GNU Linux-libre 4.14.332-gnu1
[releases.git] / arch / x86 / mm / pat.c
1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8  */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/ioport.h>
14 #include <linux/kernel.h>
15 #include <linux/pfn_t.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/rbtree.h>
20
21 #include <asm/cacheflush.h>
22 #include <asm/processor.h>
23 #include <asm/tlbflush.h>
24 #include <asm/x86_init.h>
25 #include <asm/pgtable.h>
26 #include <asm/fcntl.h>
27 #include <asm/e820/api.h>
28 #include <asm/mtrr.h>
29 #include <asm/page.h>
30 #include <asm/msr.h>
31 #include <asm/pat.h>
32 #include <asm/io.h>
33
34 #include "pat_internal.h"
35 #include "mm_internal.h"
36
37 #undef pr_fmt
38 #define pr_fmt(fmt) "" fmt
39
40 static bool __read_mostly boot_cpu_done;
41 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
42 static bool __read_mostly pat_initialized;
43 static bool __read_mostly init_cm_done;
44
45 void pat_disable(const char *reason)
46 {
47         if (pat_disabled)
48                 return;
49
50         if (boot_cpu_done) {
51                 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
52                 return;
53         }
54
55         pat_disabled = true;
56         pr_info("x86/PAT: %s\n", reason);
57 }
58
59 static int __init nopat(char *str)
60 {
61         pat_disable("PAT support disabled.");
62         return 0;
63 }
64 early_param("nopat", nopat);
65
66 bool pat_enabled(void)
67 {
68         return pat_initialized;
69 }
70 EXPORT_SYMBOL_GPL(pat_enabled);
71
72 int pat_debug_enable;
73
74 static int __init pat_debug_setup(char *str)
75 {
76         pat_debug_enable = 1;
77         return 1;
78 }
79 __setup("debugpat", pat_debug_setup);
80
81 #ifdef CONFIG_X86_PAT
82 /*
83  * X86 PAT uses page flags arch_1 and uncached together to keep track of
84  * memory type of pages that have backing page struct.
85  *
86  * X86 PAT supports 4 different memory types:
87  *  - _PAGE_CACHE_MODE_WB
88  *  - _PAGE_CACHE_MODE_WC
89  *  - _PAGE_CACHE_MODE_UC_MINUS
90  *  - _PAGE_CACHE_MODE_WT
91  *
92  * _PAGE_CACHE_MODE_WB is the default type.
93  */
94
95 #define _PGMT_WB                0
96 #define _PGMT_WC                (1UL << PG_arch_1)
97 #define _PGMT_UC_MINUS          (1UL << PG_uncached)
98 #define _PGMT_WT                (1UL << PG_uncached | 1UL << PG_arch_1)
99 #define _PGMT_MASK              (1UL << PG_uncached | 1UL << PG_arch_1)
100 #define _PGMT_CLEAR_MASK        (~_PGMT_MASK)
101
102 static inline enum page_cache_mode get_page_memtype(struct page *pg)
103 {
104         unsigned long pg_flags = pg->flags & _PGMT_MASK;
105
106         if (pg_flags == _PGMT_WB)
107                 return _PAGE_CACHE_MODE_WB;
108         else if (pg_flags == _PGMT_WC)
109                 return _PAGE_CACHE_MODE_WC;
110         else if (pg_flags == _PGMT_UC_MINUS)
111                 return _PAGE_CACHE_MODE_UC_MINUS;
112         else
113                 return _PAGE_CACHE_MODE_WT;
114 }
115
116 static inline void set_page_memtype(struct page *pg,
117                                     enum page_cache_mode memtype)
118 {
119         unsigned long memtype_flags;
120         unsigned long old_flags;
121         unsigned long new_flags;
122
123         switch (memtype) {
124         case _PAGE_CACHE_MODE_WC:
125                 memtype_flags = _PGMT_WC;
126                 break;
127         case _PAGE_CACHE_MODE_UC_MINUS:
128                 memtype_flags = _PGMT_UC_MINUS;
129                 break;
130         case _PAGE_CACHE_MODE_WT:
131                 memtype_flags = _PGMT_WT;
132                 break;
133         case _PAGE_CACHE_MODE_WB:
134         default:
135                 memtype_flags = _PGMT_WB;
136                 break;
137         }
138
139         do {
140                 old_flags = pg->flags;
141                 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
142         } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
143 }
144 #else
145 static inline enum page_cache_mode get_page_memtype(struct page *pg)
146 {
147         return -1;
148 }
149 static inline void set_page_memtype(struct page *pg,
150                                     enum page_cache_mode memtype)
151 {
152 }
153 #endif
154
155 enum {
156         PAT_UC = 0,             /* uncached */
157         PAT_WC = 1,             /* Write combining */
158         PAT_WT = 4,             /* Write Through */
159         PAT_WP = 5,             /* Write Protected */
