GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / x86 / platform / intel-mid / pwr.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel MID Power Management Unit (PWRMU) device driver
4  *
5  * Copyright (C) 2016, Intel Corporation
6  *
7  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
8  *
9  * Intel MID Power Management Unit device driver handles the South Complex PCI
10  * devices such as GPDMA, SPI, I2C, PWM, and so on. By default PCI core
11  * modifies bits in PMCSR register in the PCI configuration space. This is not
12  * enough on some SoCs like Intel Tangier. In such case PCI core sets a new
13  * power state of the device in question through a PM hook registered in struct
14  * pci_platform_pm_ops (see drivers/pci/pci-mid.c).
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26
27 #include <asm/intel-mid.h>
28
29 /* Registers */
30 #define PM_STS                  0x00
31 #define PM_CMD                  0x04
32 #define PM_ICS                  0x08
33 #define PM_WKC(x)               (0x10 + (x) * 4)
34 #define PM_WKS(x)               (0x18 + (x) * 4)
35 #define PM_SSC(x)               (0x20 + (x) * 4)
36 #define PM_SSS(x)               (0x30 + (x) * 4)
37
38 /* Bits in PM_STS */
39 #define PM_STS_BUSY             (1 << 8)
40
41 /* Bits in PM_CMD */
42 #define PM_CMD_CMD(x)           ((x) << 0)
43 #define PM_CMD_IOC              (1 << 8)
44 #define PM_CMD_CM_NOP           (0 << 9)
45 #define PM_CMD_CM_IMMEDIATE     (1 << 9)
46 #define PM_CMD_CM_DELAY         (2 << 9)
47 #define PM_CMD_CM_TRIGGER       (3 << 9)
48
49 /* System states */
50 #define PM_CMD_SYS_STATE_S5     (5 << 16)
51
52 /* Trigger variants */
53 #define PM_CMD_CFG_TRIGGER_NC   (3 << 19)
54
55 /* Message to wait for TRIGGER_NC case */
56 #define TRIGGER_NC_MSG_2        (2 << 22)
57
58 /* List of commands */
59 #define CMD_SET_CFG             0x01
60
61 /* Bits in PM_ICS */
62 #define PM_ICS_INT_STATUS(x)    ((x) & 0xff)
63 #define PM_ICS_IE               (1 << 8)
64 #define PM_ICS_IP               (1 << 9)
65 #define PM_ICS_SW_INT_STS       (1 << 10)
66
67 /* List of interrupts */
68 #define INT_INVALID             0
69 #define INT_CMD_COMPLETE        1
70 #define INT_CMD_ERR             2
71 #define INT_WAKE_EVENT          3
72 #define INT_LSS_POWER_ERR       4
73 #define INT_S0iX_MSG_ERR        5
74 #define INT_NO_C6               6
75 #define INT_TRIGGER_ERR         7
76 #define INT_INACTIVITY          8
77
78 /* South Complex devices */
79 #define LSS_MAX_SHARED_DEVS     4
80 #define LSS_MAX_DEVS            64
81
82 #define LSS_WS_BITS             1       /* wake state width */
83 #define LSS_PWS_BITS            2       /* power state width */
84
85 /* Supported device IDs */
86 #define PCI_DEVICE_ID_PENWELL   0x0828
87 #define PCI_DEVICE_ID_TANGIER   0x11a1
88
89 struct mid_pwr_dev {
90         struct pci_dev *pdev;
91         pci_power_t state;
92 };
93
94 struct mid_pwr {
95         struct device *dev;
96         void __iomem *regs;
97         int irq;
98         bool available;
99
100         struct mutex lock;
101         struct mid_pwr_dev lss[LSS_MAX_DEVS][LSS_MAX_SHARED_DEVS];
102 };
103
104 static struct mid_pwr *midpwr;
105
106 static u32 mid_pwr_get_state(struct mid_pwr *pwr, int reg)
107 {
108         return readl(pwr->regs + PM_SSS(reg));
109 }
110
111 static void mid_pwr_set_state(struct mid_pwr *pwr, int reg, u32 value)
112 {
113         writel(value, pwr->regs + PM_SSC(reg));
114 }
115
116 static void mid_pwr_set_wake(struct mid_pwr *pwr, int reg, u32 value)
117 {
118         writel(value, pwr->regs + PM_WKC(reg));
119 }
120
121 static void mid_pwr_interrupt_disable(struct mid_pwr *pwr)
122 {
123         writel(~PM_ICS_IE, pwr->regs + PM_ICS);
124 }
125
126 static bool mid_pwr_is_busy(struct mid_pwr *pwr)
127 {
128         return !!(readl(pwr->regs + PM_STS) & PM_STS_BUSY);
129 }
130
131 /* Wait 500ms that the latest PWRMU command finished */
132 static int mid_pwr_wait(struct mid_pwr *pwr)
133 {
134         unsigned int count = 500000;
135         bool busy;
136
137         do {
138                 busy = mid_pwr_is_busy(pwr);
139                 if (!busy)
140                         return 0;
