GNU Linux-libre 5.10.217-gnu1
[releases.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO iff doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The ouput looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235 };
236
237 enum {
238         /*
239          * As vtime is used to calculate the cost of each IO, it needs to
240          * be fairly high precision.  For example, it should be able to
241          * represent the cost of a single page worth of discard with
242          * suffificient accuracy.  At the same time, it should be able to
243          * represent reasonably long enough durations to be useful and
244          * convenient during operation.
245          *
246          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247          * granularity and days of wrap-around time even at extreme vrates.
248          */
249         VTIME_PER_SEC_SHIFT     = 37,
250         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
251         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
252         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
253
254         /* bound vrate adjustments within two orders of magnitude */
255         VRATE_MIN_PPM           = 10000,        /* 1% */
256         VRATE_MAX_PPM           = 100000000,    /* 10000% */
257
258         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259         VRATE_CLAMP_ADJ_PCT     = 4,
260
261         /* switch iff the conditions are met for longer than this */
262         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
263 };
264
265 enum {
266         /* if IOs end up waiting for requests, issue less */
267         RQ_WAIT_BUSY_PCT        = 5,
268
269         /* unbusy hysterisis */
270         UNBUSY_THR_PCT          = 75,
271
272         /*
273          * The effect of delay is indirect and non-linear and a huge amount of
274          * future debt can accumulate abruptly while unthrottled. Linearly scale
275          * up delay as debt is going up and then let it decay exponentially.
276          * This gives us quick ramp ups while delay is accumulating and long
277          * tails which can help reducing the frequency of debt explosions on
278          * unthrottle. The parameters are experimentally determined.
279          *
280          * The delay mechanism provides adequate protection and behavior in many
281          * cases. However, this is far from ideal and falls shorts on both
282          * fronts. The debtors are often throttled too harshly costing a
283          * significant level of fairness and possibly total work while the
284          * protection against their impacts on the system can be choppy and
285          * unreliable.
286          *
287          * The shortcoming primarily stems from the fact that, unlike for page
288          * cache, the kernel doesn't have well-defined back-pressure propagation
289          * mechanism and policies for anonymous memory. Fully addressing this
290          * issue will likely require substantial improvements in the area.
291          */
292         MIN_DELAY_THR_PCT       = 500,
293         MAX_DELAY_THR_PCT       = 25000,
294         MIN_DELAY               = 250,
295         MAX_DELAY               = 250 * USEC_PER_MSEC,
296
297         /* halve debts if avg usage over 100ms is under 50% */
298         DFGV_USAGE_PCT          = 50,
299         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
300
301         /* don't let cmds which take a very long time pin lagging for too long */
302         MAX_LAGGING_PERIODS     = 10,
303
304         /*
305          * Count IO size in 4k pages.  The 12bit shift helps keeping
306          * size-proportional components of cost calculation in closer
307          * numbers of digits to per-IO cost components.
308          */
309         IOC_PAGE_SHIFT          = 12,
310         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
311         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313         /* if apart further than 16M, consider randio for linear model */
314         LCOEF_RANDIO_PAGES      = 4096,
315 };
316
317 enum ioc_running {
318         IOC_IDLE,
319         IOC_RUNNING,
320         IOC_STOP,
321 };
322
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325         QOS_ENABLE,
326         QOS_CTRL,
327         NR_QOS_CTRL_PARAMS,
328 };
329
330 /* io.cost.qos params */
331 enum {
332         QOS_RPPM,
333         QOS_RLAT,
334         QOS_WPPM,
335         QOS_WLAT,
336         QOS_MIN,
337         QOS_MAX,
338         NR_QOS_PARAMS,
339 };
340
341 /* io.cost.model controls */
342 enum {
343         COST_CTRL,
344         COST_MODEL,
345         NR_COST_CTRL_PARAMS,
346 };
347
348 /* builtin linear cost model coefficients */
349 enum {
350         I_LCOEF_RBPS,
351         I_LCOEF_RSEQIOPS,
352         I_LCOEF_RRANDIOPS,
353         I_LCOEF_WBPS,
354         I_LCOEF_WSEQIOPS,
355         I_LCOEF_WRANDIOPS,
356         NR_I_LCOEFS,
357 };
358
359 enum {
360         LCOEF_RPAGE,
361         LCOEF_RSEQIO,
362         LCOEF_RRANDIO,
363         LCOEF_WPAGE,
364         LCOEF_WSEQIO,
365         LCOEF_WRANDIO,
366         NR_LCOEFS,
367 };
368
369 enum {
370         AUTOP_INVALID,
371         AUTOP_HDD,
372         AUTOP_SSD_QD1,
373         AUTOP_SSD_DFL,
374         AUTOP_SSD_FAST,
375 };
376
377 struct ioc_gq;
378
379 struct ioc_params {
380         u32                             qos[NR_QOS_PARAMS];
381         u64                             i_lcoefs[NR_I_LCOEFS];
382         u64                             lcoefs[NR_LCOEFS];
383         u32                             too_fast_vrate_pct;
384         u32                             too_slow_vrate_pct;
385 };
386
387 struct ioc_margins {
388         s64                             min;
389         s64                             low;
390         s64                             target;
391 };
392
393 struct ioc_missed {
394         local_t                         nr_met;
395         local_t                         nr_missed;
396         u32                             last_met;
397         u32                             last_missed;
398 };
399
400 struct ioc_pcpu_stat {
401         struct ioc_missed               missed[2];
402
403         local64_t                       rq_wait_ns;
404         u64                             last_rq_wait_ns;
405 };
406
407 /* per device */
408 struct ioc {
409         struct rq_qos                   rqos;
410
411         bool                            enabled;
412
413         struct ioc_params               params;
414         struct ioc_margins              margins;
415         u32                             period_us;
416         u32                             timer_slack_ns;
417         u64                             vrate_min;
418         u64                             vrate_max;
419
420         spinlock_t                      lock;
421         struct timer_list               timer;
422         struct list_head                active_iocgs;   /* active cgroups */
423         struct ioc_pcpu_stat __percpu   *pcpu_stat;
424
425         enum ioc_running                running;
426         atomic64_t                      vtime_rate;
427         u64                             vtime_base_rate;
428         s64                             vtime_err;
429
430         seqcount_spinlock_t             period_seqcount;
431         u64                             period_at;      /* wallclock starttime */
432         u64                             period_at_vtime; /* vtime starttime */
433
434         atomic64_t                      cur_period;     /* inc'd each period */
435         int                             busy_level;     /* saturation history */
436
437         bool                            weights_updated;
438         atomic_t                        hweight_gen;    /* for lazy hweights */
439
440         /* debt forgivness */
441         u64                             dfgv_period_at;
442         u64                             dfgv_period_rem;
443         u64                             dfgv_usage_us_sum;
444
445         u64                             autop_too_fast_at;
446         u64                             autop_too_slow_at;
447         int                             autop_idx;
448         bool                            user_qos_params:1;
449         bool                            user_cost_model:1;
450 };
451
452 struct iocg_pcpu_stat {
453         local64_t                       abs_vusage;
454 };
455
456 struct iocg_stat {
457         u64                             usage_us;
458         u64                             wait_us;
459         u64                             indebt_us;
460         u64                             indelay_us;
461 };
462
463 /* per device-cgroup pair */
464 struct ioc_gq {
465         struct blkg_policy_data         pd;
466         struct ioc                      *ioc;
467
468         /*
469          * A iocg can get its weight from two sources - an explicit
470          * per-device-cgroup configuration or the default weight of the
471          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
472          * configuration.  `weight` is the effective considering both
473          * sources.
474          *
475          * When an idle cgroup becomes active its `active` goes from 0 to
476          * `weight`.  `inuse` is the surplus adjusted active weight.
477          * `active` and `inuse` are used to calculate `hweight_active` and
478          * `hweight_inuse`.
479          *
480          * `last_inuse` remembers `inuse` while an iocg is idle to persist
481          * surplus adjustments.
482          *
483          * `inuse` may be adjusted dynamically during period. `saved_*` are used
484          * to determine and track adjustments.
485          */
486         u32                             cfg_weight;
487         u32                             weight;
488         u32                             active;
489         u32                             inuse;
490
491         u32                             last_inuse;
492         s64                             saved_margin;
493
494         sector_t                        cursor;         /* to detect randio */
495
496         /*
497          * `vtime` is this iocg's vtime cursor which progresses as IOs are
498          * issued.  If lagging behind device vtime, the delta represents
499          * the currently available IO budget.  If runnning ahead, the
500          * overage.
501          *
502          * `vtime_done` is the same but progressed on completion rather
503          * than issue.  The delta behind `vtime` represents the cost of
504          * currently in-flight IOs.
505          */
506         atomic64_t                      vtime;
507         atomic64_t                      done_vtime;
508         u64                             abs_vdebt;
509
510         /* current delay in effect and when it started */
511         u64                             delay;
512         u64                             delay_at;
513
514         /*
515          * The period this iocg was last active in.  Used for deactivation
516          * and invalidating `vtime`.
517          */
518         atomic64_t                      active_period;
519         struct list_head                active_list;
520
521         /* see __propagate_weights() and current_hweight() for details */
522         u64                             child_active_sum;
523         u64                             child_inuse_sum;
524         u64                             child_adjusted_sum;
525         int                             hweight_gen;
526         u32                             hweight_active;
527         u32                             hweight_inuse;
528         u32                             hweight_donating;
529         u32                             hweight_after_donation;
530
531         struct list_head                walk_list;
532         struct list_head                surplus_list;
533
534         struct wait_queue_head          waitq;
535         struct hrtimer                  waitq_timer;
536
537         /* timestamp at the latest activation */
538         u64                             activated_at;
539
540         /* statistics */
541         struct iocg_pcpu_stat __percpu  *pcpu_stat;
542         struct iocg_stat                local_stat;
543         struct iocg_stat                desc_stat;
544         struct iocg_stat                last_stat;
545         u64                             last_stat_abs_vusage;
546         u64                             usage_delta_us;
547         u64                             wait_since;
548         u64                             indebt_since;
549         u64                             indelay_since;
550
551         /* this iocg's depth in the hierarchy and ancestors including self */
552         int                             level;
553         struct ioc_gq                   *ancestors[];
554 };
555
556 /* per cgroup */
557 struct ioc_cgrp {
558         struct blkcg_policy_data        cpd;
559         unsigned int                    dfl_weight;
560 };
561
562 struct ioc_now {
563         u64                             now_ns;
564         u64                             now;
565         u64                             vnow;
566         u64                             vrate;
567 };
568
569 struct iocg_wait {
570         struct wait_queue_entry         wait;
571         struct bio                      *bio;
572         u64                             abs_cost;
573         bool                            committed;
574 };
575
576 struct iocg_wake_ctx {
577         struct ioc_gq                   *iocg;
578         u32                             hw_inuse;
579         s64                             vbudget;
580 };
581
582 static const struct ioc_params autop[] = {
583         [AUTOP_HDD] = {
584                 .qos                            = {
585                         [QOS_RLAT]              =        250000, /* 250ms */
586                         [QOS_WLAT]              =        250000,
587                         [QOS_MIN]               = VRATE_MIN_PPM,
588                         [QOS_MAX]               = VRATE_MAX_PPM,
589                 },
590                 .i_lcoefs                       = {
591                         [I_LCOEF_RBPS]          =     174019176,
592                         [I_LCOEF_RSEQIOPS]      =         41708,
593                         [I_LCOEF_RRANDIOPS]     =           370,
594                         [I_LCOEF_WBPS]          =     178075866,
595                         [I_LCOEF_WSEQIOPS]      =         42705,
596                         [I_LCOEF_WRANDIOPS]     =           378,
597                 },
598         },
599         [AUTOP_SSD_QD1] = {
600                 .qos                            = {
601                         [QOS_RLAT]              =         25000, /* 25ms */
602                         [QOS_WLAT]              =         25000,
603                         [QOS_MIN]               = VRATE_MIN_PPM,
604                         [QOS_MAX]               = VRATE_MAX_PPM,
605                 },
606                 .i_lcoefs                       = {
607                         [I_LCOEF_RBPS]          =     245855193,
608                         [I_LCOEF_RSEQIOPS]      =         61575,
609                         [I_LCOEF_RRANDIOPS]     =          6946,
610                         [I_LCOEF_WBPS]          =     141365009,
611                         [I_LCOEF_WSEQIOPS]      =         33716,
612                         [I_LCOEF_WRANDIOPS]     =         26796,
613                 },
614         },
615         [AUTOP_SSD_DFL] = {
616                 .qos                            = {
617                         [QOS_RLAT]              =         25000, /* 25ms */
618                         [QOS_WLAT]              =         25000,
619                         [QOS_MIN]               = VRATE_MIN_PPM,
620                         [QOS_MAX]               = VRATE_MAX_PPM,
621                 },
622                 .i_lcoefs                       = {
623                         [I_LCOEF_RBPS]          =     488636629,
624                         [I_LCOEF_RSEQIOPS]      =          8932,
625                         [I_LCOEF_RRANDIOPS]     =          8518,
626                         [I_LCOEF_WBPS]          =     427891549,
627                         [I_LCOEF_WSEQIOPS]      =         28755,
628                         [I_LCOEF_WRANDIOPS]     =         21940,
629                 },
630                 .too_fast_vrate_pct             =           500,
631         },
632         [AUTOP_SSD_FAST] = {
633                 .qos                            = {
634                         [QOS_RLAT]              =          5000, /* 5ms */
635                         [QOS_WLAT]              =          5000,
636                         [QOS_MIN]               = VRATE_MIN_PPM,
637                         [QOS_MAX]               = VRATE_MAX_PPM,
638                 },
639                 .i_lcoefs                       = {
640                         [I_LCOEF_RBPS]          =    3102524156LLU,
641                         [I_LCOEF_RSEQIOPS]      =        724816,
642                         [I_LCOEF_RRANDIOPS]     =        778122,
643                         [I_LCOEF_WBPS]          =    1742780862LLU,
644                         [I_LCOEF_WSEQIOPS]      =        425702,
645                         [I_LCOEF_WRANDIOPS]     =        443193,
646                 },
647                 .too_slow_vrate_pct             =            10,
648         },
649 };
650
651 /*
652  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
653  * vtime credit shortage and down on device saturation.
