1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
23 #include <trace/events/block.h>
25 #include "blk-rq-qos.h"
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
31 #define BIO_INLINE_VECS 4
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
38 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
48 struct bio_set fs_bio_set;
49 EXPORT_SYMBOL(fs_bio_set);
52 * Our slab pool management
55 struct kmem_cache *slab;
56 unsigned int slab_ref;
57 unsigned int slab_size;
60 static DEFINE_MUTEX(bio_slab_lock);
61 static struct bio_slab *bio_slabs;
62 static unsigned int bio_slab_nr, bio_slab_max;
64 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
66 unsigned int sz = sizeof(struct bio) + extra_size;
67 struct kmem_cache *slab = NULL;
68 struct bio_slab *bslab, *new_bio_slabs;
69 unsigned int new_bio_slab_max;
70 unsigned int i, entry = -1;
72 mutex_lock(&bio_slab_lock);
75 while (i < bio_slab_nr) {
76 bslab = &bio_slabs[i];
78 if (!bslab->slab && entry == -1)
80 else if (bslab->slab_size == sz) {
91 if (bio_slab_nr == bio_slab_max && entry == -1) {
92 new_bio_slab_max = bio_slab_max << 1;
93 new_bio_slabs = krealloc(bio_slabs,
94 new_bio_slab_max * sizeof(struct bio_slab),
98 bio_slab_max = new_bio_slab_max;
99 bio_slabs = new_bio_slabs;
102 entry = bio_slab_nr++;
104 bslab = &bio_slabs[entry];
106 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 SLAB_HWCACHE_ALIGN, NULL);
114 bslab->slab_size = sz;
116 mutex_unlock(&bio_slab_lock);
120 static void bio_put_slab(struct bio_set *bs)
122 struct bio_slab *bslab = NULL;
125 mutex_lock(&bio_slab_lock);
127 for (i = 0; i < bio_slab_nr; i++) {
128 if (bs->bio_slab == bio_slabs[i].slab) {
129 bslab = &bio_slabs[i];
134 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
137 WARN_ON(!bslab->slab_ref);
139 if (--bslab->slab_ref)
142 kmem_cache_destroy(bslab->slab);
146 mutex_unlock(&bio_slab_lock);
149 unsigned int bvec_nr_vecs(unsigned short idx)
151 return bvec_slabs[--idx].nr_vecs;
154 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
160 BIO_BUG_ON(idx >= BVEC_POOL_NR);
162 if (idx == BVEC_POOL_MAX) {
163 mempool_free(bv, pool);
165 struct biovec_slab *bvs = bvec_slabs + idx;
167 kmem_cache_free(bvs->slab, bv);
171 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
177 * see comment near bvec_array define!
195 case 129 ... BIO_MAX_PAGES:
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
206 if (*idx == BVEC_POOL_MAX) {
208 bvl = mempool_alloc(pool, gfp_mask);
210 struct biovec_slab *bvs = bvec_slabs + *idx;
211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222 * is set, retry with the 1-entry mempool
224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226 *idx = BVEC_POOL_MAX;
235 void bio_uninit(struct bio *bio)
237 #ifdef CONFIG_BLK_CGROUP
239 blkg_put(bio->bi_blkg);
243 if (bio_integrity(bio))
244 bio_integrity_free(bio);
246 bio_crypt_free_ctx(bio);
248 EXPORT_SYMBOL(bio_uninit);
250 static void bio_free(struct bio *bio)
252 struct bio_set *bs = bio->bi_pool;
258 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
261 * If we have front padding, adjust the bio pointer before freeing
266 mempool_free(p, &bs->bio_pool);
268 /* Bio was allocated by bio_kmalloc() */
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
278 void bio_init(struct bio *bio, struct bio_vec *table,
279 unsigned short max_vecs)
281 memset(bio, 0, sizeof(*bio));
282 atomic_set(&bio->__bi_remaining, 1);
283 atomic_set(&bio->__bi_cnt, 1);
285 bio->bi_io_vec = table;
286 bio->bi_max_vecs = max_vecs;
288 EXPORT_SYMBOL(bio_init);
291 * bio_reset - reinitialize a bio
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
300 void bio_reset(struct bio *bio)
302 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
306 memset(bio, 0, BIO_RESET_BYTES);
307 bio->bi_flags = flags;
308 atomic_set(&bio->__bi_remaining, 1);
310 EXPORT_SYMBOL(bio_reset);
312 static struct bio *__bio_chain_endio(struct bio *bio)
314 struct bio *parent = bio->bi_private;
316 if (bio->bi_status && !parent->bi_status)
317 parent->bi_status = bio->bi_status;
322 static void bio_chain_endio(struct bio *bio)
324 bio_endio(__bio_chain_endio(bio));
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
336 * The caller must not set bi_private or bi_end_io in @bio.