141                 udelay(1);
142         } while (--count);
143
144         return -EBUSY;
145 }
146
147 static int mid_pwr_wait_for_cmd(struct mid_pwr *pwr, u8 cmd)
148 {
149         writel(PM_CMD_CMD(cmd) | PM_CMD_CM_IMMEDIATE, pwr->regs + PM_CMD);
150         return mid_pwr_wait(pwr);
151 }
152
153 static int __update_power_state(struct mid_pwr *pwr, int reg, int bit, int new)
154 {
155         int curstate;
156         u32 power;
157         int ret;
158
159         /* Check if the device is already in desired state */
160         power = mid_pwr_get_state(pwr, reg);
161         curstate = (power >> bit) & 3;
162         if (curstate == new)
163                 return 0;
164
165         /* Update the power state */
166         mid_pwr_set_state(pwr, reg, (power & ~(3 << bit)) | (new << bit));
167
168         /* Send command to SCU */
169         ret = mid_pwr_wait_for_cmd(pwr, CMD_SET_CFG);
170         if (ret)
171                 return ret;
172
173         /* Check if the device is already in desired state */
174         power = mid_pwr_get_state(pwr, reg);
175         curstate = (power >> bit) & 3;
176         if (curstate != new)
177                 return -EAGAIN;
178
179         return 0;
180 }
181
182 static pci_power_t __find_weakest_power_state(struct mid_pwr_dev *lss,
183                                               struct pci_dev *pdev,
184                                               pci_power_t state)
185 {
186         pci_power_t weakest = PCI_D3hot;
187         unsigned int j;
188
189         /* Find device in cache or first free cell */
190         for (j = 0; j < LSS_MAX_SHARED_DEVS; j++) {
191                 if (lss[j].pdev == pdev || !lss[j].pdev)
192                         break;
193         }
194
195         /* Store the desired state in cache */
196         if (j < LSS_MAX_SHARED_DEVS) {
197                 lss[j].pdev = pdev;
198                 lss[j].state = state;
199         } else {
200                 dev_WARN(&pdev->dev, "No room for device in PWRMU LSS cache\n");
201                 weakest = state;
202         }
203
204         /* Find the power state we may use */
205         for (j = 0; j < LSS_MAX_SHARED_DEVS; j++) {
206                 if (lss[j].state < weakest)
207                         weakest = lss[j].state;
208         }
209
210         return weakest;
211 }
212
213 static int __set_power_state(struct mid_pwr *pwr, struct pci_dev *pdev,
214                              pci_power_t state, int id, int reg, int bit)
215 {
216         const char *name;
217         int ret;
218
219         state = __find_weakest_power_state(pwr->lss[id], pdev, state);
220         name = pci_power_name(state);
221
222         ret = __update_power_state(pwr, reg, bit, (__force int)state);
223         if (ret) {
224                 dev_warn(&pdev->dev, "Can't set power state %s: %d\n", name, ret);
225                 return ret;
226         }
227
228         dev_vdbg(&pdev->dev, "Set power state %s\n", name);
229         return 0;
230 }
231
232 static int mid_pwr_set_power_state(struct mid_pwr *pwr, struct pci_dev *pdev,
233                                    pci_power_t state)
234 {
235         int id, reg, bit;
236         int ret;
237
238         id = intel_mid_pwr_get_lss_id(pdev);
239         if (id < 0)
240                 return id;
241
242         reg = (id * LSS_PWS_BITS) / 32;
243         bit = (id * LSS_PWS_BITS) % 32;
244
245         /* We support states between PCI_D0 and PCI_D3hot */
246         if (state < PCI_D0)
247                 state = PCI_D0;
248         if (state > PCI_D3hot)
249                 state = PCI_D3hot;
250
251         mutex_lock(&pwr->lock);
252         ret = __set_power_state(pwr, pdev, state, id, reg, bit);
253         mutex_unlock(&pwr->lock);
254         return ret;
255 }
256
257 int intel_mid_pci_set_power_state(struct pci_dev *pdev, pci_power_t state)
258 {
259         struct mid_pwr *pwr = midpwr;
260         int ret = 0;
261
262         might_sleep();
263
264         if (pwr && pwr->available)
265                 ret = mid_pwr_set_power_state(pwr, pdev, state);
266         dev_vdbg(&pdev->dev, "set_power_state() returns %d\n", ret);
