arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / xtensa / kernel / traps.c
1 /*
2  * arch/xtensa/kernel/traps.c
3  *
4  * Exception handling.
5  *
6  * Derived from code with the following copyrights:
7  * Copyright (C) 1994 - 1999 by Ralf Baechle
8  * Modified for R3000 by Paul M. Antoine, 1995, 1996
9  * Complete output from die() by Ulf Carlsson, 1998
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  *
12  * Essentially rewritten for the Xtensa architecture port.
13  *
14  * Copyright (C) 2001 - 2013 Tensilica Inc.
15  *
16  * Joe Taylor   <joe@tensilica.com, joetylr@yahoo.com>
17  * Chris Zankel <chris@zankel.net>
18  * Marc Gauthier<marc@tensilica.com, marc@alumni.uwaterloo.ca>
19  * Kevin Chea
20  *
21  * This file is subject to the terms and conditions of the GNU General Public
22  * License.  See the file "COPYING" in the main directory of this archive
23  * for more details.
24  */
25
26 #include <linux/cpu.h>
27 #include <linux/kernel.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/debug.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #include <linux/stringify.h>
34 #include <linux/kallsyms.h>
35 #include <linux/delay.h>
36 #include <linux/hardirq.h>
37 #include <linux/ratelimit.h>
38 #include <linux/pgtable.h>
39
40 #include <asm/stacktrace.h>
41 #include <asm/ptrace.h>
42 #include <asm/timex.h>
43 #include <linux/uaccess.h>
44 #include <asm/processor.h>
45 #include <asm/traps.h>
46 #include <asm/hw_breakpoint.h>
47
48 /*
49  * Machine specific interrupt handlers
50  */
51
52 static void do_illegal_instruction(struct pt_regs *regs);
53 static void do_div0(struct pt_regs *regs);
54 static void do_interrupt(struct pt_regs *regs);
55 #if XTENSA_FAKE_NMI
56 static void do_nmi(struct pt_regs *regs);
57 #endif
58 #ifdef CONFIG_XTENSA_LOAD_STORE
59 static void do_load_store(struct pt_regs *regs);
60 #endif
61 static void do_unaligned_user(struct pt_regs *regs);
62 static void do_multihit(struct pt_regs *regs);
63 #if XTENSA_HAVE_COPROCESSORS
64 static void do_coprocessor(struct pt_regs *regs);
65 #endif
66 static void do_debug(struct pt_regs *regs);
67
68 /*
69  * The vector table must be preceded by a save area (which
70  * implies it must be in RAM, unless one places RAM immediately
71  * before a ROM and puts the vector at the start of the ROM (!))
72  */
73
74 #define KRNL            0x01
75 #define USER            0x02
76
77 #define COPROCESSOR(x)                                                  \
78 { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, USER|KRNL, fast_coprocessor },\
79 { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, 0, do_coprocessor }
80
81 typedef struct {
82         int cause;
83         int fast;
84         void* handler;
85 } dispatch_init_table_t;
86
87 static dispatch_init_table_t __initdata dispatch_init_table[] = {
88
89 #ifdef CONFIG_USER_ABI_CALL0_PROBE
90 { EXCCAUSE_ILLEGAL_INSTRUCTION, USER,      fast_illegal_instruction_user },
91 #endif
92 { EXCCAUSE_ILLEGAL_INSTRUCTION, 0,         do_illegal_instruction},
