GNU Linux-libre 4.9.333-gnu1
[releases.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55 #define CPA_FREE_PAGETABLES 8
56
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59
60 void update_page_count(int level, unsigned long pages)
61 {
62         /* Protect against CPA */
63         spin_lock(&pgd_lock);
64         direct_pages_count[level] += pages;
65         spin_unlock(&pgd_lock);
66 }
67
68 static void split_page_count(int level)
69 {
70         if (direct_pages_count[level] == 0)
71                 return;
72
73         direct_pages_count[level]--;
74         direct_pages_count[level - 1] += PTRS_PER_PTE;
75 }
76
77 void arch_report_meminfo(struct seq_file *m)
78 {
79         seq_printf(m, "DirectMap4k:    %8lu kB\n",
80                         direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82         seq_printf(m, "DirectMap2M:    %8lu kB\n",
83                         direct_pages_count[PG_LEVEL_2M] << 11);
84 #else
85         seq_printf(m, "DirectMap4M:    %8lu kB\n",
86                         direct_pages_count[PG_LEVEL_2M] << 12);
87 #endif
88         if (direct_gbpages)
89                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
90                         direct_pages_count[PG_LEVEL_1G] << 20);
91 }
92 #else
93 static inline void split_page_count(int level) { }
94 #endif
95
96 #ifdef CONFIG_X86_64
97
98 static inline unsigned long highmap_start_pfn(void)
99 {
100         return __pa_symbol(_text) >> PAGE_SHIFT;
101 }
102
103 static inline unsigned long highmap_end_pfn(void)
104 {
105         /* Do not reference physical address outside the kernel. */
106         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
107 }
108
109 #endif
110
111 static inline int
112 within(unsigned long addr, unsigned long start, unsigned long end)
113 {
114         return addr >= start && addr < end;
115 }
116
117 static inline int
118 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
119 {
120         return addr >= start && addr <= end;
121 }
122
123 /*
124  * Flushing functions
125  */
126
127 /**
128  * clflush_cache_range - flush a cache range with clflush
129  * @vaddr:      virtual start address
130  * @size:       number of bytes to flush
131  *
132  * clflushopt is an unordered instruction which needs fencing with mfence or
133  * sfence to avoid ordering issues.
134  */
135 void clflush_cache_range(void *vaddr, unsigned int size)
136 {
137         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
138         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
139         void *vend = vaddr + size;
140
141         if (p >= vend)
142                 return;
143
144         mb();
145
146         for (; p < vend; p += clflush_size)
147                 clflushopt(p);
148
149         mb();
150 }
151 EXPORT_SYMBOL_GPL(clflush_cache_range);
152
153 static void __cpa_flush_all(void *arg)
154 {
155         unsigned long cache = (unsigned long)arg;
156
157         /*
158          * Flush all to work around Errata in early athlons regarding
159          * large page flushing.
160          */
161         __flush_tlb_all();
162
163         if (cache && boot_cpu_data.x86 >= 4)
164                 wbinvd();
165 }
166
167 static void cpa_flush_all(unsigned long cache)
168 {
169         BUG_ON(irqs_disabled());
170
171         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
172 }
173
174 static void __cpa_flush_range(void *arg)
175 {
176         /*
177          * We could optimize that further and do individual per page
178          * tlb invalidates for a low number of pages. Caveat: we must
179          * flush the high aliases on 64bit as well.
180          */
181         __flush_tlb_all();
182 }
183
184 static void cpa_flush_range(unsigned long start, int numpages, int cache)
185 {
186         unsigned int i, level;
187         unsigned long addr;
188
189         BUG_ON(irqs_disabled());
190         WARN_ON(PAGE_ALIGN(start) != start);
191
192         on_each_cpu(__cpa_flush_range, NULL, 1);
193
194         if (!cache)
195                 return;
196
197         /*
198          * We only need to flush on one CPU,
199          * clflush is a MESI-coherent instruction that
200          * will cause all other CPUs to flush the same
201          * cachelines:
202          */
203         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
204                 pte_t *pte = lookup_address(addr, &level);
205
206                 /*
207                  * Only flush present addresses:
208                  */
209                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
210                         clflush_cache_range((void *) addr, PAGE_SIZE);
211         }
212 }
213
214 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
215                             int in_flags, struct page **pages)
216 {
217         unsigned int i, level;
218         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
219
220         BUG_ON(irqs_disabled());
221
222         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
223
224         if (!cache || do_wbinvd)
225                 return;
226
227         /*
228          * We only need to flush on one CPU,
229          * clflush is a MESI-coherent instruction that
230          * will cause all other CPUs to flush the same
231          * cachelines:
232          */
233         for (i = 0; i < numpages; i++) {
234                 unsigned long addr;
235                 pte_t *pte;
236
237                 if (in_flags & CPA_PAGES_ARRAY)
238                         addr = (unsigned long)page_address(pages[i]);
239                 else
240                         addr = start[i];
241
242                 pte = lookup_address(addr, &level);
243
244                 /*
245                  * Only flush present addresses:
246                  */
247                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
248                         clflush_cache_range((void *)addr, PAGE_SIZE);
249         }
250 }
251
252 /*
253  * Certain areas of memory on x86 require very specific protection flags,
254  * for example the BIOS area or kernel text. Callers don't always get this
255  * right (again, ioremap() on BIOS memory is not uncommon) so this function
256  * checks and fixes these known static required protection bits.