267
268         return 0;
269 }
270
271 pci_power_t intel_mid_pci_get_power_state(struct pci_dev *pdev)
272 {
273         struct mid_pwr *pwr = midpwr;
274         int id, reg, bit;
275         u32 power;
276
277         if (!pwr || !pwr->available)
278                 return PCI_UNKNOWN;
279
280         id = intel_mid_pwr_get_lss_id(pdev);
281         if (id < 0)
282                 return PCI_UNKNOWN;
283
284         reg = (id * LSS_PWS_BITS) / 32;
285         bit = (id * LSS_PWS_BITS) % 32;
286         power = mid_pwr_get_state(pwr, reg);
287         return (__force pci_power_t)((power >> bit) & 3);
288 }
289
290 void intel_mid_pwr_power_off(void)
291 {
292         struct mid_pwr *pwr = midpwr;
293         u32 cmd = PM_CMD_SYS_STATE_S5 |
294                   PM_CMD_CMD(CMD_SET_CFG) |
295                   PM_CMD_CM_TRIGGER |
296                   PM_CMD_CFG_TRIGGER_NC |
297                   TRIGGER_NC_MSG_2;
298
299         /* Send command to SCU */
300         writel(cmd, pwr->regs + PM_CMD);
301         mid_pwr_wait(pwr);
302 }
303
304 int intel_mid_pwr_get_lss_id(struct pci_dev *pdev)
305 {
306         int vndr;
307         u8 id;
308
309         /*
310          * Mapping to PWRMU index is kept in the Logical SubSystem ID byte of
311          * Vendor capability.
312          */
313         vndr = pci_find_capability(pdev, PCI_CAP_ID_VNDR);
314         if (!vndr)
315                 return -EINVAL;
316
317         /* Read the Logical SubSystem ID byte */
318         pci_read_config_byte(pdev, vndr + INTEL_MID_PWR_LSS_OFFSET, &id);
319         if (!(id & INTEL_MID_PWR_LSS_TYPE))
320                 return -ENODEV;
321
322         id &= ~INTEL_MID_PWR_LSS_TYPE;
323         if (id >= LSS_MAX_DEVS)
324                 return -ERANGE;
325
326         return id;
327 }
328
329 static irqreturn_t mid_pwr_irq_handler(int irq, void *dev_id)
330 {
331         struct mid_pwr *pwr = dev_id;
332         u32 ics;
333
334         ics = readl(pwr->regs + PM_ICS);
335         if (!(ics & PM_ICS_IP))
336                 return IRQ_NONE;
337
338         writel(ics | PM_ICS_IP, pwr->regs + PM_ICS);
339
340         dev_warn(pwr->dev, "Unexpected IRQ: %#x\n", PM_ICS_INT_STATUS(ics));
341         return IRQ_HANDLED;
342 }
343
344 struct mid_pwr_device_info {
345         int (*set_initial_state)(struct mid_pwr *pwr);
346 };
347
348 static int mid_pwr_probe(struct pci_dev *pdev, const struct pci_device_id *id)
349 {
350         struct mid_pwr_device_info *info = (void *)id->driver_data;
351         struct device *dev = &pdev->dev;
352         struct mid_pwr *pwr;
353         int ret;
354
355         ret = pcim_enable_device(pdev);
356         if (ret < 0) {
357                 dev_err(&pdev->dev, "error: could not enable device\n");
358                 return ret;
359         }
360
361         ret = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
362         if (ret) {
363                 dev_err(&pdev->dev, "I/O memory remapping failed\n");
364                 return ret;
365         }
366
367         pwr = devm_kzalloc(dev, sizeof(*pwr), GFP_KERNEL);
368         if (!pwr)
369                 return -ENOMEM;
370
371         pwr->dev = dev;
372         pwr->regs = pcim_iomap_table(pdev)[0];
373         pwr->irq = pdev->irq;
374
375         mutex_init(&pwr->lock);
376
377         /* Disable interrupts */
378         mid_pwr_interrupt_disable(pwr);
379
380         if (info && info->set_initial_state) {
381                 ret = info->set_initial_state(pwr);
382                 if (ret)
383                         dev_warn(dev, "Can't set initial state: %d\n", ret);
384         }
385
386         ret = devm_request_irq(dev, pdev->irq, mid_pwr_irq_handler,
387                                IRQF_NO_SUSPEND, pci_name(pdev), pwr);
388         if (ret)
389                 return ret;
390
391         pwr->available = true;
392         midpwr = pwr;
393
394         pci_set_drvdata(pdev, pwr);
395         return 0;
396 }
397
398 static int mid_set_initial_state(struct mid_pwr *pwr, const u32 *states)
399 {
400         unsigned int i, j;
401         int ret;
402
403         /*
404          * Enable wake events.
