GNU Linux-libre 5.15.137-gnu
[releases.git] / block / blk-crypto.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/keyslot-manager.h>
15 #include <linux/module.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18
19 #include "blk-crypto-internal.h"
20
21 const struct blk_crypto_mode blk_crypto_modes[] = {
22         [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
23                 .cipher_str = "xts(aes)",
24                 .keysize = 64,
25                 .ivsize = 16,
26         },
27         [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
28                 .cipher_str = "essiv(cbc(aes),sha256)",
29                 .keysize = 16,
30                 .ivsize = 16,
31         },
32         [BLK_ENCRYPTION_MODE_ADIANTUM] = {
33                 .cipher_str = "adiantum(xchacha12,aes)",
34                 .keysize = 32,
35                 .ivsize = 32,
36         },
37 };
38
39 /*
40  * This number needs to be at least (the number of threads doing IO
41  * concurrently) * (maximum recursive depth of a bio), so that we don't
42  * deadlock on crypt_ctx allocations. The default is chosen to be the same
43  * as the default number of post read contexts in both EXT4 and F2FS.
44  */
45 static int num_prealloc_crypt_ctxs = 128;
46
47 module_param(num_prealloc_crypt_ctxs, int, 0444);
48 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
49                 "Number of bio crypto contexts to preallocate");
50
51 static struct kmem_cache *bio_crypt_ctx_cache;
52 static mempool_t *bio_crypt_ctx_pool;
53
54 static int __init bio_crypt_ctx_init(void)
55 {
56         size_t i;
57
58         bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
59         if (!bio_crypt_ctx_cache)
60                 goto out_no_mem;
61
62         bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
63                                                       bio_crypt_ctx_cache);
64         if (!bio_crypt_ctx_pool)
65                 goto out_no_mem;
66
67         /* This is assumed in various places. */
68         BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
69
70         /* Sanity check that no algorithm exceeds the defined limits. */
71         for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
72                 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
73                 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
74         }
75
76         return 0;
77 out_no_mem:
78         panic("Failed to allocate mem for bio crypt ctxs\n");
79 }
80 subsys_initcall(bio_crypt_ctx_init);
81
82 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
83                        const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
84 {
85         struct bio_crypt_ctx *bc;
86
87         /*
88          * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
89          * that the mempool_alloc() can't fail.
90          */
91         WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
92
93         bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
94
95         bc->bc_key = key;
96         memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
97
98         bio->bi_crypt_context = bc;
99 }
100
101 void __bio_crypt_free_ctx(struct bio *bio)
102 {
103         mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
104         bio->bi_crypt_context = NULL;
105 }
106
107 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
108 {
109         dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
110         if (!dst->bi_crypt_context)
111                 return -ENOMEM;
112         *dst->bi_crypt_context = *src->bi_crypt_context;
113         return 0;
114 }
115 EXPORT_SYMBOL_GPL(__bio_crypt_clone);
116
117 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
118 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
119                              unsigned int inc)
120 {
121         int i;
122
123         for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
124                 dun[i] += inc;
125                 /*
126                  * If the addition in this limb overflowed, then we need to
127                  * carry 1 into the next limb. Else the carry is 0.
128                  */
129                 if (dun[i] < inc)
130                         inc = 1;
131                 else
132                         inc = 0;
133         }
134 }
135
136 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
137 {
138         struct bio_crypt_ctx *bc = bio->bi_crypt_context;
139
140         bio_crypt_dun_increment(bc->bc_dun,
141                                 bytes >> bc->bc_key->data_unit_size_bits);
142 }
143
144 /*
145  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
146  * @next_dun, treating the DUNs as multi-limb integers.
147  */
148 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
149                                  unsigned int bytes,
150                                  const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
151 {
152         int i;
153         unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
154
155         for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
156                 if (bc->bc_dun[i] + carry != next_dun[i])
157                         return false;
158                 /*
159                  * If the addition in this limb overflowed, then we need to
160                  * carry 1 into the next limb. Else the carry is 0.
