ef287c33d6d97d3face310afe2ea979fc2de7010
[releases.git] / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
50  * device-specific coefficients.
51  *
52  * 2. Control Strategy
53  *
54  * The device virtual time (vtime) is used as the primary control metric.
55  * The control strategy is composed of the following three parts.
56  *
57  * 2-1. Vtime Distribution
58  *
59  * When a cgroup becomes active in terms of IOs, its hierarchical share is
60  * calculated.  Please consider the following hierarchy where the numbers
61  * inside parentheses denote the configured weights.
62  *
63  *           root
64  *         /       \
65  *      A (w:100)  B (w:300)
66  *      /       \
67  *  A0 (w:100)  A1 (w:100)
68  *
69  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
70  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
71  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
72  * 12.5% each.  The distribution mechanism only cares about these flattened
73  * shares.  They're called hweights (hierarchical weights) and always add
74  * upto 1 (HWEIGHT_WHOLE).
75  *
76  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
77  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
78  * against the device vtime - an IO which takes 10ms on the underlying
79  * device is considered to take 80ms on A0.
80  *
81  * This constitutes the basis of IO capacity distribution.  Each cgroup's
82  * vtime is running at a rate determined by its hweight.  A cgroup tracks
83  * the vtime consumed by past IOs and can issue a new IO iff doing so
84  * wouldn't outrun the current device vtime.  Otherwise, the IO is
85  * suspended until the vtime has progressed enough to cover it.
86  *
87  * 2-2. Vrate Adjustment
88  *
89  * It's unrealistic to expect the cost model to be perfect.  There are too
90  * many devices and even on the same device the overall performance
91  * fluctuates depending on numerous factors such as IO mixture and device
92  * internal garbage collection.  The controller needs to adapt dynamically.
93  *
94  * This is achieved by adjusting the overall IO rate according to how busy
95  * the device is.  If the device becomes overloaded, we're sending down too
96  * many IOs and should generally slow down.  If there are waiting issuers
97  * but the device isn't saturated, we're issuing too few and should
98  * generally speed up.
99  *
100  * To slow down, we lower the vrate - the rate at which the device vtime
101  * passes compared to the wall clock.  For example, if the vtime is running
102  * at the vrate of 75%, all cgroups added up would only be able to issue
103  * 750ms worth of IOs per second, and vice-versa for speeding up.
104  *
105  * Device business is determined using two criteria - rq wait and
106  * completion latencies.
107  *
108  * When a device gets saturated, the on-device and then the request queues
109  * fill up and a bio which is ready to be issued has to wait for a request
110  * to become available.  When this delay becomes noticeable, it's a clear
111  * indication that the device is saturated and we lower the vrate.  This
112  * saturation signal is fairly conservative as it only triggers when both
113  * hardware and software queues are filled up, and is used as the default
114  * busy signal.
115  *
116  * As devices can have deep queues and be unfair in how the queued commands
117  * are executed, soley depending on rq wait may not result in satisfactory
118  * control quality.  For a better control quality, completion latency QoS
119  * parameters can be configured so that the device is considered saturated
120  * if N'th percentile completion latency rises above the set point.
121  *
122  * The completion latency requirements are a function of both the
123  * underlying device characteristics and the desired IO latency quality of
124  * service.  There is an inherent trade-off - the tighter the latency QoS,
125  * the higher the bandwidth lossage.  Latency QoS is disabled by default
126  * and can be set through /sys/fs/cgroup/io.cost.qos.
127  *
128  * 2-3. Work Conservation
129  *
130  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
131  * periodically while B is sending out enough parallel IOs to saturate the
132  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
133  * cost per second, i.e., 10% of the device capacity.  The naive
134  * distribution of half and half would lead to 60% utilization of the
135  * device, a significant reduction in the total amount of work done
136  * compared to free-for-all competition.  This is too high a cost to pay
137  * for IO control.
138  *
139  * To conserve the total amount of work done, we keep track of how much
140  * each active cgroup is actually using and yield part of its weight if
141  * there are other cgroups which can make use of it.  In the above case,
142  * A's weight will be lowered so that it hovers above the actual usage and
143  * B would be able to use the rest.
144  *
145  * As we don't want to penalize a cgroup for donating its weight, the
146  * surplus weight adjustment factors in a margin and has an immediate
147  * snapback mechanism in case the cgroup needs more IO vtime for itself.
148  *
149  * Note that adjusting down surplus weights has the same effects as
150  * accelerating vtime for other cgroups and work conservation can also be
151  * implemented by adjusting vrate dynamically.  However, squaring who can
152  * donate and should take back how much requires hweight propagations
153  * anyway making it easier to implement and understand as a separate
154  * mechanism.
155  *
156  * 3. Monitoring
157  *
158  * Instead of debugfs or other clumsy monitoring mechanisms, this
159  * controller uses a drgn based monitoring script -
160  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
161  * https://github.com/osandov/drgn.  The ouput looks like the following.
162  *
163  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
164  *                 active      weight      hweight% inflt% dbt  delay usages%
165  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
166  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
167  *
168  * - per        : Timer period
169  * - cur_per    : Internal wall and device vtime clock
170  * - vrate      : Device virtual time rate against wall clock
171  * - weight     : Surplus-adjusted and configured weights
172  * - hweight    : Surplus-adjusted and configured hierarchical weights
173  * - inflt      : The percentage of in-flight IO cost at the end of last period
174  * - del_ms     : Deferred issuer delay induction level and duration
175  * - usages     : Usage history
176  */
177
178 #include <linux/kernel.h>
179 #include <linux/module.h>
180 #include <linux/timer.h>
181 #include <linux/time64.h>
182 #include <linux/parser.h>
183 #include <linux/sched/signal.h>
184 #include <linux/blk-cgroup.h>
185 #include "blk-rq-qos.h"
186 #include "blk-stat.h"
187 #include "blk-wbt.h"
188
189 #ifdef CONFIG_TRACEPOINTS
190
191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
192 #define TRACE_IOCG_PATH_LEN 1024
193 static DEFINE_SPINLOCK(trace_iocg_path_lock);
194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195
196 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
197         do {                                                                    \
198                 unsigned long flags;                                            \
199                 if (trace_iocost_##type##_enabled()) {                          \
200                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
201                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
202                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
203                         trace_iocost_##type(iocg, trace_iocg_path,              \
204                                               ##__VA_ARGS__);                   \
205                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
206                 }                                                               \
207         } while (0)
208
209 #else   /* CONFIG_TRACE_POINTS */
210 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
211 #endif  /* CONFIG_TRACE_POINTS */
212
213 enum {
214         MILLION                 = 1000000,
215
216         /* timer period is calculated from latency requirements, bound it */
217         MIN_PERIOD              = USEC_PER_MSEC,
218         MAX_PERIOD              = USEC_PER_SEC,
219
220         /*
221          * A cgroup's vtime can run 50% behind the device vtime, which
222          * serves as its IO credit buffer.  Surplus weight adjustment is
223          * immediately canceled if the vtime margin runs below 10%.
224          */
225         MARGIN_PCT              = 50,
226         INUSE_MARGIN_PCT        = 10,
227
228         /* Have some play in waitq timer operations */
229         WAITQ_TIMER_MARGIN_PCT  = 5,
230
231         /*
232          * vtime can wrap well within a reasonable uptime when vrate is
233          * consistently raised.  Don't trust recorded cgroup vtime if the
234          * period counter indicates that it's older than 5mins.
235          */
236         VTIME_VALID_DUR         = 300 * USEC_PER_SEC,
237
238         /*
239          * Remember the past three non-zero usages and use the max for
240          * surplus calculation.  Three slots guarantee that we remember one
241          * full period usage from the last active stretch even after
242          * partial deactivation and re-activation periods.  Don't start
243          * giving away weight before collecting two data points to prevent
244          * hweight adjustments based on one partial activation period.
245          */
246         NR_USAGE_SLOTS          = 3,
247         MIN_VALID_USAGES        = 2,
248
249         /* 1/64k is granular enough and can easily be handled w/ u32 */
250         HWEIGHT_WHOLE           = 1 << 16,
251
252         /*
253          * As vtime is used to calculate the cost of each IO, it needs to
254          * be fairly high precision.  For example, it should be able to
255          * represent the cost of a single page worth of discard with
256          * suffificient accuracy.  At the same time, it should be able to
257          * represent reasonably long enough durations to be useful and
258          * convenient during operation.
259          *
260          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
261          * granularity and days of wrap-around time even at extreme vrates.
262          */
263         VTIME_PER_SEC_SHIFT     = 37,
264         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
265         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
266
267         /* bound vrate adjustments within two orders of magnitude */
268         VRATE_MIN_PPM           = 10000,        /* 1% */
269         VRATE_MAX_PPM           = 100000000,    /* 10000% */
270
271         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272         VRATE_CLAMP_ADJ_PCT     = 4,
273
274         /* if IOs end up waiting for requests, issue less */
275         RQ_WAIT_BUSY_PCT        = 5,
276
277         /* unbusy hysterisis */
278         UNBUSY_THR_PCT          = 75,
279
280         /* don't let cmds which take a very long time pin lagging for too long */
281         MAX_LAGGING_PERIODS     = 10,
282
283         /*
284          * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285          * donate the surplus.
286          */
287         SURPLUS_SCALE_PCT       = 125,                  /* * 125% */
288         SURPLUS_SCALE_ABS       = HWEIGHT_WHOLE / 50,   /* + 2% */
289         SURPLUS_MIN_ADJ_DELTA   = HWEIGHT_WHOLE / 33,   /* 3% */
290
291         /* switch iff the conditions are met for longer than this */
292         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
293
294         /*
295          * Count IO size in 4k pages.  The 12bit shift helps keeping
296          * size-proportional components of cost calculation in closer
297          * numbers of digits to per-IO cost components.