160         PAT_WB = 6,             /* Write Back (default) */
161         PAT_UC_MINUS = 7,       /* UC, but can be overridden by MTRR */
162 };
163
164 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
165
166 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
167 {
168         enum page_cache_mode cache;
169         char *cache_mode;
170
171         switch (pat_val) {
172         case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
173         case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
174         case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
175         case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
176         case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
177         case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
178         default:           cache = CM(WB);       cache_mode = "WB  "; break;
179         }
180
181         memcpy(msg, cache_mode, 4);
182
183         return cache;
184 }
185
186 #undef CM
187
188 /*
189  * Update the cache mode to pgprot translation tables according to PAT
190  * configuration.
191  * Using lower indices is preferred, so we start with highest index.
192  */
193 static void __init_cache_modes(u64 pat)
194 {
195         enum page_cache_mode cache;
196         char pat_msg[33];
197         int i;
198
199         pat_msg[32] = 0;
200         for (i = 7; i >= 0; i--) {
201                 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
202                                            pat_msg + 4 * i);
203                 update_cache_mode_entry(i, cache);
204         }
205         pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
206
207         init_cm_done = true;
208 }
209
210 #define PAT(x, y)       ((u64)PAT_ ## y << ((x)*8))
211
212 static void pat_bsp_init(u64 pat)
213 {
214         u64 tmp_pat;
215
216         if (!boot_cpu_has(X86_FEATURE_PAT)) {
217                 pat_disable("PAT not supported by CPU.");
218                 return;
219         }
220
221         rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
222         if (!tmp_pat) {
223                 pat_disable("PAT MSR is 0, disabled.");
224                 return;
225         }
226
227         wrmsrl(MSR_IA32_CR_PAT, pat);
228         pat_initialized = true;
229
230         __init_cache_modes(pat);
231 }
232
233 static void pat_ap_init(u64 pat)
234 {
235         if (!boot_cpu_has(X86_FEATURE_PAT)) {
236                 /*
237                  * If this happens we are on a secondary CPU, but switched to
238                  * PAT on the boot CPU. We have no way to undo PAT.
239                  */
240                 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
241         }
242
243         wrmsrl(MSR_IA32_CR_PAT, pat);
244 }
245
246 void init_cache_modes(void)
247 {
248         u64 pat = 0;
249
250         if (init_cm_done)
251                 return;
252
253         if (boot_cpu_has(X86_FEATURE_PAT)) {
254                 /*
255                  * CPU supports PAT. Set PAT table to be consistent with
256                  * PAT MSR. This case supports "nopat" boot option, and
257                  * virtual machine environments which support PAT without
258                  * MTRRs. In specific, Xen has unique setup to PAT MSR.
259                  *
260                  * If PAT MSR returns 0, it is considered invalid and emulates
261                  * as No PAT.
262                  */
263                 rdmsrl(MSR_IA32_CR_PAT, pat);
264         }
265
266         if (!pat) {
267                 /*
268                  * No PAT. Emulate the PAT table that corresponds to the two
269                  * cache bits, PWT (Write Through) and PCD (Cache Disable).
270                  * This setup is also the same as the BIOS default setup.
271                  *
272                  * PTE encoding:
273                  *
274                  *       PCD
275                  *       |PWT  PAT
276                  *       ||    slot
277                  *       00    0    WB : _PAGE_CACHE_MODE_WB
278                  *       01    1    WT : _PAGE_CACHE_MODE_WT
279                  *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
280                  *       11    3    UC : _PAGE_CACHE_MODE_UC
281                  *
282                  * NOTE: When WC or WP is used, it is redirected to UC- per
283                  * the default setup in __cachemode2pte_tbl[].