161                  */
162                 if ((bc->bc_dun[i] + carry) < carry)
163                         carry = 1;
164                 else
165                         carry = 0;
166         }
167
168         /* If the DUN wrapped through 0, don't treat it as contiguous. */
169         return carry == 0;
170 }
171
172 /*
173  * Checks that two bio crypt contexts are compatible - i.e. that
174  * they are mergeable except for data_unit_num continuity.
175  */
176 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
177                                      struct bio_crypt_ctx *bc2)
178 {
179         if (!bc1)
180                 return !bc2;
181
182         return bc2 && bc1->bc_key == bc2->bc_key;
183 }
184
185 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
186 {
187         return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
188 }
189
190 /*
191  * Checks that two bio crypt contexts are compatible, and also
192  * that their data_unit_nums are continuous (and can hence be merged)
193  * in the order @bc1 followed by @bc2.
194  */
195 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
196                              struct bio_crypt_ctx *bc2)
197 {
198         if (!bio_crypt_ctx_compatible(bc1, bc2))
199                 return false;
200
201         return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
202 }
203
204 /* Check that all I/O segments are data unit aligned. */
205 static bool bio_crypt_check_alignment(struct bio *bio)
206 {
207         const unsigned int data_unit_size =
208                 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
209         struct bvec_iter iter;
210         struct bio_vec bv;
211
212         bio_for_each_segment(bv, bio, iter) {
213                 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
214                         return false;
215         }
216
217         return true;
218 }
219
220 blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
221 {
222         return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
223                                         &rq->crypt_keyslot);
224 }
225
226 void __blk_crypto_rq_put_keyslot(struct request *rq)
227 {
228         blk_ksm_put_slot(rq->crypt_keyslot);
229         rq->crypt_keyslot = NULL;
230 }
231
232 void __blk_crypto_free_request(struct request *rq)
233 {
234         /* The keyslot, if one was needed, should have been released earlier. */
235         if (WARN_ON_ONCE(rq->crypt_keyslot))
236                 __blk_crypto_rq_put_keyslot(rq);
237
238         mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
239         rq->crypt_ctx = NULL;
240 }
241
242 /**
243  * __blk_crypto_bio_prep - Prepare bio for inline encryption
244  *
245  * @bio_ptr: pointer to original bio pointer
246  *
247  * If the bio crypt context provided for the bio is supported by the underlying
248  * device's inline encryption hardware, do nothing.
249  *
250  * Otherwise, try to perform en/decryption for this bio by falling back to the
251  * kernel crypto API. When the crypto API fallback is used for encryption,
252  * blk-crypto may choose to split the bio into 2 - the first one that will
253  * continue to be processed and the second one that will be resubmitted via
254  * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
255  * of the aforementioned "first one", and *bio_ptr will be updated to this
256  * bounce bio.
257  *
258  * Caller must ensure bio has bio_crypt_ctx.
259  *
260  * Return: true on success; false on error (and bio->bi_status will be set
261  *         appropriately, and bio_endio() will have been called so bio
262  *         submission should abort).
263  */
264 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
265 {
266         struct bio *bio = *bio_ptr;
267         const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
268
269         /* Error if bio has no data. */
270         if (WARN_ON_ONCE(!bio_has_data(bio))) {
271                 bio->bi_status = BLK_STS_IOERR;
272                 goto fail;
273         }
274
275         if (!bio_crypt_check_alignment(bio)) {
276                 bio->bi_status = BLK_STS_IOERR;
277                 goto fail;
278         }
279
280         /*
281          * Success if device supports the encryption context, or if we succeeded
282          * in falling back to the crypto API.
283          */
284         if (blk_ksm_crypto_cfg_supported(bio->bi_bdev->bd_disk->queue->ksm,
285                                          &bc_key->crypto_cfg))
286                 return true;
287
288         if (blk_crypto_fallback_bio_prep(bio_ptr))
289                 return true;
290 fail:
291         bio_endio(*bio_ptr);
292         return false;
293 }
294
295 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
296                              gfp_t gfp_mask)
297 {
298         if (!rq->crypt_ctx) {
299                 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
300                 if (!rq->crypt_ctx)
301                         return -ENOMEM;
302         }
303         *rq->crypt_ctx = *bio->bi_crypt_context;
304         return 0;
305 }
306
307 /**
308  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
309  * @blk_key: Pointer to the blk_crypto_key to initialize.
