GNU Linux-libre 6.8.9-gnu
[releases.git] / arch / x86 / platform / uv / uv_nmi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI NMI support routines
4  *
5  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6  * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
7  * Copyright (c) Mike Travis
8  */
9
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/kdb.h>
13 #include <linux/kexec.h>
14 #include <linux/kgdb.h>
15 #include <linux/moduleparam.h>
16 #include <linux/nmi.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/clocksource.h>
22
23 #include <asm/apic.h>
24 #include <asm/current.h>
25 #include <asm/kdebug.h>
26 #include <asm/local64.h>
27 #include <asm/nmi.h>
28 #include <asm/reboot.h>
29 #include <asm/traps.h>
30 #include <asm/uv/uv.h>
31 #include <asm/uv/uv_hub.h>
32 #include <asm/uv/uv_mmrs.h>
33
34 /*
35  * UV handler for NMI
36  *
37  * Handle system-wide NMI events generated by the global 'power nmi' command.
38  *
39  * Basic operation is to field the NMI interrupt on each CPU and wait
40  * until all CPU's have arrived into the nmi handler.  If some CPU's do not
41  * make it into the handler, try and force them in with the IPI(NMI) signal.
42  *
43  * We also have to lessen UV Hub MMR accesses as much as possible as this
44  * disrupts the UV Hub's primary mission of directing NumaLink traffic and
45  * can cause system problems to occur.
46  *
47  * To do this we register our primary NMI notifier on the NMI_UNKNOWN
48  * chain.  This reduces the number of false NMI calls when the perf
49  * tools are running which generate an enormous number of NMIs per
50  * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
51  * very short as it only checks that if it has been "pinged" with the
52  * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
53  *
54  */
55
56 static struct uv_hub_nmi_s **uv_hub_nmi_list;
57
58 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
59
60 /* Newer SMM NMI handler, not present in all systems */
61 static unsigned long uvh_nmi_mmrx;              /* UVH_EVENT_OCCURRED0/1 */
62 static unsigned long uvh_nmi_mmrx_clear;        /* UVH_EVENT_OCCURRED0/1_ALIAS */
63 static int uvh_nmi_mmrx_shift;                  /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
64 static char *uvh_nmi_mmrx_type;                 /* "EXTIO_INT0" */
65
66 /* Non-zero indicates newer SMM NMI handler present */
67 static unsigned long uvh_nmi_mmrx_supported;    /* UVH_EXTIO_INT0_BROADCAST */
68
69 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
70 static unsigned long uvh_nmi_mmrx_req;          /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
71 static int uvh_nmi_mmrx_req_shift;              /* 62 */
72
73 /* UV hubless values */
74 #define NMI_CONTROL_PORT        0x70
75 #define NMI_DUMMY_PORT          0x71
76 #define PAD_OWN_GPP_D_0         0x2c
77 #define GPI_NMI_STS_GPP_D_0     0x164
78 #define GPI_NMI_ENA_GPP_D_0     0x174
79 #define STS_GPP_D_0_MASK        0x1
80 #define PAD_CFG_DW0_GPP_D_0     0x4c0
81 #define GPIROUTNMI              (1ul << 17)
82 #define PCH_PCR_GPIO_1_BASE     0xfdae0000ul
83 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
84
85 static u64 *pch_base;
86 static unsigned long nmi_mmr;
87 static unsigned long nmi_mmr_clear;
88 static unsigned long nmi_mmr_pending;
89
90 static atomic_t uv_in_nmi;
91 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
92 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
93 static atomic_t uv_nmi_slave_continue;
94 static cpumask_var_t uv_nmi_cpu_mask;
95
96 static atomic_t uv_nmi_kexec_failed;
97
98 /* Values for uv_nmi_slave_continue */
99 #define SLAVE_CLEAR     0
100 #define SLAVE_CONTINUE  1
101 #define SLAVE_EXIT      2
102
103 /*
104  * Default is all stack dumps go to the console and buffer.
105  * Lower level to send to log buffer only.
106  */
107 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
108 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
109
110 /*
111  * The following values show statistics on how perf events are affecting
112  * this system.
