GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / x86 / mm / tlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18
19 #include "mm_internal.h"
20
21 /*
22  *      TLB flushing, formerly SMP-only
23  *              c/o Linus Torvalds.
24  *
25  *      These mean you can really definitely utterly forget about
26  *      writing to user space from interrupts. (Its not allowed anyway).
27  *
28  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
29  *
30  *      More scalable flush, from Andi Kleen
31  *
32  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
33  */
34
35 /*
36  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
37  * stored in cpu_tlb_state.last_user_mm_ibpb.
38  */
39 #define LAST_USER_MM_IBPB       0x1UL
40
41 /*
42  * We get here when we do something requiring a TLB invalidation
43  * but could not go invalidate all of the contexts.  We do the
44  * necessary invalidation by clearing out the 'ctx_id' which
45  * forces a TLB flush when the context is loaded.
46  */
47 static void clear_asid_other(void)
48 {
49         u16 asid;
50
51         /*
52          * This is only expected to be set if we have disabled
53          * kernel _PAGE_GLOBAL pages.
54          */
55         if (!static_cpu_has(X86_FEATURE_PTI)) {
56                 WARN_ON_ONCE(1);
57                 return;
58         }
59
60         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
61                 /* Do not need to flush the current asid */
62                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
63                         continue;
64                 /*
65                  * Make sure the next time we go to switch to
66                  * this asid, we do a flush:
67                  */
68                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
69         }
70         this_cpu_write(cpu_tlbstate.invalidate_other, false);
71 }
72
73 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
74
75
76 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
77                             u16 *new_asid, bool *need_flush)
78 {
79         u16 asid;
80
81         if (!static_cpu_has(X86_FEATURE_PCID)) {
82                 *new_asid = 0;
83                 *need_flush = true;
84                 return;
85         }
86
87         if (this_cpu_read(cpu_tlbstate.invalidate_other))
88                 clear_asid_other();
89
90         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
91                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
92                     next->context.ctx_id)
93                         continue;
94
95                 *new_asid = asid;
96                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
97                                next_tlb_gen);
98                 return;
99         }
100
101         /*
102          * We don't currently own an ASID slot on this CPU.
103          * Allocate a slot.
104          */
105         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
106         if (*new_asid >= TLB_NR_DYN_ASIDS) {
107                 *new_asid = 0;
108                 this_cpu_write(cpu_tlbstate.next_asid, 1);
109         }
110         *need_flush = true;
111 }
112
113 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
114 {
115         unsigned long new_mm_cr3;
116
117         if (need_flush) {
118                 invalidate_user_asid(new_asid);
119                 new_mm_cr3 = build_cr3(pgdir, new_asid);
120         } else {
121                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
122         }
123
124         /*
125          * Caution: many callers of this function expect
126          * that load_cr3() is serializing and orders TLB
127          * fills with respect to the mm_cpumask writes.
128          */
129         write_cr3(new_mm_cr3);
130 }
131
132 void leave_mm(int cpu)
133 {
134         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
135
136         /*
137          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
138          * If so, our callers still expect us to flush the TLB, but there
139          * aren't any user TLB entries in init_mm to worry about.
140          *
141          * This needs to happen before any other sanity checks due to
142          * intel_idle's shenanigans.
143          */
144         if (loaded_mm == &init_mm)
145                 return;
146
147         /* Warn if we're not lazy. */
148         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
149
150         switch_mm(NULL, &init_mm, NULL);
151 }
152 EXPORT_SYMBOL_GPL(leave_mm);
153
154 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
155                struct task_struct *tsk)
156 {
157         unsigned long flags;
158
159         local_irq_save(flags);
160         switch_mm_irqs_off(prev, next, tsk);
161         local_irq_restore(flags);
162 }
163
164 static void sync_current_stack_to_mm(struct mm_struct *mm)
165 {
166         unsigned long sp = current_stack_pointer;
167         pgd_t *pgd = pgd_offset(mm, sp);
168
169         if (pgtable_l5_enabled()) {
170                 if (unlikely(pgd_none(*pgd))) {
171                         pgd_t *pgd_ref = pgd_offset_k(sp);
172
173                         set_pgd(pgd, *pgd_ref);
174                 }
175         } else {
176                 /*
177                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
178                  * the p4d.  This compiles to approximately the same code as
179                  * the 5-level case.