284                  */
285                 pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
286                       PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
287         }
288
289         __init_cache_modes(pat);
290 }
291
292 /**
293  * pat_init - Initialize PAT MSR and PAT table
294  *
295  * This function initializes PAT MSR and PAT table with an OS-defined value
296  * to enable additional cache attributes, WC, WT and WP.
297  *
298  * This function must be called on all CPUs using the specific sequence of
299  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
300  * procedure for PAT.
301  */
302 void pat_init(void)
303 {
304         u64 pat;
305         struct cpuinfo_x86 *c = &boot_cpu_data;
306
307         if (pat_disabled)
308                 return;
309
310         if ((c->x86_vendor == X86_VENDOR_INTEL) &&
311             (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
312              ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
313                 /*
314                  * PAT support with the lower four entries. Intel Pentium 2,
315                  * 3, M, and 4 are affected by PAT errata, which makes the
316                  * upper four entries unusable. To be on the safe side, we don't
317                  * use those.
318                  *
319                  *  PTE encoding:
320                  *      PAT
321                  *      |PCD
322                  *      ||PWT  PAT
323                  *      |||    slot
324                  *      000    0    WB : _PAGE_CACHE_MODE_WB
325                  *      001    1    WC : _PAGE_CACHE_MODE_WC
326                  *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
327                  *      011    3    UC : _PAGE_CACHE_MODE_UC
328                  * PAT bit unused
329                  *
330                  * NOTE: When WT or WP is used, it is redirected to UC- per
331                  * the default setup in __cachemode2pte_tbl[].
332                  */
333                 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
334                       PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
335         } else {
336                 /*
337                  * Full PAT support.  We put WT in slot 7 to improve
338                  * robustness in the presence of errata that might cause
339                  * the high PAT bit to be ignored.  This way, a buggy slot 7
340                  * access will hit slot 3, and slot 3 is UC, so at worst
341                  * we lose performance without causing a correctness issue.
342                  * Pentium 4 erratum N46 is an example for such an erratum,
343                  * although we try not to use PAT at all on affected CPUs.
344                  *
345                  *  PTE encoding:
346                  *      PAT
347                  *      |PCD
348                  *      ||PWT  PAT
349                  *      |||    slot
350                  *      000    0    WB : _PAGE_CACHE_MODE_WB
351                  *      001    1    WC : _PAGE_CACHE_MODE_WC
352                  *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
353                  *      011    3    UC : _PAGE_CACHE_MODE_UC
354                  *      100    4    WB : Reserved
355                  *      101    5    WP : _PAGE_CACHE_MODE_WP
356                  *      110    6    UC-: Reserved
357                  *      111    7    WT : _PAGE_CACHE_MODE_WT
358                  *
359                  * The reserved slots are unused, but mapped to their
360                  * corresponding types in the presence of PAT errata.
361                  */
362                 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
363                       PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
364         }
365
366         if (!boot_cpu_done) {
367                 pat_bsp_init(pat);
368                 boot_cpu_done = true;
369         } else {
370                 pat_ap_init(pat);
371         }
372 }
373
374 #undef PAT
375
376 static DEFINE_SPINLOCK(memtype_lock);   /* protects memtype accesses */
377
378 /*
379  * Does intersection of PAT memory type and MTRR memory type and returns
380  * the resulting memory type as PAT understands it.
381  * (Type in pat and mtrr will not have same value)
382  * The intersection is based on "Effective Memory Type" tables in IA-32
383  * SDM vol 3a
384  */
385 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
386                                      enum page_cache_mode req_type)
387 {
388         /*
389          * Look for MTRR hint to get the effective type in case where PAT
390          * request is for WB.
