GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / x86 / platform / efi / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *      Fenghua Yu <fenghua.yu@intel.com>
13  *      Bibo Mao <bibo.mao@intel.com>
14  *      Chandramouli Narayanan <mouli@linux.intel.com>
15  *      Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *      Skip non-WB memory and ignore empty memory ranges.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/memblock.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/set_memory.h>
53 #include <asm/tlbflush.h>
54 #include <asm/x86_init.h>
55 #include <asm/uv/uv.h>
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static efi_config_table_type_t arch_tables[] __initdata = {
61 #ifdef CONFIG_X86_UV
62         {UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys},
63 #endif
64         {NULL_GUID, NULL, NULL},
65 };
66
67 static const unsigned long * const efi_tables[] = {
68         &efi.mps,
69         &efi.acpi,
70         &efi.acpi20,
71         &efi.smbios,
72         &efi.smbios3,
73         &efi.boot_info,
74         &efi.hcdp,
75         &efi.uga,
76 #ifdef CONFIG_X86_UV
77         &uv_systab_phys,
78 #endif
79         &efi.fw_vendor,
80         &efi.runtime,
81         &efi.config_table,
82         &efi.esrt,
83         &efi.properties_table,
84         &efi.mem_attr_table,
85 #ifdef CONFIG_EFI_RCI2_TABLE
86         &rci2_table_phys,
87 #endif
88         &efi.tpm_log,
89         &efi.tpm_final_log,
90 };
91
92 u64 efi_setup;          /* efi setup_data physical address */
93
94 static int add_efi_memmap __initdata;
95 static int __init setup_add_efi_memmap(char *arg)
96 {
97         add_efi_memmap = 1;
98         return 0;
99 }
100 early_param("add_efi_memmap", setup_add_efi_memmap);
101
102 static efi_status_t __init phys_efi_set_virtual_address_map(
103         unsigned long memory_map_size,
104         unsigned long descriptor_size,
105         u32 descriptor_version,
106         efi_memory_desc_t *virtual_map)
107 {
108         efi_status_t status;
109         unsigned long flags;
110         pgd_t *save_pgd;
111
112         save_pgd = efi_call_phys_prolog();
113         if (!save_pgd)
114                 return EFI_ABORTED;
115
116         /* Disable interrupts around EFI calls: */
117         local_irq_save(flags);
118         status = efi_call_phys(efi_phys.set_virtual_address_map,
119                                memory_map_size, descriptor_size,
120                                descriptor_version, virtual_map);
121         local_irq_restore(flags);
122
123         efi_call_phys_epilog(save_pgd);
124
125         return status;
126 }
127
128 void __init efi_find_mirror(void)
129 {
130         efi_memory_desc_t *md;
131         u64 mirror_size = 0, total_size = 0;
132
133         for_each_efi_memory_desc(md) {
134                 unsigned long long start = md->phys_addr;
135                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
136
137                 total_size += size;
138                 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
139                         memblock_mark_mirror(start, size);
140                         mirror_size += size;
141                 }
142         }
143         if (mirror_size)
144                 pr_info("Memory: %lldM/%lldM mirrored memory\n",
145                         mirror_size>>20, total_size>>20);
146 }
147
148 /*
149  * Tell the kernel about the EFI memory map.  This might include
150  * more than the max 128 entries that can fit in the e820 legacy
151  * (zeropage) memory map.