180                  */
181                 p4d_t *p4d = p4d_offset(pgd, sp);
182
183                 if (unlikely(p4d_none(*p4d))) {
184                         pgd_t *pgd_ref = pgd_offset_k(sp);
185                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
186
187                         set_p4d(p4d, *p4d_ref);
188                 }
189         }
190 }
191
192 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
193 {
194         unsigned long next_tif = task_thread_info(next)->flags;
195         unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
196
197         return (unsigned long)next->mm | ibpb;
198 }
199
200 static void cond_ibpb(struct task_struct *next)
201 {
202         if (!next || !next->mm)
203                 return;
204
205         /*
206          * Both, the conditional and the always IBPB mode use the mm
207          * pointer to avoid the IBPB when switching between tasks of the
208          * same process. Using the mm pointer instead of mm->context.ctx_id
209          * opens a hypothetical hole vs. mm_struct reuse, which is more or
210          * less impossible to control by an attacker. Aside of that it
211          * would only affect the first schedule so the theoretically
212          * exposed data is not really interesting.
213          */
214         if (static_branch_likely(&switch_mm_cond_ibpb)) {
215                 unsigned long prev_mm, next_mm;
216
217                 /*
218                  * This is a bit more complex than the always mode because
219                  * it has to handle two cases:
220                  *
221                  * 1) Switch from a user space task (potential attacker)
222                  *    which has TIF_SPEC_IB set to a user space task
223                  *    (potential victim) which has TIF_SPEC_IB not set.
224                  *
225                  * 2) Switch from a user space task (potential attacker)
226                  *    which has TIF_SPEC_IB not set to a user space task
227                  *    (potential victim) which has TIF_SPEC_IB set.
228                  *
229                  * This could be done by unconditionally issuing IBPB when
230                  * a task which has TIF_SPEC_IB set is either scheduled in
231                  * or out. Though that results in two flushes when:
232                  *
233                  * - the same user space task is scheduled out and later
234                  *   scheduled in again and only a kernel thread ran in
235                  *   between.
236                  *
237                  * - a user space task belonging to the same process is
238                  *   scheduled in after a kernel thread ran in between
239                  *
240                  * - a user space task belonging to the same process is
241                  *   scheduled in immediately.
242                  *
243                  * Optimize this with reasonably small overhead for the
244                  * above cases. Mangle the TIF_SPEC_IB bit into the mm
245                  * pointer of the incoming task which is stored in
246                  * cpu_tlbstate.last_user_mm_ibpb for comparison.
247                  */
248                 next_mm = mm_mangle_tif_spec_ib(next);
249                 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
250
251                 /*
252                  * Issue IBPB only if the mm's are different and one or
253                  * both have the IBPB bit set.
254                  */
255                 if (next_mm != prev_mm &&
256                     (next_mm | prev_mm) & LAST_USER_MM_IBPB)
257                         indirect_branch_prediction_barrier();
258
259                 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
260         }
261
262         if (static_branch_unlikely(&switch_mm_always_ibpb)) {
263                 /*
264                  * Only flush when switching to a user space task with a
265                  * different context than the user space task which ran
266                  * last on this CPU.
267                  */
268                 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
269                         indirect_branch_prediction_barrier();
270                         this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
271                 }
272         }
273 }
274
275 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
276                         struct task_struct *tsk)
277 {
278         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
279         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
280         bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
281         unsigned cpu = smp_processor_id();
282         u64 next_tlb_gen;
283         bool need_flush;
284         u16 new_asid;
285
286         /*
287          * NB: The scheduler will call us with prev == next when switching
288          * from lazy TLB mode to normal mode if active_mm isn't changing.