391          */
392         if (req_type == _PAGE_CACHE_MODE_WB) {
393                 u8 mtrr_type, uniform;
394
395                 mtrr_type = mtrr_type_lookup(start, end, &uniform);
396                 if (mtrr_type != MTRR_TYPE_WRBACK)
397                         return _PAGE_CACHE_MODE_UC_MINUS;
398
399                 return _PAGE_CACHE_MODE_WB;
400         }
401
402         return req_type;
403 }
404
405 struct pagerange_state {
406         unsigned long           cur_pfn;
407         int                     ram;
408         int                     not_ram;
409 };
410
411 static int
412 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
413 {
414         struct pagerange_state *state = arg;
415
416         state->not_ram  |= initial_pfn > state->cur_pfn;
417         state->ram      |= total_nr_pages > 0;
418         state->cur_pfn   = initial_pfn + total_nr_pages;
419
420         return state->ram && state->not_ram;
421 }
422
423 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
424 {
425         int ret = 0;
426         unsigned long start_pfn = start >> PAGE_SHIFT;
427         unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
428         struct pagerange_state state = {start_pfn, 0, 0};
429
430         /*
431          * For legacy reasons, physical address range in the legacy ISA
432          * region is tracked as non-RAM. This will allow users of
433          * /dev/mem to map portions of legacy ISA region, even when
434          * some of those portions are listed(or not even listed) with
435          * different e820 types(RAM/reserved/..)
436          */
437         if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
438                 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
439
440         if (start_pfn < end_pfn) {
441                 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
442                                 &state, pagerange_is_ram_callback);
443         }
444
445         return (ret > 0) ? -1 : (state.ram ? 1 : 0);
446 }
447
448 /*
449  * For RAM pages, we use page flags to mark the pages with appropriate type.
450  * The page flags are limited to four types, WB (default), WC, WT and UC-.
451  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
452  * a new memory type is only allowed for a page mapped with the default WB
453  * type.
454  *
455  * Here we do two passes:
456  * - Find the memtype of all the pages in the range, look for any conflicts.
457  * - In case of no conflicts, set the new memtype for pages in the range.
458  */
459 static int reserve_ram_pages_type(u64 start, u64 end,
460                                   enum page_cache_mode req_type,
461                                   enum page_cache_mode *new_type)
462 {
463         struct page *page;
464         u64 pfn;
465
466         if (req_type == _PAGE_CACHE_MODE_WP) {
467                 if (new_type)
468                         *new_type = _PAGE_CACHE_MODE_UC_MINUS;
469                 return -EINVAL;
470         }
471
472         if (req_type == _PAGE_CACHE_MODE_UC) {
473                 /* We do not support strong UC */
474                 WARN_ON_ONCE(1);
475                 req_type = _PAGE_CACHE_MODE_UC_MINUS;
476         }
477
478         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
479                 enum page_cache_mode type;
480
481                 page = pfn_to_page(pfn);
482                 type = get_page_memtype(page);
483                 if (type != _PAGE_CACHE_MODE_WB) {
484                         pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
485                                 start, end - 1, type, req_type);
486                         if (new_type)
487                                 *new_type = type;
488
489                         return -EBUSY;
490                 }
491         }
492
493         if (new_type)
494                 *new_type = req_type;
495
496         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
497                 page = pfn_to_page(pfn);
498                 set_page_memtype(page, req_type);
499         }
500         return 0;
501 }
502
503 static int free_ram_pages_type(u64 start, u64 end)
504 {
505         struct page *page;
506         u64 pfn;
507
508         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
509                 page = pfn_to_page(pfn);
510                 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
511         }
512         return 0;
513 }
514
515 /*
516  * req_type typically has one of the:
517  * - _PAGE_CACHE_MODE_WB
518  * - _PAGE_CACHE_MODE_WC
519  * - _PAGE_CACHE_MODE_UC_MINUS
520  * - _PAGE_CACHE_MODE_UC
521  * - _PAGE_CACHE_MODE_WT
522  *
523  * If new_type is NULL, function will return an error if it cannot reserve the
524  * region with req_type. If new_type is non-NULL, function will return
525  * available type in new_type in case of no error. In case of any error
526  * it will return a negative return value.
527  */
528 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
529                     enum page_cache_mode *new_type)
530 {
531         struct memtype *new;
532         enum page_cache_mode actual_type;
533         int is_range_ram;
534         int err = 0;
535
536         BUG_ON(start >= end); /* end is exclusive */
537
538         if (!pat_enabled()) {
539                 /* This is identical to page table setting without PAT */
540                 if (new_type)
541                         *new_type = req_type;
542                 return 0;
543         }
544
545         /* Low ISA region is always mapped WB in page table. No need to track */
546         if (x86_platform.is_untracked_pat_range(start, end)) {
547                 if (new_type)
548                         *new_type = _PAGE_CACHE_MODE_WB;
549                 return 0;
550         }
551
552         /*
553          * Call mtrr_lookup to get the type hint. This is an
554          * optimization for /dev/mem mmap'ers into WB memory (BIOS
555          * tools and ACPI tools). Use WB request for WB memory and use
556          * UC_MINUS otherwise.
