GNU Linux-libre 4.9.333-gnu1
[releases.git] / arch / x86 / xen / smp.c
1 /*
2  * Xen SMP support
3  *
4  * This file implements the Xen versions of smp_ops.  SMP under Xen is
5  * very straightforward.  Bringing a CPU up is simply a matter of
6  * loading its initial context and setting it running.
7  *
8  * IPIs are handled through the Xen event mechanism.
9  *
10  * Because virtual CPUs can be scheduled onto any real CPU, there's no
11  * useful topology information for the kernel to make use of.  As a
12  * result, all CPUs are treated as if they're single-core and
13  * single-threaded.
14  */
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
21
22 #include <asm/paravirt.h>
23 #include <asm/desc.h>
24 #include <asm/pgtable.h>
25 #include <asm/cpu.h>
26
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29 #include <xen/interface/xenpmu.h>
30
31 #include <asm/spec-ctrl.h>
32 #include <asm/xen/interface.h>
33 #include <asm/xen/hypercall.h>
34
35 #include <xen/xen.h>
36 #include <xen/page.h>
37 #include <xen/events.h>
38
39 #include <xen/hvc-console.h>
40 #include "xen-ops.h"
41 #include "mmu.h"
42 #include "smp.h"
43 #include "pmu.h"
44
45 cpumask_var_t xen_cpu_initialized_map;
46
47 struct xen_common_irq {
48         int irq;
49         char *name;
50 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
52 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
53 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
54 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
55 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
56 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
57
58 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
59 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
60 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
61
62 /*
63  * Reschedule call back.
64  */
65 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
66 {
67         inc_irq_stat(irq_resched_count);
68         scheduler_ipi();
69
70         return IRQ_HANDLED;
71 }
72
73 static void cpu_bringup(void)
74 {
75         int cpu;
76
77         cpu_init();
78         touch_softlockup_watchdog();
79         preempt_disable();
80
81         /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
82         if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
83                 xen_enable_sysenter();
84                 xen_enable_syscall();
85         }
86         cpu = smp_processor_id();
87         smp_store_cpu_info(cpu);
88         cpu_data(cpu).x86_max_cores = 1;
89         set_cpu_sibling_map(cpu);
90
91         speculative_store_bypass_ht_init();
92
93         xen_setup_cpu_clockevents();
94
95         notify_cpu_starting(cpu);
96
97         set_cpu_online(cpu, true);
98
99         cpu_set_state_online(cpu);  /* Implies full memory barrier. */
100
101         /* We can take interrupts now: we're officially "up". */
102         local_irq_enable();
103 }
104
105 /*
106  * Note: cpu parameter is only relevant for PVH. The reason for passing it
107  * is we can't do smp_processor_id until the percpu segments are loaded, for
108  * which we need the cpu number! So we pass it in rdi as first parameter.