289          * When this happens, we don't assume that CR3 (and hence
290          * cpu_tlbstate.loaded_mm) matches next.
291          *
292          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
293          */
294
295         /* We don't want flush_tlb_func_* to run concurrently with us. */
296         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
297                 WARN_ON_ONCE(!irqs_disabled());
298
299         /*
300          * Verify that CR3 is what we think it is.  This will catch
301          * hypothetical buggy code that directly switches to swapper_pg_dir
302          * without going through leave_mm() / switch_mm_irqs_off() or that
303          * does something like write_cr3(read_cr3_pa()).
304          *
305          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
306          * isn't free.
307          */
308 #ifdef CONFIG_DEBUG_VM
309         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
310                 /*
311                  * If we were to BUG here, we'd be very likely to kill
312                  * the system so hard that we don't see the call trace.
313                  * Try to recover instead by ignoring the error and doing
314                  * a global flush to minimize the chance of corruption.
315                  *
316                  * (This is far from being a fully correct recovery.
317                  *  Architecturally, the CPU could prefetch something
318                  *  back into an incorrect ASID slot and leave it there
319                  *  to cause trouble down the road.  It's better than
320                  *  nothing, though.)
321                  */
322                 __flush_tlb_all();
323         }
324 #endif
325         this_cpu_write(cpu_tlbstate.is_lazy, false);
326
327         /*
328          * The membarrier system call requires a full memory barrier and
329          * core serialization before returning to user-space, after
330          * storing to rq->curr, when changing mm.  This is because
331          * membarrier() sends IPIs to all CPUs that are in the target mm
332          * to make them issue memory barriers.  However, if another CPU
333          * switches to/from the target mm concurrently with
334          * membarrier(), it can cause that CPU not to receive an IPI
335          * when it really should issue a memory barrier.  Writing to CR3
336          * provides that full memory barrier and core serializing
337          * instruction.
338          */
339         if (real_prev == next) {
340                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
341                            next->context.ctx_id);
342
343                 /*
344                  * Even in lazy TLB mode, the CPU should stay set in the
345                  * mm_cpumask. The TLB shootdown code can figure out from
346                  * from cpu_tlbstate.is_lazy whether or not to send an IPI.
347                  */
348                 if (WARN_ON_ONCE(real_prev != &init_mm &&
349                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
350                         cpumask_set_cpu(cpu, mm_cpumask(next));
351
352                 /*
353                  * If the CPU is not in lazy TLB mode, we are just switching
354                  * from one thread in a process to another thread in the same
355                  * process. No TLB flush required.
356                  */
357                 if (!was_lazy)
358                         return;
359
360                 /*
361                  * Read the tlb_gen to check whether a flush is needed.
362                  * If the TLB is up to date, just use it.
363                  * The barrier synchronizes with the tlb_gen increment in
364                  * the TLB shootdown code.
365                  */
366                 smp_mb();
367                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
368                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
369                                 next_tlb_gen)
370                         return;
371
372                 /*
373                  * TLB contents went out of date while we were in lazy
374                  * mode. Fall through to the TLB switching code below.
375                  */
376                 new_asid = prev_asid;
377                 need_flush = true;
378         } else {
379                 /*
380                  * Avoid user/user BTB poisoning by flushing the branch
381                  * predictor when switching between processes. This stops
382                  * one process from doing Spectre-v2 attacks on another.
383                  */
384                 cond_ibpb(tsk);
385
386                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
387                         /*
388                          * If our current stack is in vmalloc space and isn't
389                          * mapped in the new pgd, we'll double-fault.  Forcibly
390                          * map it.
391                          */
392                         sync_current_stack_to_mm(next);
393                 }
394
395                 /*
396                  * Stop remote flushes for the previous mm.