113  */
114 static int param_get_local64(char *buffer, const struct kernel_param *kp)
115 {
116         return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
117 }
118
119 static int param_set_local64(const char *val, const struct kernel_param *kp)
120 {
121         /* Clear on any write */
122         local64_set((local64_t *)kp->arg, 0);
123         return 0;
124 }
125
126 static const struct kernel_param_ops param_ops_local64 = {
127         .get = param_get_local64,
128         .set = param_set_local64,
129 };
130 #define param_check_local64(name, p) __param_check(name, p, local64_t)
131
132 static local64_t uv_nmi_count;
133 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
134
135 static local64_t uv_nmi_misses;
136 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
137
138 static local64_t uv_nmi_ping_count;
139 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
140
141 static local64_t uv_nmi_ping_misses;
142 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
143
144 /*
145  * Following values allow tuning for large systems under heavy loading
146  */
147 static int uv_nmi_initial_delay = 100;
148 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
149
150 static int uv_nmi_slave_delay = 100;
151 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
152
153 static int uv_nmi_loop_delay = 100;
154 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
155
156 static int uv_nmi_trigger_delay = 10000;
157 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
158
159 static int uv_nmi_wait_count = 100;
160 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
161
162 static int uv_nmi_retry_count = 500;
163 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
164
165 static bool uv_pch_intr_enable = true;
166 static bool uv_pch_intr_now_enabled;
167 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
168
169 static bool uv_pch_init_enable = true;
170 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
171
172 static int uv_nmi_debug;
173 module_param_named(debug, uv_nmi_debug, int, 0644);
174
175 #define nmi_debug(fmt, ...)                             \
176         do {                                            \
177                 if (uv_nmi_debug)                       \
178                         pr_info(fmt, ##__VA_ARGS__);    \
179         } while (0)
180
181 /* Valid NMI Actions */
182 enum action_t {
183         nmi_act_kdump,
184         nmi_act_dump,
185         nmi_act_ips,
186         nmi_act_kdb,
187         nmi_act_kgdb,
188         nmi_act_health,
189         nmi_act_max
190 };
191
192 static const char * const actions[nmi_act_max] = {
193         [nmi_act_kdump] = "kdump",
194         [nmi_act_dump] = "dump",
195         [nmi_act_ips] = "ips",
196         [nmi_act_kdb] = "kdb",
197         [nmi_act_kgdb] = "kgdb",
198         [nmi_act_health] = "health",
199 };
200
201 static const char * const actions_desc[nmi_act_max] = {
202         [nmi_act_kdump] = "do kernel crash dump",
203         [nmi_act_dump] = "dump process stack for each cpu",
204         [nmi_act_ips] = "dump Inst Ptr info for each cpu",
205         [nmi_act_kdb] = "enter KDB (needs kgdboc= assignment)",
206         [nmi_act_kgdb] = "enter KGDB (needs gdb target remote)",
207         [nmi_act_health] = "check if CPUs respond to NMI",
208 };
209
210 static enum action_t uv_nmi_action = nmi_act_dump;
211
212 static int param_get_action(char *buffer, const struct kernel_param *kp)
213 {
214         return sprintf(buffer, "%s\n", actions[uv_nmi_action]);
215 }
216
217 static int param_set_action(const char *val, const struct kernel_param *kp)
218 {
219         int i, n = ARRAY_SIZE(actions);
220
221         i = sysfs_match_string(actions, val);
222         if (i >= 0) {
223                 uv_nmi_action = i;
224                 pr_info("UV: New NMI action:%s\n", actions[i]);
225                 return 0;
226         }
227
228         pr_err("UV: Invalid NMI action. Valid actions are:\n");
229         for (i = 0; i < n; i++)
230                 pr_err("UV: %-8s - %s\n", actions[i], actions_desc[i]);
231
232         return -EINVAL;
233 }
234
235 static const struct kernel_param_ops param_ops_action = {
236         .get = param_get_action,
237         .set = param_set_action,
238 };
239 #define param_check_action(name, p) __param_check(name, p, enum action_t)
240
241 module_param_named(action, uv_nmi_action, action, 0644);
242
243 /* Setup which NMI support is present in system */
244 static void uv_nmi_setup_mmrs(void)
245 {
246         bool new_nmi_method_only = false;
247
248         /* First determine arch specific MMRs to handshake with BIOS */
249         if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {      /* UV2,3,4 setup */
250                 uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
251                 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
252                 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
253                 uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
254
255                 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
256                 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
257                 uvh_nmi_mmrx_req_shift = 62;
258
259         } else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */
260                 uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
261                 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
262                 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
263                 uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
264
265                 new_nmi_method_only = true;             /* Newer nmi always valid on UV5+ */