298          */
299         IOC_PAGE_SHIFT          = 12,
300         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
301         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
302
303         /* if apart further than 16M, consider randio for linear model */
304         LCOEF_RANDIO_PAGES      = 4096,
305 };
306
307 enum ioc_running {
308         IOC_IDLE,
309         IOC_RUNNING,
310         IOC_STOP,
311 };
312
313 /* io.cost.qos controls including per-dev enable of the whole controller */
314 enum {
315         QOS_ENABLE,
316         QOS_CTRL,
317         NR_QOS_CTRL_PARAMS,
318 };
319
320 /* io.cost.qos params */
321 enum {
322         QOS_RPPM,
323         QOS_RLAT,
324         QOS_WPPM,
325         QOS_WLAT,
326         QOS_MIN,
327         QOS_MAX,
328         NR_QOS_PARAMS,
329 };
330
331 /* io.cost.model controls */
332 enum {
333         COST_CTRL,
334         COST_MODEL,
335         NR_COST_CTRL_PARAMS,
336 };
337
338 /* builtin linear cost model coefficients */
339 enum {
340         I_LCOEF_RBPS,
341         I_LCOEF_RSEQIOPS,
342         I_LCOEF_RRANDIOPS,
343         I_LCOEF_WBPS,
344         I_LCOEF_WSEQIOPS,
345         I_LCOEF_WRANDIOPS,
346         NR_I_LCOEFS,
347 };
348
349 enum {
350         LCOEF_RPAGE,
351         LCOEF_RSEQIO,
352         LCOEF_RRANDIO,
353         LCOEF_WPAGE,
354         LCOEF_WSEQIO,
355         LCOEF_WRANDIO,
356         NR_LCOEFS,
357 };
358
359 enum {
360         AUTOP_INVALID,
361         AUTOP_HDD,
362         AUTOP_SSD_QD1,
363         AUTOP_SSD_DFL,
364         AUTOP_SSD_FAST,
365 };
366
367 struct ioc_gq;
368
369 struct ioc_params {
370         u32                             qos[NR_QOS_PARAMS];
371         u64                             i_lcoefs[NR_I_LCOEFS];
372         u64                             lcoefs[NR_LCOEFS];
373         u32                             too_fast_vrate_pct;
374         u32                             too_slow_vrate_pct;
375 };
376
377 struct ioc_missed {
378         u32                             nr_met;
379         u32                             nr_missed;
380         u32                             last_met;
381         u32                             last_missed;
382 };
383
384 struct ioc_pcpu_stat {
385         struct ioc_missed               missed[2];
386
387         u64                             rq_wait_ns;
388         u64                             last_rq_wait_ns;
389 };
390
391 /* per device */
392 struct ioc {
393         struct rq_qos                   rqos;
394
395         bool                            enabled;
396
397         struct ioc_params               params;
398         u32                             period_us;
399         u32                             margin_us;
400         u64                             vrate_min;
401         u64                             vrate_max;
402
403         spinlock_t                      lock;
404         struct timer_list               timer;
405         struct list_head                active_iocgs;   /* active cgroups */
406         struct ioc_pcpu_stat __percpu   *pcpu_stat;
407
408         enum ioc_running                running;
409         atomic64_t                      vtime_rate;
410
411         seqcount_t                      period_seqcount;
412         u32                             period_at;      /* wallclock starttime */
413         u64                             period_at_vtime; /* vtime starttime */
414
415         atomic64_t                      cur_period;     /* inc'd each period */
416         int                             busy_level;     /* saturation history */
417
418         u64                             inuse_margin_vtime;
419         bool                            weights_updated;
420         atomic_t                        hweight_gen;    /* for lazy hweights */
421
422         u64                             autop_too_fast_at;
423         u64                             autop_too_slow_at;
424         int                             autop_idx;
425         bool                            user_qos_params:1;
426         bool                            user_cost_model:1;
427 };
428
429 /* per device-cgroup pair */
430 struct ioc_gq {
431         struct blkg_policy_data         pd;
432         struct ioc                      *ioc;
433
434         /*
435          * A iocg can get its weight from two sources - an explicit
436          * per-device-cgroup configuration or the default weight of the
437          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
438          * configuration.  `weight` is the effective considering both
439          * sources.
440          *
441          * When an idle cgroup becomes active its `active` goes from 0 to
442          * `weight`.  `inuse` is the surplus adjusted active weight.
443          * `active` and `inuse` are used to calculate `hweight_active` and
444          * `hweight_inuse`.
445          *
446          * `last_inuse` remembers `inuse` while an iocg is idle to persist
447          * surplus adjustments.
448          */
449         u32                             cfg_weight;
450         u32                             weight;
451         u32                             active;
452         u32                             inuse;
453         u32                             last_inuse;
454
455         sector_t                        cursor;         /* to detect randio */
456
457         /*
458          * `vtime` is this iocg's vtime cursor which progresses as IOs are
459          * issued.  If lagging behind device vtime, the delta represents
460          * the currently available IO budget.  If runnning ahead, the
461          * overage.
462          *
463          * `vtime_done` is the same but progressed on completion rather
464          * than issue.  The delta behind `vtime` represents the cost of
465          * currently in-flight IOs.
466          *
467          * `last_vtime` is used to remember `vtime` at the end of the last
468          * period to calculate utilization.
469          */
470         atomic64_t                      vtime;
471         atomic64_t                      done_vtime;
472         u64                             abs_vdebt;
473         u64                             last_vtime;
474
475         /*
476          * The period this iocg was last active in.  Used for deactivation
477          * and invalidating `vtime`.
478          */
479         atomic64_t                      active_period;
480         struct list_head                active_list;
481
482         /* see __propagate_active_weight() and current_hweight() for details */
483         u64                             child_active_sum;
484         u64                             child_inuse_sum;
485         int                             hweight_gen;
486         u32                             hweight_active;
487         u32                             hweight_inuse;
488         bool                            has_surplus;
489
490         struct wait_queue_head          waitq;
491         struct hrtimer                  waitq_timer;
492         struct hrtimer                  delay_timer;
493
494         /* usage is recorded as fractions of HWEIGHT_WHOLE */
495         int                             usage_idx;
496         u32                             usages[NR_USAGE_SLOTS];
497
498         /* this iocg's depth in the hierarchy and ancestors including self */
499         int                             level;
500         struct ioc_gq                   *ancestors[];
501 };
502
503 /* per cgroup */
504 struct ioc_cgrp {
505         struct blkcg_policy_data        cpd;
506         unsigned int                    dfl_weight;
507 };
508
509 struct ioc_now {
510         u64                             now_ns;
511         u32                             now;
512         u64                             vnow;
513         u64                             vrate;
514 };
515
516 struct iocg_wait {
517         struct wait_queue_entry         wait;
518         struct bio                      *bio;
519         u64                             abs_cost;
520         bool                            committed;
521 };
522
523 struct iocg_wake_ctx {
524         struct ioc_gq                   *iocg;
525         u32                             hw_inuse;
526         s64                             vbudget;
527 };
528
529 static const struct ioc_params autop[] = {
530         [AUTOP_HDD] = {
531                 .qos                            = {
532                         [QOS_RLAT]              =        250000, /* 250ms */
533                         [QOS_WLAT]              =        250000,
534                         [QOS_MIN]               = VRATE_MIN_PPM,
535                         [QOS_MAX]               = VRATE_MAX_PPM,
536                 },
537                 .i_lcoefs                       = {
538                         [I_LCOEF_RBPS]          =     174019176,
539                         [I_LCOEF_RSEQIOPS]      =         41708,
540                         [I_LCOEF_RRANDIOPS]     =           370,
541                         [I_LCOEF_WBPS]          =     178075866,
542                         [I_LCOEF_WSEQIOPS]      =         42705,
543                         [I_LCOEF_WRANDIOPS]     =           378,
544                 },
545         },
546         [AUTOP_SSD_QD1] = {
547                 .qos                            = {
548                         [QOS_RLAT]              =         25000, /* 25ms */
549                         [QOS_WLAT]              =         25000,
550                         [QOS_MIN]               = VRATE_MIN_PPM,
551                         [QOS_MAX]               = VRATE_MAX_PPM,
552                 },
553                 .i_lcoefs                       = {
554                         [I_LCOEF_RBPS]          =     245855193,
555                         [I_LCOEF_RSEQIOPS]      =         61575,
556                         [I_LCOEF_RRANDIOPS]     =          6946,
557                         [I_LCOEF_WBPS]          =     141365009,
558                         [I_LCOEF_WSEQIOPS]      =         33716,
559                         [I_LCOEF_WRANDIOPS]     =         26796,
560                 },
561         },
562         [AUTOP_SSD_DFL] = {
563                 .qos                            = {
564                         [QOS_RLAT]              =         25000, /* 25ms */
565                         [QOS_WLAT]              =         25000,
566                         [QOS_MIN]               = VRATE_MIN_PPM,
567                         [QOS_MAX]               = VRATE_MAX_PPM,
568                 },
569                 .i_lcoefs                       = {
570                         [I_LCOEF_RBPS]          =     488636629,
571                         [I_LCOEF_RSEQIOPS]      =          8932,
572                         [I_LCOEF_RRANDIOPS]     =          8518,
573                         [I_LCOEF_WBPS]          =     427891549,
574                         [I_LCOEF_WSEQIOPS]      =         28755,
575                         [I_LCOEF_WRANDIOPS]     =         21940,
576                 },
577                 .too_fast_vrate_pct             =           500,
578         },
579         [AUTOP_SSD_FAST] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =          5000, /* 5ms */
582                         [QOS_WLAT]              =          5000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =    3102524156LLU,
588                         [I_LCOEF_RSEQIOPS]      =        724816,
589                         [I_LCOEF_RRANDIOPS]     =        778122,
590                         [I_LCOEF_WBPS]          =    1742780862LLU,
591                         [I_LCOEF_WSEQIOPS]      =        425702,
592                         [I_LCOEF_WRANDIOPS]     =        443193,
593                 },
594                 .too_slow_vrate_pct             =            10,
595         },
596 };
597
598 /*
599  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
600  * vtime credit shortage and down on device saturation.