397                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
398                  * but the bitmap manipulation can cause cache line contention.
399                  */
400                 if (real_prev != &init_mm) {
401                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
402                                                 mm_cpumask(real_prev)));
403                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
404                 }
405
406                 /*
407                  * Start remote flushes and then read tlb_gen.
408                  */
409                 if (next != &init_mm)
410                         cpumask_set_cpu(cpu, mm_cpumask(next));
411                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
412
413                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
414
415                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
416                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
417                 barrier();
418         }
419
420         if (need_flush) {
421                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
422                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
423                 load_new_mm_cr3(next->pgd, new_asid, true);
424
425                 /*
426                  * NB: This gets called via leave_mm() in the idle path
427                  * where RCU functions differently.  Tracing normally
428                  * uses RCU, so we need to use the _rcuidle variant.
429                  *
430                  * (There is no good reason for this.  The idle code should
431                  *  be rearranged to call this before rcu_idle_enter().)
432                  */
433                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
434         } else {
435                 /* The new ASID is already up to date. */
436                 load_new_mm_cr3(next->pgd, new_asid, false);
437
438                 /* See above wrt _rcuidle. */
439                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
440         }
441
442         /* Make sure we write CR3 before loaded_mm. */
443         barrier();
444
445         this_cpu_write(cpu_tlbstate.loaded_mm, next);
446         this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
447
448         if (next != real_prev) {
449                 load_mm_cr4_irqsoff(next);
450                 switch_ldt(real_prev, next);
451         }
452 }
453
454 /*
455  * Please ignore the name of this function.  It should be called
456  * switch_to_kernel_thread().
457  *
458  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
459  * kernel thread or other context without an mm.  Acceptable implementations
460  * include doing nothing whatsoever, switching to init_mm, or various clever
461  * lazy tricks to try to minimize TLB flushes.
462  *
463  * The scheduler reserves the right to call enter_lazy_tlb() several times
464  * in a row.  It will notify us that we're going back to a real mm by
465  * calling switch_mm_irqs_off().
466  */
467 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
468 {
469         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
470                 return;
471
472         this_cpu_write(cpu_tlbstate.is_lazy, true);
473 }
474
475 /*
476  * Call this when reinitializing a CPU.  It fixes the following potential
477  * problems:
478  *
479  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
480  *   because the CPU was taken down and came back up with CR3's PCID
481  *   bits clear.  CPU hotplug can do this.
482  *
483  * - The TLB contains junk in slots corresponding to inactive ASIDs.
484  *
485  * - The CPU went so far out to lunch that it may have missed a TLB
486  *   flush.
487  */
488 void initialize_tlbstate_and_flush(void)
489 {
490         int i;
491         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
492         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
493         unsigned long cr3 = __read_cr3();
494
495         /* Assert that CR3 already references the right mm. */
496         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
497
498         /*
499          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
500          * doesn't work like other CR4 bits because it can only be set from
501          * long mode.)
502          */
503         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
504                 !(cr4_read_shadow() & X86_CR4_PCIDE));
505
506         /* Force ASID 0 and force a TLB flush. */
507         write_cr3(build_cr3(mm->pgd, 0));
508
509         /* Reinitialize tlbstate. */
510         this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
511         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
512         this_cpu_write(cpu_tlbstate.next_asid, 1);
513         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
514         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
515
516         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
517                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
518 }
519
520 /*
521  * flush_tlb_func_common()'s memory ordering requirement is that any
522  * TLB fills that happen after we flush the TLB are ordered after we
523  * read active_mm's tlb_gen.  We don't need any explicit barriers
524  * because all x86 flush operations are serializing and the
525  * atomic64_read operation won't be reordered by the compiler.