338 void bio_chain(struct bio *bio, struct bio *parent)
340 BUG_ON(bio->bi_private || bio->bi_end_io);
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
344 bio_inc_remaining(parent);
346 EXPORT_SYMBOL(bio_chain);
348 static void bio_alloc_rescue(struct work_struct *work)
350 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
354 spin_lock(&bs->rescue_lock);
355 bio = bio_list_pop(&bs->rescue_list);
356 spin_unlock(&bs->rescue_lock);
361 submit_bio_noacct(bio);
365 static void punt_bios_to_rescuer(struct bio_set *bs)
367 struct bio_list punt, nopunt;
370 if (WARN_ON_ONCE(!bs->rescue_workqueue))
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
386 while ((bio = bio_list_pop(¤t->bio_list[0])))
387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 current->bio_list[0] = nopunt;
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(¤t->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
403 * bio_alloc_bioset - allocate a bio for I/O
404 * @gfp_mask: the GFP_* mask given to the slab allocator
405 * @nr_iovecs: number of iovecs to pre-allocate
406 * @bs: the bio_set to allocate from.
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
419 * Note that when running under submit_bio_noacct() (i.e. any block
420 * driver), bios are not submitted until after you return - see the code in
421 * submit_bio_noacct() that converts recursion into iteration, to prevent
424 * This would normally mean allocating multiple bios under
425 * submit_bio_noacct() would be susceptible to deadlocks, but we have
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
431 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
432 * for per bio allocations.
435 * Pointer to new bio on success, NULL on failure.
437 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
440 gfp_t saved_gfp = gfp_mask;
442 unsigned inline_vecs;
443 struct bio_vec *bvl = NULL;
448 if (nr_iovecs > UIO_MAXIOV)
451 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
453 inline_vecs = nr_iovecs;
455 /* should not use nobvec bioset for nr_iovecs > 0 */
456 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 * submit_bio_noacct() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath submit_bio_noacct(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
480 if (current->bio_list &&
481 (!bio_list_empty(¤t->bio_list[0]) ||
482 !bio_list_empty(¤t->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
486 p = mempool_alloc(&bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(&bs->bio_pool, gfp_mask);
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
501 bio_init(bio, NULL, 0);
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
527 mempool_free(p, &bs->bio_pool);
530 EXPORT_SYMBOL(bio_alloc_bioset);
532 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 struct bvec_iter iter;
538 __bio_for_each_segment(bv, bio, iter, start) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
545 EXPORT_SYMBOL(zero_fill_bio_iter);
548 * bio_truncate - truncate the bio to small size of @new_size
549 * @bio: the bio to be truncated
550 * @new_size: new size for truncating the bio
553 * Truncate the bio to new size of @new_size. If bio_op(bio) is
554 * REQ_OP_READ, zero the truncated part. This function should only
555 * be used for handling corner cases, such as bio eod.
557 void bio_truncate(struct bio *bio, unsigned new_size)
560 struct bvec_iter iter;
561 unsigned int done = 0;
562 bool truncated = false;
564 if (new_size >= bio->bi_iter.bi_size)
567 if (bio_op(bio) != REQ_OP_READ)
570 bio_for_each_segment(bv, bio, iter) {
571 if (done + bv.bv_len > new_size) {
575 offset = new_size - done;
578 zero_user(bv.bv_page, bv.bv_offset + offset,
587 * Don't touch bvec table here and make it really immutable, since
588 * fs bio user has to retrieve all pages via bio_for_each_segment_all
589 * in its .end_bio() callback.
591 * It is enough to truncate bio by updating .bi_size since we can make
592 * correct bvec with the updated .bi_size for drivers.