601  */
602 static u32 vrate_adj_pct[] =
603         { 0, 0, 0, 0,
604           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
605           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
606           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
607
608 static struct blkcg_policy blkcg_policy_iocost;
609
610 /* accessors and helpers */
611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
612 {
613         return container_of(rqos, struct ioc, rqos);
614 }
615
616 static struct ioc *q_to_ioc(struct request_queue *q)
617 {
618         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
619 }
620
621 static const char *q_name(struct request_queue *q)
622 {
623         if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
624                 return kobject_name(q->kobj.parent);
625         else
626                 return "<unknown>";
627 }
628
629 static const char __maybe_unused *ioc_name(struct ioc *ioc)
630 {
631         return q_name(ioc->rqos.q);
632 }
633
634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
635 {
636         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
637 }
638
639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
640 {
641         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
642 }
643
644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
645 {
646         return pd_to_blkg(&iocg->pd);
647 }
648
649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
650 {
651         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
652                             struct ioc_cgrp, cpd);
653 }
654
655 /*
656  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
657  * weight, the more expensive each IO.  Must round up.
658  */
659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
660 {
661         return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
662 }
663
664 /*
665  * The inverse of abs_cost_to_cost().  Must round up.
666  */
667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
668 {
669         return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
670 }
671
672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
673 {
674         bio->bi_iocost_cost = cost;
675         atomic64_add(cost, &iocg->vtime);
676 }
677
678 #define CREATE_TRACE_POINTS
679 #include <trace/events/iocost.h>
680
681 /* latency Qos params changed, update period_us and all the dependent params */
682 static void ioc_refresh_period_us(struct ioc *ioc)
683 {
684         u32 ppm, lat, multi, period_us;
685
686         lockdep_assert_held(&ioc->lock);
687
688         /* pick the higher latency target */
689         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
690                 ppm = ioc->params.qos[QOS_RPPM];
691                 lat = ioc->params.qos[QOS_RLAT];
692         } else {
693                 ppm = ioc->params.qos[QOS_WPPM];
694                 lat = ioc->params.qos[QOS_WLAT];
695         }
696
697         /*
698          * We want the period to be long enough to contain a healthy number
699          * of IOs while short enough for granular control.  Define it as a
700          * multiple of the latency target.  Ideally, the multiplier should
701          * be scaled according to the percentile so that it would nominally
702          * contain a certain number of requests.  Let's be simpler and
703          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
704          */
705         if (ppm)
706                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
707         else
708                 multi = 2;
709         period_us = multi * lat;
710         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
711
712         /* calculate dependent params */
713         ioc->period_us = period_us;
714         ioc->margin_us = period_us * MARGIN_PCT / 100;
715         ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
716                         period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
717 }
718
719 static int ioc_autop_idx(struct ioc *ioc)
720 {
721         int idx = ioc->autop_idx;
722         const struct ioc_params *p = &autop[idx];
723         u32 vrate_pct;
724         u64 now_ns;
725
726         /* rotational? */
727         if (!blk_queue_nonrot(ioc->rqos.q))
728                 return AUTOP_HDD;
729
730         /* handle SATA SSDs w/ broken NCQ */
731         if (blk_queue_depth(ioc->rqos.q) == 1)
732                 return AUTOP_SSD_QD1;
733
734         /* use one of the normal ssd sets */
735         if (idx < AUTOP_SSD_DFL)
736                 return AUTOP_SSD_DFL;
737
738         /* if user is overriding anything, maintain what was there */
739         if (ioc->user_qos_params || ioc->user_cost_model)
740                 return idx;
741
742         /* step up/down based on the vrate */
743         vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
744                               VTIME_PER_USEC);
745         now_ns = ktime_get_ns();
746
747         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
748                 if (!ioc->autop_too_fast_at)
749                         ioc->autop_too_fast_at = now_ns;
750                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
751                         return idx + 1;
752         } else {
753                 ioc->autop_too_fast_at = 0;
754         }
755
756         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
757                 if (!ioc->autop_too_slow_at)
758                         ioc->autop_too_slow_at = now_ns;
759                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
760                         return idx - 1;
761         } else {
762                 ioc->autop_too_slow_at = 0;
763         }
764
765         return idx;
766 }
767
768 /*
769  * Take the followings as input
770  *
771  *  @bps        maximum sequential throughput
772  *  @seqiops    maximum sequential 4k iops
773  *  @randiops   maximum random 4k iops
774  *
775  * and calculate the linear model cost coefficients.
776  *
777  *  *@page      per-page cost           1s / (@bps / 4096)
778  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
779  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
780  */
781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
782                         u64 *page, u64 *seqio, u64 *randio)
783 {
784         u64 v;
785
786         *page = *seqio = *randio = 0;
787
788         if (bps)
789                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
790                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
791
792         if (seqiops) {
793                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
794                 if (v > *page)
795                         *seqio = v - *page;
796         }
797
798         if (randiops) {
799                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
800                 if (v > *page)
801                         *randio = v - *page;
802         }
803 }
804
805 static void ioc_refresh_lcoefs(struct ioc *ioc)
806 {
807         u64 *u = ioc->params.i_lcoefs;
808         u64 *c = ioc->params.lcoefs;
809
810         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
811                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
812         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
813                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
814 }
815
816 static bool ioc_refresh_params(struct ioc *ioc, bool force)
817 {
818         const struct ioc_params *p;
819         int idx;
820
821         lockdep_assert_held(&ioc->lock);
822
823         idx = ioc_autop_idx(ioc);
824         p = &autop[idx];
825
826         if (idx == ioc->autop_idx && !force)
827                 return false;
828
829         if (idx != ioc->autop_idx)
830                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
831
832         ioc->autop_idx = idx;
833         ioc->autop_too_fast_at = 0;
834         ioc->autop_too_slow_at = 0;
835
836         if (!ioc->user_qos_params)
837                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
838         if (!ioc->user_cost_model)
839                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
840
841         ioc_refresh_period_us(ioc);
842         ioc_refresh_lcoefs(ioc);
843
844         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
845                                             VTIME_PER_USEC, MILLION);
846         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
847                                    VTIME_PER_USEC, MILLION);
848
849         return true;
850 }
851
852 /* take a snapshot of the current [v]time and vrate */
853 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
854 {
855         unsigned seq;
856
857         now->now_ns = ktime_get();
858         now->now = ktime_to_us(now->now_ns);
859         now->vrate = atomic64_read(&ioc->vtime_rate);
860
861         /*
862          * The current vtime is
863          *
864          *   vtime at period start + (wallclock time since the start) * vrate
865          *
866          * As a consistent snapshot of `period_at_vtime` and `period_at` is
867          * needed, they're seqcount protected.
868          */
869         do {
870                 seq = read_seqcount_begin(&ioc->period_seqcount);
871                 now->vnow = ioc->period_at_vtime +
872                         (now->now - ioc->period_at) * now->vrate;
873         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
874 }
875
876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
877 {
878         lockdep_assert_held(&ioc->lock);
879         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
880
881         write_seqcount_begin(&ioc->period_seqcount);
882         ioc->period_at = now->now;
883         ioc->period_at_vtime = now->vnow;
884         write_seqcount_end(&ioc->period_seqcount);
885
886         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
887         add_timer(&ioc->timer);
888 }
889
890 /*
891  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
892  * weight sums and propagate upwards accordingly.
893  */
894 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
895 {
896         struct ioc *ioc = iocg->ioc;
897         int lvl;
898
899         lockdep_assert_held(&ioc->lock);
900
901         inuse = min(active, inuse);
902
903         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
904                 struct ioc_gq *parent = iocg->ancestors[lvl];
905                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
906                 u32 parent_active = 0, parent_inuse = 0;
907
908                 /* update the level sums */
909                 parent->child_active_sum += (s32)(active - child->active);
910                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
911                 /* apply the udpates */
912                 child->active = active;
913                 child->inuse = inuse;
914
915                 /*
916                  * The delta between inuse and active sums indicates that
917                  * that much of weight is being given away.  Parent's inuse
918                  * and active should reflect the ratio.
919                  */
920                 if (parent->child_active_sum) {
921                         parent_active = parent->weight;
922                         parent_inuse = DIV64_U64_ROUND_UP(
923                                 parent_active * parent->child_inuse_sum,
924                                 parent->child_active_sum);
925                 }
926
927                 /* do we need to keep walking up? */
928                 if (parent_active == parent->active &&
929                     parent_inuse == parent->inuse)
930                         break;
931
932                 active = parent_active;
933                 inuse = parent_inuse;
934         }
935
936         ioc->weights_updated = true;
937 }
938
939 static void commit_active_weights(struct ioc *ioc)
940 {
941         lockdep_assert_held(&ioc->lock);
942
943         if (ioc->weights_updated) {
944                 /* paired with rmb in current_hweight(), see there */
945                 smp_wmb();
946                 atomic_inc(&ioc->hweight_gen);
947                 ioc->weights_updated = false;
948         }
949 }
950
951 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
952 {
953         __propagate_active_weight(iocg, active, inuse);
954         commit_active_weights(iocg->ioc);
955 }
956
957 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
958 {
959         struct ioc *ioc = iocg->ioc;
960         int lvl;
961         u32 hwa, hwi;
962         int ioc_gen;
963
964         /* hot path - if uptodate, use cached */
965         ioc_gen = atomic_read(&ioc->hweight_gen);
966         if (ioc_gen == iocg->hweight_gen)
967                 goto out;
968
969         /*
970          * Paired with wmb in commit_active_weights().  If we saw the
971          * updated hweight_gen, all the weight updates from
972          * __propagate_active_weight() are visible too.
973          *
974          * We can race with weight updates during calculation and get it
975          * wrong.  However, hweight_gen would have changed and a future
976          * reader will recalculate and we're guaranteed to discard the
977          * wrong result soon.