526  */
527 static void flush_tlb_func_common(const struct flush_tlb_info *f,
528                                   bool local, enum tlb_flush_reason reason)
529 {
530         /*
531          * We have three different tlb_gen values in here.  They are:
532          *
533          * - mm_tlb_gen:     the latest generation.
534          * - local_tlb_gen:  the generation that this CPU has already caught
535          *                   up to.
536          * - f->new_tlb_gen: the generation that the requester of the flush
537          *                   wants us to catch up to.
538          */
539         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
540         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
541         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
542         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
543
544         /* This code cannot presently handle being reentered. */
545         VM_WARN_ON(!irqs_disabled());
546
547         if (unlikely(loaded_mm == &init_mm))
548                 return;
549
550         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
551                    loaded_mm->context.ctx_id);
552
553         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
554                 /*
555                  * We're in lazy mode.  We need to at least flush our
556                  * paging-structure cache to avoid speculatively reading
557                  * garbage into our TLB.  Since switching to init_mm is barely
558                  * slower than a minimal flush, just switch to init_mm.
559                  *
560                  * This should be rare, with native_flush_tlb_others skipping
561                  * IPIs to lazy TLB mode CPUs.
562                  */
563                 switch_mm_irqs_off(NULL, &init_mm, NULL);
564                 return;
565         }
566
567         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
568                 /*
569                  * There's nothing to do: we're already up to date.  This can
570                  * happen if two concurrent flushes happen -- the first flush to
571                  * be handled can catch us all the way up, leaving no work for
572                  * the second flush.
573                  */
574                 trace_tlb_flush(reason, 0);
575                 return;
576         }
577
578         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
579         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
580
581         /*
582          * If we get to this point, we know that our TLB is out of date.
583          * This does not strictly imply that we need to flush (it's
584          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
585          * going to need to flush in the very near future, so we might
586          * as well get it over with.
587          *
588          * The only question is whether to do a full or partial flush.
589          *
590          * We do a partial flush if requested and two extra conditions
591          * are met:
592          *
593          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
594          *    we've always done all needed flushes to catch up to
595          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
596          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
597          *    us up to date for tlb_gen 3 is the partial flush we're
598          *    processing.
599          *
600          *    As an example of why this check is needed, suppose that there
601          *    are two concurrent flushes.  The first is a full flush that
602          *    changes context.tlb_gen from 1 to 2.  The second is a partial
603          *    flush that changes context.tlb_gen from 2 to 3.  If they get
604          *    processed on this CPU in reverse order, we'll see
605          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
606          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
607          *    3, we'd be break the invariant: we'd update local_tlb_gen above
608          *    1 without the full flush that's needed for tlb_gen 2.
609          *
610          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
611          *    Partial TLB flushes are not all that much cheaper than full TLB
612          *    flushes, so it seems unlikely that it would be a performance win
613          *    to do a partial flush if that won't bring our TLB fully up to
614          *    date.  By doing a full flush instead, we can increase
615          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
616          *    avoid another flush in the very near future.
617          */
618         if (f->end != TLB_FLUSH_ALL &&
619             f->new_tlb_gen == local_tlb_gen + 1 &&
620             f->new_tlb_gen == mm_tlb_gen) {
621                 /* Partial flush */
622                 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
623                 unsigned long addr = f->start;
624
625                 while (addr < f->end) {
626                         __flush_tlb_one_user(addr);
627                         addr += 1UL << f->stride_shift;
628                 }
629                 if (local)
630                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
631                 trace_tlb_flush(reason, nr_invalidate);
632         } else {
633                 /* Full flush. */
634                 local_flush_tlb();
635                 if (local)
636                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
637                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
638         }
639
640         /* Both paths above update our state to mm_tlb_gen. */
641         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
642 }
643
644 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
645 {
646         const struct flush_tlb_info *f = info;
647
648         flush_tlb_func_common(f, true, reason);
649 }
650
651 static void flush_tlb_func_remote(void *info)
652 {
653         const struct flush_tlb_info *f = info;
654
655         inc_irq_stat(irq_tlb_count);
656
657         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
658                 return;
659
660         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
661         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
662 }
663
664 static bool tlb_is_not_lazy(int cpu, void *data)
665 {
666         return !per_cpu(cpu_tlbstate.is_lazy, cpu);
667 }
668
669 void native_flush_tlb_others(const struct cpumask *cpumask,
670                              const struct flush_tlb_info *info)
671 {
672         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
673         if (info->end == TLB_FLUSH_ALL)
674                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
675         else
676                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
677                                 (info->end - info->start) >> PAGE_SHIFT);
678
679         if (is_uv_system()) {
680                 /*
681                  * This whole special case is confused.  UV has a "Broadcast
682                  * Assist Unit", which seems to be a fancy way to send IPIs.