93 { EXCCAUSE_SYSTEM_CALL,         USER,      fast_syscall_user },
94 { EXCCAUSE_SYSTEM_CALL,         0,         system_call },
95 /* EXCCAUSE_INSTRUCTION_FETCH unhandled */
96 #ifdef CONFIG_XTENSA_LOAD_STORE
97 { EXCCAUSE_LOAD_STORE_ERROR,    USER|KRNL, fast_load_store },
98 { EXCCAUSE_LOAD_STORE_ERROR,    0,         do_load_store },
99 #endif
100 { EXCCAUSE_LEVEL1_INTERRUPT,    0,         do_interrupt },
101 #ifdef SUPPORT_WINDOWED
102 { EXCCAUSE_ALLOCA,              USER|KRNL, fast_alloca },
103 #endif
104 { EXCCAUSE_INTEGER_DIVIDE_BY_ZERO, 0,      do_div0 },
105 /* EXCCAUSE_PRIVILEGED unhandled */
106 #if XCHAL_UNALIGNED_LOAD_EXCEPTION || XCHAL_UNALIGNED_STORE_EXCEPTION || \
107                 IS_ENABLED(CONFIG_XTENSA_LOAD_STORE)
108 #ifdef CONFIG_XTENSA_UNALIGNED_USER
109 { EXCCAUSE_UNALIGNED,           USER,      fast_unaligned },
110 #endif
111 { EXCCAUSE_UNALIGNED,           KRNL,      fast_unaligned },
112 #endif
113 { EXCCAUSE_UNALIGNED,           0,         do_unaligned_user },
114 #ifdef CONFIG_MMU
115 { EXCCAUSE_ITLB_MISS,                   0,         do_page_fault },
116 { EXCCAUSE_ITLB_MISS,                   USER|KRNL, fast_second_level_miss},
117 { EXCCAUSE_DTLB_MISS,                   USER|KRNL, fast_second_level_miss},
118 { EXCCAUSE_DTLB_MISS,                   0,         do_page_fault },
119 { EXCCAUSE_STORE_CACHE_ATTRIBUTE,       USER|KRNL, fast_store_prohibited },
120 #endif /* CONFIG_MMU */
121 #ifdef CONFIG_PFAULT
122 { EXCCAUSE_ITLB_MULTIHIT,               0,         do_multihit },
123 { EXCCAUSE_ITLB_PRIVILEGE,              0,         do_page_fault },
124 { EXCCAUSE_FETCH_CACHE_ATTRIBUTE,       0,         do_page_fault },
125 { EXCCAUSE_DTLB_MULTIHIT,               0,         do_multihit },
126 { EXCCAUSE_DTLB_PRIVILEGE,              0,         do_page_fault },
127 { EXCCAUSE_STORE_CACHE_ATTRIBUTE,       0,         do_page_fault },
128 { EXCCAUSE_LOAD_CACHE_ATTRIBUTE,        0,         do_page_fault },
129 #endif
130 /* XCCHAL_EXCCAUSE_FLOATING_POINT unhandled */
131 #if XTENSA_HAVE_COPROCESSOR(0)
132 COPROCESSOR(0),
133 #endif
134 #if XTENSA_HAVE_COPROCESSOR(1)
135 COPROCESSOR(1),
136 #endif
137 #if XTENSA_HAVE_COPROCESSOR(2)
138 COPROCESSOR(2),
139 #endif
140 #if XTENSA_HAVE_COPROCESSOR(3)
141 COPROCESSOR(3),
142 #endif
143 #if XTENSA_HAVE_COPROCESSOR(4)
144 COPROCESSOR(4),
145 #endif
146 #if XTENSA_HAVE_COPROCESSOR(5)
147 COPROCESSOR(5),
148 #endif
149 #if XTENSA_HAVE_COPROCESSOR(6)
150 COPROCESSOR(6),
151 #endif
152 #if XTENSA_HAVE_COPROCESSOR(7)
153 COPROCESSOR(7),
154 #endif
155 #if XTENSA_FAKE_NMI
156 { EXCCAUSE_MAPPED_NMI,                  0,              do_nmi },
157 #endif
158 { EXCCAUSE_MAPPED_DEBUG,                0,              do_debug },
159 { -1, -1, 0 }
160
161 };
162
163 /* The exception table <exc_table> serves two functions:
164  * 1. it contains three dispatch tables (fast_user, fast_kernel, default-c)
165  * 2. it is a temporary memory buffer for the exception handlers.