654  */
655 static u32 vrate_adj_pct[] =
656         { 0, 0, 0, 0,
657           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
658           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
659           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
660
661 static struct blkcg_policy blkcg_policy_iocost;
662
663 /* accessors and helpers */
664 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
665 {
666         return container_of(rqos, struct ioc, rqos);
667 }
668
669 static struct ioc *q_to_ioc(struct request_queue *q)
670 {
671         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
672 }
673
674 static const char *q_name(struct request_queue *q)
675 {
676         if (blk_queue_registered(q))
677                 return kobject_name(q->kobj.parent);
678         else
679                 return "<unknown>";
680 }
681
682 static const char __maybe_unused *ioc_name(struct ioc *ioc)
683 {
684         return q_name(ioc->rqos.q);
685 }
686
687 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
688 {
689         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
690 }
691
692 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
693 {
694         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
695 }
696
697 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
698 {
699         return pd_to_blkg(&iocg->pd);
700 }
701
702 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
703 {
704         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
705                             struct ioc_cgrp, cpd);
706 }
707
708 /*
709  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
710  * weight, the more expensive each IO.  Must round up.
711  */
712 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
713 {
714         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
715 }
716
717 /*
718  * The inverse of abs_cost_to_cost().  Must round up.
719  */
720 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
721 {
722         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
723 }
724
725 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
726                             u64 abs_cost, u64 cost)
727 {
728         struct iocg_pcpu_stat *gcs;
729
730         bio->bi_iocost_cost = cost;
731         atomic64_add(cost, &iocg->vtime);
732
733         gcs = get_cpu_ptr(iocg->pcpu_stat);
734         local64_add(abs_cost, &gcs->abs_vusage);
735         put_cpu_ptr(gcs);
736 }
737
738 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
739 {
740         if (lock_ioc) {
741                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
742                 spin_lock(&iocg->waitq.lock);
743         } else {
744                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
745         }
746 }
747
748 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
749 {
750         if (unlock_ioc) {
751                 spin_unlock(&iocg->waitq.lock);
752                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
753         } else {
754                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
755         }
756 }
757
758 #define CREATE_TRACE_POINTS
759 #include <trace/events/iocost.h>
760
761 static void ioc_refresh_margins(struct ioc *ioc)
762 {
763         struct ioc_margins *margins = &ioc->margins;
764         u32 period_us = ioc->period_us;
765         u64 vrate = ioc->vtime_base_rate;
766
767         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
768         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
769         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
770 }
771
772 /* latency Qos params changed, update period_us and all the dependent params */
773 static void ioc_refresh_period_us(struct ioc *ioc)
774 {
775         u32 ppm, lat, multi, period_us;
776
777         lockdep_assert_held(&ioc->lock);
778
779         /* pick the higher latency target */
780         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
781                 ppm = ioc->params.qos[QOS_RPPM];
782                 lat = ioc->params.qos[QOS_RLAT];
783         } else {
784                 ppm = ioc->params.qos[QOS_WPPM];
785                 lat = ioc->params.qos[QOS_WLAT];
786         }
787
788         /*
789          * We want the period to be long enough to contain a healthy number
790          * of IOs while short enough for granular control.  Define it as a
791          * multiple of the latency target.  Ideally, the multiplier should
792          * be scaled according to the percentile so that it would nominally
793          * contain a certain number of requests.  Let's be simpler and
794          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
795          */
796         if (ppm)
797                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
798         else
799                 multi = 2;
800         period_us = multi * lat;
801         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
802
803         /* calculate dependent params */
804         ioc->period_us = period_us;
805         ioc->timer_slack_ns = div64_u64(
806                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
807                 100);
808         ioc_refresh_margins(ioc);
809 }
810
811 static int ioc_autop_idx(struct ioc *ioc)
812 {
813         int idx = ioc->autop_idx;
814         const struct ioc_params *p = &autop[idx];
815         u32 vrate_pct;
816         u64 now_ns;
817
818         /* rotational? */
819         if (!blk_queue_nonrot(ioc->rqos.q))
820                 return AUTOP_HDD;
821
822         /* handle SATA SSDs w/ broken NCQ */
823         if (blk_queue_depth(ioc->rqos.q) == 1)
824                 return AUTOP_SSD_QD1;
825
826         /* use one of the normal ssd sets */
827         if (idx < AUTOP_SSD_DFL)
828                 return AUTOP_SSD_DFL;
829
830         /* if user is overriding anything, maintain what was there */
831         if (ioc->user_qos_params || ioc->user_cost_model)
832                 return idx;
833
834         /* step up/down based on the vrate */
835         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
836         now_ns = ktime_get_ns();
837
838         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
839                 if (!ioc->autop_too_fast_at)
840                         ioc->autop_too_fast_at = now_ns;
841                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
842                         return idx + 1;
843         } else {
844                 ioc->autop_too_fast_at = 0;
845         }
846
847         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
848                 if (!ioc->autop_too_slow_at)
849                         ioc->autop_too_slow_at = now_ns;
850                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
851                         return idx - 1;
852         } else {
853                 ioc->autop_too_slow_at = 0;
854         }
855
856         return idx;
857 }
858
859 /*
860  * Take the followings as input
861  *
862  *  @bps        maximum sequential throughput
863  *  @seqiops    maximum sequential 4k iops
864  *  @randiops   maximum random 4k iops
865  *
866  * and calculate the linear model cost coefficients.
867  *
868  *  *@page      per-page cost           1s / (@bps / 4096)
869  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
870  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
871  */
872 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
873                         u64 *page, u64 *seqio, u64 *randio)
874 {
875         u64 v;
876
877         *page = *seqio = *randio = 0;
878
879         if (bps) {
880                 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
881
882                 if (bps_pages)
883                         *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
884                 else
885                         *page = 1;
886         }
887
888         if (seqiops) {
889                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
890                 if (v > *page)
891                         *seqio = v - *page;
892         }
893
894         if (randiops) {
895                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
896                 if (v > *page)
897                         *randio = v - *page;
898         }
899 }
900
901 static void ioc_refresh_lcoefs(struct ioc *ioc)
902 {
903         u64 *u = ioc->params.i_lcoefs;
904         u64 *c = ioc->params.lcoefs;
905
906         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
907                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
908         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
909                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
910 }
911
912 static bool ioc_refresh_params(struct ioc *ioc, bool force)
913 {
914         const struct ioc_params *p;
915         int idx;
916
917         lockdep_assert_held(&ioc->lock);
918
919         idx = ioc_autop_idx(ioc);
920         p = &autop[idx];
921
922         if (idx == ioc->autop_idx && !force)
923                 return false;
924
925         if (idx != ioc->autop_idx)
926                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
927
928         ioc->autop_idx = idx;
929         ioc->autop_too_fast_at = 0;
930         ioc->autop_too_slow_at = 0;
931
932         if (!ioc->user_qos_params)
933                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
934         if (!ioc->user_cost_model)
935                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
936
937         ioc_refresh_period_us(ioc);
938         ioc_refresh_lcoefs(ioc);
939
940         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
941                                             VTIME_PER_USEC, MILLION);
942         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
943                                    VTIME_PER_USEC, MILLION);
944
945         return true;
946 }
947
948 /*
949  * When an iocg accumulates too much vtime or gets deactivated, we throw away
950  * some vtime, which lowers the overall device utilization. As the exact amount
951  * which is being thrown away is known, we can compensate by accelerating the
952  * vrate accordingly so that the extra vtime generated in the current period
953  * matches what got lost.
954  */
955 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
956 {
957         s64 pleft = ioc->period_at + ioc->period_us - now->now;
958         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
959         s64 vcomp, vcomp_min, vcomp_max;
960
961         lockdep_assert_held(&ioc->lock);
962
963         /* we need some time left in this period */
964         if (pleft <= 0)
965                 goto done;
966
967         /*
968          * Calculate how much vrate should be adjusted to offset the error.
969          * Limit the amount of adjustment and deduct the adjusted amount from
970          * the error.
971          */
972         vcomp = -div64_s64(ioc->vtime_err, pleft);
973         vcomp_min = -(ioc->vtime_base_rate >> 1);
974         vcomp_max = ioc->vtime_base_rate;
975         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
976
977         ioc->vtime_err += vcomp * pleft;
978
979         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
980 done:
981         /* bound how much error can accumulate */
982         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
983 }
984
985 /* take a snapshot of the current [v]time and vrate */
986 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
987 {
988         unsigned seq;
989
990         now->now_ns = ktime_get();
991         now->now = ktime_to_us(now->now_ns);
992         now->vrate = atomic64_read(&ioc->vtime_rate);
993
994         /*
995          * The current vtime is
996          *
997          *   vtime at period start + (wallclock time since the start) * vrate
998          *
999          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1000          * needed, they're seqcount protected.
1001          */
1002         do {
1003                 seq = read_seqcount_begin(&ioc->period_seqcount);
1004                 now->vnow = ioc->period_at_vtime +
1005                         (now->now - ioc->period_at) * now->vrate;
1006         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1007 }
1008
1009 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1010 {
1011         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1012
1013         write_seqcount_begin(&ioc->period_seqcount);
1014         ioc->period_at = now->now;
1015         ioc->period_at_vtime = now->vnow;
1016         write_seqcount_end(&ioc->period_seqcount);
1017
1018         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1019         add_timer(&ioc->timer);
1020 }
1021
1022 /*
1023  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1024  * weight sums and propagate upwards accordingly. If @save, the current margin
1025  * is saved to be used as reference for later inuse in-period adjustments.
1026  */
1027 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1028                                 bool save, struct ioc_now *now)
1029 {
1030         struct ioc *ioc = iocg->ioc;
1031         int lvl;
1032
1033         lockdep_assert_held(&ioc->lock);
1034
1035         /*
1036          * For an active leaf node, its inuse shouldn't be zero or exceed
1037          * @active. An active internal node's inuse is solely determined by the
1038          * inuse to active ratio of its children regardless of @inuse.
1039          */
1040         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1041                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1042                                            iocg->child_active_sum);
1043         } else {
1044                 inuse = clamp_t(u32, inuse, 1, active);
1045         }
1046
1047         iocg->last_inuse = iocg->inuse;
1048         if (save)
1049                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1050
1051         if (active == iocg->active && inuse == iocg->inuse)
1052                 return;
1053
1054         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1055                 struct ioc_gq *parent = iocg->ancestors[lvl];
1056                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1057                 u32 parent_active = 0, parent_inuse = 0;
1058
1059                 /* update the level sums */
1060                 parent->child_active_sum += (s32)(active - child->active);
1061                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1062                 /* apply the updates */
1063                 child->active = active;
1064                 child->inuse = inuse;
1065
1066                 /*
1067                  * The delta between inuse and active sums indicates that
1068                  * that much of weight is being given away.  Parent's inuse
1069                  * and active should reflect the ratio.