557          */
558         actual_type = pat_x_mtrr_type(start, end, req_type);
559
560         if (new_type)
561                 *new_type = actual_type;
562
563         is_range_ram = pat_pagerange_is_ram(start, end);
564         if (is_range_ram == 1) {
565
566                 err = reserve_ram_pages_type(start, end, req_type, new_type);
567
568                 return err;
569         } else if (is_range_ram < 0) {
570                 return -EINVAL;
571         }
572
573         new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
574         if (!new)
575                 return -ENOMEM;
576
577         new->start      = start;
578         new->end        = end;
579         new->type       = actual_type;
580
581         spin_lock(&memtype_lock);
582
583         err = rbt_memtype_check_insert(new, new_type);
584         if (err) {
585                 pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
586                         start, end - 1,
587                         cattr_name(new->type), cattr_name(req_type));
588                 kfree(new);
589                 spin_unlock(&memtype_lock);
590
591                 return err;
592         }
593
594         spin_unlock(&memtype_lock);
595
596         dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
597                 start, end - 1, cattr_name(new->type), cattr_name(req_type),
598                 new_type ? cattr_name(*new_type) : "-");
599
600         return err;
601 }
602
603 int free_memtype(u64 start, u64 end)
604 {
605         int err = -EINVAL;
606         int is_range_ram;
607         struct memtype *entry;
608
609         if (!pat_enabled())
610                 return 0;
611
612         /* Low ISA region is always mapped WB. No need to track */
613         if (x86_platform.is_untracked_pat_range(start, end))
614                 return 0;
615
616         is_range_ram = pat_pagerange_is_ram(start, end);
617         if (is_range_ram == 1) {
618
619                 err = free_ram_pages_type(start, end);
620
621                 return err;
622         } else if (is_range_ram < 0) {
623                 return -EINVAL;
624         }
625
626         spin_lock(&memtype_lock);
627         entry = rbt_memtype_erase(start, end);
628         spin_unlock(&memtype_lock);
629
630         if (IS_ERR(entry)) {
631                 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
632                         current->comm, current->pid, start, end - 1);
633                 return -EINVAL;
634         }
635
636         kfree(entry);
637
638         dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
639
640         return 0;
641 }
642
643
644 /**
645  * lookup_memtype - Looksup the memory type for a physical address
646  * @paddr: physical address of which memory type needs to be looked up
647  *
648  * Only to be called when PAT is enabled
649  *
650  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
651  * or _PAGE_CACHE_MODE_WT.
652  */
653 static enum page_cache_mode lookup_memtype(u64 paddr)
654 {
655         enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
656         struct memtype *entry;
657
658         if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
659                 return rettype;
660
661         if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
662                 struct page *page;
663
664                 page = pfn_to_page(paddr >> PAGE_SHIFT);
665                 return get_page_memtype(page);
666         }
667
668         spin_lock(&memtype_lock);
669
670         entry = rbt_memtype_lookup(paddr);
671         if (entry != NULL)
672                 rettype = entry->type;
673         else
674                 rettype = _PAGE_CACHE_MODE_UC_MINUS;
675
676         spin_unlock(&memtype_lock);
677         return rettype;
678 }
679
680 /**
681  * io_reserve_memtype - Request a memory type mapping for a region of memory
682  * @start: start (physical address) of the region
683  * @end: end (physical address) of the region
684  * @type: A pointer to memtype, with requested type. On success, requested
685  * or any other compatible type that was available for the region is returned
686  *
687  * On success, returns 0
688  * On failure, returns non-zero
689  */
690 int io_reserve_memtype(resource_size_t start, resource_size_t end,
691                         enum page_cache_mode *type)
692 {
693         resource_size_t size = end - start;
694         enum page_cache_mode req_type = *type;
695         enum page_cache_mode new_type;
696         int ret;
697
698         WARN_ON_ONCE(iomem_map_sanity_check(start, size));
699
700         ret = reserve_memtype(start, end, req_type, &new_type);
701         if (ret)
702                 goto out_err;
703
704         if (!is_new_memtype_allowed(start, size, req_type, new_type))