109  */
110 asmlinkage __visible void cpu_bringup_and_idle(int cpu)
111 {
112 #ifdef CONFIG_XEN_PVH
113         if (xen_feature(XENFEAT_auto_translated_physmap) &&
114             xen_feature(XENFEAT_supervisor_mode_kernel))
115                 xen_pvh_secondary_vcpu_init(cpu);
116 #endif
117         cpu_bringup();
118         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
119         prevent_tail_call_optimization();
120 }
121
122 void xen_smp_intr_free(unsigned int cpu)
123 {
124         if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
125                 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
126                 per_cpu(xen_resched_irq, cpu).irq = -1;
127                 kfree(per_cpu(xen_resched_irq, cpu).name);
128                 per_cpu(xen_resched_irq, cpu).name = NULL;
129         }
130         if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
131                 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
132                 per_cpu(xen_callfunc_irq, cpu).irq = -1;
133                 kfree(per_cpu(xen_callfunc_irq, cpu).name);
134                 per_cpu(xen_callfunc_irq, cpu).name = NULL;
135         }
136         if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
137                 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
138                 per_cpu(xen_debug_irq, cpu).irq = -1;
139                 kfree(per_cpu(xen_debug_irq, cpu).name);
140                 per_cpu(xen_debug_irq, cpu).name = NULL;
141         }
142         if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
143                 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
144                                        NULL);
145                 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
146                 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
147                 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
148         }
149         if (xen_hvm_domain())
150                 return;
151
152         if (per_cpu(xen_irq_work, cpu).irq >= 0) {
153                 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
154                 per_cpu(xen_irq_work, cpu).irq = -1;
155                 kfree(per_cpu(xen_irq_work, cpu).name);
156                 per_cpu(xen_irq_work, cpu).name = NULL;
157         }
158
159         if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
160                 unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
161                 per_cpu(xen_pmu_irq, cpu).irq = -1;
162                 kfree(per_cpu(xen_pmu_irq, cpu).name);
163                 per_cpu(xen_pmu_irq, cpu).name = NULL;
164         }
165 };
166 int xen_smp_intr_init(unsigned int cpu)
167 {
168         int rc;
169         char *resched_name, *callfunc_name, *debug_name, *pmu_name;
170
171         resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
172         rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
173                                     cpu,
174                                     xen_reschedule_interrupt,
175                                     IRQF_PERCPU|IRQF_NOBALANCING,
176                                     resched_name,
177                                     NULL);
178         if (rc < 0)
179                 goto fail;
180         per_cpu(xen_resched_irq, cpu).irq = rc;
181         per_cpu(xen_resched_irq, cpu).name = resched_name;
182
183         callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
184         rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
185                                     cpu,
186                                     xen_call_function_interrupt,
187                                     IRQF_PERCPU|IRQF_NOBALANCING,
188                                     callfunc_name,
189                                     NULL);
190         if (rc < 0)
191                 goto fail;
192         per_cpu(xen_callfunc_irq, cpu).irq = rc;
193         per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
194
195         debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
196         rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
197                                      IRQF_PERCPU | IRQF_NOBALANCING,
198                                      debug_name, NULL);
199         if (rc < 0)
200                 goto fail;
201         per_cpu(xen_debug_irq, cpu).irq = rc;
202         per_cpu(xen_debug_irq, cpu).name = debug_name;
203
204         callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
205         rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
206                                     cpu,
207                                     xen_call_function_single_interrupt,
208                                     IRQF_PERCPU|IRQF_NOBALANCING,
209                                     callfunc_name,
210                                     NULL);
211         if (rc < 0)
212                 goto fail;
213         per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
214         per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
215
216         /*
217          * The IRQ worker on PVHVM goes through the native path and uses the
218          * IPI mechanism.
219          */
220         if (xen_hvm_domain())
221                 return 0;
222
223         callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
224         rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
225                                     cpu,
226                                     xen_irq_work_interrupt,
227                                     IRQF_PERCPU|IRQF_NOBALANCING,
228                                     callfunc_name,
229                                     NULL);
230         if (rc < 0)
231                 goto fail;
232         per_cpu(xen_irq_work, cpu).irq = rc;
233         per_cpu(xen_irq_work, cpu).name = callfunc_name;
234
235         if (is_xen_pmu(cpu)) {
236                 pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
237                 rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
238                                              xen_pmu_irq_handler,
239                                              IRQF_PERCPU|IRQF_NOBALANCING,
240                                              pmu_name, NULL);
241                 if (rc < 0)
242                         goto fail;
243                 per_cpu(xen_pmu_irq, cpu).irq = rc;
244                 per_cpu(xen_pmu_irq, cpu).name = pmu_name;
245         }
246
247         return 0;
248
249  fail:
250         xen_smp_intr_free(cpu);
251         return rc;
252 }
253
254 static void __init xen_fill_possible_map(void)
255 {
256         int i, rc;
257
258         if (xen_initial_domain())
259                 return;
260
261         for (i = 0; i < nr_cpu_ids; i++) {
262                 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
263                 if (rc >= 0) {
264                         num_processors++;
265                         set_cpu_possible(i, true);
266                 }
267         }
268 }
269
270 static void __init xen_filter_cpu_maps(void)
271 {
272         int i, rc;
273         unsigned int subtract = 0;
274
275         if (!xen_initial_domain())
276                 return;
277
278         num_processors = 0;
279         disabled_cpus = 0;
280         for (i = 0; i < nr_cpu_ids; i++) {
281                 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
282                 if (rc >= 0) {
283                         num_processors++;
284                         set_cpu_possible(i, true);
285                 } else {
286                         set_cpu_possible(i, false);
287                         set_cpu_present(i, false);
288                         subtract++;
289                 }
290         }
291 #ifdef CONFIG_HOTPLUG_CPU
292         /* This is akin to using 'nr_cpus' on the Linux command line.