1070                  */
1071                 if (parent->child_active_sum) {
1072                         parent_active = parent->weight;
1073                         parent_inuse = DIV64_U64_ROUND_UP(
1074                                 parent_active * parent->child_inuse_sum,
1075                                 parent->child_active_sum);
1076                 }
1077
1078                 /* do we need to keep walking up? */
1079                 if (parent_active == parent->active &&
1080                     parent_inuse == parent->inuse)
1081                         break;
1082
1083                 active = parent_active;
1084                 inuse = parent_inuse;
1085         }
1086
1087         ioc->weights_updated = true;
1088 }
1089
1090 static void commit_weights(struct ioc *ioc)
1091 {
1092         lockdep_assert_held(&ioc->lock);
1093
1094         if (ioc->weights_updated) {
1095                 /* paired with rmb in current_hweight(), see there */
1096                 smp_wmb();
1097                 atomic_inc(&ioc->hweight_gen);
1098                 ioc->weights_updated = false;
1099         }
1100 }
1101
1102 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1103                               bool save, struct ioc_now *now)
1104 {
1105         __propagate_weights(iocg, active, inuse, save, now);
1106         commit_weights(iocg->ioc);
1107 }
1108
1109 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1110 {
1111         struct ioc *ioc = iocg->ioc;
1112         int lvl;
1113         u32 hwa, hwi;
1114         int ioc_gen;
1115
1116         /* hot path - if uptodate, use cached */
1117         ioc_gen = atomic_read(&ioc->hweight_gen);
1118         if (ioc_gen == iocg->hweight_gen)
1119                 goto out;
1120
1121         /*
1122          * Paired with wmb in commit_weights(). If we saw the updated
1123          * hweight_gen, all the weight updates from __propagate_weights() are
1124          * visible too.
1125          *
1126          * We can race with weight updates during calculation and get it
1127          * wrong.  However, hweight_gen would have changed and a future
1128          * reader will recalculate and we're guaranteed to discard the
1129          * wrong result soon.
1130          */
1131         smp_rmb();
1132
1133         hwa = hwi = WEIGHT_ONE;
1134         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1135                 struct ioc_gq *parent = iocg->ancestors[lvl];
1136                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1137                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1138                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1139                 u32 active = READ_ONCE(child->active);
1140                 u32 inuse = READ_ONCE(child->inuse);
1141
1142                 /* we can race with deactivations and either may read as zero */
1143                 if (!active_sum || !inuse_sum)
1144                         continue;
1145
1146                 active_sum = max_t(u64, active, active_sum);
1147                 hwa = div64_u64((u64)hwa * active, active_sum);
1148
1149                 inuse_sum = max_t(u64, inuse, inuse_sum);
1150                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1151         }
1152
1153         iocg->hweight_active = max_t(u32, hwa, 1);
1154         iocg->hweight_inuse = max_t(u32, hwi, 1);
1155         iocg->hweight_gen = ioc_gen;
1156 out:
1157         if (hw_activep)
1158                 *hw_activep = iocg->hweight_active;
1159         if (hw_inusep)
1160                 *hw_inusep = iocg->hweight_inuse;
1161 }
1162
1163 /*
1164  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1165  * other weights stay unchanged.
1166  */
1167 static u32 current_hweight_max(struct ioc_gq *iocg)
1168 {
1169         u32 hwm = WEIGHT_ONE;
1170         u32 inuse = iocg->active;
1171         u64 child_inuse_sum;
1172         int lvl;
1173
1174         lockdep_assert_held(&iocg->ioc->lock);
1175
1176         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1177                 struct ioc_gq *parent = iocg->ancestors[lvl];
1178                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1179
1180                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1181                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1182                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1183                                            parent->child_active_sum);
1184         }
1185
1186         return max_t(u32, hwm, 1);
1187 }
1188
1189 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1190 {
1191         struct ioc *ioc = iocg->ioc;
1192         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1193         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1194         u32 weight;
1195
1196         lockdep_assert_held(&ioc->lock);
1197
1198         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1199         if (weight != iocg->weight && iocg->active)
1200                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1201         iocg->weight = weight;
1202 }
1203
1204 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1205 {
1206         struct ioc *ioc = iocg->ioc;
1207         u64 last_period, cur_period;
1208         u64 vtime, vtarget;
1209         int i;
1210
1211         /*
1212          * If seem to be already active, just update the stamp to tell the
1213          * timer that we're still active.  We don't mind occassional races.
1214          */
1215         if (!list_empty(&iocg->active_list)) {
1216                 ioc_now(ioc, now);
1217                 cur_period = atomic64_read(&ioc->cur_period);
1218                 if (atomic64_read(&iocg->active_period) != cur_period)
1219                         atomic64_set(&iocg->active_period, cur_period);
1220                 return true;
1221         }
1222
1223         /* racy check on internal node IOs, treat as root level IOs */
1224         if (iocg->child_active_sum)
1225                 return false;
1226
1227         spin_lock_irq(&ioc->lock);
1228
1229         ioc_now(ioc, now);
1230
1231         /* update period */
1232         cur_period = atomic64_read(&ioc->cur_period);
1233         last_period = atomic64_read(&iocg->active_period);
1234         atomic64_set(&iocg->active_period, cur_period);
1235
1236         /* already activated or breaking leaf-only constraint? */
1237         if (!list_empty(&iocg->active_list))
1238                 goto succeed_unlock;
1239         for (i = iocg->level - 1; i > 0; i--)
1240                 if (!list_empty(&iocg->ancestors[i]->active_list))
1241                         goto fail_unlock;
1242
1243         if (iocg->child_active_sum)
1244                 goto fail_unlock;
1245
1246         /*
1247          * Always start with the target budget. On deactivation, we throw away
1248          * anything above it.
1249          */
1250         vtarget = now->vnow - ioc->margins.target;
1251         vtime = atomic64_read(&iocg->vtime);
1252
1253         atomic64_add(vtarget - vtime, &iocg->vtime);
1254         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1255         vtime = vtarget;
1256
1257         /*
1258          * Activate, propagate weight and start period timer if not
1259          * running.  Reset hweight_gen to avoid accidental match from
1260          * wrapping.
1261          */
1262         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1263         list_add(&iocg->active_list, &ioc->active_iocgs);
1264
1265         propagate_weights(iocg, iocg->weight,
1266                           iocg->last_inuse ?: iocg->weight, true, now);
1267
1268         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1269                         last_period, cur_period, vtime);
1270
1271         iocg->activated_at = now->now;
1272
1273         if (ioc->running == IOC_IDLE) {
1274                 ioc->running = IOC_RUNNING;
1275                 ioc->dfgv_period_at = now->now;
1276                 ioc->dfgv_period_rem = 0;
1277                 ioc_start_period(ioc, now);
1278         }
1279
1280 succeed_unlock:
1281         spin_unlock_irq(&ioc->lock);
1282         return true;
1283
1284 fail_unlock:
1285         spin_unlock_irq(&ioc->lock);
1286         return false;
1287 }
1288
1289 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1290 {
1291         struct ioc *ioc = iocg->ioc;
1292         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1293         u64 tdelta, delay, new_delay, shift;
1294         s64 vover, vover_pct;
1295         u32 hwa;
1296
1297         lockdep_assert_held(&iocg->waitq.lock);
1298
1299         /*
1300          * If the delay is set by another CPU, we may be in the past. No need to
1301          * change anything if so. This avoids decay calculation underflow.
1302          */
1303         if (time_before64(now->now, iocg->delay_at))
1304                 return false;
1305
1306         /* calculate the current delay in effect - 1/2 every second */
1307         tdelta = now->now - iocg->delay_at;
1308         shift = div64_u64(tdelta, USEC_PER_SEC);
1309         if (iocg->delay && shift < BITS_PER_LONG)
1310                 delay = iocg->delay >> shift;
1311         else
1312                 delay = 0;
1313
1314         /* calculate the new delay from the debt amount */
1315         current_hweight(iocg, &hwa, NULL);
1316         vover = atomic64_read(&iocg->vtime) +
1317                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1318         vover_pct = div64_s64(100 * vover,
1319                               ioc->period_us * ioc->vtime_base_rate);
1320
1321         if (vover_pct <= MIN_DELAY_THR_PCT)
1322                 new_delay = 0;
1323         else if (vover_pct >= MAX_DELAY_THR_PCT)
1324                 new_delay = MAX_DELAY;
1325         else
1326                 new_delay = MIN_DELAY +
1327                         div_u64((MAX_DELAY - MIN_DELAY) *
1328                                 (vover_pct - MIN_DELAY_THR_PCT),
1329                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1330
1331         /* pick the higher one and apply */
1332         if (new_delay > delay) {
1333                 iocg->delay = new_delay;
1334                 iocg->delay_at = now->now;
1335                 delay = new_delay;
1336         }
1337
1338         if (delay >= MIN_DELAY) {
1339                 if (!iocg->indelay_since)
1340                         iocg->indelay_since = now->now;
1341                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1342                 return true;
1343         } else {
1344                 if (iocg->indelay_since) {
1345                         iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1346                         iocg->indelay_since = 0;
1347                 }
1348                 iocg->delay = 0;
1349                 blkcg_clear_delay(blkg);
1350                 return false;
1351         }
1352 }
1353
1354 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1355                             struct ioc_now *now)
1356 {
1357         struct iocg_pcpu_stat *gcs;
1358
1359         lockdep_assert_held(&iocg->ioc->lock);
1360         lockdep_assert_held(&iocg->waitq.lock);
1361         WARN_ON_ONCE(list_empty(&iocg->active_list));
1362
1363         /*
1364          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1365          * inuse donating all of it share to others until its debt is paid off.
1366          */
1367         if (!iocg->abs_vdebt && abs_cost) {
1368                 iocg->indebt_since = now->now;
1369                 propagate_weights(iocg, iocg->active, 0, false, now);
1370         }
1371
1372         iocg->abs_vdebt += abs_cost;
1373
1374         gcs = get_cpu_ptr(iocg->pcpu_stat);
1375         local64_add(abs_cost, &gcs->abs_vusage);
1376         put_cpu_ptr(gcs);
1377 }
1378
1379 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1380                           struct ioc_now *now)
1381 {
1382         lockdep_assert_held(&iocg->ioc->lock);
1383         lockdep_assert_held(&iocg->waitq.lock);
1384
1385         /* make sure that nobody messed with @iocg */
1386         WARN_ON_ONCE(list_empty(&iocg->active_list));
1387         WARN_ON_ONCE(iocg->inuse > 1);
1388
1389         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1390
1391         /* if debt is paid in full, restore inuse */
1392         if (!iocg->abs_vdebt) {
1393                 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1394                 iocg->indebt_since = 0;
1395
1396                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1397                                   false, now);
1398         }
1399 }
1400
1401 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1402                         int flags, void *key)
1403 {
1404         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1405         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1406         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1407
1408         ctx->vbudget -= cost;
1409
1410         if (ctx->vbudget < 0)
1411                 return -1;
1412
1413         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1414         wait->committed = true;
1415
1416         /*
1417          * autoremove_wake_function() removes the wait entry only when it
1418          * actually changed the task state. We want the wait always removed.
1419          * Remove explicitly and use default_wake_function(). Note that the
1420          * order of operations is important as finish_wait() tests whether
1421          * @wq_entry is removed without grabbing the lock.
1422          */
1423         default_wake_function(wq_entry, mode, flags, key);
1424         list_del_init_careful(&wq_entry->entry);
1425         return 0;
1426 }
1427
1428 /*
1429  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1430  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1431  * addition to iocg->waitq.lock.
1432  */
1433 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1434                             struct ioc_now *now)
1435 {
1436         struct ioc *ioc = iocg->ioc;
1437         struct iocg_wake_ctx ctx = { .iocg = iocg };
1438         u64 vshortage, expires, oexpires;
1439         s64 vbudget;
1440         u32 hwa;
1441
1442         lockdep_assert_held(&iocg->waitq.lock);
1443
1444         current_hweight(iocg, &hwa, NULL);
1445         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1446
1447         /* pay off debt */
1448         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1449                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1450                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1451                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1452
1453                 lockdep_assert_held(&ioc->lock);
1454
1455                 atomic64_add(vpay, &iocg->vtime);
1456                 atomic64_add(vpay, &iocg->done_vtime);
1457                 iocg_pay_debt(iocg, abs_vpay, now);
1458                 vbudget -= vpay;
1459         }
1460
1461         if (iocg->abs_vdebt || iocg->delay)
1462                 iocg_kick_delay(iocg, now);
1463
1464         /*
1465          * Debt can still be outstanding if we haven't paid all yet or the
1466          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1467          * under debt. Make sure @vbudget reflects the outstanding amount and is
1468          * not positive.