705                 goto out_free;
706
707         if (kernel_map_sync_memtype(start, size, new_type) < 0)
708                 goto out_free;
709
710         *type = new_type;
711         return 0;
712
713 out_free:
714         free_memtype(start, end);
715         ret = -EBUSY;
716 out_err:
717         return ret;
718 }
719
720 /**
721  * io_free_memtype - Release a memory type mapping for a region of memory
722  * @start: start (physical address) of the region
723  * @end: end (physical address) of the region
724  */
725 void io_free_memtype(resource_size_t start, resource_size_t end)
726 {
727         free_memtype(start, end);
728 }
729
730 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
731 {
732         enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
733
734         return io_reserve_memtype(start, start + size, &type);
735 }
736 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
737
738 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
739 {
740         io_free_memtype(start, start + size);
741 }
742 EXPORT_SYMBOL(arch_io_free_memtype_wc);
743
744 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
745                                 unsigned long size, pgprot_t vma_prot)
746 {
747         if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
748                 vma_prot = pgprot_decrypted(vma_prot);
749
750         return vma_prot;
751 }
752
753 #ifdef CONFIG_STRICT_DEVMEM
754 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
755 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
756 {
757         return 1;
758 }
759 #else
760 /* This check is needed to avoid cache aliasing when PAT is enabled */
761 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
762 {
763         u64 from = ((u64)pfn) << PAGE_SHIFT;
764         u64 to = from + size;
765         u64 cursor = from;
766
767         if (!pat_enabled())
768                 return 1;
769
770         while (cursor < to) {
771                 if (!devmem_is_allowed(pfn))
772                         return 0;
773                 cursor += PAGE_SIZE;
774                 pfn++;
775         }
776         return 1;
777 }
778 #endif /* CONFIG_STRICT_DEVMEM */
779
780 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
781                                 unsigned long size, pgprot_t *vma_prot)
782 {
783         enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
784
785         if (!range_is_allowed(pfn, size))
786                 return 0;
787
788         if (file->f_flags & O_DSYNC)
789                 pcm = _PAGE_CACHE_MODE_UC_MINUS;
790
791         *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
792                              cachemode2protval(pcm));
793         return 1;
794 }
795
796 /*
797  * Change the memory type for the physial address range in kernel identity
798  * mapping space if that range is a part of identity map.
799  */
800 int kernel_map_sync_memtype(u64 base, unsigned long size,
801                             enum page_cache_mode pcm)
802 {
803         unsigned long id_sz;
804
805         if (base > __pa(high_memory-1))
806                 return 0;
807
808         /*
809          * some areas in the middle of the kernel identity range
810          * are not mapped, like the PCI space.
811          */
812         if (!page_is_ram(base >> PAGE_SHIFT))
813                 return 0;
814
815         id_sz = (__pa(high_memory-1) <= base + size) ?
816                                 __pa(high_memory) - base :
817                                 size;
818
819         if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
820                 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
821                         current->comm, current->pid,
822                         cattr_name(pcm),
823                         base, (unsigned long long)(base + size-1));
824                 return -EINVAL;
825         }
826         return 0;
827 }
828
829 /*
830  * Internal interface to reserve a range of physical memory with prot.
831  * Reserved non RAM regions only and after successful reserve_memtype,
832  * this func also keeps identity mapping (if any) in sync with this new prot.
833  */
834 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
835                                 int strict_prot)
836 {
837         int is_ram = 0;
838         int ret;
839         enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
840         enum page_cache_mode pcm = want_pcm;
841
842         is_ram = pat_pagerange_is_ram(paddr, paddr + size);
843
844         /*
845          * reserve_pfn_range() for RAM pages. We do not refcount to keep
846          * track of number of mappings of RAM pages. We can assert that
847          * the type requested matches the type of first page in the range.