594 bio->bi_iter.bi_size = new_size;
598 * guard_bio_eod - truncate a BIO to fit the block device
599 * @bio: bio to truncate
601 * This allows us to do IO even on the odd last sectors of a device, even if the
602 * block size is some multiple of the physical sector size.
604 * We'll just truncate the bio to the size of the device, and clear the end of
605 * the buffer head manually. Truly out-of-range accesses will turn into actual
606 * I/O errors, this only handles the "we need to be able to do I/O at the final
609 void guard_bio_eod(struct bio *bio)
612 struct hd_struct *part;
615 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
617 maxsector = part_nr_sects_read(part);
619 maxsector = get_capacity(bio->bi_disk);
626 * If the *whole* IO is past the end of the device,
627 * let it through, and the IO layer will turn it into
630 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
633 maxsector -= bio->bi_iter.bi_sector;
634 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
637 bio_truncate(bio, maxsector << 9);
641 * bio_put - release a reference to a bio
642 * @bio: bio to release reference to
645 * Put a reference to a &struct bio, either one you have gotten with
646 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
648 void bio_put(struct bio *bio)
650 if (!bio_flagged(bio, BIO_REFFED))
653 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
658 if (atomic_dec_and_test(&bio->__bi_cnt))
662 EXPORT_SYMBOL(bio_put);
665 * __bio_clone_fast - clone a bio that shares the original bio's biovec
666 * @bio: destination bio
667 * @bio_src: bio to clone
669 * Clone a &bio. Caller will own the returned bio, but not
670 * the actual data it points to. Reference count of returned
673 * Caller must ensure that @bio_src is not freed before @bio.
675 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
677 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
680 * most users will be overriding ->bi_disk with a new target,
681 * so we don't set nor calculate new physical/hw segment counts here
683 bio->bi_disk = bio_src->bi_disk;
684 bio->bi_partno = bio_src->bi_partno;
685 bio_set_flag(bio, BIO_CLONED);
686 if (bio_flagged(bio_src, BIO_THROTTLED))
687 bio_set_flag(bio, BIO_THROTTLED);
688 bio->bi_opf = bio_src->bi_opf;
689 bio->bi_ioprio = bio_src->bi_ioprio;
690 bio->bi_write_hint = bio_src->bi_write_hint;
691 bio->bi_iter = bio_src->bi_iter;
692 bio->bi_io_vec = bio_src->bi_io_vec;
694 bio_clone_blkg_association(bio, bio_src);
695 blkcg_bio_issue_init(bio);
697 EXPORT_SYMBOL(__bio_clone_fast);
700 * bio_clone_fast - clone a bio that shares the original bio's biovec
702 * @gfp_mask: allocation priority
703 * @bs: bio_set to allocate from
705 * Like __bio_clone_fast, only also allocates the returned bio
707 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
711 b = bio_alloc_bioset(gfp_mask, 0, bs);
715 __bio_clone_fast(b, bio);
717 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
720 if (bio_integrity(bio) &&
721 bio_integrity_clone(b, bio, gfp_mask) < 0)
730 EXPORT_SYMBOL(bio_clone_fast);
732 const char *bio_devname(struct bio *bio, char *buf)
734 return disk_name(bio->bi_disk, bio->bi_partno, buf);
736 EXPORT_SYMBOL(bio_devname);
738 static inline bool page_is_mergeable(const struct bio_vec *bv,
739 struct page *page, unsigned int len, unsigned int off,
742 size_t bv_end = bv->bv_offset + bv->bv_len;
743 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
744 phys_addr_t page_addr = page_to_phys(page);
746 if (vec_end_addr + 1 != page_addr + off)
748 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
751 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
754 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
758 * Try to merge a page into a segment, while obeying the hardware segment
759 * size limit. This is not for normal read/write bios, but for passthrough
760 * or Zone Append operations that we can't split.
762 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
763 struct page *page, unsigned len,
764 unsigned offset, bool *same_page)
766 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
767 unsigned long mask = queue_segment_boundary(q);
768 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
769 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
771 if ((addr1 | mask) != (addr2 | mask))
773 if (len > queue_max_segment_size(q) - bv->bv_len)
775 return __bio_try_merge_page(bio, page, len, offset, same_page);
779 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
780 * @q: the target queue
781 * @bio: destination bio
783 * @len: vec entry length
784 * @offset: vec entry offset
785 * @max_sectors: maximum number of sectors that can be added
786 * @same_page: return if the segment has been merged inside the same page
788 * Add a page to a bio while respecting the hardware max_sectors, max_segment
789 * and gap limitations.