257  */
258 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
259                                    unsigned long pfn)
260 {
261         pgprot_t forbidden = __pgprot(0);
262
263         /*
264          * The BIOS area between 640k and 1Mb needs to be executable for
265          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
266          */
267 #ifdef CONFIG_PCI_BIOS
268         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
269                 pgprot_val(forbidden) |= _PAGE_NX;
270 #endif
271
272         /*
273          * The kernel text needs to be executable for obvious reasons
274          * Does not cover __inittext since that is gone later on. On
275          * 64bit we do not enforce !NX on the low mapping
276          */
277         if (within(address, (unsigned long)_text, (unsigned long)_etext))
278                 pgprot_val(forbidden) |= _PAGE_NX;
279
280         /*
281          * The .rodata section needs to be read-only. Using the pfn
282          * catches all aliases.  This also includes __ro_after_init,
283          * so do not enforce until kernel_set_to_readonly is true.
284          */
285         if (kernel_set_to_readonly &&
286             within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
287                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
288                 pgprot_val(forbidden) |= _PAGE_RW;
289
290 #if defined(CONFIG_X86_64)
291         /*
292          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
293          * kernel text mappings for the large page aligned text, rodata sections
294          * will be always read-only. For the kernel identity mappings covering
295          * the holes caused by this alignment can be anything that user asks.
296          *
297          * This will preserve the large page mappings for kernel text/data
298          * at no extra cost.
299          */
300         if (kernel_set_to_readonly &&
301             within(address, (unsigned long)_text,
302                    (unsigned long)__end_rodata_hpage_align)) {
303                 unsigned int level;
304
305                 /*
306                  * Don't enforce the !RW mapping for the kernel text mapping,
307                  * if the current mapping is already using small page mapping.
308                  * No need to work hard to preserve large page mappings in this
309                  * case.
310                  *
311                  * This also fixes the Linux Xen paravirt guest boot failure
312                  * (because of unexpected read-only mappings for kernel identity
313                  * mappings). In this paravirt guest case, the kernel text
314                  * mapping and the kernel identity mapping share the same
315                  * page-table pages. Thus we can't really use different
316                  * protections for the kernel text and identity mappings. Also,
317                  * these shared mappings are made of small page mappings.
318                  * Thus this don't enforce !RW mapping for small page kernel
319                  * text mapping logic will help Linux Xen parvirt guest boot
320                  * as well.
321                  */
322                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
323                         pgprot_val(forbidden) |= _PAGE_RW;
324         }
325 #endif
326
327         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
328
329         return prot;
330 }
331
332 /*
333  * Lookup the page table entry for a virtual address in a specific pgd.
334  * Return a pointer to the entry and the level of the mapping.
335  */
336 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
337                              unsigned int *level)
338 {
339         pud_t *pud;
340         pmd_t *pmd;
341
342         *level = PG_LEVEL_NONE;
343
344         if (pgd_none(*pgd))
345                 return NULL;
346
347         pud = pud_offset(pgd, address);
348         if (pud_none(*pud))
349                 return NULL;
350
351         *level = PG_LEVEL_1G;
352         if (pud_large(*pud) || !pud_present(*pud))
353                 return (pte_t *)pud;
354
355         pmd = pmd_offset(pud, address);
356         if (pmd_none(*pmd))
357                 return NULL;
358
359         *level = PG_LEVEL_2M;
360         if (pmd_large(*pmd) || !pmd_present(*pmd))
361                 return (pte_t *)pmd;
362
363         *level = PG_LEVEL_4K;
364
365         return pte_offset_kernel(pmd, address);
366 }
367
368 /*
369  * Lookup the page table entry for a virtual address. Return a pointer
370  * to the entry and the level of the mapping.
