GNU Linux-libre 4.4.283-gnu1
[releases.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *      Skip non-WB memory and ignore empty memory ranges.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56
57 #define EFI_DEBUG
58
59 struct efi_memory_map memmap;
60
61 static struct efi efi_phys __initdata;
62 static efi_system_table_t efi_systab __initdata;
63
64 static efi_config_table_type_t arch_tables[] __initdata = {
65 #ifdef CONFIG_X86_UV
66         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
67 #endif
68         {NULL_GUID, NULL, NULL},
69 };
70
71 u64 efi_setup;          /* efi setup_data physical address */
72
73 static int add_efi_memmap __initdata;
74 static int __init setup_add_efi_memmap(char *arg)
75 {
76         add_efi_memmap = 1;
77         return 0;
78 }
79 early_param("add_efi_memmap", setup_add_efi_memmap);
80
81 static efi_status_t __init phys_efi_set_virtual_address_map(
82         unsigned long memory_map_size,
83         unsigned long descriptor_size,
84         u32 descriptor_version,
85         efi_memory_desc_t *virtual_map)
86 {
87         efi_status_t status;
88         unsigned long flags;
89         pgd_t *save_pgd;
90
91         save_pgd = efi_call_phys_prolog();
92
93         /* Disable interrupts around EFI calls: */
94         local_irq_save(flags);
95         status = efi_call_phys(efi_phys.set_virtual_address_map,
96                                memory_map_size, descriptor_size,
97                                descriptor_version, virtual_map);
98         local_irq_restore(flags);
99
100         efi_call_phys_epilog(save_pgd);
101
102         return status;
103 }
104
105 void efi_get_time(struct timespec *now)
106 {
107         efi_status_t status;
108         efi_time_t eft;
109         efi_time_cap_t cap;
110
111         status = efi.get_time(&eft, &cap);
112         if (status != EFI_SUCCESS)
113                 pr_err("Oops: efitime: can't read time!\n");
114
115         now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
116                              eft.minute, eft.second);
117         now->tv_nsec = 0;
118 }
119
120 void __init efi_find_mirror(void)
121 {
122         void *p;
123         u64 mirror_size = 0, total_size = 0;
124
125         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
126                 efi_memory_desc_t *md = p;
127                 unsigned long long start = md->phys_addr;
128                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
129
130                 total_size += size;
131                 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
132                         memblock_mark_mirror(start, size);
133                         mirror_size += size;
134                 }
135         }
136         if (mirror_size)
137                 pr_info("Memory: %lldM/%lldM mirrored memory\n",
138                         mirror_size>>20, total_size>>20);
139 }
140
141 /*
142  * Tell the kernel about the EFI memory map.  This might include
143  * more than the max 128 entries that can fit in the e820 legacy
144  * (zeropage) memory map.
145  */
146
147 static void __init do_add_efi_memmap(void)
148 {
149         void *p;
150
151         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
152                 efi_memory_desc_t *md = p;
153                 unsigned long long start = md->phys_addr;
154                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
155                 int e820_type;
156
157                 switch (md->type) {
158                 case EFI_LOADER_CODE:
159                 case EFI_LOADER_DATA:
160                 case EFI_BOOT_SERVICES_CODE:
161                 case EFI_BOOT_SERVICES_DATA:
162                 case EFI_CONVENTIONAL_MEMORY:
163                         if (md->attribute & EFI_MEMORY_WB)
164                                 e820_type = E820_RAM;
165                         else
166                                 e820_type = E820_RESERVED;
167                         break;
168                 case EFI_ACPI_RECLAIM_MEMORY:
169                         e820_type = E820_ACPI;
170                         break;
171                 case EFI_ACPI_MEMORY_NVS:
172                         e820_type = E820_NVS;
173                         break;
174                 case EFI_UNUSABLE_MEMORY:
175                         e820_type = E820_UNUSABLE;
176                         break;
177                 case EFI_PERSISTENT_MEMORY:
178                         e820_type = E820_PMEM;
179                         break;
180                 default:
181                         /*
182                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
183                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
184                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
185                          */
186                         e820_type = E820_RESERVED;
187                         break;
188                 }
189                 e820_add_region(start, size, e820_type);
190         }
191         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
192 }
193
194 int __init efi_memblock_x86_reserve_range(void)
195 {
196         struct efi_info *e = &boot_params.efi_info;
197         phys_addr_t pmap;
198
199         if (efi_enabled(EFI_PARAVIRT))
200                 return 0;
201
202 #ifdef CONFIG_X86_32
203         /* Can't handle data above 4GB at this time */
204         if (e->efi_memmap_hi) {
205                 pr_err("Memory map is above 4GB, disabling EFI.\n");
206                 return -EINVAL;
207         }
208         pmap =  e->efi_memmap;
209 #else
210         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
211 #endif
212         memmap.phys_map         = pmap;
213         memmap.nr_map           = e->efi_memmap_size /
214                                   e->efi_memdesc_size;
215         memmap.desc_size        = e->efi_memdesc_size;
216         memmap.desc_version     = e->efi_memdesc_version;
217
218         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
219
220         efi.memmap = &memmap;
221
222         return 0;
223 }
224
225 void __init efi_print_memmap(void)
226 {
227 #ifdef EFI_DEBUG
228         efi_memory_desc_t *md;
229         void *p;
230         int i;
231
232         for (p = memmap.map, i = 0;
233              p < memmap.map_end;
234              p += memmap.desc_size, i++) {
235                 char buf[64];
236
237                 md = p;
238                 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx) (%lluMB)\n",
239                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
240                         md->phys_addr,
241                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
242                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
243         }
244 #endif  /*  EFI_DEBUG  */
245 }
246
247 void __init efi_unmap_memmap(void)
248 {
249         clear_bit(EFI_MEMMAP, &efi.flags);
250         if (memmap.map) {
251                 early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size);
252                 memmap.map = NULL;
253         }
254 }
255
256 static int __init efi_systab_init(void *phys)
257 {
258         if (efi_enabled(EFI_64BIT)) {
259                 efi_system_table_64_t *systab64;
260                 struct efi_setup_data *data = NULL;
261                 u64 tmp = 0;
262
263                 if (efi_setup) {
264                         data = early_memremap(efi_setup, sizeof(*data));
265                         if (!data)
266                                 return -ENOMEM;
267                 }
268                 systab64 = early_memremap((unsigned long)phys,
269                                          sizeof(*systab64));
270                 if (systab64 == NULL) {
271                         pr_err("Couldn't map the system table!\n");
272                         if (data)
273                                 early_memunmap(data, sizeof(*data));
274                         return -ENOMEM;
275                 }
276
277                 efi_systab.hdr = systab64->hdr;
278                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
279                                               systab64->fw_vendor;
280                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
281                 efi_systab.fw_revision = systab64->fw_revision;
282                 efi_systab.con_in_handle = systab64->con_in_handle;
283                 tmp |= systab64->con_in_handle;
284                 efi_systab.con_in = systab64->con_in;
285                 tmp |= systab64->con_in;
286                 efi_systab.con_out_handle = systab64->con_out_handle;
287                 tmp |= systab64->con_out_handle;
288                 efi_systab.con_out = systab64->con_out;
289                 tmp |= systab64->con_out;
290                 efi_systab.stderr_handle = systab64->stderr_handle;
291                 tmp |= systab64->stderr_handle;
292                 efi_systab.stderr = systab64->stderr;
293                 tmp |= systab64->stderr;
294                 efi_systab.runtime = data ?