848          */
849         if (is_ram) {
850                 if (!pat_enabled())
851                         return 0;
852
853                 pcm = lookup_memtype(paddr);
854                 if (want_pcm != pcm) {
855                         pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
856                                 current->comm, current->pid,
857                                 cattr_name(want_pcm),
858                                 (unsigned long long)paddr,
859                                 (unsigned long long)(paddr + size - 1),
860                                 cattr_name(pcm));
861                         *vma_prot = __pgprot((pgprot_val(*vma_prot) &
862                                              (~_PAGE_CACHE_MASK)) |
863                                              cachemode2protval(pcm));
864                 }
865                 return 0;
866         }
867
868         ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
869         if (ret)
870                 return ret;
871
872         if (pcm != want_pcm) {
873                 if (strict_prot ||
874                     !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
875                         free_memtype(paddr, paddr + size);
876                         pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
877                                current->comm, current->pid,
878                                cattr_name(want_pcm),
879                                (unsigned long long)paddr,
880                                (unsigned long long)(paddr + size - 1),
881                                cattr_name(pcm));
882                         return -EINVAL;
883                 }
884                 /*
885                  * We allow returning different type than the one requested in
886                  * non strict case.
887                  */
888                 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
889                                       (~_PAGE_CACHE_MASK)) |
890                                      cachemode2protval(pcm));
891         }
892
893         if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
894                 free_memtype(paddr, paddr + size);
895                 return -EINVAL;
896         }
897         return 0;
898 }
899
900 /*
901  * Internal interface to free a range of physical memory.
902  * Frees non RAM regions only.
903  */
904 static void free_pfn_range(u64 paddr, unsigned long size)
905 {
906         int is_ram;
907
908         is_ram = pat_pagerange_is_ram(paddr, paddr + size);
909         if (is_ram == 0)
910                 free_memtype(paddr, paddr + size);
911 }
912
913 /*
914  * track_pfn_copy is called when vma that is covering the pfnmap gets
915  * copied through copy_page_range().
916  *
917  * If the vma has a linear pfn mapping for the entire range, we get the prot
918  * from pte and reserve the entire vma range with single reserve_pfn_range call.
919  */
920 int track_pfn_copy(struct vm_area_struct *vma)
921 {
922         resource_size_t paddr;
923         unsigned long prot;
924         unsigned long vma_size = vma->vm_end - vma->vm_start;
925         pgprot_t pgprot;
926
927         if (vma->vm_flags & VM_PAT) {
928                 /*
929                  * reserve the whole chunk covered by vma. We need the
930                  * starting address and protection from pte.
931                  */
932                 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
933                         WARN_ON_ONCE(1);
934                         return -EINVAL;
935                 }
936                 pgprot = __pgprot(prot);
937                 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
938         }
939
940         return 0;
941 }
942
943 /*
944  * prot is passed in as a parameter for the new mapping. If the vma has
945  * a linear pfn mapping for the entire range, or no vma is provided,
946  * reserve the entire pfn + size range with single reserve_pfn_range
947  * call.
948  */
949 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
950                     unsigned long pfn, unsigned long addr, unsigned long size)
951 {
952         resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
953         enum page_cache_mode pcm;
954
955         /* reserve the whole chunk starting from paddr */
956         if (!vma || (addr == vma->vm_start
957                                 && size == (vma->vm_end - vma->vm_start))) {
958                 int ret;
959
960                 ret = reserve_pfn_range(paddr, size, prot, 0);
961                 if (ret == 0 && vma)
962                         vma->vm_flags |= VM_PAT;
963                 return ret;
964         }
965
966         if (!pat_enabled())
967                 return 0;
968
969         /*
970          * For anything smaller than the vma size we set prot based on the
971          * lookup.
972          */
973         pcm = lookup_memtype(paddr);
974
975         /* Check memtype for the remaining pages */
976         while (size > PAGE_SIZE) {
977                 size -= PAGE_SIZE;
978                 paddr += PAGE_SIZE;
979                 if (pcm != lookup_memtype(paddr))
980                         return -EINVAL;
981         }
982
983         *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
984                          cachemode2protval(pcm));
985
986         return 0;
987 }
988
989 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
990 {
991         enum page_cache_mode pcm;
992
993         if (!pat_enabled())
994                 return;
995
996         /* Set prot based on lookup */
997         pcm = lookup_memtype(pfn_t_to_phys(pfn));
998         *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
999                          cachemode2protval(pcm));
1000 }
1001
1002 /*
1003  * untrack_pfn is called while unmapping a pfnmap for a region.