266                 uvh_nmi_mmrx_req = 0;                   /* no request bit to clear */
267
268         } else {
269                 pr_err("UV:%s:NMI support not available on this system\n", __func__);
270                 return;
271         }
272
273         /* Then find out if new NMI is supported */
274         if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) {
275                 if (uvh_nmi_mmrx_req)
276                         uv_write_local_mmr(uvh_nmi_mmrx_req,
277                                                 1UL << uvh_nmi_mmrx_req_shift);
278                 nmi_mmr = uvh_nmi_mmrx;
279                 nmi_mmr_clear = uvh_nmi_mmrx_clear;
280                 nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
281                 pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
282         } else {
283                 nmi_mmr = UVH_NMI_MMR;
284                 nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
285                 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
286                 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
287         }
288 }
289
290 /* Read NMI MMR and check if NMI flag was set by BMC. */
291 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
292 {
293         hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
294         atomic_inc(&hub_nmi->read_mmr_count);
295         return !!(hub_nmi->nmi_value & nmi_mmr_pending);
296 }
297
298 static inline void uv_local_mmr_clear_nmi(void)
299 {
300         uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
301 }
302
303 /*
304  * UV hubless NMI handler functions
305  */
306 static inline void uv_reassert_nmi(void)
307 {
308         /* (from arch/x86/include/asm/mach_traps.h) */
309         outb(0x8f, NMI_CONTROL_PORT);
310         inb(NMI_DUMMY_PORT);            /* dummy read */
311         outb(0x0f, NMI_CONTROL_PORT);
312         inb(NMI_DUMMY_PORT);            /* dummy read */
313 }
314
315 static void uv_init_hubless_pch_io(int offset, int mask, int data)
316 {
317         int *addr = PCH_PCR_GPIO_ADDRESS(offset);
318         int readd = readl(addr);
319
320         if (mask) {                     /* OR in new data */
321                 int writed = (readd & ~mask) | data;
322
323                 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
324                         addr, readd, ~mask, data, writed);
325                 writel(writed, addr);
326         } else if (readd & data) {      /* clear status bit */
327                 nmi_debug("UV:PCH: %p = %x\n", addr, data);
328                 writel(data, addr);
329         }
330
331         (void)readl(addr);              /* flush write data */
332 }
333
334 static void uv_nmi_setup_hubless_intr(void)
335 {
336         uv_pch_intr_now_enabled = uv_pch_intr_enable;
337
338         uv_init_hubless_pch_io(
339                 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
340                 uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
341
342         nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
343                 uv_pch_intr_now_enabled ? "enabled" : "disabled");
344 }
345
346 static struct init_nmi {
347         unsigned int    offset;
348         unsigned int    mask;
349         unsigned int    data;
350 } init_nmi[] = {
351         {       /* HOSTSW_OWN_GPP_D_0 */
352         .offset = 0x84,
353         .mask = 0x1,
354         .data = 0x0,    /* ACPI Mode */
355         },
356
357 /* Clear status: */
358         {       /* GPI_INT_STS_GPP_D_0 */
359         .offset = 0x104,
360         .mask = 0x0,
361         .data = 0x1,    /* Clear Status */
362         },
363         {       /* GPI_GPE_STS_GPP_D_0 */
364         .offset = 0x124,
365         .mask = 0x0,
366         .data = 0x1,    /* Clear Status */
367         },
368         {       /* GPI_SMI_STS_GPP_D_0 */
369         .offset = 0x144,
370         .mask = 0x0,
371         .data = 0x1,    /* Clear Status */
372         },
373         {       /* GPI_NMI_STS_GPP_D_0 */
374         .offset = 0x164,
375         .mask = 0x0,
376         .data = 0x1,    /* Clear Status */
377         },
378
379 /* Disable interrupts: */
380         {       /* GPI_INT_EN_GPP_D_0 */
381         .offset = 0x114,
382         .mask = 0x1,
383         .data = 0x0,    /* Disable interrupt generation */
384         },
385         {       /* GPI_GPE_EN_GPP_D_0 */
386         .offset = 0x134,
387         .mask = 0x1,
388         .data = 0x0,    /* Disable interrupt generation */
389         },
390         {       /* GPI_SMI_EN_GPP_D_0 */
391         .offset = 0x154,
392         .mask = 0x1,
393         .data = 0x0,    /* Disable interrupt generation */
394         },
395         {       /* GPI_NMI_EN_GPP_D_0 */
396         .offset = 0x174,
397         .mask = 0x1,
398         .data = 0x0,    /* Disable interrupt generation */
399         },
400
401 /* Setup GPP_D_0 Pad Config: */
402         {       /* PAD_CFG_DW0_GPP_D_0 */
403         .offset = 0x4c0,
404         .mask = 0xffffffff,
405         .data = 0x82020100,
406 /*
407  *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
408  *
409  *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
410  *                                                from RX buffer (default)
411  *
412  *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
413  *
414  *  26:25 RX Level/Edge Configuration (RXEVCFG):
415  *      = 0h # Level
416  *      = 1h # Edge
417  *
418  *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
419  *
420  *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
421  * = 0 # Routing does not cause peripheral IRQ...
