1 // SPDX-License-Identifier: GPL-2.0
3 * Xen time implementation.
5 * This is implemented in terms of a clocksource driver which uses
6 * the hypervisor clock as a nanosecond timebase, and a clockevent
7 * driver which uses the hypervisor's timer mechanism.
9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP 100000
34 static u64 xen_sched_clock_offset __read_mostly;
36 /* Get the TSC speed from Xen */
37 static unsigned long xen_tsc_khz(void)
39 struct pvclock_vcpu_time_info *info =
40 &HYPERVISOR_shared_info->vcpu_info[0].time;
42 return pvclock_tsc_khz(info);
45 u64 xen_clocksource_read(void)
47 struct pvclock_vcpu_time_info *src;
50 preempt_disable_notrace();
51 src = &__this_cpu_read(xen_vcpu)->time;
52 ret = pvclock_clocksource_read(src);
53 preempt_enable_notrace();
57 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
59 return xen_clocksource_read();
62 static u64 xen_sched_clock(void)
64 return xen_clocksource_read() - xen_sched_clock_offset;
67 static void xen_read_wallclock(struct timespec *ts)
69 struct shared_info *s = HYPERVISOR_shared_info;
70 struct pvclock_wall_clock *wall_clock = &(s->wc);
71 struct pvclock_vcpu_time_info *vcpu_time;
73 vcpu_time = &get_cpu_var(xen_vcpu)->time;
74 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
75 put_cpu_var(xen_vcpu);
78 static void xen_get_wallclock(struct timespec *now)
80 xen_read_wallclock(now);
83 static int xen_set_wallclock(const struct timespec *now)
88 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
89 unsigned long was_set, void *priv)
91 /* Protected by the calling core code serialization */
92 static struct timespec64 next_sync;
94 struct xen_platform_op op;
95 struct timespec64 now;
96 struct timekeeper *tk = priv;
97 static bool settime64_supported = true;
100 now.tv_sec = tk->xtime_sec;
101 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
104 * We only take the expensive HV call when the clock was set
105 * or when the 11 minutes RTC synchronization time elapsed.
107 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
111 if (settime64_supported) {
112 op.cmd = XENPF_settime64;
113 op.u.settime64.mbz = 0;
114 op.u.settime64.secs = now.tv_sec;
115 op.u.settime64.nsecs = now.tv_nsec;
116 op.u.settime64.system_time = xen_clocksource_read();
118 op.cmd = XENPF_settime32;
119 op.u.settime32.secs = now.tv_sec;
120 op.u.settime32.nsecs = now.tv_nsec;
121 op.u.settime32.system_time = xen_clocksource_read();
124 ret = HYPERVISOR_platform_op(&op);
126 if (ret == -ENOSYS && settime64_supported) {
127 settime64_supported = false;
134 * Move the next drift compensation time 11 minutes
135 * ahead. That's emulating the sync_cmos_clock() update for
139 next_sync.tv_sec += 11 * 60;
144 static struct notifier_block xen_pvclock_gtod_notifier = {
145 .notifier_call = xen_pvclock_gtod_notify,
148 static struct clocksource xen_clocksource __read_mostly = {
151 .read = xen_clocksource_get_cycles,
153 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
157 Xen clockevent implementation
159 Xen has two clockevent implementations:
161 The old timer_op one works with all released versions of Xen prior
162 to version 3.0.4. This version of the hypervisor provides a
163 single-shot timer with nanosecond resolution. However, sharing the
164 same event channel is a 100Hz tick which is delivered while the
165 vcpu is running. We don't care about or use this tick, but it will
166 cause the core time code to think the timer fired too soon, and
167 will end up resetting it each time. It could be filtered, but
168 doing so has complications when the ktime clocksource is not yet
169 the xen clocksource (ie, at boot time).
171 The new vcpu_op-based timer interface allows the tick timer period
172 to be changed or turned off. The tick timer is not useful as a
173 periodic timer because events are only delivered to running vcpus.