166  */
167
168 DEFINE_PER_CPU(struct exc_table, exc_table);
169 DEFINE_PER_CPU(struct debug_table, debug_table);
170
171 void die(const char*, struct pt_regs*, long);
172
173 static inline void
174 __die_if_kernel(const char *str, struct pt_regs *regs, long err)
175 {
176         if (!user_mode(regs))
177                 die(str, regs, err);
178 }
179
180 #ifdef CONFIG_PRINT_USER_CODE_ON_UNHANDLED_EXCEPTION
181 static inline void dump_user_code(struct pt_regs *regs)
182 {
183         char buf[32];
184
185         if (copy_from_user(buf, (void __user *)(regs->pc & -16), sizeof(buf)) == 0) {
186                 print_hex_dump(KERN_INFO, " ", DUMP_PREFIX_NONE,
187                                32, 1, buf, sizeof(buf), false);
188
189         }
190 }
191 #else
192 static inline void dump_user_code(struct pt_regs *regs)
193 {
194 }
195 #endif
196
197 /*
198  * Unhandled Exceptions. Kill user task or panic if in kernel space.
199  */
200
201 void do_unhandled(struct pt_regs *regs)
202 {
203         __die_if_kernel("Caught unhandled exception - should not happen",
204                         regs, SIGKILL);
205
206         /* If in user mode, send SIGILL signal to current process */
207         pr_info_ratelimited("Caught unhandled exception in '%s' "
208                             "(pid = %d, pc = %#010lx) - should not happen\n"
209                             "\tEXCCAUSE is %ld\n",
210                             current->comm, task_pid_nr(current), regs->pc,
211                             regs->exccause);
212         dump_user_code(regs);
213         force_sig(SIGILL);
214 }
215
216 /*
217  * Multi-hit exception. This if fatal!
218  */
219
220 static void do_multihit(struct pt_regs *regs)
221 {
222         die("Caught multihit exception", regs, SIGKILL);
223 }
224
225 /*
226  * IRQ handler.
227  */
228
229 #if XTENSA_FAKE_NMI
230
231 #define IS_POW2(v) (((v) & ((v) - 1)) == 0)
232
233 #if !(PROFILING_INTLEVEL == XCHAL_EXCM_LEVEL && \
234       IS_POW2(XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL)))
235 #warning "Fake NMI is requested for PMM, but there are other IRQs at or above its level."
236 #warning "Fake NMI will be used, but there will be a bugcheck if one of those IRQs fire."
237
238 static inline void check_valid_nmi(void)
239 {
240         unsigned intread = xtensa_get_sr(interrupt);
241         unsigned intenable = xtensa_get_sr(intenable);
242
243         BUG_ON(intread & intenable &
244                ~(XTENSA_INTLEVEL_ANDBELOW_MASK(PROFILING_INTLEVEL) ^
245                  XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL) ^
246                  BIT(XCHAL_PROFILING_INTERRUPT)));
247 }
248
249 #else
250
251 static inline void check_valid_nmi(void)
252 {
253 }
254
255 #endif
256
257 irqreturn_t xtensa_pmu_irq_handler(int irq, void *dev_id);
258
259 DEFINE_PER_CPU(unsigned long, nmi_count);
260
261 static void do_nmi(struct pt_regs *regs)
262 {
263         struct pt_regs *old_regs = set_irq_regs(regs);
264
265         nmi_enter();
266         ++*this_cpu_ptr(&nmi_count);
267         check_valid_nmi();
268         xtensa_pmu_irq_handler(0, NULL);
269         nmi_exit();
270         set_irq_regs(old_regs);
271 }
272 #endif
273
274 static void do_interrupt(struct pt_regs *regs)
275 {
276         static const unsigned int_level_mask[] = {
277                 0,
278                 XCHAL_INTLEVEL1_MASK,
279                 XCHAL_INTLEVEL2_MASK,
280                 XCHAL_INTLEVEL3_MASK,
281                 XCHAL_INTLEVEL4_MASK,
282                 XCHAL_INTLEVEL5_MASK,
283                 XCHAL_INTLEVEL6_MASK,
284                 XCHAL_INTLEVEL7_MASK,
285         };
286         struct pt_regs *old_regs = set_irq_regs(regs);
287         unsigned unhandled = ~0u;
288
289         irq_enter();
290
291         for (;;) {
292                 unsigned intread = xtensa_get_sr(interrupt);
293                 unsigned intenable = xtensa_get_sr(intenable);
294                 unsigned int_at_level = intread & intenable;
295                 unsigned level;
296
297                 for (level = LOCKLEVEL; level > 0; --level) {
298                         if (int_at_level & int_level_mask[level]) {
299                                 int_at_level &= int_level_mask[level];
300                                 if (int_at_level & unhandled)
301                                         int_at_level &= unhandled;
302                                 else
303                                         unhandled |= int_level_mask[level];
304                                 break;
305                         }
306                 }
307
308                 if (level == 0)
309                         break;
310
311                 /* clear lowest pending irq in the unhandled mask */
312                 unhandled ^= (int_at_level & -int_at_level);
313                 do_IRQ(__ffs(int_at_level), regs);
314         }
315
316         irq_exit();
317         set_irq_regs(old_regs);
318 }
319
320 static bool check_div0(struct pt_regs *regs)
321 {
322         static const u8 pattern[] = {'D', 'I', 'V', '0'};
323         const u8 *p;
324         u8 buf[5];
325
326         if (user_mode(regs)) {
327                 if (copy_from_user(buf, (void __user *)regs->pc + 2, 5))
328                         return false;
329                 p = buf;
330         } else {
331                 p = (const u8 *)regs->pc + 2;
332         }
333
334         return memcmp(p, pattern, sizeof(pattern)) == 0 ||
335                 memcmp(p + 1, pattern, sizeof(pattern)) == 0;
336 }
337
338 /*
339  * Illegal instruction. Fatal if in kernel space.