422  *     # (we want an NMI not an IRQ)
423  *
424  *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
425  *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
426  *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
427  *
428  *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
429  *   9    GPIO RX Disable (GPIORXDIS):
430  * = 0 # Enable the input buffer (active low enable)
431  *
432  *   8    GPIO TX Disable (GPIOTXDIS):
433  * = 1 # Disable the output buffer; i.e. Hi-Z
434  *
435  *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
436  *   0 GPIO TX State (GPIOTXSTATE):
437  * = 0 # (Leave at default)
438  */
439         },
440
441 /* Pad Config DW1 */
442         {       /* PAD_CFG_DW1_GPP_D_0 */
443         .offset = 0x4c4,
444         .mask = 0x3c00,
445         .data = 0,      /* Termination = none (default) */
446         },
447 };
448
449 static void uv_init_hubless_pch_d0(void)
450 {
451         int i, read;
452
453         read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
454         if (read != 0) {
455                 pr_info("UV: Hubless NMI already configured\n");
456                 return;
457         }
458
459         nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
460         for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
461                 uv_init_hubless_pch_io(init_nmi[i].offset,
462                                         init_nmi[i].mask,
463                                         init_nmi[i].data);
464         }
465 }
466
467 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
468 {
469         int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
470         int status = *pstat;
471
472         hub_nmi->nmi_value = status;
473         atomic_inc(&hub_nmi->read_mmr_count);
474
475         if (!(status & STS_GPP_D_0_MASK))       /* Not a UV external NMI */
476                 return 0;
477
478         *pstat = STS_GPP_D_0_MASK;      /* Is a UV NMI: clear GPP_D_0 status */
479         (void)*pstat;                   /* Flush write */
480
481         return 1;
482 }
483
484 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
485 {
486         if (hub_nmi->hub_present)
487                 return uv_nmi_test_mmr(hub_nmi);
488
489         if (hub_nmi->pch_owner)         /* Only PCH owner can check status */
490                 return uv_nmi_test_hubless(hub_nmi);
491
492         return -1;
493 }
494
495 /*
496  * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
497  * return true.  If first CPU in on the system, set global "in_nmi" flag.
498  */
499 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
500 {
501         int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
502
503         if (first) {
504                 atomic_set(&hub_nmi->cpu_owner, cpu);
505                 if (atomic_add_unless(&uv_in_nmi, 1, 1))
506                         atomic_set(&uv_nmi_cpu, cpu);
507
508                 atomic_inc(&hub_nmi->nmi_count);
509         }
510         return first;
511 }
512
513 /* Check if this is a system NMI event */
514 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
515 {
516         int cpu = smp_processor_id();
517         int nmi = 0;
518         int nmi_detected = 0;
519
520         local64_inc(&uv_nmi_count);
521         this_cpu_inc(uv_cpu_nmi.queries);
522
523         do {
524                 nmi = atomic_read(&hub_nmi->in_nmi);
525                 if (nmi)
526                         break;
527
528                 if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
529                         nmi_detected = uv_test_nmi(hub_nmi);
530
531                         /* Check flag for UV external NMI */
532                         if (nmi_detected > 0) {
533                                 uv_set_in_nmi(cpu, hub_nmi);
534                                 nmi = 1;
535                                 break;
536                         }
537
538                         /* A non-PCH node in a hubless system waits for NMI */
539                         else if (nmi_detected < 0)
540                                 goto slave_wait;
541
542                         /* MMR/PCH NMI flag is clear */
543                         raw_spin_unlock(&hub_nmi->nmi_lock);
544
545                 } else {
546
547                         /* Wait a moment for the HUB NMI locker to set flag */
548 slave_wait:             cpu_relax();
549                         udelay(uv_nmi_slave_delay);
550
551                         /* Re-check hub in_nmi flag */
552                         nmi = atomic_read(&hub_nmi->in_nmi);
553                         if (nmi)
554                                 break;
555                 }
556
557                 /*
558                  * Check if this BMC missed setting the MMR NMI flag (or)
559                  * UV hubless system where only PCH owner can check flag
560                  */
561                 if (!nmi) {
562                         nmi = atomic_read(&uv_in_nmi);