295                                      (void *)(unsigned long)data->runtime :
296                                      (void *)(unsigned long)systab64->runtime;
297                 tmp |= data ? data->runtime : systab64->runtime;
298                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
299                 tmp |= systab64->boottime;
300                 efi_systab.nr_tables = systab64->nr_tables;
301                 efi_systab.tables = data ? (unsigned long)data->tables :
302                                            systab64->tables;
303                 tmp |= data ? data->tables : systab64->tables;
304
305                 early_memunmap(systab64, sizeof(*systab64));
306                 if (data)
307                         early_memunmap(data, sizeof(*data));
308 #ifdef CONFIG_X86_32
309                 if (tmp >> 32) {
310                         pr_err("EFI data located above 4GB, disabling EFI.\n");
311                         return -EINVAL;
312                 }
313 #endif
314         } else {
315                 efi_system_table_32_t *systab32;
316
317                 systab32 = early_memremap((unsigned long)phys,
318                                          sizeof(*systab32));
319                 if (systab32 == NULL) {
320                         pr_err("Couldn't map the system table!\n");
321                         return -ENOMEM;
322                 }
323
324                 efi_systab.hdr = systab32->hdr;
325                 efi_systab.fw_vendor = systab32->fw_vendor;
326                 efi_systab.fw_revision = systab32->fw_revision;
327                 efi_systab.con_in_handle = systab32->con_in_handle;
328                 efi_systab.con_in = systab32->con_in;
329                 efi_systab.con_out_handle = systab32->con_out_handle;
330                 efi_systab.con_out = systab32->con_out;
331                 efi_systab.stderr_handle = systab32->stderr_handle;
332                 efi_systab.stderr = systab32->stderr;
333                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
334                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
335                 efi_systab.nr_tables = systab32->nr_tables;
336                 efi_systab.tables = systab32->tables;
337
338                 early_memunmap(systab32, sizeof(*systab32));
339         }
340
341         efi.systab = &efi_systab;
342
343         /*
344          * Verify the EFI Table
345          */
346         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
347                 pr_err("System table signature incorrect!\n");
348                 return -EINVAL;
349         }
350         if ((efi.systab->hdr.revision >> 16) == 0)
351                 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
352                        efi.systab->hdr.revision >> 16,
353                        efi.systab->hdr.revision & 0xffff);
354
355         set_bit(EFI_SYSTEM_TABLES, &efi.flags);
356
357         return 0;
358 }
359
360 static int __init efi_runtime_init32(void)
361 {
362         efi_runtime_services_32_t *runtime;
363
364         runtime = early_memremap((unsigned long)efi.systab->runtime,
365                         sizeof(efi_runtime_services_32_t));
366         if (!runtime) {
367                 pr_err("Could not map the runtime service table!\n");
368                 return -ENOMEM;
369         }
370
371         /*
372          * We will only need *early* access to the SetVirtualAddressMap
373          * EFI runtime service. All other runtime services will be called
374          * via the virtual mapping.
375          */
376         efi_phys.set_virtual_address_map =
377                         (efi_set_virtual_address_map_t *)
378                         (unsigned long)runtime->set_virtual_address_map;
379         early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
380
381         return 0;
382 }
383
384 static int __init efi_runtime_init64(void)
385 {
386         efi_runtime_services_64_t *runtime;
387
388         runtime = early_memremap((unsigned long)efi.systab->runtime,
389                         sizeof(efi_runtime_services_64_t));
390         if (!runtime) {
391                 pr_err("Could not map the runtime service table!\n");
392                 return -ENOMEM;
393         }
394
395         /*
396          * We will only need *early* access to the SetVirtualAddressMap
397          * EFI runtime service. All other runtime services will be called
398          * via the virtual mapping.
399          */
400         efi_phys.set_virtual_address_map =
401                         (efi_set_virtual_address_map_t *)
402                         (unsigned long)runtime->set_virtual_address_map;
403         early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
404
405         return 0;
406 }
407
408 static int __init efi_runtime_init(void)
409 {
410         int rv;
411
412         /*
413          * Check out the runtime services table. We need to map
414          * the runtime services table so that we can grab the physical
415          * address of several of the EFI runtime functions, needed to
416          * set the firmware into virtual mode.
417          *
418          * When EFI_PARAVIRT is in force then we could not map runtime
419          * service memory region because we do not have direct access to it.
420          * However, runtime services are available through proxy functions
421          * (e.g. in case of Xen dom0 EFI implementation they call special
422          * hypercall which executes relevant EFI functions) and that is why
423          * they are always enabled.