1469          */
1470         if (iocg->abs_vdebt) {
1471                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1472                 vbudget = min_t(s64, 0, vbudget - vdebt);
1473         }
1474
1475         /*
1476          * Wake up the ones which are due and see how much vtime we'll need for
1477          * the next one. As paying off debt restores hw_inuse, it must be read
1478          * after the above debt payment.
1479          */
1480         ctx.vbudget = vbudget;
1481         current_hweight(iocg, NULL, &ctx.hw_inuse);
1482
1483         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1484
1485         if (!waitqueue_active(&iocg->waitq)) {
1486                 if (iocg->wait_since) {
1487                         iocg->local_stat.wait_us += now->now - iocg->wait_since;
1488                         iocg->wait_since = 0;
1489                 }
1490                 return;
1491         }
1492
1493         if (!iocg->wait_since)
1494                 iocg->wait_since = now->now;
1495
1496         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1497                 return;
1498
1499         /* determine next wakeup, add a timer margin to guarantee chunking */
1500         vshortage = -ctx.vbudget;
1501         expires = now->now_ns +
1502                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1503                 NSEC_PER_USEC;
1504         expires += ioc->timer_slack_ns;
1505
1506         /* if already active and close enough, don't bother */
1507         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1508         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1509             abs(oexpires - expires) <= ioc->timer_slack_ns)
1510                 return;
1511
1512         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1513                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1514 }
1515
1516 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1517 {
1518         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1519         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1520         struct ioc_now now;
1521         unsigned long flags;
1522
1523         ioc_now(iocg->ioc, &now);
1524
1525         iocg_lock(iocg, pay_debt, &flags);
1526         iocg_kick_waitq(iocg, pay_debt, &now);
1527         iocg_unlock(iocg, pay_debt, &flags);
1528
1529         return HRTIMER_NORESTART;
1530 }
1531
1532 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1533 {
1534         u32 nr_met[2] = { };
1535         u32 nr_missed[2] = { };
1536         u64 rq_wait_ns = 0;
1537         int cpu, rw;
1538
1539         for_each_online_cpu(cpu) {
1540                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1541                 u64 this_rq_wait_ns;
1542
1543                 for (rw = READ; rw <= WRITE; rw++) {
1544                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1545                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1546
1547                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1548                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1549                         stat->missed[rw].last_met = this_met;
1550                         stat->missed[rw].last_missed = this_missed;
1551                 }
1552
1553                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1554                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1555                 stat->last_rq_wait_ns = this_rq_wait_ns;
1556         }
1557
1558         for (rw = READ; rw <= WRITE; rw++) {
1559                 if (nr_met[rw] + nr_missed[rw])
1560                         missed_ppm_ar[rw] =
1561                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1562                                                    nr_met[rw] + nr_missed[rw]);
1563                 else
1564                         missed_ppm_ar[rw] = 0;
1565         }
1566
1567         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1568                                    ioc->period_us * NSEC_PER_USEC);
1569 }
1570
1571 /* was iocg idle this period? */
1572 static bool iocg_is_idle(struct ioc_gq *iocg)
1573 {
1574         struct ioc *ioc = iocg->ioc;
1575
1576         /* did something get issued this period? */
1577         if (atomic64_read(&iocg->active_period) ==
1578             atomic64_read(&ioc->cur_period))
1579                 return false;
1580
1581         /* is something in flight? */
1582         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1583                 return false;
1584
1585         return true;
1586 }
1587
1588 /*
1589  * Call this function on the target leaf @iocg's to build pre-order traversal
1590  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1591  * ->walk_list and the caller is responsible for dissolving the list after use.
1592  */
1593 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1594                                   struct list_head *inner_walk)
1595 {
1596         int lvl;
1597
1598         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1599
1600         /* find the first ancestor which hasn't been visited yet */
1601         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1602                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1603                         break;
1604         }
1605
1606         /* walk down and visit the inner nodes to get pre-order traversal */
1607         while (++lvl <= iocg->level - 1) {
1608                 struct ioc_gq *inner = iocg->ancestors[lvl];
1609
1610                 /* record traversal order */
1611                 list_add_tail(&inner->walk_list, inner_walk);
1612         }
1613 }
1614
1615 /* collect per-cpu counters and propagate the deltas to the parent */
1616 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1617 {
1618         struct ioc *ioc = iocg->ioc;
1619         struct iocg_stat new_stat;
1620         u64 abs_vusage = 0;
1621         u64 vusage_delta;
1622         int cpu;
1623
1624         lockdep_assert_held(&iocg->ioc->lock);
1625
1626         /* collect per-cpu counters */
1627         for_each_possible_cpu(cpu) {
1628                 abs_vusage += local64_read(
1629                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1630         }
1631         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1632         iocg->last_stat_abs_vusage = abs_vusage;
1633
1634         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1635         iocg->local_stat.usage_us += iocg->usage_delta_us;
1636
1637         /* propagate upwards */
1638         new_stat.usage_us =
1639                 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1640         new_stat.wait_us =
1641                 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1642         new_stat.indebt_us =
1643                 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1644         new_stat.indelay_us =
1645                 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1646
1647         /* propagate the deltas to the parent */
1648         if (iocg->level > 0) {
1649                 struct iocg_stat *parent_stat =
1650                         &iocg->ancestors[iocg->level - 1]->desc_stat;
1651
1652                 parent_stat->usage_us +=
1653                         new_stat.usage_us - iocg->last_stat.usage_us;
1654                 parent_stat->wait_us +=
1655                         new_stat.wait_us - iocg->last_stat.wait_us;
1656                 parent_stat->indebt_us +=
1657                         new_stat.indebt_us - iocg->last_stat.indebt_us;
1658                 parent_stat->indelay_us +=
1659                         new_stat.indelay_us - iocg->last_stat.indelay_us;
1660         }
1661
1662         iocg->last_stat = new_stat;
1663 }
1664
1665 /* get stat counters ready for reading on all active iocgs */
1666 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1667 {
1668         LIST_HEAD(inner_walk);
1669         struct ioc_gq *iocg, *tiocg;
1670
1671         /* flush leaves and build inner node walk list */
1672         list_for_each_entry(iocg, target_iocgs, active_list) {
1673                 iocg_flush_stat_one(iocg, now);
1674                 iocg_build_inner_walk(iocg, &inner_walk);
1675         }
1676
1677         /* keep flushing upwards by walking the inner list backwards */
1678         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1679                 iocg_flush_stat_one(iocg, now);
1680                 list_del_init(&iocg->walk_list);
1681         }
1682 }
1683
1684 /*
1685  * Determine what @iocg's hweight_inuse should be after donating unused
1686  * capacity. @hwm is the upper bound and used to signal no donation. This
1687  * function also throws away @iocg's excess budget.
1688  */
1689 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1690                                   u32 usage, struct ioc_now *now)
1691 {
1692         struct ioc *ioc = iocg->ioc;
1693         u64 vtime = atomic64_read(&iocg->vtime);
1694         s64 excess, delta, target, new_hwi;
1695
1696         /* debt handling owns inuse for debtors */
1697         if (iocg->abs_vdebt)
1698                 return 1;
1699
1700         /* see whether minimum margin requirement is met */
1701         if (waitqueue_active(&iocg->waitq) ||
1702             time_after64(vtime, now->vnow - ioc->margins.min))
1703                 return hwm;
1704
1705         /* throw away excess above target */
1706         excess = now->vnow - vtime - ioc->margins.target;
1707         if (excess > 0) {
1708                 atomic64_add(excess, &iocg->vtime);
1709                 atomic64_add(excess, &iocg->done_vtime);
1710                 vtime += excess;
1711                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1712         }
1713
1714         /*
1715          * Let's say the distance between iocg's and device's vtimes as a
1716          * fraction of period duration is delta. Assuming that the iocg will
1717          * consume the usage determined above, we want to determine new_hwi so
1718          * that delta equals MARGIN_TARGET at the end of the next period.
1719          *
1720          * We need to execute usage worth of IOs while spending the sum of the
1721          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1722          * (delta):
1723          *
1724          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1725          *
1726          * Therefore, the new_hwi is:
1727          *
1728          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1729          */
1730         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1731                           now->vnow - ioc->period_at_vtime);
1732         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1733         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1734
1735         return clamp_t(s64, new_hwi, 1, hwm);
1736 }
1737
1738 /*
1739  * For work-conservation, an iocg which isn't using all of its share should
1740  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1741  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1742  *
1743  * #1 is mathematically simpler but has the drawback of requiring synchronous
1744  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1745  * change due to donation snapbacks as it has the possibility of grossly
1746  * overshooting what's allowed by the model and vrate.
1747  *
1748  * #2 is inherently safe with local operations. The donating iocg can easily
1749  * snap back to higher weights when needed without worrying about impacts on
1750  * other nodes as the impacts will be inherently correct. This also makes idle
1751  * iocg activations safe. The only effect activations have is decreasing
1752  * hweight_inuse of others, the right solution to which is for those iocgs to
1753  * snap back to higher weights.
1754  *
1755  * So, we go with #2. The challenge is calculating how each donating iocg's
1756  * inuse should be adjusted to achieve the target donation amounts. This is done
1757  * using Andy's method described in the following pdf.
1758  *
1759  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1760  *
1761  * Given the weights and target after-donation hweight_inuse values, Andy's
1762  * method determines how the proportional distribution should look like at each
1763  * sibling level to maintain the relative relationship between all non-donating
1764  * pairs. To roughly summarize, it divides the tree into donating and
1765  * non-donating parts, calculates global donation rate which is used to
1766  * determine the target hweight_inuse for each node, and then derives per-level
1767  * proportions.
1768  *
1769  * The following pdf shows that global distribution calculated this way can be
1770  * achieved by scaling inuse weights of donating leaves and propagating the
1771  * adjustments upwards proportionally.
1772  *
1773  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1774  *
1775  * Combining the above two, we can determine how each leaf iocg's inuse should
1776  * be adjusted to achieve the target donation.
1777  *
1778  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1779  *
1780  * The inline comments use symbols from the last pdf.
1781  *
1782  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1783  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1784  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1785  *   w is the weight of the node. w = w_f + w_t
1786  *   w_f is the non-donating portion of w. w_f = w * f / b
1787  *   w_b is the donating portion of w. w_t = w * t / b
1788  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1789  *   s_f and s_t are the non-donating and donating portions of s.
1790  *
1791  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1792  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1793  * after adjustments. Subscript r denotes the root node's values.
1794  */
1795 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1796 {
1797         LIST_HEAD(over_hwa);
1798         LIST_HEAD(inner_walk);
1799         struct ioc_gq *iocg, *tiocg, *root_iocg;
1800         u32 after_sum, over_sum, over_target, gamma;
1801
1802         /*
1803          * It's pretty unlikely but possible for the total sum of
1804          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1805          * confuse the following calculations. If such condition is detected,
1806          * scale down everyone over its full share equally to keep the sum below
1807          * WEIGHT_ONE.
1808          */
1809         after_sum = 0;
1810         over_sum = 0;
1811         list_for_each_entry(iocg, surpluses, surplus_list) {
1812                 u32 hwa;
1813
1814                 current_hweight(iocg, &hwa, NULL);
1815                 after_sum += iocg->hweight_after_donation;
1816
1817                 if (iocg->hweight_after_donation > hwa) {
1818                         over_sum += iocg->hweight_after_donation;
1819                         list_add(&iocg->walk_list, &over_hwa);
1820                 }
1821         }
1822
1823         if (after_sum >= WEIGHT_ONE) {
1824                 /*
1825                  * The delta should be deducted from the over_sum, calculate
1826                  * target over_sum value.
1827                  */
1828                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1829                 WARN_ON_ONCE(over_sum <= over_delta);
1830                 over_target = over_sum - over_delta;
1831         } else {
1832                 over_target = 0;
1833         }
1834
1835         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1836                 if (over_target)
1837                         iocg->hweight_after_donation =
1838                                 div_u64((u64)iocg->hweight_after_donation *
1839                                         over_target, over_sum);
1840                 list_del_init(&iocg->walk_list);
1841         }
1842
1843         /*
1844          * Build pre-order inner node walk list and prepare for donation
1845          * adjustment calculations.
1846          */
1847         list_for_each_entry(iocg, surpluses, surplus_list) {
1848                 iocg_build_inner_walk(iocg, &inner_walk);
1849         }
1850
1851         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1852         WARN_ON_ONCE(root_iocg->level > 0);
1853
1854         list_for_each_entry(iocg, &inner_walk, walk_list) {
1855                 iocg->child_adjusted_sum = 0;
1856                 iocg->hweight_donating = 0;
1857                 iocg->hweight_after_donation = 0;
1858         }
1859
1860         /*
1861          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1862          * up the hierarchy.