791 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
792 struct page *page, unsigned int len, unsigned int offset,
793 unsigned int max_sectors, bool *same_page)
795 struct bio_vec *bvec;
797 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
800 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
803 if (bio->bi_vcnt > 0) {
804 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
808 * If the queue doesn't support SG gaps and adding this segment
809 * would create a gap, disallow it.
811 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
812 if (bvec_gap_to_prev(q, bvec, offset))
816 if (bio_full(bio, len))
819 if (bio->bi_vcnt >= queue_max_segments(q))
822 bvec = &bio->bi_io_vec[bio->bi_vcnt];
823 bvec->bv_page = page;
825 bvec->bv_offset = offset;
827 bio->bi_iter.bi_size += len;
832 * bio_add_pc_page - attempt to add page to passthrough bio
833 * @q: the target queue
834 * @bio: destination bio
836 * @len: vec entry length
837 * @offset: vec entry offset
839 * Attempt to add a page to the bio_vec maplist. This can fail for a
840 * number of reasons, such as the bio being full or target block device
841 * limitations. The target block device must allow bio's up to PAGE_SIZE,
842 * so it is always possible to add a single page to an empty bio.
844 * This should only be used by passthrough bios.
846 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
847 struct page *page, unsigned int len, unsigned int offset)
849 bool same_page = false;
850 return bio_add_hw_page(q, bio, page, len, offset,
851 queue_max_hw_sectors(q), &same_page);
853 EXPORT_SYMBOL(bio_add_pc_page);
856 * __bio_try_merge_page - try appending data to an existing bvec.
857 * @bio: destination bio
858 * @page: start page to add
859 * @len: length of the data to add
860 * @off: offset of the data relative to @page
861 * @same_page: return if the segment has been merged inside the same page
863 * Try to add the data at @page + @off to the last bvec of @bio. This is a
864 * useful optimisation for file systems with a block size smaller than the
867 * Warn if (@len, @off) crosses pages in case that @same_page is true.
869 * Return %true on success or %false on failure.
871 bool __bio_try_merge_page(struct bio *bio, struct page *page,
872 unsigned int len, unsigned int off, bool *same_page)
874 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
877 if (bio->bi_vcnt > 0) {
878 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
880 if (page_is_mergeable(bv, page, len, off, same_page)) {
881 if (bio->bi_iter.bi_size > UINT_MAX - len) {
886 bio->bi_iter.bi_size += len;
892 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
895 * __bio_add_page - add page(s) to a bio in a new segment
896 * @bio: destination bio
897 * @page: start page to add
898 * @len: length of the data to add, may cross pages
899 * @off: offset of the data relative to @page, may cross pages
901 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
902 * that @bio has space for another bvec.
904 void __bio_add_page(struct bio *bio, struct page *page,
905 unsigned int len, unsigned int off)
907 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
909 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
910 WARN_ON_ONCE(bio_full(bio, len));
916 bio->bi_iter.bi_size += len;
919 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
920 bio_set_flag(bio, BIO_WORKINGSET);
922 EXPORT_SYMBOL_GPL(__bio_add_page);
925 * bio_add_page - attempt to add page(s) to bio
926 * @bio: destination bio
927 * @page: start page to add
928 * @len: vec entry length, may cross pages
929 * @offset: vec entry offset relative to @page, may cross pages
931 * Attempt to add page(s) to the bio_vec maplist. This will only fail
932 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
934 int bio_add_page(struct bio *bio, struct page *page,
935 unsigned int len, unsigned int offset)
937 bool same_page = false;
939 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
940 if (bio_full(bio, len))
942 __bio_add_page(bio, page, len, offset);
946 EXPORT_SYMBOL(bio_add_page);
948 void bio_release_pages(struct bio *bio, bool mark_dirty)
950 struct bvec_iter_all iter_all;
951 struct bio_vec *bvec;
953 if (bio_flagged(bio, BIO_NO_PAGE_REF))
956 bio_for_each_segment_all(bvec, bio, iter_all) {
958 set_page_dirty_lock(bvec->bv_page);
959 put_page(bvec->bv_page);
962 EXPORT_SYMBOL_GPL(bio_release_pages);
964 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
966 const struct bio_vec *bv = iter->bvec;
970 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
973 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
974 size = bio_add_page(bio, bv->bv_page, len,
975 bv->bv_offset + iter->iov_offset);
976 if (unlikely(size != len))
978 iov_iter_advance(iter, size);
982 static void bio_put_pages(struct page **pages, size_t size, size_t off)
984 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
986 for (i = 0; i < nr; i++)
990 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
993 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
994 * @bio: bio to add pages to
995 * @iter: iov iterator describing the region to be mapped
997 * Pins pages from *iter and appends them to @bio's bvec array. The
998 * pages will have to be released using put_page() when done.