293          * Which is OK as when we use 'dom0_max_vcpus=X' we can only
294          * have up to X, while nr_cpu_ids is greater than X. This
295          * normally is not a problem, except when CPU hotplugging
296          * is involved and then there might be more than X CPUs
297          * in the guest - which will not work as there is no
298          * hypercall to expand the max number of VCPUs an already
299          * running guest has. So cap it up to X. */
300         if (subtract)
301                 nr_cpu_ids = nr_cpu_ids - subtract;
302 #endif
303
304 }
305
306 static void __init xen_pv_smp_prepare_boot_cpu(void)
307 {
308         BUG_ON(smp_processor_id() != 0);
309         native_smp_prepare_boot_cpu();
310
311         if (!xen_feature(XENFEAT_writable_page_tables))
312                 /* We've switched to the "real" per-cpu gdt, so make
313                  * sure the old memory can be recycled. */
314                 make_lowmem_page_readwrite(xen_initial_gdt);
315
316 #ifdef CONFIG_X86_32
317         /*
318          * Xen starts us with XEN_FLAT_RING1_DS, but linux code
319          * expects __USER_DS
320          */
321         loadsegment(ds, __USER_DS);
322         loadsegment(es, __USER_DS);
323 #endif
324
325         xen_filter_cpu_maps();
326         xen_setup_vcpu_info_placement();
327
328         /*
329          * The alternative logic (which patches the unlock/lock) runs before
330          * the smp bootup up code is activated. Hence we need to set this up
331          * the core kernel is being patched. Otherwise we will have only
332          * modules patched but not core code.
333          */
334         xen_init_spinlocks();
335 }
336
337 static void __init xen_hvm_smp_prepare_boot_cpu(void)
338 {
339         BUG_ON(smp_processor_id() != 0);
340         native_smp_prepare_boot_cpu();
341
342         /*
343          * Setup vcpu_info for boot CPU.
344          */
345         xen_vcpu_setup(0);
346
347         /*
348          * The alternative logic (which patches the unlock/lock) runs before
349          * the smp bootup up code is activated. Hence we need to set this up
350          * the core kernel is being patched. Otherwise we will have only
351          * modules patched but not core code.
352          */
353         xen_init_spinlocks();
354 }
355
356 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
357 {
358         unsigned cpu;
359         unsigned int i;
360
361         if (skip_ioapic_setup) {
362                 char *m = (max_cpus == 0) ?