563                         if (nmi)
564                                 uv_set_in_nmi(cpu, hub_nmi);
565                 }
566
567                 /* If we're holding the hub lock, release it now */
568                 if (nmi_detected < 0)
569                         raw_spin_unlock(&hub_nmi->nmi_lock);
570
571         } while (0);
572
573         if (!nmi)
574                 local64_inc(&uv_nmi_misses);
575
576         return nmi;
577 }
578
579 /* Need to reset the NMI MMR register, but only once per hub. */
580 static inline void uv_clear_nmi(int cpu)
581 {
582         struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
583
584         if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
585                 atomic_set(&hub_nmi->cpu_owner, -1);
586                 atomic_set(&hub_nmi->in_nmi, 0);
587                 if (hub_nmi->hub_present)
588                         uv_local_mmr_clear_nmi();
589                 else
590                         uv_reassert_nmi();
591                 raw_spin_unlock(&hub_nmi->nmi_lock);
592         }
593 }
594
595 /* Ping non-responding CPU's attempting to force them into the NMI handler */
596 static void uv_nmi_nr_cpus_ping(void)
597 {
598         int cpu;
599
600         for_each_cpu(cpu, uv_nmi_cpu_mask)
601                 uv_cpu_nmi_per(cpu).pinging = 1;
602
603         __apic_send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
604 }
605
606 /* Clean up flags for CPU's that ignored both NMI and ping */
607 static void uv_nmi_cleanup_mask(void)
608 {
609         int cpu;
610
611         for_each_cpu(cpu, uv_nmi_cpu_mask) {
612                 uv_cpu_nmi_per(cpu).pinging =  0;
613                 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
614                 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
615         }
616 }
617
618 /* Loop waiting as CPU's enter NMI handler */
619 static int uv_nmi_wait_cpus(int first)
620 {
621         int i, j, k, n = num_online_cpus();
622         int last_k = 0, waiting = 0;
623         int cpu = smp_processor_id();
624
625         if (first) {
626                 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
627                 k = 0;
628         } else {
629                 k = n - cpumask_weight(uv_nmi_cpu_mask);
630         }
631
632         /* PCH NMI causes only one CPU to respond */
633         if (first && uv_pch_intr_now_enabled) {
634                 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
635                 return n - k - 1;
636         }
637
638         udelay(uv_nmi_initial_delay);
639         for (i = 0; i < uv_nmi_retry_count; i++) {
640                 int loop_delay = uv_nmi_loop_delay;
641
642                 for_each_cpu(j, uv_nmi_cpu_mask) {
643                         if (uv_cpu_nmi_per(j).state) {
644                                 cpumask_clear_cpu(j, uv_nmi_cpu_mask);
645                                 if (++k >= n)
646                                         break;
647                         }
648                 }
649                 if (k >= n) {           /* all in? */
650                         k = n;
651                         break;
652                 }
653                 if (last_k != k) {      /* abort if no new CPU's coming in */
654                         last_k = k;
655                         waiting = 0;
656                 } else if (++waiting > uv_nmi_wait_count)
657                         break;
658
659                 /* Extend delay if waiting only for CPU 0: */
660                 if (waiting && (n - k) == 1 &&
661                     cpumask_test_cpu(0, uv_nmi_cpu_mask))
662                         loop_delay *= 100;
663
664                 udelay(loop_delay);
665         }
666         atomic_set(&uv_nmi_cpus_in_nmi, k);
667         return n - k;
668 }
669
670 /* Wait until all slave CPU's have entered UV NMI handler */
671 static void uv_nmi_wait(int master)
672 {
673         /* Indicate this CPU is in: */
674         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
675
676         /* If not the first CPU in (the master), then we are a slave CPU */
677         if (!master)
678                 return;
679
680         do {
681                 /* Wait for all other CPU's to gather here */
682                 if (!uv_nmi_wait_cpus(1))
683                         break;
684
685                 /* If not all made it in, send IPI NMI to them */
686                 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
687                          cpumask_weight(uv_nmi_cpu_mask),
688                          cpumask_pr_args(uv_nmi_cpu_mask));
689
690                 uv_nmi_nr_cpus_ping();
691
692                 /* If all CPU's are in, then done */
693                 if (!uv_nmi_wait_cpus(0))
694                         break;
695
696                 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
697                          cpumask_weight(uv_nmi_cpu_mask),