424          */
425
426         if (!efi_enabled(EFI_PARAVIRT)) {
427                 if (efi_enabled(EFI_64BIT))
428                         rv = efi_runtime_init64();
429                 else
430                         rv = efi_runtime_init32();
431
432                 if (rv)
433                         return rv;
434         }
435
436         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
437
438         return 0;
439 }
440
441 static int __init efi_memmap_init(void)
442 {
443         if (efi_enabled(EFI_PARAVIRT))
444                 return 0;
445
446         /* Map the EFI memory map */
447         memmap.map = early_memremap((unsigned long)memmap.phys_map,
448                                    memmap.nr_map * memmap.desc_size);
449         if (memmap.map == NULL) {
450                 pr_err("Could not map the memory map!\n");
451                 return -ENOMEM;
452         }
453         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
454
455         if (add_efi_memmap)
456                 do_add_efi_memmap();
457
458         set_bit(EFI_MEMMAP, &efi.flags);
459
460         return 0;
461 }
462
463 void __init efi_init(void)
464 {
465         efi_char16_t *c16;
466         char vendor[100] = "unknown";
467         int i = 0;
468
469 #ifdef CONFIG_X86_32
470         if (boot_params.efi_info.efi_systab_hi ||
471             boot_params.efi_info.efi_memmap_hi) {
472                 pr_info("Table located above 4GB, disabling EFI.\n");
473                 return;
474         }
475         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
476 #else
477         efi_phys.systab = (efi_system_table_t *)
478                           (boot_params.efi_info.efi_systab |
479                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
480 #endif
481
482         if (efi_systab_init(efi_phys.systab))
483                 return;
484
485         efi.config_table = (unsigned long)efi.systab->tables;
486         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
487         efi.runtime      = (unsigned long)efi.systab->runtime;
488
489         /*
490          * Show what we know for posterity
491          */
492         c16 = early_memremap_ro(efi.systab->fw_vendor,
493                                 sizeof(vendor) * sizeof(efi_char16_t));
494         if (c16) {
495                 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
496                         vendor[i] = c16[i];
497                 vendor[i] = '\0';
498                 early_memunmap(c16, sizeof(vendor) * sizeof(efi_char16_t));
499         } else {
500                 pr_err("Could not map the firmware vendor!\n");
501         }
502
503         pr_info("EFI v%u.%.02u by %s\n",
504                 efi.systab->hdr.revision >> 16,
505                 efi.systab->hdr.revision & 0xffff, vendor);
506
507         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
508                 return;
509
510         if (efi_config_init(arch_tables))
511                 return;
512
513         /*
514          * Note: We currently don't support runtime services on an EFI
515          * that doesn't match the kernel 32/64-bit mode.
516          */
517
518         if (!efi_runtime_supported())
519                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
520         else {
521                 if (efi_runtime_disabled() || efi_runtime_init())
522                         return;
523         }
524         if (efi_memmap_init())
525                 return;
526
527         if (efi_enabled(EFI_DBG))
528                 efi_print_memmap();
529
530         efi_esrt_init();
531 }
532
533 void __init efi_late_init(void)
534 {
535         efi_bgrt_init();
536 }
537
538 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
539 {
540         u64 addr, npages;
541
542         addr = md->virt_addr;
543         npages = md->num_pages;
544
545         memrange_efi_to_native(&addr, &npages);
546
547         if (executable)
548                 set_memory_x(addr, npages);
549         else
550                 set_memory_nx(addr, npages);
551 }
552
553 void __init runtime_code_page_mkexec(void)
554 {
555         efi_memory_desc_t *md;
556         void *p;
557
558         /* Make EFI runtime service code area executable */
559         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
560                 md = p;
561
562                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
563                         continue;
564
565                 efi_set_executable(md, true);
566         }
567 }
568
569 void __init efi_memory_uc(u64 addr, unsigned long size)
570 {
571         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
572         u64 npages;
573
574         npages = round_up(size, page_shift) / page_shift;
575         memrange_efi_to_native(&addr, &npages);
576         set_memory_uc(addr, npages);
577 }
578
579 void __init old_map_region(efi_memory_desc_t *md)
580 {
581         u64 start_pfn, end_pfn, end;
582         unsigned long size;
583         void *va;
584
585         start_pfn = PFN_DOWN(md->phys_addr);
586         size      = md->num_pages << PAGE_SHIFT;
587         end       = md->phys_addr + size;
588         end_pfn   = PFN_UP(end);
589
590         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
591                 va = __va(md->phys_addr);
592
593                 if (!(md->attribute & EFI_MEMORY_WB))
594                         efi_memory_uc((u64)(unsigned long)va, size);
595         } else
596                 va = efi_ioremap(md->phys_addr, size,
597                                  md->type, md->attribute);
598
599         md->virt_addr = (u64) (unsigned long) va;
600         if (!va)
601                 pr_err("ioremap of 0x%llX failed!\n",
602                        (unsigned long long)md->phys_addr);
603 }
604
605 /* Merge contiguous regions of the same type and attribute */
606 static void __init efi_merge_regions(void)
607 {
608         void *p;
609         efi_memory_desc_t *md, *prev_md = NULL;
610
611         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
612                 u64 prev_size;
613                 md = p;
614
615                 if (!prev_md) {
616                         prev_md = md;
617                         continue;
618                 }
619
620                 if (prev_md->type != md->type ||
621                     prev_md->attribute != md->attribute) {
622                         prev_md = md;
623                         continue;
624                 }
625
626                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
627
628                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
629                         prev_md->num_pages += md->num_pages;
630                         md->type = EFI_RESERVED_TYPE;
631                         md->attribute = 0;
632                         continue;
633                 }
634                 prev_md = md;
635         }
636 }
637
638 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
639 {
640         unsigned long size;
641         u64 end, systab;
642
643         size = md->num_pages << EFI_PAGE_SHIFT;
644         end = md->phys_addr + size;
645         systab = (u64)(unsigned long)efi_phys.systab;
646         if (md->phys_addr <= systab && systab < end) {
647                 systab += md->virt_addr - md->phys_addr;
648                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
649         }
650 }
651
652 static void __init save_runtime_map(void)
653 {
654 #ifdef CONFIG_KEXEC_CORE
655         efi_memory_desc_t *md;
656         void *tmp, *p, *q = NULL;
657         int count = 0;
658
659         if (efi_enabled(EFI_OLD_MEMMAP))
660                 return;
661
662         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
663                 md = p;
664
665                 if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
666                     (md->type == EFI_BOOT_SERVICES_CODE) ||
667                     (md->type == EFI_BOOT_SERVICES_DATA))
668                         continue;
669                 tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
670                 if (!tmp)
671                         goto out;
672                 q = tmp;
673
674                 memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
675                 count++;
676         }
677
678         efi_runtime_map_setup(q, count, memmap.desc_size);
679         return;
680
681 out:
682         kfree(q);
683         pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
684 #endif
685 }
686
687 static void *realloc_pages(void *old_memmap, int old_shift)
688 {
689         void *ret;
690
691         ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
692         if (!ret)
693                 goto out;
694
695         /*
696          * A first-time allocation doesn't have anything to copy.
697          */
698         if (!old_memmap)
699                 return ret;
700
701         memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
702
703 out:
704         free_pages((unsigned long)old_memmap, old_shift);
705         return ret;
706 }
707
708 /*
709  * Iterate the EFI memory map in reverse order because the regions
710  * will be mapped top-down. The end result is the same as if we had
711  * mapped things forward, but doesn't require us to change the
712  * existing implementation of efi_map_region().
713  */
714 static inline void *efi_map_next_entry_reverse(void *entry)
715 {
716         /* Initial call */
717         if (!entry)
718                 return memmap.map_end - memmap.desc_size;
719
720         entry -= memmap.desc_size;
721         if (entry < memmap.map)
722                 return NULL;
723
724         return entry;
725 }
726
727 /*
728  * efi_map_next_entry - Return the next EFI memory map descriptor
729  * @entry: Previous EFI memory map descriptor
730  *
731  * This is a helper function to iterate over the EFI memory map, which
732  * we do in different orders depending on the current configuration.
733  *
734  * To begin traversing the memory map @entry must be %NULL.
735  *
736  * Returns %NULL when we reach the end of the memory map.
737  */
738 static void *efi_map_next_entry(void *entry)
739 {
740         if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
741                 /*
742                  * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
743                  * config table feature requires us to map all entries
744                  * in the same order as they appear in the EFI memory
745                  * map. That is to say, entry N must have a lower
746                  * virtual address than entry N+1. This is because the
747                  * firmware toolchain leaves relative references in
748                  * the code/data sections, which are split and become
749                  * separate EFI memory regions. Mapping things
750                  * out-of-order leads to the firmware accessing
751                  * unmapped addresses.
752                  *
753                  * Since we need to map things this way whether or not
754                  * the kernel actually makes use of
755                  * EFI_PROPERTIES_TABLE, let's just switch to this
756                  * scheme by default for 64-bit.
757                  */
758                 return efi_map_next_entry_reverse(entry);
759         }
760
761         /* Initial call */
762         if (!entry)
763                 return memmap.map;
764
765         entry += memmap.desc_size;
766         if (entry >= memmap.map_end)
767                 return NULL;
768
769         return entry;
770 }
771
772 /*
773  * Map the efi memory ranges of the runtime services and update new_mmap with
774  * virtual addresses.
775  */
776 static void * __init efi_map_regions(int *count, int *pg_shift)
777 {
778         void *p, *new_memmap = NULL;
779         unsigned long left = 0;
780         efi_memory_desc_t *md;
781
782         p = NULL;
783         while ((p = efi_map_next_entry(p))) {
784                 md = p;
785                 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
786 #ifdef CONFIG_X86_64
787                         if (md->type != EFI_BOOT_SERVICES_CODE &&
788                             md->type != EFI_BOOT_SERVICES_DATA)
789 #endif
790                                 continue;
791                 }
792
793                 efi_map_region(md);
794                 get_systab_virt_addr(md);
795
796                 if (left < memmap.desc_size) {
797                         new_memmap = realloc_pages(new_memmap, *pg_shift);
798                         if (!new_memmap)
799                                 return NULL;
800
801                         left += PAGE_SIZE << *pg_shift;
802                         (*pg_shift)++;
803                 }
804
805                 memcpy(new_memmap + (*count * memmap.desc_size), md,
806                        memmap.desc_size);
807
808                 left -= memmap.desc_size;
809                 (*count)++;
810         }
811
812         return new_memmap;
813 }
814
815 static void __init kexec_enter_virtual_mode(void)
816 {
817 #ifdef CONFIG_KEXEC_CORE
818         efi_memory_desc_t *md;
819         void *p;
820
821         efi.systab = NULL;
822
823         /*
824          * We don't do virtual mode, since we don't do runtime services, on
825          * non-native EFI
826          */
827         if (!efi_is_native()) {
828                 efi_unmap_memmap();
829                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
830                 return;
831         }
832
833         /*
834         * Map efi regions which were passed via setup_data. The virt_addr is a
835         * fixed addr which was used in first kernel of a kexec boot.
836         */
837         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
838                 md = p;
839                 efi_map_region_fixed(md); /* FIXME: add error handling */
840                 get_systab_virt_addr(md);
841         }
842
843         save_runtime_map();
844
845         BUG_ON(!efi.systab);
846
847         efi_sync_low_kernel_mappings();
848
849         /*
850          * Now that EFI is in virtual mode, update the function
851          * pointers in the runtime service table to the new virtual addresses.
852          *
853          * Call EFI services through wrapper functions.
854          */
855         efi.runtime_version = efi_systab.hdr.revision;
856
857         efi_native_runtime_setup();
858
859         efi.set_virtual_address_map = NULL;
860
861         if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
862                 runtime_code_page_mkexec();
863 #endif
864 }
865
866 /*
867  * This function will switch the EFI runtime services to virtual mode.
868  * Essentially, we look through the EFI memmap and map every region that
869  * has the runtime attribute bit set in its memory descriptor into the
870  * ->trampoline_pgd page table using a top-down VA allocation scheme.
871  *
872  * The old method which used to update that memory descriptor with the
873  * virtual address obtained from ioremap() is still supported when the
874  * kernel is booted with efi=old_map on its command line. Same old
875  * method enabled the runtime services to be called without having to
876  * thunk back into physical mode for every invocation.
877  *
878  * The new method does a pagetable switch in a preemption-safe manner
879  * so that we're in a different address space when calling a runtime
880  * function. For function arguments passing we do copy the PGDs of the
881  * kernel page table into ->trampoline_pgd prior to each call.
882  *
883  * Specially for kexec boot, efi runtime maps in previous kernel should
884  * be passed in via setup_data. In that case runtime ranges will be mapped
885  * to the same virtual addresses as the first kernel, see
886  * kexec_enter_virtual_mode().
887  */
888 static void __init __efi_enter_virtual_mode(void)
889 {
890         int count = 0, pg_shift = 0;
891         void *new_memmap = NULL;
892         efi_status_t status;
893
894         efi.systab = NULL;
895
896         efi_merge_regions();
897         new_memmap = efi_map_regions(&count, &pg_shift);
898         if (!new_memmap) {
899                 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
900                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
901                 return;
902         }
903
904         save_runtime_map();
905
906         BUG_ON(!efi.systab);
907
908         if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
909                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
910                 return;
911         }
912
913         efi_sync_low_kernel_mappings();
914         efi_dump_pagetable();
915
916         if (efi_is_native()) {
917                 status = phys_efi_set_virtual_address_map(
918                                 memmap.desc_size * count,
919                                 memmap.desc_size,
920                                 memmap.desc_version,
921                                 (efi_memory_desc_t *)__pa(new_memmap));
922         } else {
923                 status = efi_thunk_set_virtual_address_map(
924                                 efi_phys.set_virtual_address_map,
925                                 memmap.desc_size * count,
926                                 memmap.desc_size,
927                                 memmap.desc_version,
928                                 (efi_memory_desc_t *)__pa(new_memmap));
929         }
930
931         if (status != EFI_SUCCESS) {
932                 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
933                          status);
934                 panic("EFI call to SetVirtualAddressMap() failed!");
935         }
936
937         /*
938          * Now that EFI is in virtual mode, update the function
939          * pointers in the runtime service table to the new virtual addresses.
940          *
941          * Call EFI services through wrapper functions.
942          */
943         efi.runtime_version = efi_systab.hdr.revision;
944
945         if (efi_is_native())
946                 efi_native_runtime_setup();
947         else
948                 efi_thunk_runtime_setup();
949
950         efi.set_virtual_address_map = NULL;
951
952         efi_runtime_mkexec();
953
954         /*
955          * We mapped the descriptor array into the EFI pagetable above but we're
956          * not unmapping it here. Here's why:
957          *
958          * We're copying select PGDs from the kernel page table to the EFI page
959          * table and when we do so and make changes to those PGDs like unmapping
960          * stuff from them, those changes appear in the kernel page table and we
961          * go boom.
962          *
963          * From setup_real_mode():
964          *
965          * ...
966          * trampoline_pgd[0] = init_level4_pgt[pgd_index(__PAGE_OFFSET)].pgd;
967          *
968          * In this particular case, our allocation is in PGD 0 of the EFI page
969          * table but we've copied that PGD from PGD[272] of the EFI page table:
970          *
971          *      pgd_index(__PAGE_OFFSET = 0xffff880000000000) = 272
972          *
973          * where the direct memory mapping in kernel space is.
974          *
975          * new_memmap's VA comes from that direct mapping and thus clearing it,
976          * it would get cleared in the kernel page table too.
977          *
978          * efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift);
979          */
980         free_pages((unsigned long)new_memmap, pg_shift);
981
982         /* clean DUMMY object */
983         efi_delete_dummy_variable();
984 }
985
986 void __init efi_enter_virtual_mode(void)
987 {
988         if (efi_enabled(EFI_PARAVIRT))
989                 return;
990
991         if (efi_setup)
992                 kexec_enter_virtual_mode();
993         else
994                 __efi_enter_virtual_mode();
995 }
996
997 /*
998  * Convenience functions to obtain memory types and attributes
999  */
1000 u32 efi_mem_type(unsigned long phys_addr)
1001 {
1002         efi_memory_desc_t *md;
1003         void *p;
1004
1005         if (!efi_enabled(EFI_MEMMAP))
1006                 return 0;
1007
1008         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1009                 md = p;
1010                 if ((md->phys_addr <= phys_addr) &&
1011                     (phys_addr < (md->phys_addr +
1012                                   (md->num_pages << EFI_PAGE_SHIFT))))
1013                         return md->type;
1014         }
1015         return 0;
1016 }
1017
1018 static int __init arch_parse_efi_cmdline(char *str)
1019 {
1020         if (!str) {
1021                 pr_warn("need at least one option\n");
1022                 return -EINVAL;
1023         }
1024
1025         if (parse_option_str(str, "old_map"))
1026                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1027
1028         return 0;
1029 }
1030 early_param("efi", arch_parse_efi_cmdline);