174 The one-shot timer can report when a timeout is in the past, so
175 set_next_event is capable of returning -ETIME when appropriate.
176 This interface is used when available.
181 Get a hypervisor absolute time. In theory we could maintain an
182 offset between the kernel's time and the hypervisor's time, and
183 apply that to a kernel's absolute timeout. Unfortunately the
184 hypervisor and kernel times can drift even if the kernel is using
185 the Xen clocksource, because ntp can warp the kernel's clocksource.
187 static s64 get_abs_timeout(unsigned long delta)
189 return xen_clocksource_read() + delta;
192 static int xen_timerop_shutdown(struct clock_event_device *evt)
195 HYPERVISOR_set_timer_op(0);
200 static int xen_timerop_set_next_event(unsigned long delta,
201 struct clock_event_device *evt)
203 WARN_ON(!clockevent_state_oneshot(evt));
205 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
208 /* We may have missed the deadline, but there's no real way of
209 knowing for sure. If the event was in the past, then we'll
210 get an immediate interrupt. */
215 static const struct clock_event_device xen_timerop_clockevent = {
217 .features = CLOCK_EVT_FEAT_ONESHOT,
219 .max_delta_ns = 0xffffffff,
220 .max_delta_ticks = 0xffffffff,
221 .min_delta_ns = TIMER_SLOP,
222 .min_delta_ticks = TIMER_SLOP,
228 .set_state_shutdown = xen_timerop_shutdown,
229 .set_next_event = xen_timerop_set_next_event,
232 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
234 int cpu = smp_processor_id();
236 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
238 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
245 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
247 int cpu = smp_processor_id();
249 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
256 static int xen_vcpuop_set_next_event(unsigned long delta,
257 struct clock_event_device *evt)
259 int cpu = smp_processor_id();
260 struct vcpu_set_singleshot_timer single;
263 WARN_ON(!clockevent_state_oneshot(evt));
265 single.timeout_abs_ns = get_abs_timeout(delta);
266 /* Get an event anyway, even if the timeout is already expired */
269 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
276 static const struct clock_event_device xen_vcpuop_clockevent = {
278 .features = CLOCK_EVT_FEAT_ONESHOT,
280 .max_delta_ns = 0xffffffff,
281 .max_delta_ticks = 0xffffffff,
282 .min_delta_ns = TIMER_SLOP,
283 .min_delta_ticks = TIMER_SLOP,
289 .set_state_shutdown = xen_vcpuop_shutdown,
290 .set_state_oneshot = xen_vcpuop_set_oneshot,
291 .set_next_event = xen_vcpuop_set_next_event,
294 static const struct clock_event_device *xen_clockevent =
295 &xen_timerop_clockevent;
297 struct xen_clock_event_device {
298 struct clock_event_device evt;
301 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
303 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
305 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
309 if (evt->event_handler) {
310 evt->event_handler(evt);
317 void xen_teardown_timer(int cpu)
319 struct clock_event_device *evt;
320 evt = &per_cpu(xen_clock_events, cpu).evt;
323 unbind_from_irqhandler(evt->irq, NULL);
328 void xen_setup_timer(int cpu)
330 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331 struct clock_event_device *evt = &xevt->evt;
334 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
336 xen_teardown_timer(cpu);
338 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
340 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
342 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
346 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
348 memcpy(evt, xen_clockevent, sizeof(*evt));
350 evt->cpumask = cpumask_of(cpu);
355 void xen_setup_cpu_clockevents(void)
357 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
360 void xen_timer_resume(void)
364 if (xen_clockevent != &xen_vcpuop_clockevent)
367 for_each_online_cpu(cpu) {
368 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
369 xen_vcpu_nr(cpu), NULL))
374 static const struct pv_time_ops xen_time_ops __initconst = {
375 .sched_clock = xen_sched_clock,
376 .steal_clock = xen_steal_clock,
379 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
380 static u64 xen_clock_value_saved;
382 void xen_save_time_memory_area(void)
384 struct vcpu_register_time_memory_area t;
387 xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
394 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
396 pr_notice("Cannot save secondary vcpu_time_info (err %d)",
399 clear_page(xen_clock);
402 void xen_restore_time_memory_area(void)
404 struct vcpu_register_time_memory_area t;
410 t.addr.v = &xen_clock->pvti;
412 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
415 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
416 * secondary time info with Xen or if we migrated to a host without the
417 * necessary flags. On both of these cases what happens is either
418 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
419 * bit set. Userspace checks the latter and if 0, it discards the data
420 * in pvti and fallbacks to a system call for a reliable timestamp.
