GNU Linux-libre 4.9.311-gnu1
[releases.git] / arch / x86 / platform / intel-quark / imr.c
1 /**
2  * imr.c -- Intel Isolated Memory Region driver
3  *
4  * Copyright(c) 2013 Intel Corporation.
5  * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6  *
7  * IMR registers define an isolated region of memory that can
8  * be masked to prohibit certain system agents from accessing memory.
9  * When a device behind a masked port performs an access - snooped or
10  * not, an IMR may optionally prevent that transaction from changing
11  * the state of memory or from getting correct data in response to the
12  * operation.
13  *
14  * Write data will be dropped and reads will return 0xFFFFFFFF, the
15  * system will reset and system BIOS will print out an error message to
16  * inform the user that an IMR has been violated.
17  *
18  * This code is based on the Linux MTRR code and reference code from
19  * Intel's Quark BSP EFI, Linux and grub code.
20  *
21  * See quark-x1000-datasheet.pdf for register definitions.
22  * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
23  */
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <asm-generic/sections.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/imr.h>
30 #include <asm/iosf_mbi.h>
31 #include <linux/debugfs.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/types.h>
35
36 struct imr_device {
37         struct dentry   *file;
38         bool            init;
39         struct mutex    lock;
40         int             max_imr;
41         int             reg_base;
42 };
43
44 static struct imr_device imr_dev;
45
46 /*
47  * IMR read/write mask control registers.
48  * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
49  * bit definitions.
50  *
51  * addr_hi
52  * 31           Lock bit
53  * 30:24        Reserved
54  * 23:2         1 KiB aligned lo address
55  * 1:0          Reserved
56  *
57  * addr_hi
58  * 31:24        Reserved
59  * 23:2         1 KiB aligned hi address
60  * 1:0          Reserved
61  */
62 #define IMR_LOCK        BIT(31)
63
64 struct imr_regs {
65         u32 addr_lo;
66         u32 addr_hi;
67         u32 rmask;
68         u32 wmask;
69 };
70
71 #define IMR_NUM_REGS    (sizeof(struct imr_regs)/sizeof(u32))
72 #define IMR_SHIFT       8
73 #define imr_to_phys(x)  ((x) << IMR_SHIFT)
74 #define phys_to_imr(x)  ((x) >> IMR_SHIFT)
75
76 /**
77  * imr_is_enabled - true if an IMR is enabled false otherwise.
78  *
79  * Determines if an IMR is enabled based on address range and read/write
80  * mask. An IMR set with an address range set to zero and a read/write
81  * access mask set to all is considered to be disabled. An IMR in any
82  * other state - for example set to zero but without read/write access
83  * all is considered to be enabled. This definition of disabled is how
84  * firmware switches off an IMR and is maintained in kernel for
85  * consistency.
86  *
87  * @imr:        pointer to IMR descriptor.
88  * @return:     true if IMR enabled false if disabled.
89  */
90 static inline int imr_is_enabled(struct imr_regs *imr)
91 {
92         return !(imr->rmask == IMR_READ_ACCESS_ALL &&
93                  imr->wmask == IMR_WRITE_ACCESS_ALL &&
94                  imr_to_phys(imr->addr_lo) == 0 &&
95                  imr_to_phys(imr->addr_hi) == 0);
96 }
97
98 /**
99  * imr_read - read an IMR at a given index.
100  *
101  * Requires caller to hold imr mutex.
102  *
103  * @idev:       pointer to imr_device structure.
104  * @imr_id:     IMR entry to read.
105  * @imr:        IMR structure representing address and access masks.
106  * @return:     0 on success or error code passed from mbi_iosf on failure.
107  */
108 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
109 {
110         u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
111         int ret;
112
113         ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
114         if (ret)
115                 return ret;
116
117         ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
118         if (ret)
119                 return ret;
120
121         ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
122         if (ret)
123                 return ret;
124
125         return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
126 }
127
128 /**
129  * imr_write - write an IMR at a given index.
130  *
131  * Requires caller to hold imr mutex.
132  * Note lock bits need to be written independently of address bits.
133  *
134  * @idev:       pointer to imr_device structure.
135  * @imr_id:     IMR entry to write.
136  * @imr:        IMR structure representing address and access masks.
137  * @return:     0 on success or error code passed from mbi_iosf on failure.
138  */
139 static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
140 {
141         unsigned long flags;
142         u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
143         int ret;
144
145         local_irq_save(flags);
146
147         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
148         if (ret)
149                 goto failed;
150
151         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
152         if (ret)
153                 goto failed;
154
155         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
156         if (ret)
157                 goto failed;
158
159         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
160         if (ret)
161                 goto failed;
162
163         local_irq_restore(flags);
164         return 0;
165 failed:
166         /*
167          * If writing to the IOSF failed then we're in an unknown state,
168          * likely a very bad state. An IMR in an invalid state will almost
169          * certainly lead to a memory access violation.