363                         "The nosmp parameter is incompatible with Xen; " \
364                         "use Xen dom0_max_vcpus=1 parameter" :
365                         "The noapic parameter is incompatible with Xen";
366
367                 xen_raw_printk(m);
368                 panic(m);
369         }
370         xen_init_lock_cpu(0);
371
372         smp_store_boot_cpu_info();
373         cpu_data(0).x86_max_cores = 1;
374
375         for_each_possible_cpu(i) {
376                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
377                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
378                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
379         }
380         set_cpu_sibling_map(0);
381
382         speculative_store_bypass_ht_init();
383
384         xen_pmu_init(0);
385
386         if (xen_smp_intr_init(0))
387                 BUG();
388
389         if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
390                 panic("could not allocate xen_cpu_initialized_map\n");
391
392         cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
393
394         /* Restrict the possible_map according to max_cpus. */
395         while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
396                 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
397                         continue;
398                 set_cpu_possible(cpu, false);
399         }
400
401         for_each_possible_cpu(cpu)
402                 set_cpu_present(cpu, true);
403 }
404
405 static int
406 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
407 {
408         struct vcpu_guest_context *ctxt;
409         struct desc_struct *gdt;
410         unsigned long gdt_mfn;
411
412         /* used to tell cpu_init() that it can proceed with initialization */
413         cpumask_set_cpu(cpu, cpu_callout_mask);
414         if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
415                 return 0;
416
417         ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
418         if (ctxt == NULL)
419                 return -ENOMEM;
420
421         gdt = get_cpu_gdt_table(cpu);
422
423 #ifdef CONFIG_X86_32
424         /* Note: PVH is not yet supported on x86_32. */
425         ctxt->user_regs.fs = __KERNEL_PERCPU;
426         ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
427 #endif
428         memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
429
430         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
431                 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
432                 ctxt->flags = VGCF_IN_KERNEL;
433                 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
434                 ctxt->user_regs.ds = __USER_DS;
435                 ctxt->user_regs.es = __USER_DS;
436                 ctxt->user_regs.ss = __KERNEL_DS;
437
438                 xen_copy_trap_info(ctxt->trap_ctxt);
439
440                 ctxt->ldt_ents = 0;
441
442                 BUG_ON((unsigned long)gdt & ~PAGE_MASK);
443
444                 gdt_mfn = arbitrary_virt_to_mfn(gdt);
445                 make_lowmem_page_readonly(gdt);
446                 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
447
448                 ctxt->gdt_frames[0] = gdt_mfn;
449                 ctxt->gdt_ents      = GDT_ENTRIES;
450
451                 ctxt->kernel_ss = __KERNEL_DS;
452                 ctxt->kernel_sp = idle->thread.sp0;
453
454 #ifdef CONFIG_X86_32
455                 ctxt->event_callback_cs     = __KERNEL_CS;
456                 ctxt->failsafe_callback_cs  = __KERNEL_CS;
457 #else
458                 ctxt->gs_base_kernel = per_cpu_offset(cpu);
459 #endif
460                 ctxt->event_callback_eip    =
461                                         (unsigned long)xen_hypervisor_callback;
462                 ctxt->failsafe_callback_eip =
463                                         (unsigned long)xen_failsafe_callback;
464                 ctxt->user_regs.cs = __KERNEL_CS;
465                 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
466         }
467 #ifdef CONFIG_XEN_PVH
468         else {
469                 /*
470                  * The vcpu comes on kernel page tables which have the NX pte
471                  * bit set. This means before DS/SS is touched, NX in
472                  * EFER must be set. Hence the following assembly glue code.
473                  */
474                 ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init;
475                 ctxt->user_regs.rdi = cpu;
476                 ctxt->user_regs.rsi = true;  /* entry == true */
477         }
478 #endif
479         ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
480         ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
481         if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt))
482                 BUG();
483
484         kfree(ctxt);
485         return 0;
486 }
487
488 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
489 {
490         int rc;
491
492         common_cpu_up(cpu, idle);
493
494         xen_setup_runstate_info(cpu);
495
496         /*
497          * PV VCPUs are always successfully taken down (see 'while' loop
498          * in xen_cpu_die()), so -EBUSY is an error.