310  * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
311  *           @crypto_mode; see blk_crypto_modes[].
312  * @crypto_mode: identifier for the encryption algorithm to use
313  * @dun_bytes: number of bytes that will be used to specify the DUN when this
314  *             key is used
315  * @data_unit_size: the data unit size to use for en/decryption
316  *
317  * Return: 0 on success, -errno on failure.  The caller is responsible for
318  *         zeroizing both blk_key and raw_key when done with them.
319  */
320 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
321                         enum blk_crypto_mode_num crypto_mode,
322                         unsigned int dun_bytes,
323                         unsigned int data_unit_size)
324 {
325         const struct blk_crypto_mode *mode;
326
327         memset(blk_key, 0, sizeof(*blk_key));
328
329         if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
330                 return -EINVAL;
331
332         mode = &blk_crypto_modes[crypto_mode];
333         if (mode->keysize == 0)
334                 return -EINVAL;
335
336         if (dun_bytes == 0 || dun_bytes > mode->ivsize)
337                 return -EINVAL;
338
339         if (!is_power_of_2(data_unit_size))
340                 return -EINVAL;
341
342         blk_key->crypto_cfg.crypto_mode = crypto_mode;
343         blk_key->crypto_cfg.dun_bytes = dun_bytes;
344         blk_key->crypto_cfg.data_unit_size = data_unit_size;
345         blk_key->data_unit_size_bits = ilog2(data_unit_size);
346         blk_key->size = mode->keysize;
347         memcpy(blk_key->raw, raw_key, mode->keysize);
348
349         return 0;
350 }
351
352 /*
353  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
354  * request queue it's submitted to supports inline crypto, or the
355  * blk-crypto-fallback is enabled and supports the cfg).
356  */
357 bool blk_crypto_config_supported(struct request_queue *q,
358                                  const struct blk_crypto_config *cfg)
359 {
360         return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
361                blk_ksm_crypto_cfg_supported(q->ksm, cfg);
362 }
363
364 /**
365  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
366  * @key: A key to use on the device
367  * @q: the request queue for the device
368  *
369  * Upper layers must call this function to ensure that either the hardware
370  * supports the key's crypto settings, or the crypto API fallback has transforms
371  * for the needed mode allocated and ready to go. This function may allocate
372  * an skcipher, and *should not* be called from the data path, since that might
373  * cause a deadlock
374  *
375  * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
376  *         blk-crypto-fallback is either disabled or the needed algorithm
377  *         is disabled in the crypto API; or another -errno code.
378  */
379 int blk_crypto_start_using_key(const struct blk_crypto_key *key,
380                                struct request_queue *q)
381 {
382         if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
383                 return 0;
384         return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
385 }
386
387 /**
388  * blk_crypto_evict_key() - Evict a blk_crypto_key from a request_queue
389  * @q: a request_queue on which I/O using the key may have been done
390  * @key: the key to evict
391  *
392  * For a given request_queue, this function removes the given blk_crypto_key
393  * from the keyslot management structures and evicts it from any underlying
394  * hardware keyslot(s) or blk-crypto-fallback keyslot it may have been
395  * programmed into.
396  *
397  * Upper layers must call this before freeing the blk_crypto_key.  It must be
398  * called for every request_queue the key may have been used on.  The key must
399  * no longer be in use by any I/O when this function is called.
400  *
401  * Context: May sleep.
402  */
403 void blk_crypto_evict_key(struct request_queue *q,
404                           const struct blk_crypto_key *key)
405 {
406         int err;
407
408         if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
409                 err = blk_ksm_evict_key(q->ksm, key);
410         else
411                 err = blk_crypto_fallback_evict_key(key);
412         /*
413          * An error can only occur here if the key failed to be evicted from a
414          * keyslot (due to a hardware or driver issue) or is allegedly still in
415          * use by I/O (due to a kernel bug).  Even in these cases, the key is
416          * still unlinked from the keyslot management structures, and the caller
417          * is allowed and expected to free it right away.  There's nothing
418          * callers can do to handle errors, so just log them and return void.
419          */
420         if (err)
421                 pr_warn_ratelimited("error %d evicting key\n", err);
422 }
423 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);