170          */
171         local_irq_restore(flags);
172         WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
173              imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
174
175         return ret;
176 }
177
178 /**
179  * imr_dbgfs_state_show - print state of IMR registers.
180  *
181  * @s:          pointer to seq_file for output.
182  * @unused:     unused parameter.
183  * @return:     0 on success or error code passed from mbi_iosf on failure.
184  */
185 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
186 {
187         phys_addr_t base;
188         phys_addr_t end;
189         int i;
190         struct imr_device *idev = s->private;
191         struct imr_regs imr;
192         size_t size;
193         int ret = -ENODEV;
194
195         mutex_lock(&idev->lock);
196
197         for (i = 0; i < idev->max_imr; i++) {
198
199                 ret = imr_read(idev, i, &imr);
200                 if (ret)
201                         break;
202
203                 /*
204                  * Remember to add IMR_ALIGN bytes to size to indicate the
205                  * inherent IMR_ALIGN size bytes contained in the masked away
206                  * lower ten bits.
207                  */
208                 if (imr_is_enabled(&imr)) {
209                         base = imr_to_phys(imr.addr_lo);
210                         end = imr_to_phys(imr.addr_hi) + IMR_MASK;
211                         size = end - base + 1;
212                 } else {
213                         base = 0;
214                         end = 0;
215                         size = 0;
216                 }
217                 seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
218                            "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
219                            &base, &end, size, imr.rmask, imr.wmask,
220                            imr_is_enabled(&imr) ? "enabled " : "disabled",
221                            imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
222         }
223
224         mutex_unlock(&idev->lock);
225         return ret;
226 }
227
228 /**
229  * imr_state_open - debugfs open callback.
230  *
231  * @inode:      pointer to struct inode.
232  * @file:       pointer to struct file.
233  * @return:     result of single open.
234  */
235 static int imr_state_open(struct inode *inode, struct file *file)
236 {
237         return single_open(file, imr_dbgfs_state_show, inode->i_private);
238 }
239
240 static const struct file_operations imr_state_ops = {
241         .open           = imr_state_open,
242         .read           = seq_read,
243         .llseek         = seq_lseek,
244         .release        = single_release,
245 };
246
247 /**
248  * imr_debugfs_register - register debugfs hooks.
249  *
250  * @idev:       pointer to imr_device structure.
251  * @return:     0 on success - errno on failure.
252  */
253 static int imr_debugfs_register(struct imr_device *idev)
254 {
255         idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
256                                          idev, &imr_state_ops);
257         return PTR_ERR_OR_ZERO(idev->file);
258 }
259
260 /**
261  * imr_check_params - check passed address range IMR alignment and non-zero size
262  *
263  * @base:       base address of intended IMR.
264  * @size:       size of intended IMR.
265  * @return:     zero on valid range -EINVAL on unaligned base/size.
266  */
267 static int imr_check_params(phys_addr_t base, size_t size)
268 {
269         if ((base & IMR_MASK) || (size & IMR_MASK)) {
270                 pr_err("base %pa size 0x%08zx must align to 1KiB\n",
271                         &base, size);
272                 return -EINVAL;
273         }
274         if (size == 0)
275                 return -EINVAL;
276
277         return 0;
278 }
279
280 /**
281  * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
282  *
283  * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
284  * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
285  * as a result.
286  *
287  * @size:       input size bytes.
288  * @return:     reduced size.
289  */
290 static inline size_t imr_raw_size(size_t size)
291 {
292         return size - IMR_ALIGN;
293 }
294
295 /**
296  * imr_address_overlap - detects an address overlap.
297  *
298  * @addr:       address to check against an existing IMR.
299  * @imr:        imr being checked.
300  * @return:     true for overlap false for no overlap.
301  */
302 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
303 {
304         return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
305 }
306
307 /**
308  * imr_add_range - add an Isolated Memory Region.
309  *
310  * @base:       physical base address of region aligned to 1KiB.
311  * @size:       physical size of region in bytes must be aligned to 1KiB.
312  * @read_mask:  read access mask.
313  * @write_mask: write access mask.
314  * @return:     zero on success or negative value indicating error.
315  */
316 int imr_add_range(phys_addr_t base, size_t size,
317                   unsigned int rmask, unsigned int wmask)
318 {
319         phys_addr_t end;
320         unsigned int i;
321         struct imr_device *idev = &imr_dev;
322         struct imr_regs imr;
323         size_t raw_size;
324         int reg;
325         int ret;
326
327         if (WARN_ONCE(idev->init == false, "driver not initialized"))
328                 return -ENODEV;
329
330         ret = imr_check_params(base, size);
331         if (ret)
332                 return ret;
333
334         /* Tweak the size value. */
335         raw_size = imr_raw_size(size);
336         end = base + raw_size;
337
338         /*
339          * Check for reserved IMR value common to firmware, kernel and grub
340          * indicating a disabled IMR.