978          */
979         smp_rmb();
980
981         hwa = hwi = HWEIGHT_WHOLE;
982         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
983                 struct ioc_gq *parent = iocg->ancestors[lvl];
984                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
985                 u32 active_sum = READ_ONCE(parent->child_active_sum);
986                 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
987                 u32 active = READ_ONCE(child->active);
988                 u32 inuse = READ_ONCE(child->inuse);
989
990                 /* we can race with deactivations and either may read as zero */
991                 if (!active_sum || !inuse_sum)
992                         continue;
993
994                 active_sum = max(active, active_sum);
995                 hwa = hwa * active / active_sum;        /* max 16bits * 10000 */
996
997                 inuse_sum = max(inuse, inuse_sum);
998                 hwi = hwi * inuse / inuse_sum;          /* max 16bits * 10000 */
999         }
1000
1001         iocg->hweight_active = max_t(u32, hwa, 1);
1002         iocg->hweight_inuse = max_t(u32, hwi, 1);
1003         iocg->hweight_gen = ioc_gen;
1004 out:
1005         if (hw_activep)
1006                 *hw_activep = iocg->hweight_active;
1007         if (hw_inusep)
1008                 *hw_inusep = iocg->hweight_inuse;
1009 }
1010
1011 static void weight_updated(struct ioc_gq *iocg)
1012 {
1013         struct ioc *ioc = iocg->ioc;
1014         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1015         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1016         u32 weight;
1017
1018         lockdep_assert_held(&ioc->lock);
1019
1020         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1021         if (weight != iocg->weight && iocg->active)
1022                 propagate_active_weight(iocg, weight,
1023                         DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1024         iocg->weight = weight;
1025 }
1026
1027 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1028 {
1029         struct ioc *ioc = iocg->ioc;
1030         u64 last_period, cur_period, max_period_delta;
1031         u64 vtime, vmargin, vmin;
1032         int i;
1033
1034         /*
1035          * If seem to be already active, just update the stamp to tell the
1036          * timer that we're still active.  We don't mind occassional races.
1037          */
1038         if (!list_empty(&iocg->active_list)) {
1039                 ioc_now(ioc, now);
1040                 cur_period = atomic64_read(&ioc->cur_period);
1041                 if (atomic64_read(&iocg->active_period) != cur_period)
1042                         atomic64_set(&iocg->active_period, cur_period);
1043                 return true;
1044         }
1045
1046         /* racy check on internal node IOs, treat as root level IOs */
1047         if (iocg->child_active_sum)
1048                 return false;
1049
1050         spin_lock_irq(&ioc->lock);
1051
1052         ioc_now(ioc, now);
1053
1054         /* update period */
1055         cur_period = atomic64_read(&ioc->cur_period);
1056         last_period = atomic64_read(&iocg->active_period);
1057         atomic64_set(&iocg->active_period, cur_period);
1058
1059         /* already activated or breaking leaf-only constraint? */
1060         if (!list_empty(&iocg->active_list))
1061                 goto succeed_unlock;
1062         for (i = iocg->level - 1; i > 0; i--)
1063                 if (!list_empty(&iocg->ancestors[i]->active_list))
1064                         goto fail_unlock;
1065
1066         if (iocg->child_active_sum)
1067                 goto fail_unlock;
1068
1069         /*
1070          * vtime may wrap when vrate is raised substantially due to
1071          * underestimated IO costs.  Look at the period and ignore its
1072          * vtime if the iocg has been idle for too long.  Also, cap the
1073          * budget it can start with to the margin.
1074          */
1075         max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1076         vtime = atomic64_read(&iocg->vtime);
1077         vmargin = ioc->margin_us * now->vrate;
1078         vmin = now->vnow - vmargin;
1079
1080         if (last_period + max_period_delta < cur_period ||
1081             time_before64(vtime, vmin)) {
1082                 atomic64_add(vmin - vtime, &iocg->vtime);
1083                 atomic64_add(vmin - vtime, &iocg->done_vtime);
1084                 vtime = vmin;
1085         }
1086
1087         /*
1088          * Activate, propagate weight and start period timer if not
1089          * running.  Reset hweight_gen to avoid accidental match from
1090          * wrapping.
1091          */
1092         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1093         list_add(&iocg->active_list, &ioc->active_iocgs);
1094         propagate_active_weight(iocg, iocg->weight,
1095                                 iocg->last_inuse ?: iocg->weight);
1096
1097         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1098                         last_period, cur_period, vtime);
1099
1100         iocg->last_vtime = vtime;
1101
1102         if (ioc->running == IOC_IDLE) {
1103                 ioc->running = IOC_RUNNING;
1104                 ioc_start_period(ioc, now);
1105         }
1106
1107 succeed_unlock:
1108         spin_unlock_irq(&ioc->lock);
1109         return true;
1110
1111 fail_unlock:
1112         spin_unlock_irq(&ioc->lock);
1113         return false;
1114 }
1115
1116 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1117                         int flags, void *key)
1118 {
1119         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1120         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1121         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1122
1123         ctx->vbudget -= cost;
1124
1125         if (ctx->vbudget < 0)
1126                 return -1;
1127
1128         iocg_commit_bio(ctx->iocg, wait->bio, cost);
1129
1130         /*
1131          * autoremove_wake_function() removes the wait entry only when it
1132          * actually changed the task state.  We want the wait always
1133          * removed.  Remove explicitly and use default_wake_function().
1134          */
1135         list_del_init(&wq_entry->entry);
1136         wait->committed = true;
1137
1138         default_wake_function(wq_entry, mode, flags, key);
1139         return 0;
1140 }
1141
1142 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1143 {
1144         struct ioc *ioc = iocg->ioc;
1145         struct iocg_wake_ctx ctx = { .iocg = iocg };
1146         u64 margin_ns = (u64)(ioc->period_us *
1147                               WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1148         u64 vdebt, vshortage, expires, oexpires;
1149         s64 vbudget;
1150         u32 hw_inuse;
1151
1152         lockdep_assert_held(&iocg->waitq.lock);
1153
1154         current_hweight(iocg, NULL, &hw_inuse);
1155         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1156
1157         /* pay off debt */
1158         vdebt = abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1159         if (vdebt && vbudget > 0) {
1160                 u64 delta = min_t(u64, vbudget, vdebt);
1161                 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1162                                     iocg->abs_vdebt);
1163
1164                 atomic64_add(delta, &iocg->vtime);
1165                 atomic64_add(delta, &iocg->done_vtime);
1166                 iocg->abs_vdebt -= abs_delta;
1167         }
1168
1169         /*
1170          * Wake up the ones which are due and see how much vtime we'll need
1171          * for the next one.
1172          */
1173         ctx.hw_inuse = hw_inuse;
1174         ctx.vbudget = vbudget - vdebt;
1175         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1176         if (!waitqueue_active(&iocg->waitq))
1177                 return;
1178         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1179                 return;
1180
1181         /* determine next wakeup, add a quarter margin to guarantee chunking */
1182         vshortage = -ctx.vbudget;
1183         expires = now->now_ns +
1184                 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1185         expires += margin_ns / 4;
1186
1187         /* if already active and close enough, don't bother */
1188         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1189         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1190             abs(oexpires - expires) <= margin_ns / 4)
1191                 return;
1192
1193         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1194                                margin_ns / 4, HRTIMER_MODE_ABS);
1195 }
1196
1197 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1198 {
1199         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1200         struct ioc_now now;
1201         unsigned long flags;
1202
1203         ioc_now(iocg->ioc, &now);
1204
1205         spin_lock_irqsave(&iocg->waitq.lock, flags);
1206         iocg_kick_waitq(iocg, &now);
1207         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1208
1209         return HRTIMER_NORESTART;
1210 }
1211
1212 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1213 {
1214         struct ioc *ioc = iocg->ioc;
1215         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1216         u64 vtime = atomic64_read(&iocg->vtime);
1217         u64 vmargin = ioc->margin_us * now->vrate;
1218         u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1219         u64 expires, oexpires;
1220         u32 hw_inuse;
1221
1222         lockdep_assert_held(&iocg->waitq.lock);
1223
1224         /* debt-adjust vtime */
1225         current_hweight(iocg, NULL, &hw_inuse);
1226         vtime += abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1227
1228         /*
1229          * Clear or maintain depending on the overage. Non-zero vdebt is what
1230          * guarantees that @iocg is online and future iocg_kick_delay() will
1231          * clear use_delay. Don't leave it on when there's no vdebt.