405          *
406          * PWRMU supports up to 32 sources for wake up the system. Ungate them
407          * all here.
408          */
409         mid_pwr_set_wake(pwr, 0, 0xffffffff);
410         mid_pwr_set_wake(pwr, 1, 0xffffffff);
411
412         /*
413          * Power off South Complex devices.
414          *
415          * There is a map (see a note below) of 64 devices with 2 bits per each
416          * on 32-bit HW registers. The following calls set all devices to one
417          * known initial state, i.e. PCI_D3hot. This is done in conjunction
418          * with PMCSR setting in arch/x86/pci/intel_mid_pci.c.
419          *
420          * NOTE: The actual device mapping is provided by a platform at run
421          * time using vendor capability of PCI configuration space.
422          */
423         mid_pwr_set_state(pwr, 0, states[0]);
424         mid_pwr_set_state(pwr, 1, states[1]);
425         mid_pwr_set_state(pwr, 2, states[2]);
426         mid_pwr_set_state(pwr, 3, states[3]);
427
428         /* Send command to SCU */
429         ret = mid_pwr_wait_for_cmd(pwr, CMD_SET_CFG);
430         if (ret)
431                 return ret;
432
433         for (i = 0; i < LSS_MAX_DEVS; i++) {
434                 for (j = 0; j < LSS_MAX_SHARED_DEVS; j++)
435                         pwr->lss[i][j].state = PCI_D3hot;
436         }
437
438         return 0;
439 }
440
441 static int pnw_set_initial_state(struct mid_pwr *pwr)
442 {
443         /* On Penwell SRAM must stay powered on */
444         static const u32 states[] = {
445                 0xf00fffff,             /* PM_SSC(0) */
446                 0xffffffff,             /* PM_SSC(1) */
447                 0xffffffff,             /* PM_SSC(2) */
448                 0xffffffff,             /* PM_SSC(3) */
449         };
450         return mid_set_initial_state(pwr, states);
451 }
452
453 static int tng_set_initial_state(struct mid_pwr *pwr)
454 {
455         static const u32 states[] = {
456                 0xffffffff,             /* PM_SSC(0) */
457                 0xffffffff,             /* PM_SSC(1) */
458                 0xffffffff,             /* PM_SSC(2) */
459                 0xffffffff,             /* PM_SSC(3) */
460         };
461         return mid_set_initial_state(pwr, states);
462 }
463
464 static const struct mid_pwr_device_info pnw_info = {
465         .set_initial_state = pnw_set_initial_state,
466 };
467
468 static const struct mid_pwr_device_info tng_info = {
469         .set_initial_state = tng_set_initial_state,
470 };
471
472 /* This table should be in sync with the one in drivers/pci/pci-mid.c */
473 static const struct pci_device_id mid_pwr_pci_ids[] = {
474         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL), (kernel_ulong_t)&pnw_info },
475         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER), (kernel_ulong_t)&tng_info },
476         {}
477 };
478
479 static struct pci_driver mid_pwr_pci_driver = {
480         .name           = "intel_mid_pwr",
481         .probe          = mid_pwr_probe,
482         .id_table       = mid_pwr_pci_ids,
483 };
484
485 builtin_pci_driver(mid_pwr_pci_driver);