1863          */
1864         list_for_each_entry(iocg, surpluses, surplus_list) {
1865                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1866
1867                 parent->hweight_donating += iocg->hweight_donating;
1868                 parent->hweight_after_donation += iocg->hweight_after_donation;
1869         }
1870
1871         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1872                 if (iocg->level > 0) {
1873                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1874
1875                         parent->hweight_donating += iocg->hweight_donating;
1876                         parent->hweight_after_donation += iocg->hweight_after_donation;
1877                 }
1878         }
1879
1880         /*
1881          * Calculate inner hwa's (b) and make sure the donation values are
1882          * within the accepted ranges as we're doing low res calculations with
1883          * roundups.
1884          */
1885         list_for_each_entry(iocg, &inner_walk, walk_list) {
1886                 if (iocg->level) {
1887                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1888
1889                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1890                                 (u64)parent->hweight_active * iocg->active,
1891                                 parent->child_active_sum);
1892
1893                 }
1894
1895                 iocg->hweight_donating = min(iocg->hweight_donating,
1896                                              iocg->hweight_active);
1897                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1898                                                    iocg->hweight_donating - 1);
1899                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1900                                  iocg->hweight_donating <= 1 ||
1901                                  iocg->hweight_after_donation == 0)) {
1902                         pr_warn("iocg: invalid donation weights in ");
1903                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1904                         pr_cont(": active=%u donating=%u after=%u\n",
1905                                 iocg->hweight_active, iocg->hweight_donating,
1906                                 iocg->hweight_after_donation);
1907                 }
1908         }
1909
1910         /*
1911          * Calculate the global donation rate (gamma) - the rate to adjust
1912          * non-donating budgets by.
1913          *
1914          * No need to use 64bit multiplication here as the first operand is
1915          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1916          *
1917          * We know that there are beneficiary nodes and the sum of the donating
1918          * hweights can't be whole; however, due to the round-ups during hweight
1919          * calculations, root_iocg->hweight_donating might still end up equal to
1920          * or greater than whole. Limit the range when calculating the divider.
1921          *
1922          * gamma = (1 - t_r') / (1 - t_r)
1923          */
1924         gamma = DIV_ROUND_UP(
1925                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1926                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1927
1928         /*
1929          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1930          * nodes.
1931          */
1932         list_for_each_entry(iocg, &inner_walk, walk_list) {
1933                 struct ioc_gq *parent;
1934                 u32 inuse, wpt, wptp;
1935                 u64 st, sf;
1936
1937                 if (iocg->level == 0) {
1938                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1939                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1940                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1941                                 WEIGHT_ONE - iocg->hweight_after_donation);
1942                         continue;
1943                 }
1944
1945                 parent = iocg->ancestors[iocg->level - 1];
1946
1947                 /* b' = gamma * b_f + b_t' */
1948                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1949                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1950                         WEIGHT_ONE) + iocg->hweight_after_donation;
1951
1952                 /* w' = s' * b' / b'_p */
1953                 inuse = DIV64_U64_ROUND_UP(
1954                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1955                         parent->hweight_inuse);
1956
1957                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1958                 st = DIV64_U64_ROUND_UP(
1959                         iocg->child_active_sum * iocg->hweight_donating,
1960                         iocg->hweight_active);
1961                 sf = iocg->child_active_sum - st;
1962                 wpt = DIV64_U64_ROUND_UP(
1963                         (u64)iocg->active * iocg->hweight_donating,
1964                         iocg->hweight_active);
1965                 wptp = DIV64_U64_ROUND_UP(
1966                         (u64)inuse * iocg->hweight_after_donation,
1967                         iocg->hweight_inuse);
1968
1969                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1970         }
1971
1972         /*
1973          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1974          * we can finally determine leaf adjustments.
1975          */
1976         list_for_each_entry(iocg, surpluses, surplus_list) {
1977                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1978                 u32 inuse;
1979
1980                 /*
1981                  * In-debt iocgs participated in the donation calculation with
1982                  * the minimum target hweight_inuse. Configuring inuse
1983                  * accordingly would work fine but debt handling expects
1984                  * @iocg->inuse stay at the minimum and we don't wanna
1985                  * interfere.
1986                  */
1987                 if (iocg->abs_vdebt) {
1988                         WARN_ON_ONCE(iocg->inuse > 1);
1989                         continue;
1990                 }
1991
1992                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1993                 inuse = DIV64_U64_ROUND_UP(
1994                         parent->child_adjusted_sum * iocg->hweight_after_donation,
1995                         parent->hweight_inuse);
1996
1997                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1998                                 iocg->inuse, inuse,
1999                                 iocg->hweight_inuse,
2000                                 iocg->hweight_after_donation);
2001
2002                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2003         }
2004
2005         /* walk list should be dissolved after use */
2006         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2007                 list_del_init(&iocg->walk_list);
2008 }
2009
2010 /*
2011  * A low weight iocg can amass a large amount of debt, for example, when
2012  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2013  * memory paired with a slow IO device, the debt can span multiple seconds or
2014  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2015  * up blocked paying its debt while the IO device is idle.
2016  *
2017  * The following protects against such cases. If the device has been
2018  * sufficiently idle for a while, the debts are halved and delays are
2019  * recalculated.
2020  */
2021 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2022                               struct ioc_now *now)
2023 {
2024         struct ioc_gq *iocg;
2025         u64 dur, usage_pct, nr_cycles;
2026
2027         /* if no debtor, reset the cycle */
2028         if (!nr_debtors) {
2029                 ioc->dfgv_period_at = now->now;
2030                 ioc->dfgv_period_rem = 0;
2031                 ioc->dfgv_usage_us_sum = 0;
2032                 return;
2033         }
2034
2035         /*
2036          * Debtors can pass through a lot of writes choking the device and we
2037          * don't want to be forgiving debts while the device is struggling from
2038          * write bursts. If we're missing latency targets, consider the device
2039          * fully utilized.
2040          */
2041         if (ioc->busy_level > 0)
2042                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2043
2044         ioc->dfgv_usage_us_sum += usage_us_sum;
2045         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2046                 return;
2047
2048         /*
2049          * At least DFGV_PERIOD has passed since the last period. Calculate the
2050          * average usage and reset the period counters.
2051          */
2052         dur = now->now - ioc->dfgv_period_at;
2053         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2054
2055         ioc->dfgv_period_at = now->now;
2056         ioc->dfgv_usage_us_sum = 0;
2057
2058         /* if was too busy, reset everything */
2059         if (usage_pct > DFGV_USAGE_PCT) {
2060                 ioc->dfgv_period_rem = 0;
2061                 return;
2062         }
2063
2064         /*
2065          * Usage is lower than threshold. Let's forgive some debts. Debt
2066          * forgiveness runs off of the usual ioc timer but its period usually
2067          * doesn't match ioc's. Compensate the difference by performing the
2068          * reduction as many times as would fit in the duration since the last
2069          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2070          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2071          * reductions is doubled.
2072          */
2073         nr_cycles = dur + ioc->dfgv_period_rem;
2074         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2075
2076         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2077                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2078
2079                 if (!iocg->abs_vdebt && !iocg->delay)
2080                         continue;
2081
2082                 spin_lock(&iocg->waitq.lock);
2083
2084                 old_debt = iocg->abs_vdebt;
2085                 old_delay = iocg->delay;
2086
2087                 if (iocg->abs_vdebt)
2088                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2089                 if (iocg->delay)
2090                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2091
2092                 iocg_kick_waitq(iocg, true, now);
2093
2094                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2095                                 old_debt, iocg->abs_vdebt,
2096                                 old_delay, iocg->delay);
2097
2098                 spin_unlock(&iocg->waitq.lock);
2099         }
2100 }
2101
2102 static void ioc_timer_fn(struct timer_list *timer)
2103 {
2104         struct ioc *ioc = container_of(timer, struct ioc, timer);
2105         struct ioc_gq *iocg, *tiocg;
2106         struct ioc_now now;
2107         LIST_HEAD(surpluses);
2108         int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2109         u64 usage_us_sum = 0;
2110         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2111         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2112         u32 missed_ppm[2], rq_wait_pct;
2113         u64 period_vtime;
2114         int prev_busy_level;
2115
2116         /* how were the latencies during the period? */
2117         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2118
2119         /* take care of active iocgs */
2120         spin_lock_irq(&ioc->lock);
2121
2122         ioc_now(ioc, &now);
2123
2124         period_vtime = now.vnow - ioc->period_at_vtime;
2125         if (WARN_ON_ONCE(!period_vtime)) {
2126                 spin_unlock_irq(&ioc->lock);
2127                 return;
2128         }
2129
2130         /*
2131          * Waiters determine the sleep durations based on the vrate they
2132          * saw at the time of sleep.  If vrate has increased, some waiters
2133          * could be sleeping for too long.  Wake up tardy waiters which
2134          * should have woken up in the last period and expire idle iocgs.
2135          */
2136         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2137                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2138                     !iocg->delay && !iocg_is_idle(iocg))
2139                         continue;
2140
2141                 spin_lock(&iocg->waitq.lock);
2142
2143                 /* flush wait and indebt stat deltas */
2144                 if (iocg->wait_since) {
2145                         iocg->local_stat.wait_us += now.now - iocg->wait_since;
2146                         iocg->wait_since = now.now;
2147                 }
2148                 if (iocg->indebt_since) {
2149                         iocg->local_stat.indebt_us +=
2150                                 now.now - iocg->indebt_since;
2151                         iocg->indebt_since = now.now;
2152                 }
2153                 if (iocg->indelay_since) {
2154                         iocg->local_stat.indelay_us +=
2155                                 now.now - iocg->indelay_since;
2156                         iocg->indelay_since = now.now;
2157                 }
2158
2159                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2160                     iocg->delay) {
2161                         /* might be oversleeping vtime / hweight changes, kick */
2162                         iocg_kick_waitq(iocg, true, &now);
2163                         if (iocg->abs_vdebt || iocg->delay)
2164                                 nr_debtors++;
2165                 } else if (iocg_is_idle(iocg)) {
2166                         /* no waiter and idle, deactivate */
2167                         u64 vtime = atomic64_read(&iocg->vtime);
2168                         s64 excess;
2169
2170                         /*
2171                          * @iocg has been inactive for a full duration and will
2172                          * have a high budget. Account anything above target as
2173                          * error and throw away. On reactivation, it'll start
2174                          * with the target budget.
2175                          */
2176                         excess = now.vnow - vtime - ioc->margins.target;
2177                         if (excess > 0) {
2178                                 u32 old_hwi;
2179
2180                                 current_hweight(iocg, NULL, &old_hwi);
2181                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2182                                                             WEIGHT_ONE);
2183                         }
2184
2185                         __propagate_weights(iocg, 0, 0, false, &now);
2186                         list_del_init(&iocg->active_list);
2187                 }
2188
2189                 spin_unlock(&iocg->waitq.lock);
2190         }
2191         commit_weights(ioc);
2192
2193         /*
2194          * Wait and indebt stat are flushed above and the donation calculation
2195          * below needs updated usage stat. Let's bring stat up-to-date.
2196          */
2197         iocg_flush_stat(&ioc->active_iocgs, &now);
2198
2199         /* calc usage and see whether some weights need to be moved around */
2200         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2201                 u64 vdone, vtime, usage_us, usage_dur;
2202                 u32 usage, hw_active, hw_inuse;
2203
2204                 /*
2205                  * Collect unused and wind vtime closer to vnow to prevent
2206                  * iocgs from accumulating a large amount of budget.
2207                  */
2208                 vdone = atomic64_read(&iocg->done_vtime);
2209                 vtime = atomic64_read(&iocg->vtime);
2210                 current_hweight(iocg, &hw_active, &hw_inuse);
2211
2212                 /*
2213                  * Latency QoS detection doesn't account for IOs which are
2214                  * in-flight for longer than a period.  Detect them by
2215                  * comparing vdone against period start.  If lagging behind
2216                  * IOs from past periods, don't increase vrate.
2217                  */
2218                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2219                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2220                     time_after64(vtime, vdone) &&
2221                     time_after64(vtime, now.vnow -
2222                                  MAX_LAGGING_PERIODS * period_vtime) &&
2223                     time_before64(vdone, now.vnow - period_vtime))
2224                         nr_lagging++;
2225
2226                 /*
2227                  * Determine absolute usage factoring in in-flight IOs to avoid
2228                  * high-latency completions appearing as idle.