152  */
153
154 static void __init do_add_efi_memmap(void)
155 {
156         efi_memory_desc_t *md;
157
158         for_each_efi_memory_desc(md) {
159                 unsigned long long start = md->phys_addr;
160                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
161                 int e820_type;
162
163                 switch (md->type) {
164                 case EFI_LOADER_CODE:
165                 case EFI_LOADER_DATA:
166                 case EFI_BOOT_SERVICES_CODE:
167                 case EFI_BOOT_SERVICES_DATA:
168                 case EFI_CONVENTIONAL_MEMORY:
169                         if (md->attribute & EFI_MEMORY_WB)
170                                 e820_type = E820_TYPE_RAM;
171                         else
172                                 e820_type = E820_TYPE_RESERVED;
173                         break;
174                 case EFI_ACPI_RECLAIM_MEMORY:
175                         e820_type = E820_TYPE_ACPI;
176                         break;
177                 case EFI_ACPI_MEMORY_NVS:
178                         e820_type = E820_TYPE_NVS;
179                         break;
180                 case EFI_UNUSABLE_MEMORY:
181                         e820_type = E820_TYPE_UNUSABLE;
182                         break;
183                 case EFI_PERSISTENT_MEMORY:
184                         e820_type = E820_TYPE_PMEM;
185                         break;
186                 default:
187                         /*
188                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
189                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
190                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
191                          */
192                         e820_type = E820_TYPE_RESERVED;
193                         break;
194                 }
195                 e820__range_add(start, size, e820_type);
196         }
197         e820__update_table(e820_table);
198 }
199
200 int __init efi_memblock_x86_reserve_range(void)
201 {
202         struct efi_info *e = &boot_params.efi_info;
203         struct efi_memory_map_data data;
204         phys_addr_t pmap;
205         int rv;
206
207         if (efi_enabled(EFI_PARAVIRT))
208                 return 0;
209
210 #ifdef CONFIG_X86_32
211         /* Can't handle data above 4GB at this time */
212         if (e->efi_memmap_hi) {
213                 pr_err("Memory map is above 4GB, disabling EFI.\n");
214                 return -EINVAL;
215         }
216         pmap =  e->efi_memmap;
217 #else
218         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
219 #endif
220         data.phys_map           = pmap;
221         data.size               = e->efi_memmap_size;
222         data.desc_size          = e->efi_memdesc_size;
223         data.desc_version       = e->efi_memdesc_version;
224
225         rv = efi_memmap_init_early(&data);
226         if (rv)
227                 return rv;
228
229         if (add_efi_memmap)
230                 do_add_efi_memmap();
231
232         WARN(efi.memmap.desc_version != 1,
233              "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
234              efi.memmap.desc_version);
235
236         memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
237
238         return 0;
239 }
240
241 #define OVERFLOW_ADDR_SHIFT     (64 - EFI_PAGE_SHIFT)
242 #define OVERFLOW_ADDR_MASK      (U64_MAX << OVERFLOW_ADDR_SHIFT)
243 #define U64_HIGH_BIT            (~(U64_MAX >> 1))
244
245 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
246 {
247         u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
248         u64 end_hi = 0;
249         char buf[64];
250
251         if (md->num_pages == 0) {
252                 end = 0;
253         } else if (md->num_pages > EFI_PAGES_MAX ||
254                    EFI_PAGES_MAX - md->num_pages <
255                    (md->phys_addr >> EFI_PAGE_SHIFT)) {
256                 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
257                         >> OVERFLOW_ADDR_SHIFT;
258
259                 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
260                         end_hi += 1;
261         } else {
262                 return true;
263         }
264
265         pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
266
267         if (end_hi) {
268                 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
269                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
270                         md->phys_addr, end_hi, end);
271         } else {
272                 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
273                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
274                         md->phys_addr, end);
275         }
276         return false;
277 }
278
279 static void __init efi_clean_memmap(void)
280 {
281         efi_memory_desc_t *out = efi.memmap.map;
282         const efi_memory_desc_t *in = out;
283         const efi_memory_desc_t *end = efi.memmap.map_end;
284         int i, n_removal;
285
286         for (i = n_removal = 0; in < end; i++) {
287                 if (efi_memmap_entry_valid(in, i)) {
288                         if (out != in)
289                                 memcpy(out, in, efi.memmap.desc_size);
290                         out = (void *)out + efi.memmap.desc_size;
291                 } else {
292                         n_removal++;
293                 }
294                 in = (void *)in + efi.memmap.desc_size;
295         }
296
297         if (n_removal > 0) {
298                 u64 size = efi.memmap.nr_map - n_removal;
299
300                 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
301                 efi_memmap_install(efi.memmap.phys_map, size);
302         }
303 }
304
305 void __init efi_print_memmap(void)
306 {
307         efi_memory_desc_t *md;
308         int i = 0;
309
310         for_each_efi_memory_desc(md) {