999 * For multi-segment *iter, this function only adds pages from the
1000 * next non-empty segment of the iov iterator.
1002 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1004 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1005 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1006 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1007 struct page **pages = (struct page **)bv;
1008 bool same_page = false;
1014 * Move page array up in the allocated memory for the bio vecs as far as
1015 * possible so that we can start filling biovecs from the beginning
1016 * without overwriting the temporary page array.
1018 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1019 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1021 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1022 if (unlikely(size <= 0))
1023 return size ? size : -EFAULT;
1025 for (left = size, i = 0; left > 0; left -= len, i++) {
1026 struct page *page = pages[i];
1028 len = min_t(size_t, PAGE_SIZE - offset, left);
1030 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1034 if (WARN_ON_ONCE(bio_full(bio, len))) {
1035 bio_put_pages(pages + i, left, offset);
1038 __bio_add_page(bio, page, len, offset);
1043 iov_iter_advance(iter, size);
1047 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1049 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1050 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1051 struct request_queue *q = bio->bi_disk->queue;
1052 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1053 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1054 struct page **pages = (struct page **)bv;
1061 * Move page array up in the allocated memory for the bio vecs as far as
1062 * possible so that we can start filling biovecs from the beginning
1063 * without overwriting the temporary page array.
1065 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1066 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1068 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1069 if (unlikely(size <= 0))
1070 return size ? size : -EFAULT;
1072 for (left = size, i = 0; left > 0; left -= len, i++) {
1073 struct page *page = pages[i];
1074 bool same_page = false;
1076 len = min_t(size_t, PAGE_SIZE - offset, left);
1077 if (bio_add_hw_page(q, bio, page, len, offset,
1078 max_append_sectors, &same_page) != len) {
1079 bio_put_pages(pages + i, left, offset);
1088 iov_iter_advance(iter, size - left);
1093 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1094 * @bio: bio to add pages to
1095 * @iter: iov iterator describing the region to be added
1097 * This takes either an iterator pointing to user memory, or one pointing to
1098 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1099 * map them into the kernel. On IO completion, the caller should put those
1100 * pages. If we're adding kernel pages, and the caller told us it's safe to
1101 * do so, we just have to add the pages to the bio directly. We don't grab an
1102 * extra reference to those pages (the user should already have that), and we
1103 * don't put the page on IO completion. The caller needs to check if the bio is
1104 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1107 * The function tries, but does not guarantee, to pin as many pages as
1108 * fit into the bio, or are requested in @iter, whatever is smaller. If
1109 * MM encounters an error pinning the requested pages, it stops. Error
1110 * is returned only if 0 pages could be pinned.
1112 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1114 const bool is_bvec = iov_iter_is_bvec(iter);
1117 if (WARN_ON_ONCE(bio->bi_vcnt))
1121 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1122 if (WARN_ON_ONCE(is_bvec))
1124 ret = __bio_iov_append_get_pages(bio, iter);
1127 ret = __bio_iov_bvec_add_pages(bio, iter);
1129 ret = __bio_iov_iter_get_pages(bio, iter);
1131 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1134 bio_set_flag(bio, BIO_NO_PAGE_REF);
1135 return bio->bi_vcnt ? 0 : ret;
1137 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1139 static void submit_bio_wait_endio(struct bio *bio)
1141 complete(bio->bi_private);
1145 * submit_bio_wait - submit a bio, and wait until it completes
1146 * @bio: The &struct bio which describes the I/O
1148 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1149 * bio_endio() on failure.