499          */
500         rc = cpu_check_up_prepare(cpu);
501         if (rc)
502                 return rc;
503
504         /* make sure interrupts start blocked */
505         per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
506
507         rc = cpu_initialize_context(cpu, idle);
508         if (rc)
509                 return rc;
510
511         xen_pmu_init(cpu);
512
513         rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL);
514         BUG_ON(rc);
515
516         while (cpu_report_state(cpu) != CPU_ONLINE)
517                 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
518
519         return 0;
520 }
521
522 static void xen_smp_cpus_done(unsigned int max_cpus)
523 {
524 }
525
526 #ifdef CONFIG_HOTPLUG_CPU
527 static int xen_cpu_disable(void)
528 {
529         unsigned int cpu = smp_processor_id();
530         if (cpu == 0)
531                 return -EBUSY;
532
533         cpu_disable_common();
534
535         load_cr3(swapper_pg_dir);
536         return 0;
537 }
538
539 static void xen_cpu_die(unsigned int cpu)
540 {
541         while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up,
542                                                      xen_vcpu_nr(cpu), NULL)) {
543                 __set_current_state(TASK_UNINTERRUPTIBLE);
544                 schedule_timeout(HZ/10);
545         }
546
547         if (common_cpu_die(cpu) == 0) {
548                 xen_smp_intr_free(cpu);
549                 xen_uninit_lock_cpu(cpu);
550                 xen_teardown_timer(cpu);
551                 xen_pmu_finish(cpu);
552         }
553 }
554
555 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
556 {
557         play_dead_common();
558         HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL);
559         cpu_bringup();
560         /*
561          * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
562          * clears certain data that the cpu_idle loop (which called us
563          * and that we return from) expects. The only way to get that
564          * data back is to call:
565          */
566         tick_nohz_idle_enter();
567
568         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
569 }
570
571 #else /* !CONFIG_HOTPLUG_CPU */
572 static int xen_cpu_disable(void)
573 {
574         return -ENOSYS;
575 }
576
577 static void xen_cpu_die(unsigned int cpu)
578 {
579         BUG();
580 }
581
582 static void xen_play_dead(void)
583 {
584         BUG();
585 }
586
587 #endif
588 static void stop_self(void *v)
589 {
590         int cpu = smp_processor_id();
591
592         /* make sure we're not pinning something down */
593         load_cr3(swapper_pg_dir);
594         /* should set up a minimal gdt */
595
596         set_cpu_online(cpu, false);
597
598         HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL);
599         BUG();
600 }
601
602 static void xen_stop_other_cpus(int wait)
603 {
604         smp_call_function(stop_self, NULL, wait);
605 }
606
607 static void xen_smp_send_reschedule(int cpu)
608 {
609         xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
610 }
611
612 static void __xen_send_IPI_mask(const struct cpumask *mask,
613                               int vector)
614 {
615         unsigned cpu;
616
617         for_each_cpu_and(cpu, mask, cpu_online_mask)
618                 xen_send_IPI_one(cpu, vector);
619 }
620
621 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
622 {
623         int cpu;
624
625         __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
626
627         /* Make sure other vcpus get a chance to run if they need to. */
628         for_each_cpu(cpu, mask) {
629                 if (xen_vcpu_stolen(cpu)) {
630                         HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
631                         break;
632                 }
633         }
634 }
635
636 static void xen_smp_send_call_function_single_ipi(int cpu)
637 {
638         __xen_send_IPI_mask(cpumask_of(cpu),
639                           XEN_CALL_FUNCTION_SINGLE_VECTOR);
640 }
641
642 static inline int xen_map_vector(int vector)
643 {
644         int xen_vector;
645
646         switch (vector) {
647         case RESCHEDULE_VECTOR:
648                 xen_vector = XEN_RESCHEDULE_VECTOR;
649                 break;
650         case CALL_FUNCTION_VECTOR:
651                 xen_vector = XEN_CALL_FUNCTION_VECTOR;