1232          */
1233         if (!iocg->abs_vdebt || time_before_eq64(vtime, now->vnow)) {
1234                 blkcg_clear_delay(blkg);
1235                 return false;
1236         }
1237         if (!atomic_read(&blkg->use_delay) &&
1238             time_before_eq64(vtime, now->vnow + vmargin))
1239                 return false;
1240
1241         /* use delay */
1242         if (cost) {
1243                 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1244                                                  now->vrate);
1245                 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1246         }
1247         blkcg_use_delay(blkg);
1248
1249         expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1250                                                    now->vrate) * NSEC_PER_USEC;
1251
1252         /* if already active and close enough, don't bother */
1253         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1254         if (hrtimer_is_queued(&iocg->delay_timer) &&
1255             abs(oexpires - expires) <= margin_ns / 4)
1256                 return true;
1257
1258         hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1259                                margin_ns / 4, HRTIMER_MODE_ABS);
1260         return true;
1261 }
1262
1263 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1264 {
1265         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1266         struct ioc_now now;
1267         unsigned long flags;
1268
1269         spin_lock_irqsave(&iocg->waitq.lock, flags);
1270         ioc_now(iocg->ioc, &now);
1271         iocg_kick_delay(iocg, &now, 0);
1272         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1273
1274         return HRTIMER_NORESTART;
1275 }
1276
1277 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1278 {
1279         u32 nr_met[2] = { };
1280         u32 nr_missed[2] = { };
1281         u64 rq_wait_ns = 0;
1282         int cpu, rw;
1283
1284         for_each_online_cpu(cpu) {
1285                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1286                 u64 this_rq_wait_ns;
1287
1288                 for (rw = READ; rw <= WRITE; rw++) {
1289                         u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1290                         u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1291
1292                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1293                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1294                         stat->missed[rw].last_met = this_met;
1295                         stat->missed[rw].last_missed = this_missed;
1296                 }
1297
1298                 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1299                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1300                 stat->last_rq_wait_ns = this_rq_wait_ns;
1301         }
1302
1303         for (rw = READ; rw <= WRITE; rw++) {
1304                 if (nr_met[rw] + nr_missed[rw])
1305                         missed_ppm_ar[rw] =
1306                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1307                                                    nr_met[rw] + nr_missed[rw]);
1308                 else
1309                         missed_ppm_ar[rw] = 0;
1310         }
1311
1312         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1313                                    ioc->period_us * NSEC_PER_USEC);
1314 }
1315
1316 /* was iocg idle this period? */
1317 static bool iocg_is_idle(struct ioc_gq *iocg)
1318 {
1319         struct ioc *ioc = iocg->ioc;
1320
1321         /* did something get issued this period? */
1322         if (atomic64_read(&iocg->active_period) ==
1323             atomic64_read(&ioc->cur_period))
1324                 return false;
1325
1326         /* is something in flight? */
1327         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1328                 return false;
1329
1330         return true;
1331 }
1332
1333 /* returns usage with margin added if surplus is large enough */
1334 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1335 {
1336         /* add margin */
1337         usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1338         usage += SURPLUS_SCALE_ABS;
1339
1340         /* don't bother if the surplus is too small */
1341         if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1342                 return 0;
1343
1344         return usage;
1345 }
1346
1347 static void ioc_timer_fn(struct timer_list *timer)
1348 {
1349         struct ioc *ioc = container_of(timer, struct ioc, timer);
1350         struct ioc_gq *iocg, *tiocg;
1351         struct ioc_now now;
1352         int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1353         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1354         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1355         u32 missed_ppm[2], rq_wait_pct;
1356         u64 period_vtime;
1357         int prev_busy_level, i;
1358
1359         /* how were the latencies during the period? */
1360         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1361
1362         /* take care of active iocgs */
1363         spin_lock_irq(&ioc->lock);
1364
1365         ioc_now(ioc, &now);
1366
1367         period_vtime = now.vnow - ioc->period_at_vtime;
1368         if (WARN_ON_ONCE(!period_vtime)) {
1369                 spin_unlock_irq(&ioc->lock);
1370                 return;
1371         }
1372
1373         /*
1374          * Waiters determine the sleep durations based on the vrate they
1375          * saw at the time of sleep.  If vrate has increased, some waiters
1376          * could be sleeping for too long.  Wake up tardy waiters which
1377          * should have woken up in the last period and expire idle iocgs.
1378          */
1379         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1380                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1381                     !iocg_is_idle(iocg))
1382                         continue;
1383
1384                 spin_lock(&iocg->waitq.lock);
1385
1386                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt) {
1387                         /* might be oversleeping vtime / hweight changes, kick */
1388                         iocg_kick_waitq(iocg, &now);
1389                         iocg_kick_delay(iocg, &now, 0);
1390                 } else if (iocg_is_idle(iocg)) {
1391                         /* no waiter and idle, deactivate */
1392                         iocg->last_inuse = iocg->inuse;
1393                         __propagate_active_weight(iocg, 0, 0);
1394                         list_del_init(&iocg->active_list);
1395                 }
1396
1397                 spin_unlock(&iocg->waitq.lock);
1398         }
1399         commit_active_weights(ioc);
1400
1401         /* calc usages and see whether some weights need to be moved around */
1402         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1403                 u64 vdone, vtime, vusage, vmargin, vmin;
1404                 u32 hw_active, hw_inuse, usage;
1405
1406                 /*
1407                  * Collect unused and wind vtime closer to vnow to prevent
1408                  * iocgs from accumulating a large amount of budget.
1409                  */
1410                 vdone = atomic64_read(&iocg->done_vtime);
1411                 vtime = atomic64_read(&iocg->vtime);
1412                 current_hweight(iocg, &hw_active, &hw_inuse);
1413
1414                 /*
1415                  * Latency QoS detection doesn't account for IOs which are
1416                  * in-flight for longer than a period.  Detect them by
1417                  * comparing vdone against period start.  If lagging behind
1418                  * IOs from past periods, don't increase vrate.
1419                  */
1420                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1421                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1422                     time_after64(vtime, vdone) &&
1423                     time_after64(vtime, now.vnow -
1424                                  MAX_LAGGING_PERIODS * period_vtime) &&
1425                     time_before64(vdone, now.vnow - period_vtime))
1426                         nr_lagging++;
1427
1428                 if (waitqueue_active(&iocg->waitq))
1429                         vusage = now.vnow - iocg->last_vtime;
1430                 else if (time_before64(iocg->last_vtime, vtime))
1431                         vusage = vtime - iocg->last_vtime;
1432                 else
1433                         vusage = 0;
1434
1435                 iocg->last_vtime += vusage;
1436                 /*
1437                  * Factor in in-flight vtime into vusage to avoid
1438                  * high-latency completions appearing as idle.  This should
1439                  * be done after the above ->last_time adjustment.
1440                  */
1441                 vusage = max(vusage, vtime - vdone);
1442
1443                 /* calculate hweight based usage ratio and record */
1444                 if (vusage) {
1445                         usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1446                                                    period_vtime);
1447                         iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1448                         iocg->usages[iocg->usage_idx] = usage;
1449                 } else {
1450                         usage = 0;
1451                 }
1452
1453                 /* see whether there's surplus vtime */
1454                 vmargin = ioc->margin_us * now.vrate;
1455                 vmin = now.vnow - vmargin;
1456
1457                 iocg->has_surplus = false;
1458
1459                 if (!waitqueue_active(&iocg->waitq) &&
1460                     time_before64(vtime, vmin)) {
1461                         u64 delta = vmin - vtime;
1462
1463                         /* throw away surplus vtime */
1464                         atomic64_add(delta, &iocg->vtime);
1465                         atomic64_add(delta, &iocg->done_vtime);
1466                         iocg->last_vtime += delta;
1467                         /* if usage is sufficiently low, maybe it can donate */
1468                         if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1469                                 iocg->has_surplus = true;
1470                                 nr_surpluses++;
1471                         }
1472                 } else if (hw_inuse < hw_active) {
1473                         u32 new_hwi, new_inuse;
1474
1475                         /* was donating but might need to take back some */
1476                         if (waitqueue_active(&iocg->waitq)) {
1477                                 new_hwi = hw_active;
1478                         } else {
1479                                 new_hwi = max(hw_inuse,
1480                                               usage * SURPLUS_SCALE_PCT / 100 +
1481                                               SURPLUS_SCALE_ABS);
1482                         }
1483
1484                         new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1485                                               hw_inuse);
1486                         new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1487
1488                         if (new_inuse > iocg->inuse) {
1489                                 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1490                                                 iocg->inuse, new_inuse,
1491                                                 hw_inuse, new_hwi);
1492                                 __propagate_active_weight(iocg, iocg->weight,
1493                                                           new_inuse);
1494                         }
1495                 } else {
1496                         /* genuninely out of vtime */
1497                         nr_shortages++;
1498                 }
1499         }
1500
1501         if (!nr_shortages || !nr_surpluses)
1502                 goto skip_surplus_transfers;
1503
1504         /* there are both shortages and surpluses, transfer surpluses */
1505         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1506                 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1507                 int nr_valid = 0;
1508
1509                 if (!iocg->has_surplus)
1510                         continue;
1511
1512                 /* base the decision on max historical usage */
1513                 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1514                         if (iocg->usages[i]) {
1515                                 usage = max(usage, iocg->usages[i]);
1516                                 nr_valid++;
1517                         }
1518                 }
1519                 if (nr_valid < MIN_VALID_USAGES)
1520                         continue;
1521
1522                 current_hweight(iocg, &hw_active, &hw_inuse);
1523                 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1524                 if (!new_hwi)
1525                         continue;
1526
1527                 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1528                                                hw_inuse);
1529                 if (new_inuse < iocg->inuse) {
1530                         TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1531                                         iocg->inuse, new_inuse,
1532                                         hw_inuse, new_hwi);
1533                         __propagate_active_weight(iocg, iocg->weight, new_inuse);
1534                 }
1535         }
1536 skip_surplus_transfers:
1537         commit_active_weights(ioc);
1538
1539         /*
1540          * If q is getting clogged or we're missing too much, we're issuing
1541          * too much IO and should lower vtime rate.  If we're not missing
1542          * and experiencing shortages but not surpluses, we're too stingy
1543          * and should increase vtime rate.
1544          */
1545         prev_busy_level = ioc->busy_level;
1546         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1547             missed_ppm[READ] > ppm_rthr ||
1548             missed_ppm[WRITE] > ppm_wthr) {
1549                 /* clearly missing QoS targets, slow down vrate */
1550                 ioc->busy_level = max(ioc->busy_level, 0);
1551                 ioc->busy_level++;
1552         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1553                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1554                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1555                 /* QoS targets are being met with >25% margin */
1556                 if (nr_shortages) {
1557                         /*
1558                          * We're throttling while the device has spare
1559                          * capacity.  If vrate was being slowed down, stop.
1560                          */
1561                         ioc->busy_level = min(ioc->busy_level, 0);
1562
1563                         /*
1564                          * If there are IOs spanning multiple periods, wait
1565                          * them out before pushing the device harder.  If
1566                          * there are surpluses, let redistribution work it
1567                          * out first.