698                          cpumask_pr_args(uv_nmi_cpu_mask));
699         } while (0);
700
701         pr_alert("UV: %d of %d CPUs in NMI\n",
702                 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
703 }
704
705 /* Dump Instruction Pointer header */
706 static void uv_nmi_dump_cpu_ip_hdr(void)
707 {
708         pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
709                 "CPU", "PID", "COMMAND", "IP");
710 }
711
712 /* Dump Instruction Pointer info */
713 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
714 {
715         pr_info("UV: %4d %6d %-32.32s %pS",
716                 cpu, current->pid, current->comm, (void *)regs->ip);
717 }
718
719 /*
720  * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
721  * failed, then we provide "dump" as an alternate action.  Action "dump" now
722  * also includes the show "ips" (instruction pointers) action whereas the
723  * action "ips" only displays instruction pointers for the non-idle CPU's.
724  * This is an abbreviated form of the "ps" command.
725  */
726 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
727 {
728         const char *dots = " ................................. ";
729
730         if (cpu == 0)
731                 uv_nmi_dump_cpu_ip_hdr();
732
733         if (current->pid != 0 || uv_nmi_action != nmi_act_ips)
734                 uv_nmi_dump_cpu_ip(cpu, regs);
735
736         if (uv_nmi_action == nmi_act_dump) {
737                 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
738                 show_regs(regs);
739         }
740
741         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
742 }
743
744 /* Trigger a slave CPU to dump its state */
745 static void uv_nmi_trigger_dump(int cpu)
746 {
747         int retry = uv_nmi_trigger_delay;
748
749         if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
750                 return;
751
752         uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
753         do {
754                 cpu_relax();
755                 udelay(10);
756                 if (uv_cpu_nmi_per(cpu).state
757                                 != UV_NMI_STATE_DUMP)
758                         return;
759         } while (--retry > 0);
760
761         pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
762         uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
763 }
764
765 /* Wait until all CPU's ready to exit */
766 static void uv_nmi_sync_exit(int master)
767 {
768         atomic_dec(&uv_nmi_cpus_in_nmi);
769         if (master) {
770                 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
771                         cpu_relax();
772                 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
773         } else {
774                 while (atomic_read(&uv_nmi_slave_continue))
775                         cpu_relax();
776         }
777 }
778
779 /* Current "health" check is to check which CPU's are responsive */
780 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
781 {
782         if (master) {
783                 int in = atomic_read(&uv_nmi_cpus_in_nmi);
784                 int out = num_online_cpus() - in;
785
786                 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
787                 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
788         } else {
789                 while (!atomic_read(&uv_nmi_slave_continue))
790                         cpu_relax();
791         }
792         uv_nmi_sync_exit(master);
793 }
794
795 /* Walk through CPU list and dump state of each */
796 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
797 {
798         if (master) {
799                 int tcpu;
800                 int ignored = 0;
801                 int saved_console_loglevel = console_loglevel;
802
803                 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
804                         uv_nmi_action == nmi_act_ips ? "IPs" : "processes",
805                         atomic_read(&uv_nmi_cpus_in_nmi), cpu);
806
807                 console_loglevel = uv_nmi_loglevel;
808                 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
809                 for_each_online_cpu(tcpu) {
810                         if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
811                                 ignored++;
812                         else if (tcpu == cpu)
813                                 uv_nmi_dump_state_cpu(tcpu, regs);
814                         else
815                                 uv_nmi_trigger_dump(tcpu);
816                 }
817                 if (ignored)
818                         pr_alert("UV: %d CPUs ignored NMI\n", ignored);
819
820                 console_loglevel = saved_console_loglevel;
821                 pr_alert("UV: process trace complete\n");
822         } else {
823                 while (!atomic_read(&uv_nmi_slave_continue))
824                         cpu_relax();