683                  * Back when x86 used an explicit TLB flush IPI, UV was
684                  * optimized to use its own mechanism.  These days, x86 uses
685                  * smp_call_function_many(), but UV still uses a manual IPI,
686                  * and that IPI's action is out of date -- it does a manual
687                  * flush instead of calling flush_tlb_func_remote().  This
688                  * means that the percpu tlb_gen variables won't be updated
689                  * and we'll do pointless flushes on future context switches.
690                  *
691                  * Rather than hooking native_flush_tlb_others() here, I think
692                  * that UV should be updated so that smp_call_function_many(),
693                  * etc, are optimal on UV.
694                  */
695                 cpumask = uv_flush_tlb_others(cpumask, info);
696                 if (cpumask)
697                         smp_call_function_many(cpumask, flush_tlb_func_remote,
698                                                (void *)info, 1);
699                 return;
700         }
701
702         /*
703          * If no page tables were freed, we can skip sending IPIs to
704          * CPUs in lazy TLB mode. They will flush the CPU themselves
705          * at the next context switch.
706          *
707          * However, if page tables are getting freed, we need to send the
708          * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
709          * up on the new contents of what used to be page tables, while
710          * doing a speculative memory access.
711          */
712         if (info->freed_tables)
713                 smp_call_function_many(cpumask, flush_tlb_func_remote,
714                                (void *)info, 1);
715         else
716                 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
717                                 (void *)info, 1, GFP_ATOMIC, cpumask);
718 }
719
720 /*
721  * See Documentation/x86/tlb.rst for details.  We choose 33
722  * because it is large enough to cover the vast majority (at
723  * least 95%) of allocations, and is small enough that we are
724  * confident it will not cause too much overhead.  Each single
725  * flush is about 100 ns, so this caps the maximum overhead at
726  * _about_ 3,000 ns.
727  *
728  * This is in units of pages.
729  */
730 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
731
732 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
733
734 #ifdef CONFIG_DEBUG_VM
735 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
736 #endif
737
738 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
739                         unsigned long start, unsigned long end,
740                         unsigned int stride_shift, bool freed_tables,
741                         u64 new_tlb_gen)
742 {
743         struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
744
745 #ifdef CONFIG_DEBUG_VM
746         /*
747          * Ensure that the following code is non-reentrant and flush_tlb_info
748          * is not overwritten. This means no TLB flushing is initiated by
749          * interrupt handlers and machine-check exception handlers.