1568                          */
1569                         if (!nr_lagging && !nr_surpluses)
1570                                 ioc->busy_level--;
1571                 } else {
1572                         /*
1573                          * Nobody is being throttled and the users aren't
1574                          * issuing enough IOs to saturate the device.  We
1575                          * simply don't know how close the device is to
1576                          * saturation.  Coast.
1577                          */
1578                         ioc->busy_level = 0;
1579                 }
1580         } else {
1581                 /* inside the hysterisis margin, we're good */
1582                 ioc->busy_level = 0;
1583         }
1584
1585         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1586
1587         if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1588                 u64 vrate = atomic64_read(&ioc->vtime_rate);
1589                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1590
1591                 /* rq_wait signal is always reliable, ignore user vrate_min */
1592                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1593                         vrate_min = VRATE_MIN;
1594
1595                 /*
1596                  * If vrate is out of bounds, apply clamp gradually as the
1597                  * bounds can change abruptly.  Otherwise, apply busy_level
1598                  * based adjustment.
1599                  */
1600                 if (vrate < vrate_min) {
1601                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1602                                           100);
1603                         vrate = min(vrate, vrate_min);
1604                 } else if (vrate > vrate_max) {
1605                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1606                                           100);
1607                         vrate = max(vrate, vrate_max);
1608                 } else {
1609                         int idx = min_t(int, abs(ioc->busy_level),
1610                                         ARRAY_SIZE(vrate_adj_pct) - 1);
1611                         u32 adj_pct = vrate_adj_pct[idx];
1612
1613                         if (ioc->busy_level > 0)
1614                                 adj_pct = 100 - adj_pct;
1615                         else
1616                                 adj_pct = 100 + adj_pct;
1617
1618                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1619                                       vrate_min, vrate_max);
1620                 }
1621
1622                 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1623                                            nr_lagging, nr_shortages,
1624                                            nr_surpluses);
1625
1626                 atomic64_set(&ioc->vtime_rate, vrate);
1627                 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1628                         ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1629         } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1630                 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1631                                            missed_ppm, rq_wait_pct, nr_lagging,
1632                                            nr_shortages, nr_surpluses);
1633         }
1634
1635         ioc_refresh_params(ioc, false);
1636
1637         /*
1638          * This period is done.  Move onto the next one.  If nothing's
1639          * going on with the device, stop the timer.
1640          */
1641         atomic64_inc(&ioc->cur_period);
1642
1643         if (ioc->running != IOC_STOP) {
1644                 if (!list_empty(&ioc->active_iocgs)) {
1645                         ioc_start_period(ioc, &now);
1646                 } else {
1647                         ioc->busy_level = 0;
1648                         ioc->running = IOC_IDLE;
1649                 }
1650         }
1651
1652         spin_unlock_irq(&ioc->lock);
1653 }
1654
1655 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1656                                     bool is_merge, u64 *costp)
1657 {
1658         struct ioc *ioc = iocg->ioc;
1659         u64 coef_seqio, coef_randio, coef_page;
1660         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1661         u64 seek_pages = 0;
1662         u64 cost = 0;
1663
1664         switch (bio_op(bio)) {
1665         case REQ_OP_READ:
1666                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
1667                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
1668                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
1669                 break;
1670         case REQ_OP_WRITE:
1671                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
1672                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
1673                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
1674                 break;
1675         default:
1676                 goto out;
1677         }
1678
1679         if (iocg->cursor) {
1680                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1681                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1682         }
1683
1684         if (!is_merge) {
1685                 if (seek_pages > LCOEF_RANDIO_PAGES) {
1686                         cost += coef_randio;
1687                 } else {
1688                         cost += coef_seqio;
1689                 }
1690         }
1691         cost += pages * coef_page;
1692 out:
1693         *costp = cost;
1694 }
1695
1696 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1697 {
1698         u64 cost;
1699
1700         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1701         return cost;
1702 }
1703
1704 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1705 {
1706         struct blkcg_gq *blkg = bio->bi_blkg;
1707         struct ioc *ioc = rqos_to_ioc(rqos);
1708         struct ioc_gq *iocg = blkg_to_iocg(blkg);
1709         struct ioc_now now;
1710         struct iocg_wait wait;
1711         u32 hw_active, hw_inuse;
1712         u64 abs_cost, cost, vtime;
1713
1714         /* bypass IOs if disabled or for root cgroup */
1715         if (!ioc->enabled || !iocg->level)
1716                 return;
1717
1718         /* always activate so that even 0 cost IOs get protected to some level */
1719         if (!iocg_activate(iocg, &now))
1720                 return;
1721
1722         /* calculate the absolute vtime cost */
1723         abs_cost = calc_vtime_cost(bio, iocg, false);
1724         if (!abs_cost)
1725                 return;
1726
1727         iocg->cursor = bio_end_sector(bio);
1728
1729         vtime = atomic64_read(&iocg->vtime);
1730         current_hweight(iocg, &hw_active, &hw_inuse);
1731
1732         if (hw_inuse < hw_active &&
1733             time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1734                 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1735                                 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1736                 spin_lock_irq(&ioc->lock);
1737                 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1738                 spin_unlock_irq(&ioc->lock);
1739                 current_hweight(iocg, &hw_active, &hw_inuse);
1740         }
1741
1742         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1743
1744         /*
1745          * If no one's waiting and within budget, issue right away.  The
1746          * tests are racy but the races aren't systemic - we only miss once
1747          * in a while which is fine.
1748          */
1749         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1750             time_before_eq64(vtime + cost, now.vnow)) {
1751                 iocg_commit_bio(iocg, bio, cost);
1752                 return;
1753         }
1754
1755         /*
1756          * We activated above but w/o any synchronization. Deactivation is
1757          * synchronized with waitq.lock and we won't get deactivated as long
1758          * as we're waiting or has debt, so we're good if we're activated
1759          * here. In the unlikely case that we aren't, just issue the IO.
1760          */
1761         spin_lock_irq(&iocg->waitq.lock);
1762
1763         if (unlikely(list_empty(&iocg->active_list))) {
1764                 spin_unlock_irq(&iocg->waitq.lock);
1765                 iocg_commit_bio(iocg, bio, cost);
1766                 return;
1767         }
1768
1769         /*
1770          * We're over budget. If @bio has to be issued regardless, remember
1771          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
1772          * off the debt before waking more IOs.
1773          *
1774          * This way, the debt is continuously paid off each period with the
1775          * actual budget available to the cgroup. If we just wound vtime, we
1776          * would incorrectly use the current hw_inuse for the entire amount
1777          * which, for example, can lead to the cgroup staying blocked for a
1778          * long time even with substantially raised hw_inuse.
1779          *
1780          * An iocg with vdebt should stay online so that the timer can keep
1781          * deducting its vdebt and [de]activate use_delay mechanism
1782          * accordingly. We don't want to race against the timer trying to
1783          * clear them and leave @iocg inactive w/ dangling use_delay heavily
1784          * penalizing the cgroup and its descendants.
1785          */
1786         if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1787                 iocg->abs_vdebt += abs_cost;
1788                 if (iocg_kick_delay(iocg, &now, cost))
1789                         blkcg_schedule_throttle(rqos->q,
1790                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
1791                 spin_unlock_irq(&iocg->waitq.lock);
1792                 return;
1793         }
1794
1795         /*
1796          * Append self to the waitq and schedule the wakeup timer if we're
1797          * the first waiter.  The timer duration is calculated based on the
1798          * current vrate.  vtime and hweight changes can make it too short
1799          * or too long.  Each wait entry records the absolute cost it's
1800          * waiting for to allow re-evaluation using a custom wait entry.
1801          *
1802          * If too short, the timer simply reschedules itself.  If too long,
1803          * the period timer will notice and trigger wakeups.
1804          *
1805          * All waiters are on iocg->waitq and the wait states are
1806          * synchronized using waitq.lock.
1807          */
1808         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1809         wait.wait.private = current;
1810         wait.bio = bio;
1811         wait.abs_cost = abs_cost;
1812         wait.committed = false; /* will be set true by waker */
1813
1814         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1815         iocg_kick_waitq(iocg, &now);
1816
1817         spin_unlock_irq(&iocg->waitq.lock);
1818
1819         while (true) {
1820                 set_current_state(TASK_UNINTERRUPTIBLE);
1821                 if (wait.committed)
1822                         break;
1823                 io_schedule();
1824         }
1825
1826         /* waker already committed us, proceed */
1827         finish_wait(&iocg->waitq, &wait.wait);
1828 }
1829
1830 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1831                            struct bio *bio)
1832 {
1833         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1834         struct ioc *ioc = iocg->ioc;
1835         sector_t bio_end = bio_end_sector(bio);
1836         struct ioc_now now;
1837         u32 hw_inuse;
1838         u64 abs_cost, cost;
1839         unsigned long flags;
1840
1841         /* bypass if disabled or for root cgroup */
1842         if (!ioc->enabled || !iocg->level)
1843                 return;
1844
1845         abs_cost = calc_vtime_cost(bio, iocg, true);
1846         if (!abs_cost)
1847                 return;
1848
1849         ioc_now(ioc, &now);
1850         current_hweight(iocg, NULL, &hw_inuse);
1851         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1852
1853         /* update cursor if backmerging into the request at the cursor */
1854         if (blk_rq_pos(rq) < bio_end &&
1855             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1856                 iocg->cursor = bio_end;
1857
1858         /*
1859          * Charge if there's enough vtime budget and the existing request has
1860          * cost assigned.
1861          */
1862         if (rq->bio && rq->bio->bi_iocost_cost &&
1863             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
1864                 iocg_commit_bio(iocg, bio, cost);
1865                 return;
1866         }
1867
1868         /*
1869          * Otherwise, account it as debt if @iocg is online, which it should
1870          * be for the vast majority of cases. See debt handling in
1871          * ioc_rqos_throttle() for details.