371  *
372  * Note: We return pud and pmd either when the entry is marked large
373  * or when the present bit is not set. Otherwise we would return a
374  * pointer to a nonexisting mapping.
375  */
376 pte_t *lookup_address(unsigned long address, unsigned int *level)
377 {
378         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
379 }
380 EXPORT_SYMBOL_GPL(lookup_address);
381
382 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
383                                   unsigned int *level)
384 {
385         if (cpa->pgd)
386                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
387                                                address, level);
388
389         return lookup_address(address, level);
390 }
391
392 /*
393  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
394  * or NULL if not present.
395  */
396 pmd_t *lookup_pmd_address(unsigned long address)
397 {
398         pgd_t *pgd;
399         pud_t *pud;
400
401         pgd = pgd_offset_k(address);
402         if (pgd_none(*pgd))
403                 return NULL;
404
405         pud = pud_offset(pgd, address);
406         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
407                 return NULL;
408
409         return pmd_offset(pud, address);
410 }
411
412 /*
413  * This is necessary because __pa() does not work on some
414  * kinds of memory, like vmalloc() or the alloc_remap()
415  * areas on 32-bit NUMA systems.  The percpu areas can
416  * end up in this kind of memory, for instance.
417  *
418  * This could be optimized, but it is only intended to be
419  * used at inititalization time, and keeping it
420  * unoptimized should increase the testing coverage for
421  * the more obscure platforms.
422  */
423 phys_addr_t slow_virt_to_phys(void *__virt_addr)
424 {
425         unsigned long virt_addr = (unsigned long)__virt_addr;
426         phys_addr_t phys_addr;
427         unsigned long offset;
428         enum pg_level level;
429         pte_t *pte;
430
431         pte = lookup_address(virt_addr, &level);
432         BUG_ON(!pte);
433
434         /*
435          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
436          * before being left-shifted PAGE_SHIFT bits -- this trick is to
437          * make 32-PAE kernel work correctly.
438          */
439         switch (level) {
440         case PG_LEVEL_1G:
441                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
442                 offset = virt_addr & ~PUD_PAGE_MASK;
443                 break;
444         case PG_LEVEL_2M:
445                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
446                 offset = virt_addr & ~PMD_PAGE_MASK;
447                 break;
448         default:
449                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
450                 offset = virt_addr & ~PAGE_MASK;
451         }
452
453         return (phys_addr_t)(phys_addr | offset);
454 }
455 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
456
457 /*
458  * Set the new pmd in all the pgds we know about:
459  */
460 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
461 {
462         /* change init_mm */
463         set_pte_atomic(kpte, pte);
464 #ifdef CONFIG_X86_32
465         if (!SHARED_KERNEL_PMD) {
466                 struct page *page;
467
468                 list_for_each_entry(page, &pgd_list, lru) {
469                         pgd_t *pgd;
470                         pud_t *pud;
471                         pmd_t *pmd;
472
473                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
474                         pud = pud_offset(pgd, address);
475                         pmd = pmd_offset(pud, address);
476                         set_pte_atomic((pte_t *)pmd, pte);
477                 }
478         }
479 #endif
480 }
481
482 static int
483 try_preserve_large_page(pte_t *kpte, unsigned long address,
484                         struct cpa_data *cpa)
485 {
486         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
487         pte_t new_pte, old_pte, *tmp;
488         pgprot_t old_prot, new_prot, req_prot;
489         int i, do_split = 1;
490         enum pg_level level;
491
492         if (cpa->force_split)
493                 return 1;
494
495         spin_lock(&pgd_lock);
496         /*
497          * Check for races, another CPU might have split this page
498          * up already:
499          */
500         tmp = _lookup_address_cpa(cpa, address, &level);
501         if (tmp != kpte)
502                 goto out_unlock;
503
504         switch (level) {
505         case PG_LEVEL_2M:
506                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
507                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
508                 break;
509         case PG_LEVEL_1G:
510                 old_prot = pud_pgprot(*(pud_t *)kpte);
511                 old_pfn = pud_pfn(*(pud_t *)kpte);
512                 break;
513         default:
514                 do_split = -EINVAL;
515                 goto out_unlock;
516         }
517
518         psize = page_level_size(level);
519         pmask = page_level_mask(level);
520
521         /*
522          * Calculate the number of pages, which fit into this large
523          * page starting at address:
524          */
525         nextpage_addr = (address + psize) & pmask;
526         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
527         if (numpages < cpa->numpages)
528                 cpa->numpages = numpages;
529
530         /*
531          * We are safe now. Check whether the new pgprot is the same:
532          * Convert protection attributes to 4k-format, as cpa->mask* are set
533          * up accordingly.