2229                  */
2230                 usage_us = iocg->usage_delta_us;
2231                 usage_us_sum += usage_us;
2232
2233                 if (vdone != vtime) {
2234                         u64 inflight_us = DIV64_U64_ROUND_UP(
2235                                 cost_to_abs_cost(vtime - vdone, hw_inuse),
2236                                 ioc->vtime_base_rate);
2237                         usage_us = max(usage_us, inflight_us);
2238                 }
2239
2240                 /* convert to hweight based usage ratio */
2241                 if (time_after64(iocg->activated_at, ioc->period_at))
2242                         usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2243                 else
2244                         usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2245
2246                 usage = clamp_t(u32,
2247                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2248                                                    usage_dur),
2249                                 1, WEIGHT_ONE);
2250
2251                 /* see whether there's surplus vtime */
2252                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2253                 if (hw_inuse < hw_active ||
2254                     (!waitqueue_active(&iocg->waitq) &&
2255                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2256                         u32 hwa, old_hwi, hwm, new_hwi;
2257
2258                         /*
2259                          * Already donating or accumulated enough to start.
2260                          * Determine the donation amount.
2261                          */
2262                         current_hweight(iocg, &hwa, &old_hwi);
2263                         hwm = current_hweight_max(iocg);
2264                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2265                                                          usage, &now);
2266                         /*
2267                          * Donation calculation assumes hweight_after_donation
2268                          * to be positive, a condition that a donor w/ hwa < 2
2269                          * can't meet. Don't bother with donation if hwa is
2270                          * below 2. It's not gonna make a meaningful difference
2271                          * anyway.
2272                          */
2273                         if (new_hwi < hwm && hwa >= 2) {
2274                                 iocg->hweight_donating = hwa;
2275                                 iocg->hweight_after_donation = new_hwi;
2276                                 list_add(&iocg->surplus_list, &surpluses);
2277                         } else if (!iocg->abs_vdebt) {
2278                                 /*
2279                                  * @iocg doesn't have enough to donate. Reset
2280                                  * its inuse to active.
2281                                  *
2282                                  * Don't reset debtors as their inuse's are
2283                                  * owned by debt handling. This shouldn't affect
2284                                  * donation calculuation in any meaningful way
2285                                  * as @iocg doesn't have a meaningful amount of
2286                                  * share anyway.
2287                                  */
2288                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2289                                                 iocg->inuse, iocg->active,
2290                                                 iocg->hweight_inuse, new_hwi);
2291
2292                                 __propagate_weights(iocg, iocg->active,
2293                                                     iocg->active, true, &now);
2294                                 nr_shortages++;
2295                         }
2296                 } else {
2297                         /* genuinely short on vtime */
2298                         nr_shortages++;
2299                 }
2300         }
2301
2302         if (!list_empty(&surpluses) && nr_shortages)
2303                 transfer_surpluses(&surpluses, &now);
2304
2305         commit_weights(ioc);
2306
2307         /* surplus list should be dissolved after use */
2308         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2309                 list_del_init(&iocg->surplus_list);
2310
2311         /*
2312          * If q is getting clogged or we're missing too much, we're issuing
2313          * too much IO and should lower vtime rate.  If we're not missing
2314          * and experiencing shortages but not surpluses, we're too stingy
2315          * and should increase vtime rate.
2316          */
2317         prev_busy_level = ioc->busy_level;
2318         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2319             missed_ppm[READ] > ppm_rthr ||
2320             missed_ppm[WRITE] > ppm_wthr) {
2321                 /* clearly missing QoS targets, slow down vrate */
2322                 ioc->busy_level = max(ioc->busy_level, 0);
2323                 ioc->busy_level++;
2324         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2325                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2326                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2327                 /* QoS targets are being met with >25% margin */
2328                 if (nr_shortages) {
2329                         /*
2330                          * We're throttling while the device has spare
2331                          * capacity.  If vrate was being slowed down, stop.
2332                          */
2333                         ioc->busy_level = min(ioc->busy_level, 0);
2334
2335                         /*
2336                          * If there are IOs spanning multiple periods, wait
2337                          * them out before pushing the device harder.
2338                          */
2339                         if (!nr_lagging)
2340                                 ioc->busy_level--;
2341                 } else {
2342                         /*
2343                          * Nobody is being throttled and the users aren't
2344                          * issuing enough IOs to saturate the device.  We
2345                          * simply don't know how close the device is to
2346                          * saturation.  Coast.
2347                          */
2348                         ioc->busy_level = 0;
2349                 }
2350         } else {
2351                 /* inside the hysterisis margin, we're good */
2352                 ioc->busy_level = 0;
2353         }
2354
2355         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2356
2357         if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2358                 u64 vrate = ioc->vtime_base_rate;
2359                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2360
2361                 /* rq_wait signal is always reliable, ignore user vrate_min */
2362                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2363                         vrate_min = VRATE_MIN;
2364
2365                 /*
2366                  * If vrate is out of bounds, apply clamp gradually as the
2367                  * bounds can change abruptly.  Otherwise, apply busy_level
2368                  * based adjustment.
2369                  */
2370                 if (vrate < vrate_min) {
2371                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2372                                           100);
2373                         vrate = min(vrate, vrate_min);
2374                 } else if (vrate > vrate_max) {
2375                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2376                                           100);
2377                         vrate = max(vrate, vrate_max);
2378                 } else {
2379                         int idx = min_t(int, abs(ioc->busy_level),
2380                                         ARRAY_SIZE(vrate_adj_pct) - 1);
2381                         u32 adj_pct = vrate_adj_pct[idx];
2382
2383                         if (ioc->busy_level > 0)
2384                                 adj_pct = 100 - adj_pct;
2385                         else
2386                                 adj_pct = 100 + adj_pct;
2387
2388                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2389                                       vrate_min, vrate_max);
2390                 }
2391
2392                 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2393                                            nr_lagging, nr_shortages);
2394
2395                 ioc->vtime_base_rate = vrate;
2396                 ioc_refresh_margins(ioc);
2397         } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2398                 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2399                                            missed_ppm, rq_wait_pct, nr_lagging,
2400                                            nr_shortages);
2401         }
2402
2403         ioc_refresh_params(ioc, false);
2404
2405         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2406
2407         /*
2408          * This period is done.  Move onto the next one.  If nothing's
2409          * going on with the device, stop the timer.
2410          */
2411         atomic64_inc(&ioc->cur_period);
2412
2413         if (ioc->running != IOC_STOP) {
2414                 if (!list_empty(&ioc->active_iocgs)) {
2415                         ioc_start_period(ioc, &now);
2416                 } else {
2417                         ioc->busy_level = 0;
2418                         ioc->vtime_err = 0;
2419                         ioc->running = IOC_IDLE;
2420                 }
2421
2422                 ioc_refresh_vrate(ioc, &now);
2423         }
2424
2425         spin_unlock_irq(&ioc->lock);
2426 }
2427
2428 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2429                                       u64 abs_cost, struct ioc_now *now)
2430 {
2431         struct ioc *ioc = iocg->ioc;
2432         struct ioc_margins *margins = &ioc->margins;
2433         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2434         u32 hwi, adj_step;
2435         s64 margin;
2436         u64 cost, new_inuse;
2437         unsigned long flags;
2438
2439         current_hweight(iocg, NULL, &hwi);
2440         old_hwi = hwi;
2441         cost = abs_cost_to_cost(abs_cost, hwi);
2442         margin = now->vnow - vtime - cost;
2443
2444         /* debt handling owns inuse for debtors */
2445         if (iocg->abs_vdebt)
2446                 return cost;
2447
2448         /*
2449          * We only increase inuse during period and do so iff the margin has
2450          * deteriorated since the previous adjustment.
2451          */
2452         if (margin >= iocg->saved_margin || margin >= margins->low ||
2453             iocg->inuse == iocg->active)
2454                 return cost;
2455
2456         spin_lock_irqsave(&ioc->lock, flags);
2457
2458         /* we own inuse only when @iocg is in the normal active state */
2459         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2460                 spin_unlock_irqrestore(&ioc->lock, flags);
2461                 return cost;
2462         }
2463
2464         /*
2465          * Bump up inuse till @abs_cost fits in the existing budget.
2466          * adj_step must be determined after acquiring ioc->lock - we might
2467          * have raced and lost to another thread for activation and could
2468          * be reading 0 iocg->active before ioc->lock which will lead to
2469          * infinite loop.
2470          */
2471         new_inuse = iocg->inuse;
2472         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2473         do {
2474                 new_inuse = new_inuse + adj_step;
2475                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2476                 current_hweight(iocg, NULL, &hwi);
2477                 cost = abs_cost_to_cost(abs_cost, hwi);
2478         } while (time_after64(vtime + cost, now->vnow) &&
2479                  iocg->inuse != iocg->active);
2480
2481         spin_unlock_irqrestore(&ioc->lock, flags);
2482
2483         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2484                         old_inuse, iocg->inuse, old_hwi, hwi);
2485
2486         return cost;
2487 }
2488
2489 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2490                                     bool is_merge, u64 *costp)
2491 {
2492         struct ioc *ioc = iocg->ioc;
2493         u64 coef_seqio, coef_randio, coef_page;
2494         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2495         u64 seek_pages = 0;
2496         u64 cost = 0;
2497
2498         switch (bio_op(bio)) {
2499         case REQ_OP_READ:
2500                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2501                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2502                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2503                 break;
2504         case REQ_OP_WRITE:
2505                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2506                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2507                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2508                 break;
2509         default:
2510                 goto out;
2511         }
2512
2513         if (iocg->cursor) {
2514                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2515                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2516         }
2517
2518         if (!is_merge) {
2519                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2520                         cost += coef_randio;
2521                 } else {
2522                         cost += coef_seqio;
2523                 }
2524         }
2525         cost += pages * coef_page;
2526 out:
2527         *costp = cost;
2528 }
2529
2530 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2531 {
2532         u64 cost;
2533
2534         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2535         return cost;
2536 }
2537
2538 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2539                                          u64 *costp)
2540 {
2541         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2542
2543         switch (req_op(rq)) {
2544         case REQ_OP_READ:
2545                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2546                 break;
2547         case REQ_OP_WRITE:
2548                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2549                 break;
2550         default:
2551                 *costp = 0;
2552         }
2553 }
2554
2555 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2556 {
2557         u64 cost;
2558
2559         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2560         return cost;
2561 }
2562
2563 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2564 {
2565         struct blkcg_gq *blkg = bio->bi_blkg;
2566         struct ioc *ioc = rqos_to_ioc(rqos);
2567         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2568         struct ioc_now now;
2569         struct iocg_wait wait;
2570         u64 abs_cost, cost, vtime;
2571         bool use_debt, ioc_locked;
2572         unsigned long flags;
2573
2574         /* bypass IOs if disabled, still initializing, or for root cgroup */
2575         if (!ioc->enabled || !iocg || !iocg->level)
2576                 return;
2577
2578         /* calculate the absolute vtime cost */
2579         abs_cost = calc_vtime_cost(bio, iocg, false);
2580         if (!abs_cost)
2581                 return;
2582
2583         if (!iocg_activate(iocg, &now))
2584                 return;
2585
2586         iocg->cursor = bio_end_sector(bio);
2587         vtime = atomic64_read(&iocg->vtime);
2588         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2589
2590         /*
2591          * If no one's waiting and within budget, issue right away.  The
2592          * tests are racy but the races aren't systemic - we only miss once
2593          * in a while which is fine.
2594          */
2595         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2596             time_before_eq64(vtime + cost, now.vnow)) {
2597                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2598                 return;
2599         }
2600
2601         /*
2602          * We're over budget. This can be handled in two ways. IOs which may
2603          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2604          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2605          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2606          * whether debt handling is needed and acquire locks accordingly.
2607          */
2608         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2609         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2610 retry_lock:
2611         iocg_lock(iocg, ioc_locked, &flags);
2612
2613         /*
2614          * @iocg must stay activated for debt and waitq handling. Deactivation
2615          * is synchronized against both ioc->lock and waitq.lock and we won't
2616          * get deactivated as long as we're waiting or has debt, so we're good
2617          * if we're activated here. In the unlikely cases that we aren't, just
2618          * issue the IO.
2619          */
2620         if (unlikely(list_empty(&iocg->active_list))) {
2621                 iocg_unlock(iocg, ioc_locked, &flags);
2622                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2623                 return;
2624         }
2625
2626         /*
2627          * We're over budget. If @bio has to be issued regardless, remember
2628          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2629          * off the debt before waking more IOs.
2630          *
2631          * This way, the debt is continuously paid off each period with the
2632          * actual budget available to the cgroup. If we just wound vtime, we
2633          * would incorrectly use the current hw_inuse for the entire amount
2634          * which, for example, can lead to the cgroup staying blocked for a
2635          * long time even with substantially raised hw_inuse.
2636          *
2637          * An iocg with vdebt should stay online so that the timer can keep
2638          * deducting its vdebt and [de]activate use_delay mechanism
2639          * accordingly. We don't want to race against the timer trying to
2640          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2641          * penalizing the cgroup and its descendants.