825                 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
826                         cpu_relax();
827                 uv_nmi_dump_state_cpu(cpu, regs);
828         }
829         uv_nmi_sync_exit(master);
830 }
831
832 static void uv_nmi_touch_watchdogs(void)
833 {
834         touch_softlockup_watchdog_sync();
835         clocksource_touch_watchdog();
836         rcu_cpu_stall_reset();
837         touch_nmi_watchdog();
838 }
839
840 static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs)
841 {
842         /* Check if kdump kernel loaded for both main and secondary CPUs */
843         if (!kexec_crash_image) {
844                 if (main)
845                         pr_err("UV: NMI error: kdump kernel not loaded\n");
846                 return;
847         }
848
849         /* Call crash to dump system state */
850         if (main) {
851                 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
852                 crash_kexec(regs);
853
854                 pr_emerg("UV: crash_kexec unexpectedly returned\n");
855                 atomic_set(&uv_nmi_kexec_failed, 1);
856
857         } else { /* secondary */
858
859                 /* If kdump kernel fails, secondaries will exit this loop */
860                 while (atomic_read(&uv_nmi_kexec_failed) == 0) {
861
862                         /* Once shootdown cpus starts, they do not return */
863                         run_crash_ipi_callback(regs);
864
865                         mdelay(10);
866                 }
867         }
868 }
869
870 #ifdef CONFIG_KGDB
871 #ifdef CONFIG_KGDB_KDB
872 static inline int uv_nmi_kdb_reason(void)
873 {
874         return KDB_REASON_SYSTEM_NMI;
875 }
876 #else /* !CONFIG_KGDB_KDB */
877 static inline int uv_nmi_kdb_reason(void)
878 {
879         /* Ensure user is expecting to attach gdb remote */
880         if (uv_nmi_action == nmi_act_kgdb)
881                 return 0;
882
883         pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
884         return -1;
885 }
886 #endif /* CONFIG_KGDB_KDB */
887
888 /*
889  * Call KGDB/KDB from NMI handler
890  *
891  * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
892  * 'kdb' has no affect on which is used.  See the KGDB documentation for further
893  * information.
894  */
895 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
896 {
897         if (master) {
898                 int reason = uv_nmi_kdb_reason();
899                 int ret;
900
901                 if (reason < 0)
902                         return;
903
904                 /* Call KGDB NMI handler as MASTER */
905                 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
906                                 &uv_nmi_slave_continue);
907                 if (ret) {
908                         pr_alert("KGDB returned error, is kgdboc set?\n");
909                         atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
910                 }
911         } else {
912                 /* Wait for KGDB signal that it's ready for slaves to enter */
913                 int sig;
914
915                 do {
916                         cpu_relax();
917                         sig = atomic_read(&uv_nmi_slave_continue);
918                 } while (!sig);
919
920                 /* Call KGDB as slave */
921                 if (sig == SLAVE_CONTINUE)
922                         kgdb_nmicallback(cpu, regs);
923         }
924         uv_nmi_sync_exit(master);
925 }
926
927 #else /* !CONFIG_KGDB */
928 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
929 {
930         pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
931 }
932 #endif /* !CONFIG_KGDB */
933
934 /*
935  * UV NMI handler
936  */
937 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
938 {
939         struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
940         int cpu = smp_processor_id();
941         int master = 0;
942         unsigned long flags;
943
944         local_irq_save(flags);
945
946         /* If not a UV System NMI, ignore */
947         if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
948                 local_irq_restore(flags);
949                 return NMI_DONE;
950         }
951
952         /* Indicate we are the first CPU into the NMI handler */
953         master = (atomic_read(&uv_nmi_cpu) == cpu);
954
955         /* If NMI action is "kdump", then attempt to do it */
956         if (uv_nmi_action == nmi_act_kdump) {
957                 uv_nmi_kdump(cpu, master, regs);
958
959                 /* Unexpected return, revert action to "dump" */
960                 if (master)
961                         uv_nmi_action = nmi_act_dump;
962         }
963
964         /* Pause as all CPU's enter the NMI handler */
965         uv_nmi_wait(master);
966
967         /* Process actions other than "kdump": */
968         switch (uv_nmi_action) {
969         case nmi_act_health:
970                 uv_nmi_action_health(cpu, regs, master);
971                 break;