534          */
535         old_pte = *kpte;
536         req_prot = pgprot_large_2_4k(old_prot);
537
538         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
539         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
540
541         /*
542          * req_prot is in format of 4k pages. It must be converted to large
543          * page format: the caching mode includes the PAT bit located at
544          * different bit positions in the two formats.
545          */
546         req_prot = pgprot_4k_2_large(req_prot);
547
548         /*
549          * Set the PSE and GLOBAL flags only if the PRESENT flag is
550          * set otherwise pmd_present/pmd_huge will return true even on
551          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
552          * for the ancient hardware that doesn't support it.
553          */
554         if (pgprot_val(req_prot) & _PAGE_PRESENT)
555                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
556         else
557                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
558
559         req_prot = canon_pgprot(req_prot);
560
561         /*
562          * old_pfn points to the large page base pfn. So we need
563          * to add the offset of the virtual address:
564          */
565         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
566         cpa->pfn = pfn;
567
568         new_prot = static_protections(req_prot, address, pfn);
569
570         /*
571          * We need to check the full range, whether
572          * static_protection() requires a different pgprot for one of
573          * the pages in the range we try to preserve:
574          */
575         addr = address & pmask;
576         pfn = old_pfn;
577         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
578                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
579
580                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
581                         goto out_unlock;
582         }
583
584         /*
585          * If there are no changes, return. maxpages has been updated
586          * above:
587          */
588         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
589                 do_split = 0;
590                 goto out_unlock;
591         }
592
593         /*
594          * We need to change the attributes. Check, whether we can
595          * change the large page in one go. We request a split, when
596          * the address is not aligned and the number of pages is
597          * smaller than the number of pages in the large page. Note
598          * that we limited the number of possible pages already to
599          * the number of pages in the large page.
600          */
601         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
602                 /*
603                  * The address is aligned and the number of pages
604                  * covers the full page.
605                  */
606                 new_pte = pfn_pte(old_pfn, new_prot);
607                 __set_pmd_pte(kpte, address, new_pte);
608                 cpa->flags |= CPA_FLUSHTLB;
609                 do_split = 0;
610         }
611
612 out_unlock:
613         spin_unlock(&pgd_lock);
614
615         return do_split;
616 }
617
618 static int
619 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
620                    struct page *base)
621 {
622         pte_t *pbase = (pte_t *)page_address(base);
623         unsigned long ref_pfn, pfn, pfninc = 1;
624         unsigned int i, level;
625         pte_t *tmp;
626         pgprot_t ref_prot;
627
628         spin_lock(&pgd_lock);
629         /*
630          * Check for races, another CPU might have split this page
631          * up for us already:
632          */
633         tmp = _lookup_address_cpa(cpa, address, &level);
634         if (tmp != kpte) {
635                 spin_unlock(&pgd_lock);
636                 return 1;
637         }
638
639         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
640
641         switch (level) {
642         case PG_LEVEL_2M:
643                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
644                 /* clear PSE and promote PAT bit to correct position */
645                 ref_prot = pgprot_large_2_4k(ref_prot);
646                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
647                 break;
648
649         case PG_LEVEL_1G:
650                 ref_prot = pud_pgprot(*(pud_t *)kpte);
651                 ref_pfn = pud_pfn(*(pud_t *)kpte);
652                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
653
654                 /*
655                  * Clear the PSE flags if the PRESENT flag is not set
656                  * otherwise pmd_present/pmd_huge will return true
657                  * even on a non present pmd.
658                  */
659                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
660                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
661                 break;
662
663         default:
664                 spin_unlock(&pgd_lock);
665                 return 1;
666         }
667
668         /*
669          * Set the GLOBAL flags only if the PRESENT flag is set
670          * otherwise pmd/pte_present will return true even on a non
671          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
672          * for the ancient hardware that doesn't support it.
673          */
674         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
675                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
676         else
677                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
678
679         /*
680          * Get the target pfn from the original entry:
681          */
682         pfn = ref_pfn;
683         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
684                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
685
686         if (virt_addr_valid(address)) {
687                 unsigned long pfn = PFN_DOWN(__pa(address));
688
689                 if (pfn_range_is_mapped(pfn, pfn + 1))
690                         split_page_count(level);
691         }
692
693         /*
694          * Install the new, split up pagetable.