423 pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
427 /* Need pvclock_resume() before using xen_clocksource_read(). */
429 xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
432 static void xen_setup_vsyscall_time_info(void)
434 struct vcpu_register_time_memory_area t;
435 struct pvclock_vsyscall_time_info *ti;
438 ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
442 t.addr.v = &ti->pvti;
444 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
446 pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
447 free_page((unsigned long)ti);
452 * If primary time info had this bit set, secondary should too since
453 * it's the same data on both just different memory regions. But we
454 * still check it in case hypervisor is buggy.
456 if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
458 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
461 free_page((unsigned long)ti);
463 pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
468 pvclock_set_pvti_cpu0_va(xen_clock);
470 xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
473 static void __init xen_time_init(void)
475 struct pvclock_vcpu_time_info *pvti;
476 int cpu = smp_processor_id();
479 /* As Dom0 is never moved, no penalty on using TSC there */
480 if (xen_initial_domain())
481 xen_clocksource.rating = 275;
483 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
485 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
487 /* Successfully turned off 100Hz tick, so we have the
488 vcpuop-based timer interface */
489 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
490 xen_clockevent = &xen_vcpuop_clockevent;
493 /* Set initial system time with full resolution */
494 xen_read_wallclock(&tp);
495 do_settimeofday(&tp);
497 setup_force_cpu_cap(X86_FEATURE_TSC);
500 * We check ahead on the primary time info if this
501 * bit is supported hence speeding up Xen clocksource.
503 pvti = &__this_cpu_read(xen_vcpu)->time;
504 if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
505 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
506 xen_setup_vsyscall_time_info();
509 xen_setup_runstate_info(cpu);
510 xen_setup_timer(cpu);
511 xen_setup_cpu_clockevents();
513 xen_time_setup_guest();
515 if (xen_initial_domain())
516 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
519 void __ref xen_init_time_ops(void)
521 xen_sched_clock_offset = xen_clocksource_read();
522 pv_time_ops = xen_time_ops;
524 x86_init.timers.timer_init = xen_time_init;
525 x86_init.timers.setup_percpu_clockev = x86_init_noop;
526 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
528 x86_platform.calibrate_tsc = xen_tsc_khz;
529 x86_platform.get_wallclock = xen_get_wallclock;
530 /* Dom0 uses the native method to set the hardware RTC. */
531 if (!xen_initial_domain())
532 x86_platform.set_wallclock = xen_set_wallclock;
535 #ifdef CONFIG_XEN_PVHVM
536 static void xen_hvm_setup_cpu_clockevents(void)
538 int cpu = smp_processor_id();
539 xen_setup_runstate_info(cpu);
541 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
542 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
543 * early bootup and also during CPU hotplug events).
545 xen_setup_cpu_clockevents();
548 void __init xen_hvm_init_time_ops(void)
551 * vector callback is needed otherwise we cannot receive interrupts
552 * on cpu > 0 and at this point we don't know how many cpus are
555 if (!xen_have_vector_callback)
558 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
559 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
560 "disable pv timer\n");
564 xen_sched_clock_offset = xen_clocksource_read();
565 pv_time_ops = xen_time_ops;
566 x86_init.timers.setup_percpu_clockev = xen_time_init;
567 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
569 x86_platform.calibrate_tsc = xen_tsc_khz;
570 x86_platform.get_wallclock = xen_get_wallclock;
571 x86_platform.set_wallclock = xen_set_wallclock;