1872          */
1873         spin_lock_irqsave(&iocg->waitq.lock, flags);
1874         if (likely(!list_empty(&iocg->active_list))) {
1875                 iocg->abs_vdebt += abs_cost;
1876                 iocg_kick_delay(iocg, &now, cost);
1877         } else {
1878                 iocg_commit_bio(iocg, bio, cost);
1879         }
1880         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1881 }
1882
1883 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1884 {
1885         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1886
1887         if (iocg && bio->bi_iocost_cost)
1888                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1889 }
1890
1891 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1892 {
1893         struct ioc *ioc = rqos_to_ioc(rqos);
1894         u64 on_q_ns, rq_wait_ns;
1895         int pidx, rw;
1896
1897         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1898                 return;
1899
1900         switch (req_op(rq) & REQ_OP_MASK) {
1901         case REQ_OP_READ:
1902                 pidx = QOS_RLAT;
1903                 rw = READ;
1904                 break;
1905         case REQ_OP_WRITE:
1906                 pidx = QOS_WLAT;
1907                 rw = WRITE;
1908                 break;
1909         default:
1910                 return;
1911         }
1912
1913         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1914         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1915
1916         if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1917                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1918         else
1919                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1920
1921         this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1922 }
1923
1924 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1925 {
1926         struct ioc *ioc = rqos_to_ioc(rqos);
1927
1928         spin_lock_irq(&ioc->lock);
1929         ioc_refresh_params(ioc, false);
1930         spin_unlock_irq(&ioc->lock);
1931 }
1932
1933 static void ioc_rqos_exit(struct rq_qos *rqos)
1934 {
1935         struct ioc *ioc = rqos_to_ioc(rqos);
1936
1937         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1938
1939         spin_lock_irq(&ioc->lock);
1940         ioc->running = IOC_STOP;
1941         spin_unlock_irq(&ioc->lock);
1942
1943         del_timer_sync(&ioc->timer);
1944         free_percpu(ioc->pcpu_stat);
1945         kfree(ioc);
1946 }
1947
1948 static struct rq_qos_ops ioc_rqos_ops = {
1949         .throttle = ioc_rqos_throttle,
1950         .merge = ioc_rqos_merge,
1951         .done_bio = ioc_rqos_done_bio,
1952         .done = ioc_rqos_done,
1953         .queue_depth_changed = ioc_rqos_queue_depth_changed,
1954         .exit = ioc_rqos_exit,
1955 };
1956
1957 static int blk_iocost_init(struct request_queue *q)
1958 {
1959         struct ioc *ioc;
1960         struct rq_qos *rqos;
1961         int ret;
1962
1963         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1964         if (!ioc)
1965                 return -ENOMEM;
1966
1967         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1968         if (!ioc->pcpu_stat) {
1969                 kfree(ioc);
1970                 return -ENOMEM;
1971         }
1972
1973         rqos = &ioc->rqos;
1974         rqos->id = RQ_QOS_COST;
1975         rqos->ops = &ioc_rqos_ops;
1976         rqos->q = q;
1977
1978         spin_lock_init(&ioc->lock);
1979         timer_setup(&ioc->timer, ioc_timer_fn, 0);
1980         INIT_LIST_HEAD(&ioc->active_iocgs);
1981
1982         ioc->running = IOC_IDLE;
1983         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1984         seqcount_init(&ioc->period_seqcount);
1985         ioc->period_at = ktime_to_us(ktime_get());
1986         atomic64_set(&ioc->cur_period, 0);
1987         atomic_set(&ioc->hweight_gen, 0);
1988
1989         spin_lock_irq(&ioc->lock);
1990         ioc->autop_idx = AUTOP_INVALID;
1991         ioc_refresh_params(ioc, true);
1992         spin_unlock_irq(&ioc->lock);
1993
1994         rq_qos_add(q, rqos);
1995         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1996         if (ret) {
1997                 rq_qos_del(q, rqos);
1998                 free_percpu(ioc->pcpu_stat);
1999                 kfree(ioc);
2000                 return ret;
2001         }
2002         return 0;
2003 }
2004
2005 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2006 {
2007         struct ioc_cgrp *iocc;
2008
2009         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2010         if (!iocc)
2011                 return NULL;
2012
2013         iocc->dfl_weight = CGROUP_WEIGHT_DFL;
2014         return &iocc->cpd;
2015 }
2016
2017 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2018 {
2019         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2020 }
2021
2022 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2023                                              struct blkcg *blkcg)
2024 {
2025         int levels = blkcg->css.cgroup->level + 1;
2026         struct ioc_gq *iocg;
2027
2028         iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
2029                             gfp, q->node);
2030         if (!iocg)
2031                 return NULL;
2032
2033         return &iocg->pd;
2034 }
2035
2036 static void ioc_pd_init(struct blkg_policy_data *pd)
2037 {
2038         struct ioc_gq *iocg = pd_to_iocg(pd);
2039         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2040         struct ioc *ioc = q_to_ioc(blkg->q);
2041         struct ioc_now now;
2042         struct blkcg_gq *tblkg;
2043         unsigned long flags;
2044
2045         ioc_now(ioc, &now);
2046
2047         iocg->ioc = ioc;
2048         atomic64_set(&iocg->vtime, now.vnow);
2049         atomic64_set(&iocg->done_vtime, now.vnow);
2050         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2051         INIT_LIST_HEAD(&iocg->active_list);
2052         iocg->hweight_active = HWEIGHT_WHOLE;
2053         iocg->hweight_inuse = HWEIGHT_WHOLE;
2054
2055         init_waitqueue_head(&iocg->waitq);
2056         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2057         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2058         hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2059         iocg->delay_timer.function = iocg_delay_timer_fn;
2060
2061         iocg->level = blkg->blkcg->css.cgroup->level;
2062
2063         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2064                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2065                 iocg->ancestors[tiocg->level] = tiocg;
2066         }
2067
2068         spin_lock_irqsave(&ioc->lock, flags);
2069         weight_updated(iocg);
2070         spin_unlock_irqrestore(&ioc->lock, flags);
2071 }
2072
2073 static void ioc_pd_free(struct blkg_policy_data *pd)
2074 {
2075         struct ioc_gq *iocg = pd_to_iocg(pd);
2076         struct ioc *ioc = iocg->ioc;
2077         unsigned long flags;
2078
2079         if (ioc) {
2080                 spin_lock_irqsave(&ioc->lock, flags);
2081                 if (!list_empty(&iocg->active_list)) {
2082                         propagate_active_weight(iocg, 0, 0);
2083                         list_del_init(&iocg->active_list);
2084                 }
2085                 spin_unlock_irqrestore(&ioc->lock, flags);
2086
2087                 hrtimer_cancel(&iocg->waitq_timer);
2088                 hrtimer_cancel(&iocg->delay_timer);
2089         }
2090         kfree(iocg);
2091 }
2092
2093 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2094                              int off)
2095 {
2096         const char *dname = blkg_dev_name(pd->blkg);
2097         struct ioc_gq *iocg = pd_to_iocg(pd);
2098
2099         if (dname && iocg->cfg_weight)
2100                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2101         return 0;
2102 }
2103
2104
2105 static int ioc_weight_show(struct seq_file *sf, void *v)
2106 {
2107         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2108         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2109
2110         seq_printf(sf, "default %u\n", iocc->dfl_weight);
2111         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2112                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2113         return 0;
2114 }
2115
2116 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2117                                 size_t nbytes, loff_t off)
2118 {
2119         struct blkcg *blkcg = css_to_blkcg(of_css(of));
2120         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2121         struct blkg_conf_ctx ctx;
2122         struct ioc_gq *iocg;
2123         u32 v;
2124         int ret;
2125
2126         if (!strchr(buf, ':')) {
2127                 struct blkcg_gq *blkg;
2128
2129                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2130                         return -EINVAL;
2131
2132                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2133                         return -EINVAL;
2134
2135                 spin_lock(&blkcg->lock);
2136                 iocc->dfl_weight = v;
2137                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2138                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2139
2140                         if (iocg) {
2141                                 spin_lock_irq(&iocg->ioc->lock);
2142                                 weight_updated(iocg);
2143                                 spin_unlock_irq(&iocg->ioc->lock);
2144                         }
2145                 }
2146                 spin_unlock(&blkcg->lock);
2147
2148                 return nbytes;
2149         }
2150
2151         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2152         if (ret)
2153                 return ret;
2154
2155         iocg = blkg_to_iocg(ctx.blkg);
2156
2157         if (!strncmp(ctx.body, "default", 7)) {
2158                 v = 0;
2159         } else {
2160                 if (!sscanf(ctx.body, "%u", &v))
2161                         goto einval;
2162                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2163                         goto einval;
2164         }
2165
2166         spin_lock(&iocg->ioc->lock);
2167         iocg->cfg_weight = v;
2168         weight_updated(iocg);
2169         spin_unlock(&iocg->ioc->lock);
2170
2171         blkg_conf_finish(&ctx);
2172         return nbytes;
2173
2174 einval:
2175         blkg_conf_finish(&ctx);
2176         return -EINVAL;
2177 }
2178
2179 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2180                           int off)
2181 {
2182         const char *dname = blkg_dev_name(pd->blkg);
2183         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2184
2185         if (!dname)
2186                 return 0;
2187
2188         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2189                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2190                    ioc->params.qos[QOS_RPPM] / 10000,
2191                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
2192                    ioc->params.qos[QOS_RLAT],
2193                    ioc->params.qos[QOS_WPPM] / 10000,
2194                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
2195                    ioc->params.qos[QOS_WLAT],
2196                    ioc->params.qos[QOS_MIN] / 10000,
2197                    ioc->params.qos[QOS_MIN] % 10000 / 100,
2198                    ioc->params.qos[QOS_MAX] / 10000,
2199                    ioc->params.qos[QOS_MAX] % 10000 / 100);
2200         return 0;
2201 }
2202