972         case nmi_act_ips:
973         case nmi_act_dump:
974                 uv_nmi_dump_state(cpu, regs, master);
975                 break;
976         case nmi_act_kdb:
977         case nmi_act_kgdb:
978                 uv_call_kgdb_kdb(cpu, regs, master);
979                 break;
980         default:
981                 if (master)
982                         pr_alert("UV: unknown NMI action: %d\n", uv_nmi_action);
983                 uv_nmi_sync_exit(master);
984                 break;
985         }
986
987         /* Clear per_cpu "in_nmi" flag */
988         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
989
990         /* Clear MMR NMI flag on each hub */
991         uv_clear_nmi(cpu);
992
993         /* Clear global flags */
994         if (master) {
995                 if (!cpumask_empty(uv_nmi_cpu_mask))
996                         uv_nmi_cleanup_mask();
997                 atomic_set(&uv_nmi_cpus_in_nmi, -1);
998                 atomic_set(&uv_nmi_cpu, -1);
999                 atomic_set(&uv_in_nmi, 0);
1000                 atomic_set(&uv_nmi_kexec_failed, 0);
1001                 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
1002         }
1003
1004         uv_nmi_touch_watchdogs();
1005         local_irq_restore(flags);
1006
1007         return NMI_HANDLED;
1008 }
1009
1010 /*
1011  * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1012  */
1013 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1014 {
1015         int ret;
1016
1017         this_cpu_inc(uv_cpu_nmi.queries);
1018         if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1019                 local64_inc(&uv_nmi_ping_misses);
1020                 return NMI_DONE;
1021         }
1022
1023         this_cpu_inc(uv_cpu_nmi.pings);
1024         local64_inc(&uv_nmi_ping_count);
1025         ret = uv_handle_nmi(reason, regs);
1026         this_cpu_write(uv_cpu_nmi.pinging, 0);
1027         return ret;
1028 }
1029
1030 static void uv_register_nmi_notifier(void)
1031 {
1032         if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1033                 pr_warn("UV: NMI handler failed to register\n");
1034
1035         if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1036                 pr_warn("UV: PING NMI handler failed to register\n");
1037 }
1038
1039 void uv_nmi_init(void)
1040 {
1041         unsigned int value;
1042
1043         /*
1044          * Unmask NMI on all CPU's
1045          */
1046         value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1047         value &= ~APIC_LVT_MASKED;
1048         apic_write(APIC_LVT1, value);
1049 }
1050
1051 /* Setup HUB NMI info */
1052 static void __init uv_nmi_setup_common(bool hubbed)
1053 {
1054         int size = sizeof(void *) * (1 << NODES_SHIFT);
1055         int cpu;
1056
1057         uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1058         nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1059         BUG_ON(!uv_hub_nmi_list);
1060         size = sizeof(struct uv_hub_nmi_s);
1061         for_each_present_cpu(cpu) {
1062                 int nid = cpu_to_node(cpu);
1063                 if (uv_hub_nmi_list[nid] == NULL) {
1064                         uv_hub_nmi_list[nid] = kzalloc_node(size,
1065                                                             GFP_KERNEL, nid);
1066                         BUG_ON(!uv_hub_nmi_list[nid]);
1067                         raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1068                         atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1069                         uv_hub_nmi_list[nid]->hub_present = hubbed;
1070                         uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1071                 }
1072                 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1073         }
1074         BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1075 }
1076
1077 /* Setup for UV Hub systems */
1078 void __init uv_nmi_setup(void)
1079 {
1080         uv_nmi_setup_mmrs();
1081         uv_nmi_setup_common(true);
1082         uv_register_nmi_notifier();
1083         pr_info("UV: Hub NMI enabled\n");
1084 }
1085
1086 /* Setup for UV Hubless systems */
1087 void __init uv_nmi_setup_hubless(void)
1088 {
1089         uv_nmi_setup_common(false);
1090         pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1091         nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1092                 pch_base, PCH_PCR_GPIO_1_BASE);
1093         if (uv_pch_init_enable)
1094                 uv_init_hubless_pch_d0();
1095         uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1096                                 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1097         uv_nmi_setup_hubless_intr();
1098         /* Ensure NMI enabled in Processor Interface Reg: */
1099         uv_reassert_nmi();
1100         uv_register_nmi_notifier();
1101         pr_info("UV: PCH NMI enabled\n");
1102 }