340  */
341
342 static void do_illegal_instruction(struct pt_regs *regs)
343 {
344 #ifdef CONFIG_USER_ABI_CALL0_PROBE
345         /*
346          * When call0 application encounters an illegal instruction fast
347          * exception handler will attempt to set PS.WOE and retry failing
348          * instruction.
349          * If we get here we know that that instruction is also illegal
350          * with PS.WOE set, so it's not related to the windowed option
351          * hence PS.WOE may be cleared.
352          */
353         if (regs->pc == current_thread_info()->ps_woe_fix_addr)
354                 regs->ps &= ~PS_WOE_MASK;
355 #endif
356         if (check_div0(regs)) {
357                 do_div0(regs);
358                 return;
359         }
360
361         __die_if_kernel("Illegal instruction in kernel", regs, SIGKILL);
362
363         /* If in user mode, send SIGILL signal to current process. */
364
365         pr_info_ratelimited("Illegal Instruction in '%s' (pid = %d, pc = %#010lx)\n",
366                             current->comm, task_pid_nr(current), regs->pc);
367         force_sig(SIGILL);
368 }
369
370 static void do_div0(struct pt_regs *regs)
371 {
372         __die_if_kernel("Unhandled division by 0 in kernel", regs, SIGKILL);
373         force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->pc);
374 }
375
376 #ifdef CONFIG_XTENSA_LOAD_STORE
377 static void do_load_store(struct pt_regs *regs)
378 {
379         __die_if_kernel("Unhandled load/store exception in kernel",
380                         regs, SIGKILL);
381
382         pr_info_ratelimited("Load/store error to %08lx in '%s' (pid = %d, pc = %#010lx)\n",
383                             regs->excvaddr, current->comm,
384                             task_pid_nr(current), regs->pc);
385         force_sig_fault(SIGBUS, BUS_ADRERR, (void *)regs->excvaddr);
386 }
387 #endif
388
389 /*
390  * Handle unaligned memory accesses from user space. Kill task.
391  *
392  * If CONFIG_UNALIGNED_USER is not set, we don't allow unaligned memory
393  * accesses causes from user space.
394  */
395
396 static void do_unaligned_user(struct pt_regs *regs)
397 {
398         __die_if_kernel("Unhandled unaligned exception in kernel",
399                         regs, SIGKILL);
400
401         pr_info_ratelimited("Unaligned memory access to %08lx in '%s' "
402                             "(pid = %d, pc = %#010lx)\n",
403                             regs->excvaddr, current->comm,
404                             task_pid_nr(current), regs->pc);
405         force_sig_fault(SIGBUS, BUS_ADRALN, (void *) regs->excvaddr);
406 }
407
408 #if XTENSA_HAVE_COPROCESSORS
409 static void do_coprocessor(struct pt_regs *regs)
410 {
411         coprocessor_flush_release_all(current_thread_info());
412 }
413 #endif
414
415 /* Handle debug events.