2642          */
2643         if (use_debt) {
2644                 iocg_incur_debt(iocg, abs_cost, &now);
2645                 if (iocg_kick_delay(iocg, &now))
2646                         blkcg_schedule_throttle(rqos->q,
2647                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2648                 iocg_unlock(iocg, ioc_locked, &flags);
2649                 return;
2650         }
2651
2652         /* guarantee that iocgs w/ waiters have maximum inuse */
2653         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2654                 if (!ioc_locked) {
2655                         iocg_unlock(iocg, false, &flags);
2656                         ioc_locked = true;
2657                         goto retry_lock;
2658                 }
2659                 propagate_weights(iocg, iocg->active, iocg->active, true,
2660                                   &now);
2661         }
2662
2663         /*
2664          * Append self to the waitq and schedule the wakeup timer if we're
2665          * the first waiter.  The timer duration is calculated based on the
2666          * current vrate.  vtime and hweight changes can make it too short
2667          * or too long.  Each wait entry records the absolute cost it's
2668          * waiting for to allow re-evaluation using a custom wait entry.
2669          *
2670          * If too short, the timer simply reschedules itself.  If too long,
2671          * the period timer will notice and trigger wakeups.
2672          *
2673          * All waiters are on iocg->waitq and the wait states are
2674          * synchronized using waitq.lock.
2675          */
2676         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2677         wait.wait.private = current;
2678         wait.bio = bio;
2679         wait.abs_cost = abs_cost;
2680         wait.committed = false; /* will be set true by waker */
2681
2682         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2683         iocg_kick_waitq(iocg, ioc_locked, &now);
2684
2685         iocg_unlock(iocg, ioc_locked, &flags);
2686
2687         while (true) {
2688                 set_current_state(TASK_UNINTERRUPTIBLE);
2689                 if (wait.committed)
2690                         break;
2691                 io_schedule();
2692         }
2693
2694         /* waker already committed us, proceed */
2695         finish_wait(&iocg->waitq, &wait.wait);
2696 }
2697
2698 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2699                            struct bio *bio)
2700 {
2701         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2702         struct ioc *ioc = rqos_to_ioc(rqos);
2703         sector_t bio_end = bio_end_sector(bio);
2704         struct ioc_now now;
2705         u64 vtime, abs_cost, cost;
2706         unsigned long flags;
2707
2708         /* bypass if disabled, still initializing, or for root cgroup */
2709         if (!ioc->enabled || !iocg || !iocg->level)
2710                 return;
2711
2712         abs_cost = calc_vtime_cost(bio, iocg, true);
2713         if (!abs_cost)
2714                 return;
2715
2716         ioc_now(ioc, &now);
2717
2718         vtime = atomic64_read(&iocg->vtime);
2719         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2720
2721         /* update cursor if backmerging into the request at the cursor */
2722         if (blk_rq_pos(rq) < bio_end &&
2723             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2724                 iocg->cursor = bio_end;
2725
2726         /*
2727          * Charge if there's enough vtime budget and the existing request has
2728          * cost assigned.
2729          */
2730         if (rq->bio && rq->bio->bi_iocost_cost &&
2731             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2732                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2733                 return;
2734         }
2735
2736         /*
2737          * Otherwise, account it as debt if @iocg is online, which it should
2738          * be for the vast majority of cases. See debt handling in
2739          * ioc_rqos_throttle() for details.
2740          */
2741         spin_lock_irqsave(&ioc->lock, flags);
2742         spin_lock(&iocg->waitq.lock);
2743
2744         if (likely(!list_empty(&iocg->active_list))) {
2745                 iocg_incur_debt(iocg, abs_cost, &now);
2746                 if (iocg_kick_delay(iocg, &now))
2747                         blkcg_schedule_throttle(rqos->q,
2748                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2749         } else {
2750                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2751         }
2752
2753         spin_unlock(&iocg->waitq.lock);
2754         spin_unlock_irqrestore(&ioc->lock, flags);
2755 }
2756
2757 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2758 {
2759         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2760
2761         if (iocg && bio->bi_iocost_cost)
2762                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2763 }
2764
2765 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2766 {
2767         struct ioc *ioc = rqos_to_ioc(rqos);
2768         struct ioc_pcpu_stat *ccs;
2769         u64 on_q_ns, rq_wait_ns, size_nsec;
2770         int pidx, rw;
2771
2772         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2773                 return;
2774
2775         switch (req_op(rq) & REQ_OP_MASK) {
2776         case REQ_OP_READ:
2777                 pidx = QOS_RLAT;
2778                 rw = READ;
2779                 break;
2780         case REQ_OP_WRITE:
2781                 pidx = QOS_WLAT;
2782                 rw = WRITE;
2783                 break;
2784         default:
2785                 return;
2786         }
2787
2788         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2789         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2790         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2791
2792         ccs = get_cpu_ptr(ioc->pcpu_stat);
2793
2794         if (on_q_ns <= size_nsec ||
2795             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2796                 local_inc(&ccs->missed[rw].nr_met);
2797         else
2798                 local_inc(&ccs->missed[rw].nr_missed);
2799
2800         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2801
2802         put_cpu_ptr(ccs);
2803 }
2804
2805 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2806 {
2807         struct ioc *ioc = rqos_to_ioc(rqos);
2808
2809         spin_lock_irq(&ioc->lock);
2810         ioc_refresh_params(ioc, false);
2811         spin_unlock_irq(&ioc->lock);
2812 }
2813
2814 static void ioc_rqos_exit(struct rq_qos *rqos)
2815 {
2816         struct ioc *ioc = rqos_to_ioc(rqos);
2817
2818         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2819
2820         spin_lock_irq(&ioc->lock);
2821         ioc->running = IOC_STOP;
2822         spin_unlock_irq(&ioc->lock);
2823
2824         del_timer_sync(&ioc->timer);
2825         free_percpu(ioc->pcpu_stat);
2826         kfree(ioc);
2827 }
2828
2829 static struct rq_qos_ops ioc_rqos_ops = {
2830         .throttle = ioc_rqos_throttle,
2831         .merge = ioc_rqos_merge,
2832         .done_bio = ioc_rqos_done_bio,
2833         .done = ioc_rqos_done,
2834         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2835         .exit = ioc_rqos_exit,
2836 };
2837
2838 static int blk_iocost_init(struct request_queue *q)
2839 {
2840         struct ioc *ioc;
2841         struct rq_qos *rqos;
2842         int i, cpu, ret;
2843
2844         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2845         if (!ioc)
2846                 return -ENOMEM;
2847
2848         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2849         if (!ioc->pcpu_stat) {
2850                 kfree(ioc);
2851                 return -ENOMEM;
2852         }
2853
2854         for_each_possible_cpu(cpu) {
2855                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2856
2857                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2858                         local_set(&ccs->missed[i].nr_met, 0);
2859                         local_set(&ccs->missed[i].nr_missed, 0);
2860                 }
2861                 local64_set(&ccs->rq_wait_ns, 0);
2862         }
2863
2864         rqos = &ioc->rqos;
2865         rqos->id = RQ_QOS_COST;
2866         rqos->ops = &ioc_rqos_ops;
2867         rqos->q = q;
2868
2869         spin_lock_init(&ioc->lock);
2870         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2871         INIT_LIST_HEAD(&ioc->active_iocgs);
2872
2873         ioc->running = IOC_IDLE;
2874         ioc->vtime_base_rate = VTIME_PER_USEC;
2875         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2876         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2877         ioc->period_at = ktime_to_us(ktime_get());
2878         atomic64_set(&ioc->cur_period, 0);
2879         atomic_set(&ioc->hweight_gen, 0);
2880
2881         spin_lock_irq(&ioc->lock);
2882         ioc->autop_idx = AUTOP_INVALID;
2883         ioc_refresh_params(ioc, true);
2884         spin_unlock_irq(&ioc->lock);
2885
2886         /*
2887          * rqos must be added before activation to allow iocg_pd_init() to
2888          * lookup the ioc from q. This means that the rqos methods may get
2889          * called before policy activation completion, can't assume that the
2890          * target bio has an iocg associated and need to test for NULL iocg.
2891          */
2892         rq_qos_add(q, rqos);
2893         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2894         if (ret) {
2895                 rq_qos_del(q, rqos);
2896                 free_percpu(ioc->pcpu_stat);
2897                 kfree(ioc);
2898                 return ret;
2899         }
2900         return 0;
2901 }
2902
2903 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2904 {
2905         struct ioc_cgrp *iocc;
2906
2907         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2908         if (!iocc)
2909                 return NULL;
2910
2911         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2912         return &iocc->cpd;
2913 }
2914
2915 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2916 {
2917         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2918 }
2919
2920 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2921                                              struct blkcg *blkcg)
2922 {
2923         int levels = blkcg->css.cgroup->level + 1;
2924         struct ioc_gq *iocg;
2925
2926         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2927         if (!iocg)
2928                 return NULL;
2929
2930         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2931         if (!iocg->pcpu_stat) {
2932                 kfree(iocg);
2933                 return NULL;
2934         }
2935
2936         return &iocg->pd;
2937 }
2938
2939 static void ioc_pd_init(struct blkg_policy_data *pd)
2940 {
2941         struct ioc_gq *iocg = pd_to_iocg(pd);
2942         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2943         struct ioc *ioc = q_to_ioc(blkg->q);
2944         struct ioc_now now;
2945         struct blkcg_gq *tblkg;
2946         unsigned long flags;
2947
2948         ioc_now(ioc, &now);
2949
2950         iocg->ioc = ioc;
2951         atomic64_set(&iocg->vtime, now.vnow);
2952         atomic64_set(&iocg->done_vtime, now.vnow);
2953         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2954         INIT_LIST_HEAD(&iocg->active_list);
2955         INIT_LIST_HEAD(&iocg->walk_list);
2956         INIT_LIST_HEAD(&iocg->surplus_list);
2957         iocg->hweight_active = WEIGHT_ONE;
2958         iocg->hweight_inuse = WEIGHT_ONE;
2959
2960         init_waitqueue_head(&iocg->waitq);
2961         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2962         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2963
2964         iocg->level = blkg->blkcg->css.cgroup->level;
2965
2966         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2967                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2968                 iocg->ancestors[tiocg->level] = tiocg;
2969         }
2970
2971         spin_lock_irqsave(&ioc->lock, flags);
2972         weight_updated(iocg, &now);
2973         spin_unlock_irqrestore(&ioc->lock, flags);
2974 }
2975
2976 static void ioc_pd_free(struct blkg_policy_data *pd)
2977 {
2978         struct ioc_gq *iocg = pd_to_iocg(pd);
2979         struct ioc *ioc = iocg->ioc;
2980         unsigned long flags;
2981
2982         if (ioc) {
2983                 spin_lock_irqsave(&ioc->lock, flags);
2984
2985                 if (!list_empty(&iocg->active_list)) {
2986                         struct ioc_now now;
2987
2988                         ioc_now(ioc, &now);
2989                         propagate_weights(iocg, 0, 0, false, &now);
2990                         list_del_init(&iocg->active_list);
2991                 }
2992
2993                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2994                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2995
2996                 spin_unlock_irqrestore(&ioc->lock, flags);
2997
2998                 hrtimer_cancel(&iocg->waitq_timer);
2999         }
3000         free_percpu(iocg->pcpu_stat);
3001         kfree(iocg);
3002 }
3003
3004 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
3005 {
3006         struct ioc_gq *iocg = pd_to_iocg(pd);
3007         struct ioc *ioc = iocg->ioc;
3008         size_t pos = 0;
3009
3010         if (!ioc->enabled)
3011                 return 0;
3012
3013         if (iocg->level == 0) {
3014                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3015                         ioc->vtime_base_rate * 10000,
3016                         VTIME_PER_USEC);
3017                 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3018                                   vp10k / 100, vp10k % 100);
3019         }
3020
3021         pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3022                          iocg->last_stat.usage_us);
3023
3024         if (blkcg_debug_stats)
3025                 pos += scnprintf(buf + pos, size - pos,
3026                                  " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3027                                  iocg->last_stat.wait_us,
3028                                  iocg->last_stat.indebt_us,
3029                                  iocg->last_stat.indelay_us);
3030
3031         return pos;
3032 }
3033
3034 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3035                              int off)
3036 {
3037         const char *dname = blkg_dev_name(pd->blkg);
3038         struct ioc_gq *iocg = pd_to_iocg(pd);
3039
3040         if (dname && iocg->cfg_weight)
3041                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3042         return 0;
3043 }
3044
3045
3046 static int ioc_weight_show(struct seq_file *sf, void *v)
3047 {
3048         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3049         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3050
3051         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3052         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3053                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3054         return 0;