652                 break;
653         case CALL_FUNCTION_SINGLE_VECTOR:
654                 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
655                 break;
656         case IRQ_WORK_VECTOR:
657                 xen_vector = XEN_IRQ_WORK_VECTOR;
658                 break;
659 #ifdef CONFIG_X86_64
660         case NMI_VECTOR:
661         case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
662                 xen_vector = XEN_NMI_VECTOR;
663                 break;
664 #endif
665         default:
666                 xen_vector = -1;
667                 printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
668                         vector);
669         }
670
671         return xen_vector;
672 }
673
674 void xen_send_IPI_mask(const struct cpumask *mask,
675                               int vector)
676 {
677         int xen_vector = xen_map_vector(vector);
678
679         if (xen_vector >= 0)
680                 __xen_send_IPI_mask(mask, xen_vector);
681 }
682
683 void xen_send_IPI_all(int vector)
684 {
685         int xen_vector = xen_map_vector(vector);
686
687         if (xen_vector >= 0)
688                 __xen_send_IPI_mask(cpu_online_mask, xen_vector);
689 }
690
691 void xen_send_IPI_self(int vector)
692 {
693         int xen_vector = xen_map_vector(vector);
694
695         if (xen_vector >= 0)
696                 xen_send_IPI_one(smp_processor_id(), xen_vector);
697 }
698
699 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
700                                 int vector)
701 {
702         unsigned cpu;
703         unsigned int this_cpu = smp_processor_id();
704         int xen_vector = xen_map_vector(vector);
705
706         if (!(num_online_cpus() > 1) || (xen_vector < 0))
707                 return;
708
709         for_each_cpu_and(cpu, mask, cpu_online_mask) {
710                 if (this_cpu == cpu)
711                         continue;
712
713                 xen_send_IPI_one(cpu, xen_vector);
714         }
715 }
716
717 void xen_send_IPI_allbutself(int vector)
718 {
719         xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
720 }
721
722 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
723 {
724         irq_enter();
725         generic_smp_call_function_interrupt();
726         inc_irq_stat(irq_call_count);
727         irq_exit();
728
729         return IRQ_HANDLED;
730 }
731
732 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
733 {
734         irq_enter();
735         generic_smp_call_function_single_interrupt();
736         inc_irq_stat(irq_call_count);
737         irq_exit();
738
739         return IRQ_HANDLED;
740 }
741
742 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
743 {
744         irq_enter();
745         irq_work_run();
746         inc_irq_stat(apic_irq_work_irqs);
747         irq_exit();
748
749         return IRQ_HANDLED;
750 }
751
752 static const struct smp_ops xen_smp_ops __initconst = {
753         .smp_prepare_boot_cpu = xen_pv_smp_prepare_boot_cpu,
754         .smp_prepare_cpus = xen_smp_prepare_cpus,
755         .smp_cpus_done = xen_smp_cpus_done,
756
757         .cpu_up = xen_cpu_up,
758         .cpu_die = xen_cpu_die,
759         .cpu_disable = xen_cpu_disable,
760         .play_dead = xen_play_dead,
761
762         .stop_other_cpus = xen_stop_other_cpus,
763         .smp_send_reschedule = xen_smp_send_reschedule,
764
765         .send_call_func_ipi = xen_smp_send_call_function_ipi,
766         .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
767 };
768
769 void __init xen_smp_init(void)
770 {
771         smp_ops = xen_smp_ops;
772         xen_fill_possible_map();
773 }
774
775 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
776 {
777         native_smp_prepare_cpus(max_cpus);
778         WARN_ON(xen_smp_intr_init(0));
779
780         xen_init_lock_cpu(0);
781 }
782
783 void __init xen_hvm_smp_init(void)
784 {
785         if (!xen_have_vector_callback)
786                 return;
787         smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
788         smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
789         smp_ops.cpu_die = xen_cpu_die;
790         smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
791         smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
792         smp_ops.smp_prepare_boot_cpu = xen_hvm_smp_prepare_boot_cpu;
793 }