416  * When CONFIG_HAVE_HW_BREAKPOINT is on this handler is called with
417  * preemption disabled to avoid rescheduling and keep mapping of hardware
418  * breakpoint structures to debug registers intact, so that
419  * DEBUGCAUSE.DBNUM could be used in case of data breakpoint hit.
420  */
421 static void do_debug(struct pt_regs *regs)
422 {
423 #ifdef CONFIG_HAVE_HW_BREAKPOINT
424         int ret = check_hw_breakpoint(regs);
425
426         preempt_enable();
427         if (ret == 0)
428                 return;
429 #endif
430         __die_if_kernel("Breakpoint in kernel", regs, SIGKILL);
431
432         /* If in user mode, send SIGTRAP signal to current process */
433
434         force_sig(SIGTRAP);
435 }
436
437
438 #define set_handler(type, cause, handler)                               \
439         do {                                                            \
440                 unsigned int cpu;                                       \
441                                                                         \
442                 for_each_possible_cpu(cpu)                              \
443                         per_cpu(exc_table, cpu).type[cause] = (handler);\
444         } while (0)
445
446 /* Set exception C handler - for temporary use when probing exceptions */
447
448 xtensa_exception_handler *
449 __init trap_set_handler(int cause, xtensa_exception_handler *handler)
450 {
451         void *previous = per_cpu(exc_table, 0).default_handler[cause];
452
453         set_handler(default_handler, cause, handler);
454         return previous;
455 }
456
457
458 static void trap_init_excsave(void)
459 {
460         xtensa_set_sr(this_cpu_ptr(&exc_table), excsave1);
461 }
462
463 static void trap_init_debug(void)
464 {
465         unsigned long debugsave = (unsigned long)this_cpu_ptr(&debug_table);
466
467         this_cpu_ptr(&debug_table)->debug_exception = debug_exception;
468         __asm__ __volatile__("wsr %0, excsave" __stringify(XCHAL_DEBUGLEVEL)
469                              :: "a"(debugsave));
470 }
471
472 /*
473  * Initialize dispatch tables.
474  *
475  * The exception vectors are stored compressed the __init section in the
476  * dispatch_init_table. This function initializes the following three tables
477  * from that compressed table:
478  * - fast user          first dispatch table for user exceptions
479  * - fast kernel        first dispatch table for kernel exceptions
480  * - default C-handler  C-handler called by the default fast handler.
481  *
482  * See vectors.S for more details.
483  */
484
485 void __init trap_init(void)
486 {
487         int i;
488
489         /* Setup default vectors. */
490
491         for (i = 0; i < EXCCAUSE_N; i++) {
492                 set_handler(fast_user_handler, i, user_exception);
493                 set_handler(fast_kernel_handler, i, kernel_exception);
494                 set_handler(default_handler, i, do_unhandled);
495         }
496
497         /* Setup specific handlers. */
498
499         for(i = 0; dispatch_init_table[i].cause >= 0; i++) {
500                 int fast = dispatch_init_table[i].fast;
501                 int cause = dispatch_init_table[i].cause;
502                 void *handler = dispatch_init_table[i].handler;
503
504                 if (fast == 0)
505                         set_handler(default_handler, cause, handler);
506                 if ((fast & USER) != 0)
507                         set_handler(fast_user_handler, cause, handler);
508                 if ((fast & KRNL) != 0)
509                         set_handler(fast_kernel_handler, cause, handler);
510         }
511
512         /* Initialize EXCSAVE_1 to hold the address of the exception table. */
513         trap_init_excsave();
514         trap_init_debug();
515 }
516
517 #ifdef CONFIG_SMP
518 void secondary_trap_init(void)
519 {
520         trap_init_excsave();
521         trap_init_debug();
522 }
523 #endif
524
525 /*
526  * This function dumps the current valid window frame and other base registers.