2203 static int ioc_qos_show(struct seq_file *sf, void *v)
2204 {
2205         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2206
2207         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2208                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2209         return 0;
2210 }
2211
2212 static const match_table_t qos_ctrl_tokens = {
2213         { QOS_ENABLE,           "enable=%u"     },
2214         { QOS_CTRL,             "ctrl=%s"       },
2215         { NR_QOS_CTRL_PARAMS,   NULL            },
2216 };
2217
2218 static const match_table_t qos_tokens = {
2219         { QOS_RPPM,             "rpct=%s"       },
2220         { QOS_RLAT,             "rlat=%u"       },
2221         { QOS_WPPM,             "wpct=%s"       },
2222         { QOS_WLAT,             "wlat=%u"       },
2223         { QOS_MIN,              "min=%s"        },
2224         { QOS_MAX,              "max=%s"        },
2225         { NR_QOS_PARAMS,        NULL            },
2226 };
2227
2228 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2229                              size_t nbytes, loff_t off)
2230 {
2231         struct gendisk *disk;
2232         struct ioc *ioc;
2233         u32 qos[NR_QOS_PARAMS];
2234         bool enable, user;
2235         char *p;
2236         int ret;
2237
2238         disk = blkcg_conf_get_disk(&input);
2239         if (IS_ERR(disk))
2240                 return PTR_ERR(disk);
2241
2242         ioc = q_to_ioc(disk->queue);
2243         if (!ioc) {
2244                 ret = blk_iocost_init(disk->queue);
2245                 if (ret)
2246                         goto err;
2247                 ioc = q_to_ioc(disk->queue);
2248         }
2249
2250         spin_lock_irq(&ioc->lock);
2251         memcpy(qos, ioc->params.qos, sizeof(qos));
2252         enable = ioc->enabled;
2253         user = ioc->user_qos_params;
2254         spin_unlock_irq(&ioc->lock);
2255
2256         while ((p = strsep(&input, " \t\n"))) {
2257                 substring_t args[MAX_OPT_ARGS];
2258                 char buf[32];
2259                 int tok;
2260                 s64 v;
2261
2262                 if (!*p)
2263                         continue;
2264
2265                 switch (match_token(p, qos_ctrl_tokens, args)) {
2266                 case QOS_ENABLE:
2267                         match_u64(&args[0], &v);
2268                         enable = v;
2269                         continue;
2270                 case QOS_CTRL:
2271                         match_strlcpy(buf, &args[0], sizeof(buf));
2272                         if (!strcmp(buf, "auto"))
2273                                 user = false;
2274                         else if (!strcmp(buf, "user"))
2275                                 user = true;
2276                         else
2277                                 goto einval;
2278                         continue;
2279                 }
2280
2281                 tok = match_token(p, qos_tokens, args);
2282                 switch (tok) {
2283                 case QOS_RPPM:
2284                 case QOS_WPPM:
2285                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2286                             sizeof(buf))
2287                                 goto einval;
2288                         if (cgroup_parse_float(buf, 2, &v))
2289                                 goto einval;
2290                         if (v < 0 || v > 10000)
2291                                 goto einval;
2292                         qos[tok] = v * 100;
2293                         break;
2294                 case QOS_RLAT:
2295                 case QOS_WLAT:
2296                         if (match_u64(&args[0], &v))
2297                                 goto einval;
2298                         qos[tok] = v;
2299                         break;
2300                 case QOS_MIN:
2301                 case QOS_MAX:
2302                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2303                             sizeof(buf))
2304                                 goto einval;
2305                         if (cgroup_parse_float(buf, 2, &v))
2306                                 goto einval;
2307                         if (v < 0)
2308                                 goto einval;
2309                         qos[tok] = clamp_t(s64, v * 100,
2310                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
2311                         break;
2312                 default:
2313                         goto einval;
2314                 }
2315                 user = true;
2316         }
2317
2318         if (qos[QOS_MIN] > qos[QOS_MAX])
2319                 goto einval;
2320
2321         spin_lock_irq(&ioc->lock);
2322
2323         if (enable) {
2324                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2325                 ioc->enabled = true;
2326         } else {
2327                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2328                 ioc->enabled = false;
2329         }
2330
2331         if (user) {
2332                 memcpy(ioc->params.qos, qos, sizeof(qos));
2333                 ioc->user_qos_params = true;
2334         } else {
2335                 ioc->user_qos_params = false;
2336         }
2337
2338         ioc_refresh_params(ioc, true);
2339         spin_unlock_irq(&ioc->lock);
2340
2341         put_disk_and_module(disk);
2342         return nbytes;
2343 einval:
2344         ret = -EINVAL;
2345 err:
2346         put_disk_and_module(disk);
2347         return ret;
2348 }
2349
2350 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2351                                  struct blkg_policy_data *pd, int off)
2352 {
2353         const char *dname = blkg_dev_name(pd->blkg);
2354         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2355         u64 *u = ioc->params.i_lcoefs;
2356
2357         if (!dname)
2358                 return 0;
2359
2360         seq_printf(sf, "%s ctrl=%s model=linear "
2361                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
2362                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2363                    dname, ioc->user_cost_model ? "user" : "auto",
2364                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2365                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2366         return 0;
2367 }
2368
2369 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2370 {
2371         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2372
2373         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2374                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2375         return 0;
2376 }
2377
2378 static const match_table_t cost_ctrl_tokens = {
2379         { COST_CTRL,            "ctrl=%s"       },
2380         { COST_MODEL,           "model=%s"      },
2381         { NR_COST_CTRL_PARAMS,  NULL            },
2382 };
2383
2384 static const match_table_t i_lcoef_tokens = {
2385         { I_LCOEF_RBPS,         "rbps=%u"       },
2386         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
2387         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
2388         { I_LCOEF_WBPS,         "wbps=%u"       },
2389         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
2390         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
2391         { NR_I_LCOEFS,          NULL            },
2392 };
2393
2394 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2395                                     size_t nbytes, loff_t off)
2396 {
2397         struct gendisk *disk;
2398         struct ioc *ioc;
2399         u64 u[NR_I_LCOEFS];
2400         bool user;
2401         char *p;
2402         int ret;
2403
2404         disk = blkcg_conf_get_disk(&input);
2405         if (IS_ERR(disk))
2406                 return PTR_ERR(disk);
2407
2408         ioc = q_to_ioc(disk->queue);
2409         if (!ioc) {
2410                 ret = blk_iocost_init(disk->queue);
2411                 if (ret)
2412                         goto err;
2413                 ioc = q_to_ioc(disk->queue);
2414         }
2415
2416         spin_lock_irq(&ioc->lock);
2417         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2418         user = ioc->user_cost_model;
2419         spin_unlock_irq(&ioc->lock);
2420
2421         while ((p = strsep(&input, " \t\n"))) {
2422                 substring_t args[MAX_OPT_ARGS];
2423                 char buf[32];
2424                 int tok;
2425                 u64 v;
2426
2427                 if (!*p)
2428                         continue;
2429
2430                 switch (match_token(p, cost_ctrl_tokens, args)) {
2431                 case COST_CTRL:
2432                         match_strlcpy(buf, &args[0], sizeof(buf));
2433                         if (!strcmp(buf, "auto"))
2434                                 user = false;
2435                         else if (!strcmp(buf, "user"))
2436                                 user = true;
2437                         else
2438                                 goto einval;
2439                         continue;
2440                 case COST_MODEL:
2441                         match_strlcpy(buf, &args[0], sizeof(buf));
2442                         if (strcmp(buf, "linear"))
2443                                 goto einval;
2444                         continue;
2445                 }
2446
2447                 tok = match_token(p, i_lcoef_tokens, args);
2448                 if (tok == NR_I_LCOEFS)
2449                         goto einval;
2450                 if (match_u64(&args[0], &v))
2451                         goto einval;
2452                 u[tok] = v;
2453                 user = true;
2454         }
2455
2456         spin_lock_irq(&ioc->lock);
2457         if (user) {
2458                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2459                 ioc->user_cost_model = true;
2460         } else {
2461                 ioc->user_cost_model = false;
2462         }
2463         ioc_refresh_params(ioc, true);
2464         spin_unlock_irq(&ioc->lock);
2465
2466         put_disk_and_module(disk);
2467         return nbytes;
2468
2469 einval:
2470         ret = -EINVAL;
2471 err:
2472         put_disk_and_module(disk);
2473         return ret;
2474 }
2475
2476 static struct cftype ioc_files[] = {
2477         {
2478                 .name = "weight",
2479                 .flags = CFTYPE_NOT_ON_ROOT,
2480                 .seq_show = ioc_weight_show,
2481                 .write = ioc_weight_write,
2482         },
2483         {
2484                 .name = "cost.qos",
2485                 .flags = CFTYPE_ONLY_ON_ROOT,
2486                 .seq_show = ioc_qos_show,
2487                 .write = ioc_qos_write,
2488         },
2489         {
2490                 .name = "cost.model",
2491                 .flags = CFTYPE_ONLY_ON_ROOT,
2492                 .seq_show = ioc_cost_model_show,
2493                 .write = ioc_cost_model_write,
2494         },
2495         {}
2496 };
2497
2498 static struct blkcg_policy blkcg_policy_iocost = {
2499         .dfl_cftypes    = ioc_files,
2500         .cpd_alloc_fn   = ioc_cpd_alloc,
2501         .cpd_free_fn    = ioc_cpd_free,
2502         .pd_alloc_fn    = ioc_pd_alloc,
2503         .pd_init_fn     = ioc_pd_init,
2504         .pd_free_fn     = ioc_pd_free,
2505 };
2506
2507 static int __init ioc_init(void)
2508 {
2509         return blkcg_policy_register(&blkcg_policy_iocost);
2510 }
2511
2512 static void __exit ioc_exit(void)
2513 {
2514         return blkcg_policy_unregister(&blkcg_policy_iocost);
2515 }
2516
2517 module_init(ioc_init);
2518 module_exit(ioc_exit);