1004  * untrack can be called for a specific region indicated by pfn and size or
1005  * can be for the entire vma (in which case pfn, size are zero).
1006  */
1007 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1008                  unsigned long size)
1009 {
1010         resource_size_t paddr;
1011         unsigned long prot;
1012
1013         if (vma && !(vma->vm_flags & VM_PAT))
1014                 return;
1015
1016         /* free the chunk starting from pfn or the whole chunk */
1017         paddr = (resource_size_t)pfn << PAGE_SHIFT;
1018         if (!paddr && !size) {
1019                 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1020                         WARN_ON_ONCE(1);
1021                         return;
1022                 }
1023
1024                 size = vma->vm_end - vma->vm_start;
1025         }
1026         free_pfn_range(paddr, size);
1027         if (vma)
1028                 vma->vm_flags &= ~VM_PAT;
1029 }
1030
1031 /*
1032  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1033  * with the old vma after its pfnmap page table has been removed.  The new
1034  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1035  */
1036 void untrack_pfn_moved(struct vm_area_struct *vma)
1037 {
1038         vma->vm_flags &= ~VM_PAT;
1039 }
1040
1041 pgprot_t pgprot_writecombine(pgprot_t prot)
1042 {
1043         return __pgprot(pgprot_val(prot) |
1044                                 cachemode2protval(_PAGE_CACHE_MODE_WC));
1045 }
1046 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1047
1048 pgprot_t pgprot_writethrough(pgprot_t prot)
1049 {
1050         return __pgprot(pgprot_val(prot) |
1051                                 cachemode2protval(_PAGE_CACHE_MODE_WT));
1052 }
1053 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1054
1055 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1056
1057 static struct memtype *memtype_get_idx(loff_t pos)
1058 {
1059         struct memtype *print_entry;
1060         int ret;
1061
1062         print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1063         if (!print_entry)
1064                 return NULL;
1065
1066         spin_lock(&memtype_lock);
1067         ret = rbt_memtype_copy_nth_element(print_entry, pos);
1068         spin_unlock(&memtype_lock);
1069
1070         if (!ret) {
1071                 return print_entry;
1072         } else {
1073                 kfree(print_entry);
1074                 return NULL;
1075         }
1076 }
1077
1078 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1079 {
1080         if (*pos == 0) {
1081                 ++*pos;
1082                 seq_puts(seq, "PAT memtype list:\n");
1083         }
1084
1085         return memtype_get_idx(*pos);
1086 }
1087
1088 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1089 {
1090         ++*pos;
1091         return memtype_get_idx(*pos);
1092 }
1093
1094 static void memtype_seq_stop(struct seq_file *seq, void *v)
1095 {
1096 }
1097
1098 static int memtype_seq_show(struct seq_file *seq, void *v)
1099 {
1100         struct memtype *print_entry = (struct memtype *)v;
1101
1102         seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1103                         print_entry->start, print_entry->end);
1104         kfree(print_entry);
1105
1106         return 0;
1107 }
1108
1109 static const struct seq_operations memtype_seq_ops = {
1110         .start = memtype_seq_start,
1111         .next  = memtype_seq_next,
1112         .stop  = memtype_seq_stop,
1113         .show  = memtype_seq_show,
1114 };
1115
1116 static int memtype_seq_open(struct inode *inode, struct file *file)
1117 {
1118         return seq_open(file, &memtype_seq_ops);
1119 }
1120
1121 static const struct file_operations memtype_fops = {
1122         .open    = memtype_seq_open,
1123         .read    = seq_read,
1124         .llseek  = seq_lseek,
1125         .release = seq_release,
1126 };
1127
1128 static int __init pat_memtype_list_init(void)
1129 {
1130         if (pat_enabled()) {
1131                 debugfs_create_file("pat_memtype_list", S_IRUSR,
1132                                     arch_debugfs_dir, NULL, &memtype_fops);
1133         }
1134         return 0;
1135 }
1136
1137 late_initcall(pat_memtype_list_init);
1138
1139 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */