !iocg->level)
2746                 return;
2747
2748         abs_cost = calc_vtime_cost(bio, iocg, true);
2749         if (!abs_cost)
2750                 return;
2751
2752         ioc_now(ioc, &now);
2753
2754         vtime = atomic64_read(&iocg->vtime);
2755         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2756
2757         /* update cursor if backmerging into the request at the cursor */
2758         if (blk_rq_pos(rq) < bio_end &&
2759             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2760                 iocg->cursor = bio_end;
2761
2762         /*
2763          * Charge if there's enough vtime budget and the existing request has
2764          * cost assigned.
2765          */
2766         if (rq->bio && rq->bio->bi_iocost_cost &&
2767             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2768                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2769                 return;
2770         }
2771
2772         /*
2773          * Otherwise, account it as debt if @iocg is online, which it should
2774          * be for the vast majority of cases. See debt handling in
2775          * ioc_rqos_throttle() for details.
2776          */
2777         spin_lock_irqsave(&ioc->lock, flags);
2778         spin_lock(&iocg->waitq.lock);
2779
2780         if (likely(!list_empty(&iocg->active_list))) {
2781                 iocg_incur_debt(iocg, abs_cost, &now);
2782                 if (iocg_kick_delay(iocg, &now))
2783                         blkcg_schedule_throttle(rqos->disk,
2784                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2785         } else {
2786                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2787         }
2788
2789         spin_unlock(&iocg->waitq.lock);
2790         spin_unlock_irqrestore(&ioc->lock, flags);
2791 }
2792
2793 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2794 {
2795         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2796
2797         if (iocg && bio->bi_iocost_cost)
2798                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2799 }
2800
2801 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2802 {
2803         struct ioc *ioc = rqos_to_ioc(rqos);
2804         struct ioc_pcpu_stat *ccs;
2805         u64 on_q_ns, rq_wait_ns, size_nsec;
2806         int pidx, rw;
2807
2808         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2809                 return;
2810
2811         switch (req_op(rq)) {
2812         case REQ_OP_READ:
2813                 pidx = QOS_RLAT;
2814                 rw = READ;
2815                 break;
2816         case REQ_OP_WRITE:
2817                 pidx = QOS_WLAT;
2818                 rw = WRITE;
2819                 break;
2820         default:
2821                 return;
2822         }
2823
2824         on_q_ns = blk_time_get_ns() - rq->alloc_time_ns;
2825         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2826         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2827
2828         ccs = get_cpu_ptr(ioc->pcpu_stat);
2829
2830         if (on_q_ns <= size_nsec ||
2831             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2832                 local_inc(&ccs->missed[rw].nr_met);
2833         else
2834                 local_inc(&ccs->missed[rw].nr_missed);
2835
2836         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2837
2838         put_cpu_ptr(ccs);
2839 }
2840
2841 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2842 {
2843         struct ioc *ioc = rqos_to_ioc(rqos);
2844
2845         spin_lock_irq(&ioc->lock);
2846         ioc_refresh_params(ioc, false);
2847         spin_unlock_irq(&ioc->lock);
2848 }
2849
2850 static void ioc_rqos_exit(struct rq_qos *rqos)
2851 {
2852         struct ioc *ioc = rqos_to_ioc(rqos);
2853
2854         blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2855
2856         spin_lock_irq(&ioc->lock);
2857         ioc->running = IOC_STOP;
2858         spin_unlock_irq(&ioc->lock);
2859
2860         timer_shutdown_sync(&ioc->timer);
2861         free_percpu(ioc->pcpu_stat);
2862         kfree(ioc);
2863 }
2864
2865 static const struct rq_qos_ops ioc_rqos_ops = {
2866         .throttle = ioc_rqos_throttle,
2867         .merge = ioc_rqos_merge,
2868         .done_bio = ioc_rqos_done_bio,
2869         .done = ioc_rqos_done,
2870         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2871         .exit = ioc_rqos_exit,
2872 };
2873
2874 static int blk_iocost_init(struct gendisk *disk)
2875 {
2876         struct ioc *ioc;
2877         int i, cpu, ret;
2878
2879         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2880         if (!ioc)
2881                 return -ENOMEM;
2882
2883         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2884         if (!ioc->pcpu_stat) {
2885                 kfree(ioc);
2886                 return -ENOMEM;
2887         }
2888
2889         for_each_possible_cpu(cpu) {
2890                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2891
2892                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2893                         local_set(&ccs->missed[i].nr_met, 0);
2894                         local_set(&ccs->missed[i].nr_missed, 0);
2895                 }
2896                 local64_set(&ccs->rq_wait_ns, 0);
2897         }
2898
2899         spin_lock_init(&ioc->lock);
2900         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2901         INIT_LIST_HEAD(&ioc->active_iocgs);
2902
2903         ioc->running = IOC_IDLE;
2904         ioc->vtime_base_rate = VTIME_PER_USEC;
2905         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2906         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2907         ioc->period_at = ktime_to_us(blk_time_get());
2908         atomic64_set(&ioc->cur_period, 0);
2909         atomic_set(&ioc->hweight_gen, 0);
2910
2911         spin_lock_irq(&ioc->lock);
2912         ioc->autop_idx = AUTOP_INVALID;
2913         ioc_refresh_params_disk(ioc, true, disk);
2914         spin_unlock_irq(&ioc->lock);
2915
2916         /*
2917          * rqos must be added before activation to allow ioc_pd_init() to
2918          * lookup the ioc from q. This means that the rqos methods may get
2919          * called before policy activation completion, can't assume that the
2920          * target bio has an iocg associated and need to test for NULL iocg.
2921          */
2922         ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2923         if (ret)
2924                 goto err_free_ioc;
2925
2926         ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2927         if (ret)
2928                 goto err_del_qos;
2929         return 0;
2930
2931 err_del_qos:
2932         rq_qos_del(&ioc->rqos);
2933 err_free_ioc:
2934         free_percpu(ioc->pcpu_stat);
2935         kfree(ioc);
2936         return ret;
2937 }
2938
2939 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2940 {
2941         struct ioc_cgrp *iocc;
2942
2943         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2944         if (!iocc)
2945                 return NULL;
2946
2947         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2948         return &iocc->cpd;
2949 }
2950
2951 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2952 {
2953         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2954 }
2955
2956 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2957                 struct blkcg *blkcg, gfp_t gfp)
2958 {
2959         int levels = blkcg->css.cgroup->level + 1;
2960         struct ioc_gq *iocg;
2961
2962         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2963                             disk->node_id);
2964         if (!iocg)
2965                 return NULL;
2966
2967         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2968         if (!iocg->pcpu_stat) {
2969                 kfree(iocg);
2970                 return NULL;
2971         }
2972
2973         return &iocg->pd;
2974 }
2975
2976 static void ioc_pd_init(struct blkg_policy_data *pd)
2977 {
2978         struct ioc_gq *iocg = pd_to_iocg(pd);
2979         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2980         struct ioc *ioc = q_to_ioc(blkg->q);
2981         struct ioc_now now;
2982         struct blkcg_gq *tblkg;
2983         unsigned long flags;
2984
2985         ioc_now(ioc, &now);
2986
2987         iocg->ioc = ioc;
2988         atomic64_set(&iocg->vtime, now.vnow);
2989         atomic64_set(&iocg->done_vtime, now.vnow);
2990         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2991         INIT_LIST_HEAD(&iocg->active_list);
2992         INIT_LIST_HEAD(&iocg->walk_list);
2993         INIT_LIST_HEAD(&iocg->surplus_list);
2994         iocg->hweight_active = WEIGHT_ONE;
2995         iocg->hweight_inuse = WEIGHT_ONE;
2996
2997         init_waitqueue_head(&iocg->waitq);
2998         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2999         iocg->waitq_timer.function = iocg_waitq_timer_fn;
3000
3001         iocg->level = blkg->blkcg->css.cgroup->level;
3002
3003         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
3004                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
3005                 iocg->ancestors[tiocg->level] = tiocg;
3006         }
3007
3008         spin_lock_irqsave(&ioc->lock, flags);
3009         weight_updated(iocg, &now);
3010         spin_unlock_irqrestore(&ioc->lock, flags);
3011 }
3012
3013 static void ioc_pd_free(struct blkg_policy_data *pd)
3014 {
3015         struct ioc_gq *iocg = pd_to_iocg(pd);
3016         struct ioc *ioc = iocg->ioc;
3017         unsigned long flags;
3018
3019         if (ioc) {
3020                 spin_lock_irqsave(&ioc->lock, flags);
3021
3022                 if (!list_empty(&iocg->active_list)) {
3023                         struct ioc_now now;
3024
3025                         ioc_now(ioc, &now);
3026                         propagate_weights(iocg, 0, 0, false, &now);
3027                         list_del_init(&iocg->active_list);
3028                 }
3029
3030                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3031                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3032
3033                 spin_unlock_irqrestore(&ioc->lock, flags);
3034
3035                 hrtimer_cancel(&iocg->waitq_timer);
3036         }
3037         free_percpu(iocg->pcpu_stat);
3038         kfree(iocg);
3039 }
3040
3041 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3042 {
3043         struct ioc_gq *iocg = pd_to_iocg(pd);
3044         struct ioc *ioc = iocg->ioc;
3045
3046         if (!ioc->enabled)
3047                 return;
3048
3049         if (iocg->level == 0) {
3050                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3051                         ioc->vtime_base_rate * 10000,
3052                         VTIME_PER_USEC);
3053                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3054         }
3055
3056         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3057
3058         if (blkcg_debug_stats)
3059                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3060                         iocg->last_stat.wait_us,
3061                         iocg->last_stat.indebt_us,
3062                         iocg->last_stat.indelay_us);
3063 }
3064
3065 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3066                              int off)
3067 {
3068         const char *dname = blkg_dev_name(pd->blkg);
3069         struct ioc_gq *iocg = pd_to_iocg(pd);
3070
3071         if (dname && iocg->cfg_weight)
3072                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3073         return 0;
3074 }
3075
3076
3077 static int ioc_weight_show(struct seq_file *sf, void *v)
3078 {
3079         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3080         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3081
3082         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3083         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3084                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3085         return 0;
3086 }
3087
3088 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3089                                 size_t nbytes, loff_t off)
3090 {
3091         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3092         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3093         struct blkg_conf_ctx ctx;
3094         struct ioc_now now;
3095         struct ioc_gq *iocg;
3096         u32 v;
3097         int ret;
3098
3099         if (!strchr(buf, ':')) {
3100                 struct blkcg_gq *blkg;
3101
3102                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3103                         return -EINVAL;
3104
3105                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3106                         return -EINVAL;
3107
3108                 spin_lock_irq(&blkcg->lock);
3109                 iocc->dfl_weight = v * WEIGHT_ONE;
3110                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3111                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3112
3113                         if (iocg) {
3114                                 spin_lock(&iocg->ioc->lock);
3115                                 ioc_now(iocg->ioc, &now);
3116                                 weight_updated(iocg, &now);
3117                                 spin_unlock(&iocg->ioc->lock);
3118                         }
3119                 }
3120                 spin_unlock_irq(&blkcg->lock);
3121
3122                 return nbytes;
3123         }
3124
3125         blkg_conf_init(&ctx, buf);
3126
3127         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3128         if (ret)
3129                 goto err;
3130
3131         iocg = blkg_to_iocg(ctx.blkg);
3132
3133         if (!strncmp(ctx.body, "default", 7)) {
3134                 v = 0;
3135         } else {
3136                 if (!sscanf(ctx.body, "%u", &v))
3137                         goto einval;
3138                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3139                         goto einval;
3140         }
3141
3142         spin_lock(&iocg->ioc->lock);
3143         iocg->cfg_weight = v * WEIGHT_ONE;
3144         ioc_now(iocg->ioc, &now);
3145         weight_updated(iocg, &now);
3146         spin_unlock(&iocg->ioc->lock);
3147
3148         blkg_conf_exit(&ctx);
3149         return nbytes;
3150
3151 einval:
3152         ret = -EINVAL;
3153 err:
3154         blkg_conf_exit(&ctx);
3155         return ret;
3156 }
3157
3158 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3159                           int off)
3160 {
3161         const char *dname = blkg_dev_name(pd->blkg);
3162         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3163
3164         if (!dname)
3165                 return 0;
3166
3167         spin_lock_irq(&ioc->lock);
3168         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3169                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3170                    ioc->params.qos[QOS_RPPM] / 10000,
3171                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3172                    ioc->params.qos[QOS_RLAT],
3173                    ioc->params.qos[QOS_WPPM] / 10000,
3174                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3175                    ioc->params.qos[QOS_WLAT],
3176                    ioc->params.qos[QOS_MIN] / 10000,
3177                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3178                    ioc->params.qos[QOS_MAX] / 10000,
3179                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3180         spin_unlock_irq(&ioc->lock);
3181         return 0;
3182 }
3183
3184 static int ioc_qos_show(struct seq_file *sf, void *v)
3185 {
3186         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3187
3188         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3189                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3190         return 0;
3191 }
3192
3193 static const match_table_t qos_ctrl_tokens = {
3194         { QOS_ENABLE,           "enable=%u"     },
3195         { QOS_CTRL,             "ctrl=%s"       },
3196         { NR_QOS_CTRL_PARAMS,   NULL            },
3197 };
3198
3199 static const match_table_t qos_tokens = {
3200         { QOS_RPPM,             "rpct=%s"       },
3201         { QOS_RLAT,             "rlat=%u"       },
3202         { QOS_WPPM,             "wpct=%s"       },
3203         { QOS_WLAT,             "wlat=%u"       },
3204         { QOS_MIN,              "min=%s"        },
3205         { QOS_MAX,              "max=%s"        },
3206         { NR_QOS_PARAMS,        NULL            },
3207 };
3208
3209 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3210                              size_t nbytes, loff_t off)
3211 {
3212         struct blkg_conf_ctx ctx;
3213         struct gendisk *disk;
3214         struct ioc *ioc;
3215         u32 qos[NR_QOS_PARAMS];
3216         bool enable, user;
3217         char *body, *p;
3218         int ret;
3219
3220         blkg_conf_init(&ctx, input);
3221
3222         ret = blkg_conf_open_bdev(&ctx);
3223         if (ret)
3224                 goto err;
3225
3226         body = ctx.body;
3227         disk = ctx.bdev->bd_disk;
3228         if (!queue_is_mq(disk->queue)) {
3229                 ret = -EOPNOTSUPP;
3230                 goto err;
3231         }
3232
3233         ioc = q_to_ioc(disk->queue);
3234         if (!ioc) {
3235                 ret = blk_iocost_init(disk);
3236                 if (ret)
3237                         goto err;
3238                 ioc = q_to_ioc(disk->queue);
3239         }
3240
3241         blk_mq_freeze_queue(disk->queue);
3242         blk_mq_quiesce_queue(disk->queue);
3243
3244         spin_lock_irq(&ioc->lock);
3245         memcpy(qos, ioc->params.qos, sizeof(qos));
3246         enable = ioc->enabled;
3247         user = ioc->user_qos_params;
3248
3249         while ((p = strsep(&body, " \t\n"))) {
3250                 substring_t args[MAX_OPT_ARGS];
3251                 char buf[32];
3252                 int tok;
3253                 s64 v;
3254
3255                 if (!*p)
3256                         continue;
3257
3258                 switch (match_token(p, qos_ctrl_tokens, args)) {
3259                 case QOS_ENABLE:
3260                         if (match_u64(&args[0], &v))
3261                                 goto einval;
3262                         enable = v;
3263                         continue;
3264                 case QOS_CTRL:
3265                         match_strlcpy(buf, &args[0], sizeof(buf));
3266                         if (!strcmp(buf, "auto"))
3267                                 user = false;
3268                         else if (!strcmp(buf, "user"))
3269                                 user = true;
3270                         else
3271                                 goto einval;
3272                         continue;
3273                 }
3274
3275                 tok = match_token(p, qos_tokens, args);
3276                 switch (tok) {
3277                 case QOS_RPPM:
3278                 case QOS_WPPM:
3279                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3280                             sizeof(buf))
3281                                 goto einval;
3282                         if (cgroup_parse_float(buf, 2, &v))
3283                                 goto einval;
3284                         if (v < 0 || v > 10000)
3285                                 goto einval;
3286                         qos[tok] = v * 100;
3287                         break;
3288                 case QOS_RLAT:
3289                 case QOS_WLAT:
3290                         if (match_u64(&args[0], &v))
3291                                 goto einval;
3292                         qos[tok] = v;
3293                         break;
3294                 case QOS_MIN:
3295                 case QOS_MAX:
3296                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3297                             sizeof(buf))
3298                                 goto einval;
3299                         if (cgroup_parse_float(buf, 2, &v))
3300                                 goto einval;
3301                         if (v < 0)
3302                                 goto einval;
3303                         qos[tok] = clamp_t(s64, v * 100,
3304                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3305                         break;
3306                 default:
3307                         goto einval;
3308                 }
3309                 user = true;
3310         }
3311
3312         if (qos[QOS_MIN] > qos[QOS_MAX])
3313                 goto einval;
3314
3315         if (enable && !ioc->enabled) {
3316                 blk_stat_enable_accounting(disk->queue);
3317                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3318                 ioc->enabled = true;
3319         } else if (!enable && ioc->enabled) {
3320                 blk_stat_disable_accounting(disk->queue);
3321                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3322                 ioc->enabled = false;
3323         }
3324
3325         if (user) {
3326                 memcpy(ioc->params.qos, qos, sizeof(qos));
3327                 ioc->user_qos_params = true;
3328         } else {
3329                 ioc->user_qos_params = false;
3330         }
3331
3332         ioc_refresh_params(ioc, true);
3333         spin_unlock_irq(&ioc->lock);
3334
3335         if (enable)
3336                 wbt_disable_default(disk);
3337         else
3338                 wbt_enable_default(disk);
3339
3340         blk_mq_unquiesce_queue(disk->queue);
3341         blk_mq_unfreeze_queue(disk->queue);
3342
3343         blkg_conf_exit(&ctx);
3344         return nbytes;
3345 einval:
3346         spin_unlock_irq(&ioc->lock);
3347
3348         blk_mq_unquiesce_queue(disk->queue);
3349         blk_mq_unfreeze_queue(disk->queue);
3350
3351         ret = -EINVAL;
3352 err:
3353         blkg_conf_exit(&ctx);
3354         return ret;
3355 }
3356
3357 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3358                                  struct blkg_policy_data *pd, int off)
3359 {
3360         const char *dname = blkg_dev_name(pd->blkg);
3361         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3362         u64 *u = ioc->params.i_lcoefs;
3363
3364         if (!dname)
3365                 return 0;
3366
3367         spin_lock_irq(&ioc->lock);
3368         seq_printf(sf, "%s ctrl=%s model=linear "
3369                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3370                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3371                    dname, ioc->user_cost_model ? "user" : "auto",
3372                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3373                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3374         spin_unlock_irq(&ioc->lock);
3375         return 0;
3376 }
3377
3378 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3379 {
3380         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3381
3382         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3383                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3384         return 0;
3385 }
3386
3387 static const match_table_t cost_ctrl_tokens = {
3388         { COST_CTRL,            "ctrl=%s"       },
3389         { COST_MODEL,           "model=%s"      },
3390         { NR_COST_CTRL_PARAMS,  NULL            },
3391 };
3392
3393 static const match_table_t i_lcoef_tokens = {
3394         { I_LCOEF_RBPS,         "rbps=%u"       },
3395         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3396         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3397         { I_LCOEF_WBPS,         "wbps=%u"       },
3398         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3399         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3400         { NR_I_LCOEFS,          NULL            },