527  */
528
529 void show_regs(struct pt_regs * regs)
530 {
531         int i;
532
533         show_regs_print_info(KERN_DEFAULT);
534
535         for (i = 0; i < 16; i++) {
536                 if ((i % 8) == 0)
537                         pr_info("a%02d:", i);
538                 pr_cont(" %08lx", regs->areg[i]);
539         }
540         pr_cont("\n");
541         pr_info("pc: %08lx, ps: %08lx, depc: %08lx, excvaddr: %08lx\n",
542                 regs->pc, regs->ps, regs->depc, regs->excvaddr);
543         pr_info("lbeg: %08lx, lend: %08lx lcount: %08lx, sar: %08lx\n",
544                 regs->lbeg, regs->lend, regs->lcount, regs->sar);
545         if (user_mode(regs))
546                 pr_cont("wb: %08lx, ws: %08lx, wmask: %08lx, syscall: %ld\n",
547                         regs->windowbase, regs->windowstart, regs->wmask,
548                         regs->syscall);
549 }
550
551 static int show_trace_cb(struct stackframe *frame, void *data)
552 {
553         const char *loglvl = data;
554
555         if (kernel_text_address(frame->pc))
556                 printk("%s [<%08lx>] %pB\n",
557                         loglvl, frame->pc, (void *)frame->pc);
558         return 0;
559 }
560
561 static void show_trace(struct task_struct *task, unsigned long *sp,
562                        const char *loglvl)
563 {
564         if (!sp)
565                 sp = stack_pointer(task);
566
567         printk("%sCall Trace:\n", loglvl);
568         walk_stackframe(sp, show_trace_cb, (void *)loglvl);
569 }
570
571 #define STACK_DUMP_ENTRY_SIZE 4
572 #define STACK_DUMP_LINE_SIZE 16
573 static size_t kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
574
575 struct stack_fragment
576 {
577         size_t len;
578         size_t off;
579         u8 *sp;
580         const char *loglvl;
581 };
582
583 static int show_stack_fragment_cb(struct stackframe *frame, void *data)
584 {
585         struct stack_fragment *sf = data;
586
587         while (sf->off < sf->len) {
588                 u8 line[STACK_DUMP_LINE_SIZE];
589                 size_t line_len = sf->len - sf->off > STACK_DUMP_LINE_SIZE ?
590                         STACK_DUMP_LINE_SIZE : sf->len - sf->off;
591                 bool arrow = sf->off == 0;
592
593                 if (frame && frame->sp == (unsigned long)(sf->sp + sf->off))
594                         arrow = true;
595
596                 __memcpy(line, sf->sp + sf->off, line_len);
597                 print_hex_dump(sf->loglvl, arrow ? "> " : "  ", DUMP_PREFIX_NONE,
598                                STACK_DUMP_LINE_SIZE, STACK_DUMP_ENTRY_SIZE,
599                                line, line_len, false);
600                 sf->off += STACK_DUMP_LINE_SIZE;
601                 if (arrow)
602                         return 0;
603         }
604         return 1;
605 }
606
607 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
608 {
609         struct stack_fragment sf;
610
611         if (!sp)
612                 sp = stack_pointer(task);
613
614         sf.len = min((-(size_t)sp) & (THREAD_SIZE - STACK_DUMP_ENTRY_SIZE),
615                      kstack_depth_to_print * STACK_DUMP_ENTRY_SIZE);
616         sf.off = 0;
617         sf.sp = (u8 *)sp;
618         sf.loglvl = loglvl;
619
620         printk("%sStack:\n", loglvl);
621         walk_stackframe(sp, show_stack_fragment_cb, &sf);
622         while (sf.off < sf.len)
623                 show_stack_fragment_cb(NULL, &sf);
624         show_trace(task, sp, loglvl);
625 }
626
627 DEFINE_SPINLOCK(die_lock);
628
629 void __noreturn die(const char * str, struct pt_regs * regs, long err)
630 {
631         static int die_counter;
632         const char *pr = "";
633
634         if (IS_ENABLED(CONFIG_PREEMPTION))
635                 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
636
637         console_verbose();
638         spin_lock_irq(&die_lock);
639
640         pr_info("%s: sig: %ld [#%d]%s\n", str, err, ++die_counter, pr);
641         show_regs(regs);
642         if (!user_mode(regs))
643                 show_stack(NULL, (unsigned long *)regs->areg[1], KERN_INFO);
644
645         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
646         spin_unlock_irq(&die_lock);
647
648         if (in_interrupt())
649                 panic("Fatal exception in interrupt");
650
651         if (panic_on_oops)
652                 panic("Fatal exception");
653
654         make_task_dead(err);
655 }