341          */
342         imr.addr_lo = phys_to_imr(base);
343         imr.addr_hi = phys_to_imr(end);
344         imr.rmask = rmask;
345         imr.wmask = wmask;
346         if (!imr_is_enabled(&imr))
347                 return -ENOTSUPP;
348
349         mutex_lock(&idev->lock);
350
351         /*
352          * Find a free IMR while checking for an existing overlapping range.
353          * Note there's no restriction in silicon to prevent IMR overlaps.
354          * For the sake of simplicity and ease in defining/debugging an IMR
355          * memory map we exclude IMR overlaps.
356          */
357         reg = -1;
358         for (i = 0; i < idev->max_imr; i++) {
359                 ret = imr_read(idev, i, &imr);
360                 if (ret)
361                         goto failed;
362
363                 /* Find overlap @ base or end of requested range. */
364                 ret = -EINVAL;
365                 if (imr_is_enabled(&imr)) {
366                         if (imr_address_overlap(base, &imr))
367                                 goto failed;
368                         if (imr_address_overlap(end, &imr))
369                                 goto failed;
370                 } else {
371                         reg = i;
372                 }
373         }
374
375         /* Error out if we have no free IMR entries. */
376         if (reg == -1) {
377                 ret = -ENOMEM;
378                 goto failed;
379         }
380
381         pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
382                  reg, &base, &end, raw_size, rmask, wmask);
383
384         /* Enable IMR at specified range and access mask. */
385         imr.addr_lo = phys_to_imr(base);
386         imr.addr_hi = phys_to_imr(end);
387         imr.rmask = rmask;
388         imr.wmask = wmask;
389
390         ret = imr_write(idev, reg, &imr);
391         if (ret < 0) {
392                 /*
393                  * In the highly unlikely event iosf_mbi_write failed
394                  * attempt to rollback the IMR setup skipping the trapping
395                  * of further IOSF write failures.
396                  */
397                 imr.addr_lo = 0;
398                 imr.addr_hi = 0;
399                 imr.rmask = IMR_READ_ACCESS_ALL;
400                 imr.wmask = IMR_WRITE_ACCESS_ALL;
401                 imr_write(idev, reg, &imr);
402         }
403 failed:
404         mutex_unlock(&idev->lock);
405         return ret;
406 }
407 EXPORT_SYMBOL_GPL(imr_add_range);
408
409 /**
410  * __imr_remove_range - delete an Isolated Memory Region.
411  *
412  * This function allows you to delete an IMR by its index specified by reg or
413  * by address range specified by base and size respectively. If you specify an
414  * index on its own the base and size parameters are ignored.
415  * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
416  * imr_remove_range(-1, base, size); delete IMR from base to base+size.
417  *
418  * @reg:        imr index to remove.
419  * @base:       physical base address of region aligned to 1 KiB.
420  * @size:       physical size of region in bytes aligned to 1 KiB.
421  * @return:     -EINVAL on invalid range or out or range id
422  *              -ENODEV if reg is valid but no IMR exists or is locked
423  *              0 on success.
424  */
425 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
426 {
427         phys_addr_t end;
428         bool found = false;
429         unsigned int i;
430         struct imr_device *idev = &imr_dev;
431         struct imr_regs imr;
432         size_t raw_size;
433         int ret = 0;
434
435         if (WARN_ONCE(idev->init == false, "driver not initialized"))
436                 return -ENODEV;
437
438         /*
439          * Validate address range if deleting by address, else we are
440          * deleting by index where base and size will be ignored.