1151 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1152 * result in bio reference to be consumed. The caller must drop the reference
1155 int submit_bio_wait(struct bio *bio)
1157 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1158 unsigned long hang_check;
1160 bio->bi_private = &done;
1161 bio->bi_end_io = submit_bio_wait_endio;
1162 bio->bi_opf |= REQ_SYNC;
1165 /* Prevent hang_check timer from firing at us during very long I/O */
1166 hang_check = sysctl_hung_task_timeout_secs;
1168 while (!wait_for_completion_io_timeout(&done,
1169 hang_check * (HZ/2)))
1172 wait_for_completion_io(&done);
1174 return blk_status_to_errno(bio->bi_status);
1176 EXPORT_SYMBOL(submit_bio_wait);
1179 * bio_advance - increment/complete a bio by some number of bytes
1180 * @bio: bio to advance
1181 * @bytes: number of bytes to complete
1183 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1184 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1185 * be updated on the last bvec as well.
1187 * @bio will then represent the remaining, uncompleted portion of the io.
1189 void bio_advance(struct bio *bio, unsigned bytes)
1191 if (bio_integrity(bio))
1192 bio_integrity_advance(bio, bytes);
1194 bio_crypt_advance(bio, bytes);
1195 bio_advance_iter(bio, &bio->bi_iter, bytes);
1197 EXPORT_SYMBOL(bio_advance);
1199 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1200 struct bio *src, struct bvec_iter *src_iter)
1202 struct bio_vec src_bv, dst_bv;
1203 void *src_p, *dst_p;
1206 while (src_iter->bi_size && dst_iter->bi_size) {
1207 src_bv = bio_iter_iovec(src, *src_iter);
1208 dst_bv = bio_iter_iovec(dst, *dst_iter);
1210 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1212 src_p = kmap_atomic(src_bv.bv_page);
1213 dst_p = kmap_atomic(dst_bv.bv_page);
1215 memcpy(dst_p + dst_bv.bv_offset,
1216 src_p + src_bv.bv_offset,
1219 kunmap_atomic(dst_p);
1220 kunmap_atomic(src_p);
1222 flush_dcache_page(dst_bv.bv_page);
1224 bio_advance_iter(src, src_iter, bytes);
1225 bio_advance_iter(dst, dst_iter, bytes);
1228 EXPORT_SYMBOL(bio_copy_data_iter);
1231 * bio_copy_data - copy contents of data buffers from one bio to another
1233 * @dst: destination bio
1235 * Stops when it reaches the end of either @src or @dst - that is, copies
1236 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1238 void bio_copy_data(struct bio *dst, struct bio *src)
1240 struct bvec_iter src_iter = src->bi_iter;
1241 struct bvec_iter dst_iter = dst->bi_iter;
1243 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1245 EXPORT_SYMBOL(bio_copy_data);
1248 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1250 * @src: source bio list
1251 * @dst: destination bio list
1253 * Stops when it reaches the end of either the @src list or @dst list - that is,
1254 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1257 void bio_list_copy_data(struct bio *dst, struct bio *src)
1259 struct bvec_iter src_iter = src->bi_iter;
1260 struct bvec_iter dst_iter = dst->bi_iter;
1263 if (!src_iter.bi_size) {
1268 src_iter = src->bi_iter;
1271 if (!dst_iter.bi_size) {
1276 dst_iter = dst->bi_iter;
1279 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1282 EXPORT_SYMBOL(bio_list_copy_data);
1284 void bio_free_pages(struct bio *bio)
1286 struct bio_vec *bvec;
1287 struct bvec_iter_all iter_all;
1289 bio_for_each_segment_all(bvec, bio, iter_all)
1290 __free_page(bvec->bv_page);
1292 EXPORT_SYMBOL(bio_free_pages);
1295 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1296 * for performing direct-IO in BIOs.
1298 * The problem is that we cannot run set_page_dirty() from interrupt context
1299 * because the required locks are not interrupt-safe. So what we can do is to
1300 * mark the pages dirty _before_ performing IO. And in interrupt context,
1301 * check that the pages are still dirty. If so, fine. If not, redirty them
1302 * in process context.
1304 * We special-case compound pages here: normally this means reads into hugetlb
1305 * pages. The logic in here doesn't really work right for compound pages
1306 * because the VM does not uniformly chase down the head page in all cases.
1307 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1308 * handle them at all. So we skip compound pages here at an early stage.