311                 char buf[64];
312
313                 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
314                         i++, efi_md_typeattr_format(buf, sizeof(buf), md),
315                         md->phys_addr,
316                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
317                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
318         }
319 }
320
321 static int __init efi_systab_init(void *phys)
322 {
323         if (efi_enabled(EFI_64BIT)) {
324                 efi_system_table_64_t *systab64;
325                 struct efi_setup_data *data = NULL;
326                 u64 tmp = 0;
327
328                 if (efi_setup) {
329                         data = early_memremap(efi_setup, sizeof(*data));
330                         if (!data)
331                                 return -ENOMEM;
332                 }
333                 systab64 = early_memremap((unsigned long)phys,
334                                          sizeof(*systab64));
335                 if (systab64 == NULL) {
336                         pr_err("Couldn't map the system table!\n");
337                         if (data)
338                                 early_memunmap(data, sizeof(*data));
339                         return -ENOMEM;
340                 }
341
342                 efi_systab.hdr = systab64->hdr;
343                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
344                                               systab64->fw_vendor;
345                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
346                 efi_systab.fw_revision = systab64->fw_revision;
347                 efi_systab.con_in_handle = systab64->con_in_handle;
348                 tmp |= systab64->con_in_handle;
349                 efi_systab.con_in = systab64->con_in;
350                 tmp |= systab64->con_in;
351                 efi_systab.con_out_handle = systab64->con_out_handle;
352                 tmp |= systab64->con_out_handle;
353                 efi_systab.con_out = systab64->con_out;
354                 tmp |= systab64->con_out;
355                 efi_systab.stderr_handle = systab64->stderr_handle;
356                 tmp |= systab64->stderr_handle;
357                 efi_systab.stderr = systab64->stderr;
358                 tmp |= systab64->stderr;
359                 efi_systab.runtime = data ?
360                                      (void *)(unsigned long)data->runtime :
361                                      (void *)(unsigned long)systab64->runtime;
362                 tmp |= data ? data->runtime : systab64->runtime;
363                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
364                 tmp |= systab64->boottime;
365                 efi_systab.nr_tables = systab64->nr_tables;
366                 efi_systab.tables = data ? (unsigned long)data->tables :
367                                            systab64->tables;
368                 tmp |= data ? data->tables : systab64->tables;
369
370                 early_memunmap(systab64, sizeof(*systab64));
371                 if (data)
372                         early_memunmap(data, sizeof(*data));
373 #ifdef CONFIG_X86_32
374                 if (tmp >> 32) {
375                         pr_err("EFI data located above 4GB, disabling EFI.\n");
376                         return -EINVAL;
377                 }
378 #endif
379         } else {
380                 efi_system_table_32_t *systab32;
381
382                 systab32 = early_memremap((unsigned long)phys,
383                                          sizeof(*systab32));
384                 if (systab32 == NULL) {
385                         pr_err("Couldn't map the system table!\n");
386                         return -ENOMEM;
387                 }
388
389                 efi_systab.hdr = systab32->hdr;
390                 efi_systab.fw_vendor = systab32->fw_vendor;
391                 efi_systab.fw_revision = systab32->fw_revision;
392                 efi_systab.con_in_handle = systab32->con_in_handle;
393                 efi_systab.con_in = systab32->con_in;
394                 efi_systab.con_out_handle = systab32->con_out_handle;
395                 efi_systab.con_out = systab32->con_out;
396                 efi_systab.stderr_handle = systab32->stderr_handle;
397                 efi_systab.stderr = systab32->stderr;
398                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
399                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
400                 efi_systab.nr_tables = systab32->nr_tables;
401                 efi_systab.tables = systab32->tables;
402
403                 early_memunmap(systab32, sizeof(*systab32));
404         }
405
406         efi.systab = &efi_systab;
407
408         /*
409          * Verify the EFI Table
410          */
411         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
412                 pr_err("System table signature incorrect!\n");
413                 return -EINVAL;
414         }
415         if ((efi.systab->hdr.revision >> 16) == 0)
416                 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
417                        efi.systab->hdr.revision >> 16,
418                        efi.systab->hdr.revision & 0xffff);
419
420         return 0;
421 }
422
423 static int __init efi_runtime_init32(void)
424 {
425         efi_runtime_services_32_t *runtime;
426
427         runtime = early_memremap((unsigned long)efi.systab->runtime,
428                         sizeof(efi_runtime_services_32_t));
429         if (!runtime) {
430                 pr_err("Could not map the runtime service table!\n");
431                 return -ENOMEM;
432         }
433
434         /*
435          * We will only need *early* access to the SetVirtualAddressMap
436          * EFI runtime service. All other runtime services will be called
437          * via the virtual mapping.
438          */
439         efi_phys.set_virtual_address_map =
440                         (efi_set_virtual_address_map_t *)
441                         (unsigned long)runtime->set_virtual_address_map;
442         early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
443
444         return 0;
445 }
446
447 static int __init efi_runtime_init64(void)
448 {
449         efi_runtime_services_64_t *runtime;
450
451         runtime = early_memremap((unsigned long)efi.systab->runtime,
452                         sizeof(efi_runtime_services_64_t));
453         if (!runtime) {
454                 pr_err("Could not map the runtime service table!\n");
455                 return -ENOMEM;
456         }
457
458         /*
459          * We will only need *early* access to the SetVirtualAddressMap
460          * EFI runtime service. All other runtime services will be called
461          * via the virtual mapping.
462          */
463         efi_phys.set_virtual_address_map =
464                         (efi_set_virtual_address_map_t *)
465                         (unsigned long)runtime->set_virtual_address_map;
466         early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
467
468         return 0;
469 }
470
471 static int __init efi_runtime_init(void)
472 {
473         int rv;
474
475         /*
476          * Check out the runtime services table. We need to map
477          * the runtime services table so that we can grab the physical
478          * address of several of the EFI runtime functions, needed to
479          * set the firmware into virtual mode.
480          *
481          * When EFI_PARAVIRT is in force then we could not map runtime
482          * service memory region because we do not have direct access to it.
483          * However, runtime services are available through proxy functions
484          * (e.g. in case of Xen dom0 EFI implementation they call special
485          * hypercall which executes relevant EFI functions) and that is why
486          * they are always enabled.
487          */
488
489         if (!efi_enabled(EFI_PARAVIRT)) {
490                 if (efi_enabled(EFI_64BIT))
491                         rv = efi_runtime_init64();
492                 else
493                         rv = efi_runtime_init32();
494
495                 if (rv)
496                         return rv;
497         }
498
499         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
500
501         return 0;
502 }
503
504 void __init efi_init(void)
505 {
506         efi_char16_t *c16;
507         char vendor[100] = "unknown";
508         int i = 0;
509
510 #ifdef CONFIG_X86_32
511         if (boot_params.efi_info.efi_systab_hi ||
512             boot_params.efi_info.efi_memmap_hi) {
513                 pr_info("Table located above 4GB, disabling EFI.\n");
514                 return;
515         }
516         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
517 #else
518         efi_phys.systab = (efi_system_table_t *)
519                           (boot_params.efi_info.efi_systab |
520                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
521 #endif
522
523         if (efi_systab_init(efi_phys.systab))
524                 return;
525
526         efi.config_table = (unsigned long)efi.systab->tables;
527         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
528         efi.runtime      = (unsigned long)efi.systab->runtime;
529
530         /*
531          * Show what we know for posterity
532          */
533         c16 = early_memremap_ro(efi.systab->fw_vendor,
534                                 sizeof(vendor) * sizeof(efi_char16_t));
535         if (c16) {
536                 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
537                         vendor[i] = c16[i];
538                 vendor[i] = '\0';
539                 early_memunmap(c16, sizeof(vendor) * sizeof(efi_char16_t));
540         } else {
541                 pr_err("Could not map the firmware vendor!\n");
542         }
543
544         pr_info("EFI v%u.%.02u by %s\n",
545                 efi.systab->hdr.revision >> 16,
546                 efi.systab->hdr.revision & 0xffff, vendor);
547
548         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
549                 return;
550
551         if (efi_config_init(arch_tables))
552                 return;
553
554         /*
555          * Note: We currently don't support runtime services on an EFI
556          * that doesn't match the kernel 32/64-bit mode.
557          */
558
559         if (!efi_runtime_supported())
560                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
561         else {
562                 if (efi_runtime_disabled() || efi_runtime_init()) {
563                         efi_memmap_unmap();
564                         return;
565                 }
566         }
567
568         efi_clean_memmap();
569
570         if (efi_enabled(EFI_DBG))
571                 efi_print_memmap();
572 }
573
574 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
575 {
576         u64 addr, npages;
577
578         addr = md->virt_addr;
579         npages = md->num_pages;
580
581         memrange_efi_to_native(&addr, &npages);
582
583         if (executable)
584                 set_memory_x(addr, npages);
585         else
586                 set_memory_nx(addr, npages);
587 }
588
589 void __init runtime_code_page_mkexec(void)
590 {
591         efi_memory_desc_t *md;
592
593         /* Make EFI runtime service code area executable */
594         for_each_efi_memory_desc(md) {
595                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
596                         continue;
597
598                 efi_set_executable(md, true);
599         }
600 }
601
602 void __init efi_memory_uc(u64 addr, unsigned long size)
603 {
604         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
605         u64 npages;
606
607         npages = round_up(size, page_shift) / page_shift;
608         memrange_efi_to_native(&addr, &npages);
609         set_memory_uc(addr, npages);
610 }
611
612 void __init old_map_region(efi_memory_desc_t *md)
613 {
614         u64 start_pfn, end_pfn, end;
615         unsigned long size;
616         void *va;
617
618         start_pfn = PFN_DOWN(md->phys_addr);
619         size      = md->num_pages << PAGE_SHIFT;
620         end       = md->phys_addr + size;
621         end_pfn   = PFN_UP(end);
622
623         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
624                 va = __va(md->phys_addr);
625
626                 if (!(md->attribute & EFI_MEMORY_WB))
627                         efi_memory_uc((u64)(unsigned long)va, size);
628         } else
629                 va = efi_ioremap(md->phys_addr, size,
630                                  md->type, md->attribute);
631
632         md->virt_addr = (u64) (unsigned long) va;
633         if (!va)
634                 pr_err("ioremap of 0x%llX failed!\n",
635                        (unsigned long long)md->phys_addr);
636 }
637
638 /* Merge contiguous regions of the same type and attribute */
639 static void __init efi_merge_regions(void)
640 {
641         efi_memory_desc_t *md, *prev_md = NULL;
642
643         for_each_efi_memory_desc(md) {
644                 u64 prev_size;
645
646                 if (!prev_md) {
647                         prev_md = md;
648                         continue;
649                 }
650
651                 if (prev_md->type != md->type ||
652                     prev_md->attribute != md->attribute) {
653                         prev_md = md;
654                         continue;
655                 }
656
657                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
658
659                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
660                         prev_md->num_pages += md->num_pages;
661                         md->type = EFI_RESERVED_TYPE;
662                         md->attribute = 0;
663                         continue;
664                 }
665                 prev_md = md;
666         }
667 }
668
669 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
670 {
671         unsigned long size;
672         u64 end, systab;
673
674         size = md->num_pages << EFI_PAGE_SHIFT;
675         end = md->phys_addr + size;
676         systab = (u64)(unsigned long)efi_phys.systab;
677         if (md->phys_addr <= systab && systab < end) {
678                 systab += md->virt_addr - md->phys_addr;
679                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
680         }
681 }
682
683 static void *realloc_pages(void *old_memmap, int old_shift)
684 {
685         void *ret;
686
687         ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
688         if (!ret)
689                 goto out;
690
691         /*
692          * A first-time allocation doesn't have anything to copy.
693          */
694         if (!old_memmap)
695                 return ret;
696
697         memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
698
699 out:
700         free_pages((unsigned long)old_memmap, old_shift);
701         return ret;
702 }
703
704 /*
705  * Iterate the EFI memory map in reverse order because the regions
706  * will be mapped top-down. The end result is the same as if we had
707  * mapped things forward, but doesn't require us to change the
708  * existing implementation of efi_map_region().
709  */
710 static inline void *efi_map_next_entry_reverse(void *entry)
711 {
712         /* Initial call */
713         if (!entry)
714                 return efi.memmap.map_end - efi.memmap.desc_size;
715
716         entry -= efi.memmap.desc_size;
717         if (entry < efi.memmap.map)
718                 return NULL;
719
720         return entry;
721 }
722
723 /*
724  * efi_map_next_entry - Return the next EFI memory map descriptor
725  * @entry: Previous EFI memory map descriptor
726  *
727  * This is a helper function to iterate over the EFI memory map, which
728  * we do in different orders depending on the current configuration.
729  *
730  * To begin traversing the memory map @entry must be %NULL.
731  *
732  * Returns %NULL when we reach the end of the memory map.
733  */
734 static void *efi_map_next_entry(void *entry)
735 {
736         if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
737                 /*
738                  * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
739                  * config table feature requires us to map all entries
740                  * in the same order as they appear in the EFI memory
741                  * map. That is to say, entry N must have a lower
742                  * virtual address than entry N+1. This is because the
743                  * firmware toolchain leaves relative references in
744                  * the code/data sections, which are split and become
745                  * separate EFI memory regions. Mapping things
746                  * out-of-order leads to the firmware accessing
747                  * unmapped addresses.
748                  *
749                  * Since we need to map things this way whether or not
750                  * the kernel actually makes use of
751                  * EFI_PROPERTIES_TABLE, let's just switch to this
752                  * scheme by default for 64-bit.
753                  */
754                 return efi_map_next_entry_reverse(entry);
755         }
756
757         /* Initial call */
758         if (!entry)
759                 return efi.memmap.map;
760
761         entry += efi.memmap.desc_size;
762         if (entry >= efi.memmap.map_end)
763                 return NULL;
764
765         return entry;
766 }
767
768 static bool should_map_region(efi_memory_desc_t *md)
769 {
770         /*
771          * Runtime regions always require runtime mappings (obviously).
772          */
773         if (md->attribute & EFI_MEMORY_RUNTIME)
774                 return true;
775
776         /*
777          * 32-bit EFI doesn't suffer from the bug that requires us to
778          * reserve boot services regions, and mixed mode support
779          * doesn't exist for 32-bit kernels.
780          */
781         if (IS_ENABLED(CONFIG_X86_32))
782                 return false;
783
784         /*
785          * Map all of RAM so that we can access arguments in the 1:1
786          * mapping when making EFI runtime calls.
787          */
788         if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
789                 if (md->type == EFI_CONVENTIONAL_MEMORY ||
790                     md->type == EFI_LOADER_DATA ||
791                     md->type == EFI_LOADER_CODE)
792                         return true;
793         }
794
795         /*
796          * Map boot services regions as a workaround for buggy
797          * firmware that accesses them even when they shouldn't.
798          *
799          * See efi_{reserve,free}_boot_services().
800          */
801         if (md->type == EFI_BOOT_SERVICES_CODE ||
802             md->type == EFI_BOOT_SERVICES_DATA)
803                 return true;
804
805         return false;
806 }
807
808 /*
809  * Map the efi memory ranges of the runtime services and update new_mmap with
810  * virtual addresses.
811  */
812 static void * __init efi_map_regions(int *count, int *pg_shift)
813 {
814         void *p, *new_memmap = NULL;
815         unsigned long left = 0;
816         unsigned long desc_size;
817         efi_memory_desc_t *md;
818
819         desc_size = efi.memmap.desc_size;
820
821         p = NULL;
822         while ((p = efi_map_next_entry(p))) {
823                 md = p;
824
825                 if (!should_map_region(md))
826                         continue;
827
828                 efi_map_region(md);
829                 get_systab_virt_addr(md);
830
831                 if (left < desc_size) {
832                         new_memmap = realloc_pages(new_memmap, *pg_shift);
833                         if (!new_memmap)
834                                 return NULL;
835
836                         left += PAGE_SIZE << *pg_shift;
837                         (*pg_shift)++;
838                 }
839
840                 memcpy(new_memmap + (*count * desc_size), md, desc_size);
841
842                 left -= desc_size;
843                 (*count)++;
844         }
845
846         return new_memmap;
847 }
848
849 static void __init kexec_enter_virtual_mode(void)
850 {
851 #ifdef CONFIG_KEXEC_CORE
852         efi_memory_desc_t *md;
853         unsigned int num_pages;
854
855         efi.systab = NULL;
856
857         /*
858          * We don't do virtual mode, since we don't do runtime services, on
859          * non-native EFI. With efi=old_map, we don't do runtime services in
860          * kexec kernel because in the initial boot something else might
861          * have been mapped at these virtual addresses.
862          */
863         if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
864                 efi_memmap_unmap();
865                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
866                 return;
867         }
868
869         if (efi_alloc_page_tables()) {
870                 pr_err("Failed to allocate EFI page tables\n");
871                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
872                 return;
873         }
874
875         /*
876         * Map efi regions which were passed via setup_data. The virt_addr is a
877         * fixed addr which was used in first kernel of a kexec boot.
878         */
879         for_each_efi_memory_desc(md) {
880                 efi_map_region_fixed(md); /* FIXME: add error handling */
881                 get_systab_virt_addr(md);
882         }
883
884         /*
885          * Unregister the early EFI memmap from efi_init() and install
886          * the new EFI memory map.
887          */
888         efi_memmap_unmap();
889
890         if (efi_memmap_init_late(efi.memmap.phys_map,
891                                  efi.memmap.desc_size * efi.memmap.nr_map)) {
892                 pr_err("Failed to remap late EFI memory map\n");
893                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
894                 return;
895         }
896
897         BUG_ON(!efi.systab);
898
899         num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
900         num_pages >>= PAGE_SHIFT;
901
902         if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
903                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
904                 return;
905         }
906
907         efi_sync_low_kernel_mappings();
908
909         /*
910          * Now that EFI is in virtual mode, update the function
911          * pointers in the runtime service table to the new virtual addresses.
912          *
913          * Call EFI services through wrapper functions.
914          */
915         efi.runtime_version = efi_systab.hdr.revision;
916
917         efi_native_runtime_setup();
918
919         efi.set_virtual_address_map = NULL;
920
921         if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
922                 runtime_code_page_mkexec();
923 #endif
924 }
925
926 /*
927  * This function will switch the EFI runtime services to virtual mode.
928  * Essentially, we look through the EFI memmap and map every region that
929  * has the runtime attribute bit set in its memory descriptor into the
930  * efi_pgd page table.
931  *
932  * The old method which used to update that memory descriptor with the
933  * virtual address obtained from ioremap() is still supported when the
934  * kernel is booted with efi=old_map on its command line. Same old
935  * method enabled the runtime services to be called without having to
936  * thunk back into physical mode for every invocation.
937  *
938  * The new method does a pagetable switch in a preemption-safe manner
939  * so that we're in a different address space when calling a runtime
940  * function. For function arguments passing we do copy the PUDs of the
941  * kernel page table into efi_pgd prior to each call.
942  *
943  * Specially for kexec boot, efi runtime maps in previous kernel should
944  * be passed in via setup_data. In that case runtime ranges will be mapped
945  * to the same virtual addresses as the first kernel, see
946  * kexec_enter_virtual_mode().
947  */
948 static void __init __efi_enter_virtual_mode(void)
949 {
950         int count = 0, pg_shift = 0;
951         void *new_memmap = NULL;
952         efi_status_t status;
953         unsigned long pa;
954
955         efi.systab = NULL;
956
957         if (efi_alloc_page_tables()) {
958                 pr_err("Failed to allocate EFI page tables\n");
959                 goto err;
960         }
961
962         efi_merge_regions();
963         new_memmap = efi_map_regions(&count, &pg_shift);
964         if (!new_memmap) {
965                 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
966                 goto err;
967         }
968
969         pa = __pa(new_memmap);
970
971         /*
972          * Unregister the early EFI memmap from efi_init() and install
973          * the new EFI memory map that we are about to pass to the
974          * firmware via SetVirtualAddressMap().
975          */
976         efi_memmap_unmap();
977
978         if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
979                 pr_err("Failed to remap late EFI memory map\n");
980                 goto err;
981         }
982
983         if (efi_enabled(EFI_DBG)) {
984                 pr_info("EFI runtime memory map:\n");
985                 efi_print_memmap();
986         }
987
988         if (WARN_ON(!efi.systab))
989                 goto err;
990
991         if (efi_setup_page_tables(pa, 1 << pg_shift))
992                 goto err;
993
994         efi_sync_low_kernel_mappings();
995
996         if (efi_is_native()) {
997                 status = phys_efi_set_virtual_address_map(
998                                 efi.memmap.desc_size * count,
999                                 efi.memmap.desc_size,
1000                                 efi.memmap.desc_version,
1001                                 (efi_memory_desc_t *)pa);
1002         } else {
1003                 status = efi_thunk_set_virtual_address_map(
1004                                 efi_phys.set_virtual_address_map,
1005                                 efi.memmap.desc_size * count,
1006                                 efi.memmap.desc_size,
1007                                 efi.memmap.desc_version,
1008                                 (efi_memory_desc_t *)pa);
1009         }
1010
1011         if (status != EFI_SUCCESS) {
1012                 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
1013                        status);
1014                 goto err;
1015         }
1016
1017         efi_free_boot_services();
1018
1019         /*
1020          * Now that EFI is in virtual mode, update the function
1021          * pointers in the runtime service table to the new virtual addresses.
1022          *
1023          * Call EFI services through wrapper functions.
1024          */
1025         efi.runtime_version = efi_systab.hdr.revision;
1026
1027         if (efi_is_native())
1028                 efi_native_runtime_setup();
1029         else
1030                 efi_thunk_runtime_setup();
1031
1032         efi.set_virtual_address_map = NULL;
1033
1034         /*
1035          * Apply more restrictive page table mapping attributes now that
1036          * SVAM() has been called and the firmware has performed all
1037          * necessary relocation fixups for the new virtual addresses.
1038          */
1039         efi_runtime_update_mappings();
1040
1041         /* clean DUMMY object */
1042         efi_delete_dummy_variable();
1043         return;
1044
1045 err:
1046         clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
1047 }
1048
1049 void __init efi_enter_virtual_mode(void)
1050 {
1051         if (efi_enabled(EFI_PARAVIRT))
1052                 return;
1053
1054         if (efi_setup)
1055                 kexec_enter_virtual_mode();
1056         else
1057                 __efi_enter_virtual_mode();
1058
1059         efi_dump_pagetable();
1060 }
1061
1062 static int __init arch_parse_efi_cmdline(char *str)
1063 {
1064         if (!str) {
1065                 pr_warn("need at least one option\n");
1066                 return -EINVAL;
1067         }
1068
1069         if (parse_option_str(str, "old_map"))
1070                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1071
1072         return 0;
1073 }
1074 early_param("efi", arch_parse_efi_cmdline);
1075
1076 bool efi_is_table_address(unsigned long phys_addr)
1077 {
1078         unsigned int i;
1079
1080         if (phys_addr == EFI_INVALID_TABLE_ADDR)
1081                 return false;
1082
1083         for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
1084                 if (*(efi_tables[i]) == phys_addr)
1085                         return true;
1086
1087         return false;
1088 }