441          */
442         if (reg == -1) {
443                 ret = imr_check_params(base, size);
444                 if (ret)
445                         return ret;
446         }
447
448         /* Tweak the size value. */
449         raw_size = imr_raw_size(size);
450         end = base + raw_size;
451
452         mutex_lock(&idev->lock);
453
454         if (reg >= 0) {
455                 /* If a specific IMR is given try to use it. */
456                 ret = imr_read(idev, reg, &imr);
457                 if (ret)
458                         goto failed;
459
460                 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
461                         ret = -ENODEV;
462                         goto failed;
463                 }
464                 found = true;
465         } else {
466                 /* Search for match based on address range. */
467                 for (i = 0; i < idev->max_imr; i++) {
468                         ret = imr_read(idev, i, &imr);
469                         if (ret)
470                                 goto failed;
471
472                         if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
473                                 continue;
474
475                         if ((imr_to_phys(imr.addr_lo) == base) &&
476                             (imr_to_phys(imr.addr_hi) == end)) {
477                                 found = true;
478                                 reg = i;
479                                 break;
480                         }
481                 }
482         }
483
484         if (!found) {
485                 ret = -ENODEV;
486                 goto failed;
487         }
488
489         pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
490
491         /* Tear down the IMR. */
492         imr.addr_lo = 0;
493         imr.addr_hi = 0;
494         imr.rmask = IMR_READ_ACCESS_ALL;
495         imr.wmask = IMR_WRITE_ACCESS_ALL;
496
497         ret = imr_write(idev, reg, &imr);
498
499 failed:
500         mutex_unlock(&idev->lock);
501         return ret;
502 }
503
504 /**
505  * imr_remove_range - delete an Isolated Memory Region by address
506  *
507  * This function allows you to delete an IMR by an address range specified
508  * by base and size respectively.
509  * imr_remove_range(base, size); delete IMR from base to base+size.
510  *
511  * @base:       physical base address of region aligned to 1 KiB.
512  * @size:       physical size of region in bytes aligned to 1 KiB.
513  * @return:     -EINVAL on invalid range or out or range id
514  *              -ENODEV if reg is valid but no IMR exists or is locked
515  *              0 on success.
516  */
517 int imr_remove_range(phys_addr_t base, size_t size)
518 {
519         return __imr_remove_range(-1, base, size);
520 }
521 EXPORT_SYMBOL_GPL(imr_remove_range);
522
523 /**
524  * imr_clear - delete an Isolated Memory Region by index
525  *
526  * This function allows you to delete an IMR by an address range specified
527  * by the index of the IMR. Useful for initial sanitization of the IMR
528  * address map.
529  * imr_ge(base, size); delete IMR from base to base+size.
530  *
531  * @reg:        imr index to remove.
532  * @return:     -EINVAL on invalid range or out or range id
533  *              -ENODEV if reg is valid but no IMR exists or is locked
534  *              0 on success.
535  */
536 static inline int imr_clear(int reg)
537 {
538         return __imr_remove_range(reg, 0, 0);
539 }
540
541 /**
542  * imr_fixup_memmap - Tear down IMRs used during bootup.
543  *
544  * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
545  * that need to be removed before the kernel hands out one of the IMR
546  * encased addresses to a downstream DMA agent such as the SD or Ethernet.
547  * IMRs on Galileo are setup to immediately reset the system on violation.
548  * As a result if you're running a root filesystem from SD - you'll need
549  * the boot-time IMRs torn down or you'll find seemingly random resets when
550  * using your filesystem.
551  *
552  * @idev:       pointer to imr_device structure.
553  * @return:
554  */
555 static void __init imr_fixup_memmap(struct imr_device *idev)
556 {
557         phys_addr_t base = virt_to_phys(&_text);
558         size_t size = virt_to_phys(&__end_rodata) - base;
559         unsigned long start, end;
560         int i;
561         int ret;
562
563         /* Tear down all existing unlocked IMRs. */
564         for (i = 0; i < idev->max_imr; i++)
565                 imr_clear(i);
566
567         start = (unsigned long)_text;
568         end = (unsigned long)__end_rodata - 1;
569
570         /*
571          * Setup an unlocked IMR around the physical extent of the kernel
572          * from the beginning of the .text secton to the end of the
573          * .rodata section as one physically contiguous block.
574          *
575          * We don't round up @size since it is already PAGE_SIZE aligned.
576          * See vmlinux.lds.S for details.
577          */
578         ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
579         if (ret < 0) {
580                 pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
581                         size / 1024, start, end);
582         } else {
583                 pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
584                         size / 1024, start, end);
585         }
586
587 }
588
589 static const struct x86_cpu_id imr_ids[] __initconst = {
590         { X86_VENDOR_INTEL, 5, 9 },     /* Intel Quark SoC X1000. */
591         {}
592 };
593
594 /**
595  * imr_init - entry point for IMR driver.
596  *
597  * return: -ENODEV for no IMR support 0 if good to go.
598  */
599 static int __init imr_init(void)
600 {
601         struct imr_device *idev = &imr_dev;
602         int ret;
603
604         if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
605                 return -ENODEV;
606
607         idev->max_imr = QUARK_X1000_IMR_MAX;
608         idev->reg_base = QUARK_X1000_IMR_REGBASE;
609         idev->init = true;
610
611         mutex_init(&idev->lock);
612         ret = imr_debugfs_register(idev);
613         if (ret != 0)
614                 pr_warn("debugfs register failed!\n");
615         imr_fixup_memmap(idev);
616         return 0;
617 }
618 device_initcall(imr_init);