3401 };
3402
3403 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3404                                     size_t nbytes, loff_t off)
3405 {
3406         struct blkg_conf_ctx ctx;
3407         struct request_queue *q;
3408         struct ioc *ioc;
3409         u64 u[NR_I_LCOEFS];
3410         bool user;
3411         char *body, *p;
3412         int ret;
3413
3414         blkg_conf_init(&ctx, input);
3415
3416         ret = blkg_conf_open_bdev(&ctx);
3417         if (ret)
3418                 goto err;
3419
3420         body = ctx.body;
3421         q = bdev_get_queue(ctx.bdev);
3422         if (!queue_is_mq(q)) {
3423                 ret = -EOPNOTSUPP;
3424                 goto err;
3425         }
3426
3427         ioc = q_to_ioc(q);
3428         if (!ioc) {
3429                 ret = blk_iocost_init(ctx.bdev->bd_disk);
3430                 if (ret)
3431                         goto err;
3432                 ioc = q_to_ioc(q);
3433         }
3434
3435         blk_mq_freeze_queue(q);
3436         blk_mq_quiesce_queue(q);
3437
3438         spin_lock_irq(&ioc->lock);
3439         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3440         user = ioc->user_cost_model;
3441
3442         while ((p = strsep(&body, " \t\n"))) {
3443                 substring_t args[MAX_OPT_ARGS];
3444                 char buf[32];
3445                 int tok;
3446                 u64 v;
3447
3448                 if (!*p)
3449                         continue;
3450
3451                 switch (match_token(p, cost_ctrl_tokens, args)) {
3452                 case COST_CTRL:
3453                         match_strlcpy(buf, &args[0], sizeof(buf));
3454                         if (!strcmp(buf, "auto"))
3455                                 user = false;
3456                         else if (!strcmp(buf, "user"))
3457                                 user = true;
3458                         else
3459                                 goto einval;
3460                         continue;
3461                 case COST_MODEL:
3462                         match_strlcpy(buf, &args[0], sizeof(buf));
3463                         if (strcmp(buf, "linear"))
3464                                 goto einval;
3465                         continue;
3466                 }
3467
3468                 tok = match_token(p, i_lcoef_tokens, args);
3469                 if (tok == NR_I_LCOEFS)
3470                         goto einval;
3471                 if (match_u64(&args[0], &v))
3472                         goto einval;
3473                 u[tok] = v;
3474                 user = true;
3475         }
3476
3477         if (user) {
3478                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3479                 ioc->user_cost_model = true;
3480         } else {
3481                 ioc->user_cost_model = false;
3482         }
3483         ioc_refresh_params(ioc, true);
3484         spin_unlock_irq(&ioc->lock);
3485
3486         blk_mq_unquiesce_queue(q);
3487         blk_mq_unfreeze_queue(q);
3488
3489         blkg_conf_exit(&ctx);
3490         return nbytes;
3491
3492 einval:
3493         spin_unlock_irq(&ioc->lock);
3494
3495         blk_mq_unquiesce_queue(q);
3496         blk_mq_unfreeze_queue(q);
3497
3498         ret = -EINVAL;
3499 err:
3500         blkg_conf_exit(&ctx);
3501         return ret;
3502 }
3503
3504 static struct cftype ioc_files[] = {
3505         {
3506                 .name = "weight",
3507                 .flags = CFTYPE_NOT_ON_ROOT,
3508                 .seq_show = ioc_weight_show,
3509                 .write = ioc_weight_write,
3510         },
3511         {
3512                 .name = "cost.qos",
3513                 .flags = CFTYPE_ONLY_ON_ROOT,
3514                 .seq_show = ioc_qos_show,
3515                 .write = ioc_qos_write,
3516         },
3517         {
3518                 .name = "cost.model",
3519                 .flags = CFTYPE_ONLY_ON_ROOT,
3520                 .seq_show = ioc_cost_model_show,
3521                 .write = ioc_cost_model_write,
3522         },
3523         {}
3524 };
3525
3526 static struct blkcg_policy blkcg_policy_iocost = {
3527         .dfl_cftypes    = ioc_files,
3528         .cpd_alloc_fn   = ioc_cpd_alloc,
3529         .cpd_free_fn    = ioc_cpd_free,
3530         .pd_alloc_fn    = ioc_pd_alloc,
3531         .pd_init_fn     = ioc_pd_init,
3532         .pd_free_fn     = ioc_pd_free,
3533         .pd_stat_fn     = ioc_pd_stat,
3534 };
3535
3536 static int __init ioc_init(void)
3537 {
3538         return blkcg_policy_register(&blkcg_policy_iocost);
3539 }
3540
3541 static void __exit ioc_exit(void)
3542 {
3543         blkcg_policy_unregister(&blkcg_policy_iocost);
3544 }
3545
3546 module_init(ioc_init);
3547 module_exit(ioc_exit);