750          */
751         BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
752 #endif
753
754         info->start             = start;
755         info->end               = end;
756         info->mm                = mm;
757         info->stride_shift      = stride_shift;
758         info->freed_tables      = freed_tables;
759         info->new_tlb_gen       = new_tlb_gen;
760
761         return info;
762 }
763
764 static inline void put_flush_tlb_info(void)
765 {
766 #ifdef CONFIG_DEBUG_VM
767         /* Complete reentrency prevention checks */
768         barrier();
769         this_cpu_dec(flush_tlb_info_idx);
770 #endif
771 }
772
773 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
774                                 unsigned long end, unsigned int stride_shift,
775                                 bool freed_tables)
776 {
777         struct flush_tlb_info *info;
778         u64 new_tlb_gen;
779         int cpu;
780
781         cpu = get_cpu();
782
783         /* Should we flush just the requested range? */
784         if ((end == TLB_FLUSH_ALL) ||
785             ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
786                 start = 0;
787                 end = TLB_FLUSH_ALL;
788         }
789
790         /* This is also a barrier that synchronizes with switch_mm(). */
791         new_tlb_gen = inc_mm_tlb_gen(mm);
792
793         info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
794                                   new_tlb_gen);
795
796         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
797                 lockdep_assert_irqs_enabled();
798                 local_irq_disable();
799                 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
800                 local_irq_enable();
801         }
802
803         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
804                 flush_tlb_others(mm_cpumask(mm), info);
805
806         put_flush_tlb_info();
807         put_cpu();
808 }
809
810
811 static void do_flush_tlb_all(void *info)
812 {
813         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
814         __flush_tlb_all();
815 }
816
817 void flush_tlb_all(void)
818 {
819         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
820         on_each_cpu(do_flush_tlb_all, NULL, 1);
821 }
822
823 static void do_kernel_range_flush(void *info)
824 {
825         struct flush_tlb_info *f = info;
826         unsigned long addr;
827
828         /* flush range by one by one 'invlpg' */
829         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
830                 __flush_tlb_one_kernel(addr);
831 }
832
833 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
834 {
835         /* Balance as user space task's flush, a bit conservative */
836         if (end == TLB_FLUSH_ALL ||
837             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
838                 on_each_cpu(do_flush_tlb_all, NULL, 1);
839         } else {
840                 struct flush_tlb_info *info;
841
842                 preempt_disable();
843                 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
844
845                 on_each_cpu(do_kernel_range_flush, info, 1);
846
847                 put_flush_tlb_info();
848                 preempt_enable();
849         }
850 }
851
852 /*
853  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
854  * This means that the 'struct flush_tlb_info' that describes which mappings to
855  * flush is actually fixed. We therefore set a single fixed struct and use it in
856  * arch_tlbbatch_flush().
857  */
858 static const struct flush_tlb_info full_flush_tlb_info = {
859         .mm = NULL,
860         .start = 0,
861         .end = TLB_FLUSH_ALL,
862 };
863
864 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
865 {
866         int cpu = get_cpu();
867
868         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
869                 lockdep_assert_irqs_enabled();
870                 local_irq_disable();
871                 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
872                 local_irq_enable();
873         }
874
875         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
876                 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
877
878         cpumask_clear(&batch->cpumask);
879
880         put_cpu();
881 }
882
883 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
884                              size_t count, loff_t *ppos)
885 {
886         char buf[32];
887         unsigned int len;
888
889         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
890         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
891 }
892
893 static ssize_t tlbflush_write_file(struct file *file,
894                  const char __user *user_buf, size_t count, loff_t *ppos)
895 {
896         char buf[32];
897         ssize_t len;
898         int ceiling;
899
900         len = min(count, sizeof(buf) - 1);
901         if (copy_from_user(buf, user_buf, len))
902                 return -EFAULT;
903
904         buf[len] = '\0';
905         if (kstrtoint(buf, 0, &ceiling))
906                 return -EINVAL;
907
908         if (ceiling < 0)
909                 return -EINVAL;
910
911         tlb_single_page_flush_ceiling = ceiling;
912         return count;
913 }
914
915 static const struct file_operations fops_tlbflush = {
916         .read = tlbflush_read_file,
917         .write = tlbflush_write_file,
918         .llseek = default_llseek,
919 };
920
921 static int __init create_tlb_single_page_flush_ceiling(void)
922 {
923         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
924                             arch_debugfs_dir, NULL, &fops_tlbflush);
925         return 0;
926 }
927 late_initcall(create_tlb_single_page_flush_ceiling);