1310 * Note that this code is very hard to test under normal circumstances because
1311 * direct-io pins the pages with get_user_pages(). This makes
1312 * is_page_cache_freeable return false, and the VM will not clean the pages.
1313 * But other code (eg, flusher threads) could clean the pages if they are mapped
1316 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1317 * deferred bio dirtying paths.
1321 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1323 void bio_set_pages_dirty(struct bio *bio)
1325 struct bio_vec *bvec;
1326 struct bvec_iter_all iter_all;
1328 bio_for_each_segment_all(bvec, bio, iter_all) {
1329 set_page_dirty_lock(bvec->bv_page);
1334 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1335 * If they are, then fine. If, however, some pages are clean then they must
1336 * have been written out during the direct-IO read. So we take another ref on
1337 * the BIO and re-dirty the pages in process context.
1339 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1340 * here on. It will run one put_page() against each page and will run one
1341 * bio_put() against the BIO.
1344 static void bio_dirty_fn(struct work_struct *work);
1346 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1347 static DEFINE_SPINLOCK(bio_dirty_lock);
1348 static struct bio *bio_dirty_list;
1351 * This runs in process context
1353 static void bio_dirty_fn(struct work_struct *work)
1355 struct bio *bio, *next;
1357 spin_lock_irq(&bio_dirty_lock);
1358 next = bio_dirty_list;
1359 bio_dirty_list = NULL;
1360 spin_unlock_irq(&bio_dirty_lock);
1362 while ((bio = next) != NULL) {
1363 next = bio->bi_private;
1365 bio_release_pages(bio, true);
1370 void bio_check_pages_dirty(struct bio *bio)
1372 struct bio_vec *bvec;
1373 unsigned long flags;
1374 struct bvec_iter_all iter_all;
1376 bio_for_each_segment_all(bvec, bio, iter_all) {
1377 if (!PageDirty(bvec->bv_page))
1381 bio_release_pages(bio, false);
1385 spin_lock_irqsave(&bio_dirty_lock, flags);
1386 bio->bi_private = bio_dirty_list;
1387 bio_dirty_list = bio;
1388 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1389 schedule_work(&bio_dirty_work);
1392 static inline bool bio_remaining_done(struct bio *bio)
1395 * If we're not chaining, then ->__bi_remaining is always 1 and
1396 * we always end io on the first invocation.
1398 if (!bio_flagged(bio, BIO_CHAIN))
1401 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1403 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1404 bio_clear_flag(bio, BIO_CHAIN);
1412 * bio_endio - end I/O on a bio
1416 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1417 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1418 * bio unless they own it and thus know that it has an end_io function.
1420 * bio_endio() can be called several times on a bio that has been chained
1421 * using bio_chain(). The ->bi_end_io() function will only be called the
1422 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1423 * generated if BIO_TRACE_COMPLETION is set.
1425 void bio_endio(struct bio *bio)
1428 if (!bio_remaining_done(bio))
1430 if (!bio_integrity_endio(bio))
1434 rq_qos_done_bio(bio->bi_disk->queue, bio);
1437 * Need to have a real endio function for chained bios, otherwise
1438 * various corner cases will break (like stacking block devices that
1439 * save/restore bi_end_io) - however, we want to avoid unbounded
1440 * recursion and blowing the stack. Tail call optimization would
1441 * handle this, but compiling with frame pointers also disables
1442 * gcc's sibling call optimization.
1444 if (bio->bi_end_io == bio_chain_endio) {
1445 bio = __bio_chain_endio(bio);
1449 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1450 trace_block_bio_complete(bio->bi_disk->queue, bio);
1451 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1454 blk_throtl_bio_endio(bio);
1455 /* release cgroup info */
1458 bio->bi_end_io(bio);
1460 EXPORT_SYMBOL(bio_endio);
1463 * bio_split - split a bio
1464 * @bio: bio to split
1465 * @sectors: number of sectors to split from the front of @bio
1467 * @bs: bio set to allocate from
1469 * Allocates and returns a new bio which represents @sectors from the start of
1470 * @bio, and updates @bio to represent the remaining sectors.
1472 * Unless this is a discard request the newly allocated bio will point
1473 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1474 * neither @bio nor @bs are freed before the split bio.