3055 }
3056
3057 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3058                                 size_t nbytes, loff_t off)
3059 {
3060         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3061         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3062         struct blkg_conf_ctx ctx;
3063         struct ioc_now now;
3064         struct ioc_gq *iocg;
3065         u32 v;
3066         int ret;
3067
3068         if (!strchr(buf, ':')) {
3069                 struct blkcg_gq *blkg;
3070
3071                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3072                         return -EINVAL;
3073
3074                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3075                         return -EINVAL;
3076
3077                 spin_lock_irq(&blkcg->lock);
3078                 iocc->dfl_weight = v * WEIGHT_ONE;
3079                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3080                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3081
3082                         if (iocg) {
3083                                 spin_lock(&iocg->ioc->lock);
3084                                 ioc_now(iocg->ioc, &now);
3085                                 weight_updated(iocg, &now);
3086                                 spin_unlock(&iocg->ioc->lock);
3087                         }
3088                 }
3089                 spin_unlock_irq(&blkcg->lock);
3090
3091                 return nbytes;
3092         }
3093
3094         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3095         if (ret)
3096                 return ret;
3097
3098         iocg = blkg_to_iocg(ctx.blkg);
3099
3100         if (!strncmp(ctx.body, "default", 7)) {
3101                 v = 0;
3102         } else {
3103                 if (!sscanf(ctx.body, "%u", &v))
3104                         goto einval;
3105                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3106                         goto einval;
3107         }
3108
3109         spin_lock(&iocg->ioc->lock);
3110         iocg->cfg_weight = v * WEIGHT_ONE;
3111         ioc_now(iocg->ioc, &now);
3112         weight_updated(iocg, &now);
3113         spin_unlock(&iocg->ioc->lock);
3114
3115         blkg_conf_finish(&ctx);
3116         return nbytes;
3117
3118 einval:
3119         blkg_conf_finish(&ctx);
3120         return -EINVAL;
3121 }
3122
3123 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3124                           int off)
3125 {
3126         const char *dname = blkg_dev_name(pd->blkg);
3127         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3128
3129         if (!dname)
3130                 return 0;
3131
3132         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3133                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3134                    ioc->params.qos[QOS_RPPM] / 10000,
3135                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3136                    ioc->params.qos[QOS_RLAT],
3137                    ioc->params.qos[QOS_WPPM] / 10000,
3138                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3139                    ioc->params.qos[QOS_WLAT],
3140                    ioc->params.qos[QOS_MIN] / 10000,
3141                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3142                    ioc->params.qos[QOS_MAX] / 10000,
3143                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3144         return 0;
3145 }
3146
3147 static int ioc_qos_show(struct seq_file *sf, void *v)
3148 {
3149         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3150
3151         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3152                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3153         return 0;
3154 }
3155
3156 static const match_table_t qos_ctrl_tokens = {
3157         { QOS_ENABLE,           "enable=%u"     },
3158         { QOS_CTRL,             "ctrl=%s"       },
3159         { NR_QOS_CTRL_PARAMS,   NULL            },
3160 };
3161
3162 static const match_table_t qos_tokens = {
3163         { QOS_RPPM,             "rpct=%s"       },
3164         { QOS_RLAT,             "rlat=%u"       },
3165         { QOS_WPPM,             "wpct=%s"       },
3166         { QOS_WLAT,             "wlat=%u"       },
3167         { QOS_MIN,              "min=%s"        },
3168         { QOS_MAX,              "max=%s"        },
3169         { NR_QOS_PARAMS,        NULL            },
3170 };
3171
3172 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3173                              size_t nbytes, loff_t off)
3174 {
3175         struct gendisk *disk;
3176         struct ioc *ioc;
3177         u32 qos[NR_QOS_PARAMS];
3178         bool enable, user;
3179         char *p;
3180         int ret;
3181
3182         disk = blkcg_conf_get_disk(&input);
3183         if (IS_ERR(disk))
3184                 return PTR_ERR(disk);
3185
3186         ioc = q_to_ioc(disk->queue);
3187         if (!ioc) {
3188                 ret = blk_iocost_init(disk->queue);
3189                 if (ret)
3190                         goto err;
3191                 ioc = q_to_ioc(disk->queue);
3192         }
3193
3194         spin_lock_irq(&ioc->lock);
3195         memcpy(qos, ioc->params.qos, sizeof(qos));
3196         enable = ioc->enabled;
3197         user = ioc->user_qos_params;
3198         spin_unlock_irq(&ioc->lock);
3199
3200         while ((p = strsep(&input, " \t\n"))) {
3201                 substring_t args[MAX_OPT_ARGS];
3202                 char buf[32];
3203                 int tok;
3204                 s64 v;
3205
3206                 if (!*p)
3207                         continue;
3208
3209                 switch (match_token(p, qos_ctrl_tokens, args)) {
3210                 case QOS_ENABLE:
3211                         match_u64(&args[0], &v);
3212                         enable = v;
3213                         continue;
3214                 case QOS_CTRL:
3215                         match_strlcpy(buf, &args[0], sizeof(buf));
3216                         if (!strcmp(buf, "auto"))
3217                                 user = false;
3218                         else if (!strcmp(buf, "user"))
3219                                 user = true;
3220                         else
3221                                 goto einval;
3222                         continue;
3223                 }
3224
3225                 tok = match_token(p, qos_tokens, args);
3226                 switch (tok) {
3227                 case QOS_RPPM:
3228                 case QOS_WPPM:
3229                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3230                             sizeof(buf))
3231                                 goto einval;
3232                         if (cgroup_parse_float(buf, 2, &v))
3233                                 goto einval;
3234                         if (v < 0 || v > 10000)
3235                                 goto einval;
3236                         qos[tok] = v * 100;
3237                         break;
3238                 case QOS_RLAT:
3239                 case QOS_WLAT:
3240                         if (match_u64(&args[0], &v))
3241                                 goto einval;
3242                         qos[tok] = v;
3243                         break;
3244                 case QOS_MIN:
3245                 case QOS_MAX:
3246                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3247                             sizeof(buf))
3248                                 goto einval;
3249                         if (cgroup_parse_float(buf, 2, &v))
3250                                 goto einval;
3251                         if (v < 0)
3252                                 goto einval;
3253                         qos[tok] = clamp_t(s64, v * 100,
3254                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3255                         break;
3256                 default:
3257                         goto einval;
3258                 }
3259                 user = true;
3260         }
3261
3262         if (qos[QOS_MIN] > qos[QOS_MAX])
3263                 goto einval;
3264
3265         spin_lock_irq(&ioc->lock);
3266
3267         if (enable) {
3268                 blk_stat_enable_accounting(ioc->rqos.q);
3269                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3270                 ioc->enabled = true;
3271         } else {
3272                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3273                 ioc->enabled = false;
3274         }
3275
3276         if (user) {
3277                 memcpy(ioc->params.qos, qos, sizeof(qos));
3278                 ioc->user_qos_params = true;
3279         } else {
3280                 ioc->user_qos_params = false;
3281         }
3282
3283         ioc_refresh_params(ioc, true);
3284         spin_unlock_irq(&ioc->lock);
3285
3286         put_disk_and_module(disk);
3287         return nbytes;
3288 einval:
3289         ret = -EINVAL;
3290 err:
3291         put_disk_and_module(disk);
3292         return ret;
3293 }
3294
3295 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3296                                  struct blkg_policy_data *pd, int off)
3297 {
3298         const char *dname = blkg_dev_name(pd->blkg);
3299         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3300         u64 *u = ioc->params.i_lcoefs;
3301
3302         if (!dname)
3303                 return 0;
3304
3305         seq_printf(sf, "%s ctrl=%s model=linear "
3306                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3307                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3308                    dname, ioc->user_cost_model ? "user" : "auto",
3309                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3310                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3311         return 0;
3312 }
3313
3314 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3315 {
3316         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3317
3318         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3319                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3320         return 0;
3321 }
3322
3323 static const match_table_t cost_ctrl_tokens = {
3324         { COST_CTRL,            "ctrl=%s"       },
3325         { COST_MODEL,           "model=%s"      },
3326         { NR_COST_CTRL_PARAMS,  NULL            },
3327 };
3328
3329 static const match_table_t i_lcoef_tokens = {
3330         { I_LCOEF_RBPS,         "rbps=%u"       },
3331         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3332         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3333         { I_LCOEF_WBPS,         "wbps=%u"       },
3334         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3335         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3336         { NR_I_LCOEFS,          NULL            },
3337 };
3338
3339 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3340                                     size_t nbytes, loff_t off)
3341 {
3342         struct gendisk *disk;
3343         struct ioc *ioc;
3344         u64 u[NR_I_LCOEFS];
3345         bool user;
3346         char *p;
3347         int ret;
3348
3349         disk = blkcg_conf_get_disk(&input);
3350         if (IS_ERR(disk))
3351                 return PTR_ERR(disk);
3352
3353         ioc = q_to_ioc(disk->queue);
3354         if (!ioc) {
3355                 ret = blk_iocost_init(disk->queue);
3356                 if (ret)
3357                         goto err;
3358                 ioc = q_to_ioc(disk->queue);
3359         }
3360
3361         spin_lock_irq(&ioc->lock);
3362         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3363         user = ioc->user_cost_model;
3364         spin_unlock_irq(&ioc->lock);
3365
3366         while ((p = strsep(&input, " \t\n"))) {
3367                 substring_t args[MAX_OPT_ARGS];
3368                 char buf[32];
3369                 int tok;
3370                 u64 v;
3371
3372                 if (!*p)
3373                         continue;
3374
3375                 switch (match_token(p, cost_ctrl_tokens, args)) {
3376                 case COST_CTRL:
3377                         match_strlcpy(buf, &args[0], sizeof(buf));
3378                         if (!strcmp(buf, "auto"))
3379                                 user = false;
3380                         else if (!strcmp(buf, "user"))
3381                                 user = true;
3382                         else
3383                                 goto einval;
3384                         continue;
3385                 case COST_MODEL:
3386                         match_strlcpy(buf, &args[0], sizeof(buf));
3387                         if (strcmp(buf, "linear"))
3388                                 goto einval;
3389                         continue;
3390                 }
3391
3392                 tok = match_token(p, i_lcoef_tokens, args);
3393                 if (tok == NR_I_LCOEFS)
3394                         goto einval;
3395                 if (match_u64(&args[0], &v))
3396                         goto einval;
3397                 u[tok] = v;
3398                 user = true;
3399         }
3400
3401         spin_lock_irq(&ioc->lock);
3402         if (user) {
3403                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3404                 ioc->user_cost_model = true;
3405         } else {
3406                 ioc->user_cost_model = false;
3407         }
3408         ioc_refresh_params(ioc, true);
3409         spin_unlock_irq(&ioc->lock);
3410
3411         put_disk_and_module(disk);
3412         return nbytes;
3413
3414 einval:
3415         ret = -EINVAL;
3416 err:
3417         put_disk_and_module(disk);
3418         return ret;
3419 }
3420
3421 static struct cftype ioc_files[] = {
3422         {
3423                 .name = "weight",
3424                 .flags = CFTYPE_NOT_ON_ROOT,
3425                 .seq_show = ioc_weight_show,
3426                 .write = ioc_weight_write,
3427         },
3428         {
3429                 .name = "cost.qos",
3430                 .flags = CFTYPE_ONLY_ON_ROOT,
3431                 .seq_show = ioc_qos_show,
3432                 .write = ioc_qos_write,
3433         },
3434         {
3435                 .name = "cost.model",
3436                 .flags = CFTYPE_ONLY_ON_ROOT,
3437                 .seq_show = ioc_cost_model_show,
3438                 .write = ioc_cost_model_write,
3439         },
3440         {}
3441 };
3442
3443 static struct blkcg_policy blkcg_policy_iocost = {
3444         .dfl_cftypes    = ioc_files,
3445         .cpd_alloc_fn   = ioc_cpd_alloc,
3446         .cpd_free_fn    = ioc_cpd_free,
3447         .pd_alloc_fn    = ioc_pd_alloc,
3448         .pd_init_fn     = ioc_pd_init,
3449         .pd_free_fn     = ioc_pd_free,
3450         .pd_stat_fn     = ioc_pd_stat,
3451 };
3452
3453 static int __init ioc_init(void)
3454 {
3455         return blkcg_policy_register(&blkcg_policy_iocost);
3456 }
3457
3458 static void __exit ioc_exit(void)
3459 {
3460         blkcg_policy_unregister(&blkcg_policy_iocost);
3461 }
3462
3463 module_init(ioc_init);
3464 module_exit(ioc_exit);