1476 struct bio *bio_split(struct bio *bio, int sectors,
1477 gfp_t gfp, struct bio_set *bs)
1481 BUG_ON(sectors <= 0);
1482 BUG_ON(sectors >= bio_sectors(bio));
1484 /* Zone append commands cannot be split */
1485 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1488 split = bio_clone_fast(bio, gfp, bs);
1492 split->bi_iter.bi_size = sectors << 9;
1494 if (bio_integrity(split))
1495 bio_integrity_trim(split);
1497 bio_advance(bio, split->bi_iter.bi_size);
1499 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1500 bio_set_flag(split, BIO_TRACE_COMPLETION);
1504 EXPORT_SYMBOL(bio_split);
1507 * bio_trim - trim a bio
1509 * @offset: number of sectors to trim from the front of @bio
1510 * @size: size we want to trim @bio to, in sectors
1512 void bio_trim(struct bio *bio, int offset, int size)
1514 /* 'bio' is a cloned bio which we need to trim to match
1515 * the given offset and size.
1519 if (offset == 0 && size == bio->bi_iter.bi_size)
1522 bio_advance(bio, offset << 9);
1523 bio->bi_iter.bi_size = size;
1525 if (bio_integrity(bio))
1526 bio_integrity_trim(bio);
1529 EXPORT_SYMBOL_GPL(bio_trim);
1532 * create memory pools for biovec's in a bio_set.
1533 * use the global biovec slabs created for general use.
1535 int biovec_init_pool(mempool_t *pool, int pool_entries)
1537 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1539 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1543 * bioset_exit - exit a bioset initialized with bioset_init()
1545 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1548 void bioset_exit(struct bio_set *bs)
1550 if (bs->rescue_workqueue)
1551 destroy_workqueue(bs->rescue_workqueue);
1552 bs->rescue_workqueue = NULL;
1554 mempool_exit(&bs->bio_pool);
1555 mempool_exit(&bs->bvec_pool);
1557 bioset_integrity_free(bs);
1560 bs->bio_slab = NULL;
1562 EXPORT_SYMBOL(bioset_exit);
1565 * bioset_init - Initialize a bio_set
1566 * @bs: pool to initialize
1567 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1568 * @front_pad: Number of bytes to allocate in front of the returned bio
1569 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1570 * and %BIOSET_NEED_RESCUER
1573 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1574 * to ask for a number of bytes to be allocated in front of the bio.
1575 * Front pad allocation is useful for embedding the bio inside
1576 * another structure, to avoid allocating extra data to go with the bio.
1577 * Note that the bio must be embedded at the END of that structure always,
1578 * or things will break badly.
1579 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1580 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1581 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1582 * dispatch queued requests when the mempool runs out of space.
1585 int bioset_init(struct bio_set *bs,
1586 unsigned int pool_size,
1587 unsigned int front_pad,
1590 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1592 bs->front_pad = front_pad;
1594 spin_lock_init(&bs->rescue_lock);
1595 bio_list_init(&bs->rescue_list);
1596 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1598 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1602 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1605 if ((flags & BIOSET_NEED_BVECS) &&
1606 biovec_init_pool(&bs->bvec_pool, pool_size))
1609 if (!(flags & BIOSET_NEED_RESCUER))
1612 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1613 if (!bs->rescue_workqueue)
1621 EXPORT_SYMBOL(bioset_init);
1624 * Initialize and setup a new bio_set, based on the settings from
1627 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1632 if (src->bvec_pool.min_nr)
1633 flags |= BIOSET_NEED_BVECS;
1634 if (src->rescue_workqueue)
1635 flags |= BIOSET_NEED_RESCUER;
1637 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1639 EXPORT_SYMBOL(bioset_init_from_src);
1641 static void __init biovec_init_slabs(void)
1645 for (i = 0; i < BVEC_POOL_NR; i++) {
1647 struct biovec_slab *bvs = bvec_slabs + i;
1649 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1654 size = bvs->nr_vecs * sizeof(struct bio_vec);
1655 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1656 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1660 static int __init init_bio(void)
1664 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1667 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1670 panic("bio: can't allocate bios\n");
1672 bio_integrity_init();
1673 biovec_init_slabs();
1675 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1676 panic("bio: can't allocate bios\n");
1678 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1679 panic("bio: can't create integrity pool\n");
1683 subsys_initcall(init_bio);