695          *
696          * We use the standard kernel pagetable protections for the new
697          * pagetable protections, the actual ptes set above control the
698          * primary protection behavior:
699          */
700         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
701
702         /*
703          * Intel Atom errata AAH41 workaround.
704          *
705          * The real fix should be in hw or in a microcode update, but
706          * we also probabilistically try to reduce the window of having
707          * a large TLB mixed with 4K TLBs while instruction fetches are
708          * going on.
709          */
710         __flush_tlb_all();
711         spin_unlock(&pgd_lock);
712
713         return 0;
714 }
715
716 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
717                             unsigned long address)
718 {
719         struct page *base;
720
721         if (!debug_pagealloc_enabled())
722                 spin_unlock(&cpa_lock);
723         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
724         if (!debug_pagealloc_enabled())
725                 spin_lock(&cpa_lock);
726         if (!base)
727                 return -ENOMEM;
728
729         if (__split_large_page(cpa, kpte, address, base))
730                 __free_page(base);
731
732         return 0;
733 }
734
735 static bool try_to_free_pte_page(struct cpa_data *cpa, pte_t *pte)
736 {
737         int i;
738
739         if (!(cpa->flags & CPA_FREE_PAGETABLES))
740                 return false;
741
742         for (i = 0; i < PTRS_PER_PTE; i++)
743                 if (!pte_none(pte[i]))
744                         return false;
745
746         free_page((unsigned long)pte);
747         return true;
748 }
749
750 static bool try_to_free_pmd_page(struct cpa_data *cpa, pmd_t *pmd)
751 {
752         int i;
753
754         if (!(cpa->flags & CPA_FREE_PAGETABLES))
755                 return false;
756
757         for (i = 0; i < PTRS_PER_PMD; i++)
758                 if (!pmd_none(pmd[i]))
759                         return false;
760
761         free_page((unsigned long)pmd);
762         return true;
763 }
764
765 static bool unmap_pte_range(struct cpa_data *cpa, pmd_t *pmd,
766                             unsigned long start,
767                             unsigned long end)
768 {
769         pte_t *pte = pte_offset_kernel(pmd, start);
770
771         while (start < end) {
772                 set_pte(pte, __pte(0));
773
774                 start += PAGE_SIZE;
775                 pte++;
776         }
777
778         if (try_to_free_pte_page(cpa, (pte_t *)pmd_page_vaddr(*pmd))) {
779                 pmd_clear(pmd);
780                 return true;
781         }
782         return false;
783 }
784
785 static void __unmap_pmd_range(struct cpa_data *cpa, pud_t *pud, pmd_t *pmd,
786                               unsigned long start, unsigned long end)
787 {
788         if (unmap_pte_range(cpa, pmd, start, end))
789                 if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
790                         pud_clear(pud);
791 }
792
793 static void unmap_pmd_range(struct cpa_data *cpa, pud_t *pud,
794                             unsigned long start, unsigned long end)
795 {
796         pmd_t *pmd = pmd_offset(pud, start);
797
798         /*
799          * Not on a 2MB page boundary?
800          */
801         if (start & (PMD_SIZE - 1)) {
802                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
803                 unsigned long pre_end = min_t(unsigned long, end, next_page);
804
805                 __unmap_pmd_range(cpa, pud, pmd, start, pre_end);
806
807                 start = pre_end;
808                 pmd++;
809         }
810
811         /*
812          * Try to unmap in 2M chunks.
813          */
814         while (end - start >= PMD_SIZE) {
815                 if (pmd_large(*pmd))
816                         pmd_clear(pmd);
817                 else
818                         __unmap_pmd_range(cpa, pud, pmd,
819                                           start, start + PMD_SIZE);
820
821                 start += PMD_SIZE;
822                 pmd++;
823         }
824
825         /*
826          * 4K leftovers?
827          */
828         if (start < end)
829                 return __unmap_pmd_range(cpa, pud, pmd, start, end);
830
831         /*
832          * Try again to free the PMD page if haven't succeeded above.
833          */
834         if (!pud_none(*pud))
835                 if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
836                         pud_clear(pud);
837 }
838
839 static void __unmap_pud_range(struct cpa_data *cpa, pgd_t *pgd,
840                               unsigned long start,
841                               unsigned long end)
842 {
843         pud_t *pud = pud_offset(pgd, start);
844
845         /*
846          * Not on a GB page boundary?
847          */
848         if (start & (PUD_SIZE - 1)) {
849                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
850                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
851
852                 unmap_pmd_range(cpa, pud, start, pre_end);
853
854                 start = pre_end;
855                 pud++;
856         }
857
858         /*
859          * Try to unmap in 1G chunks?
860          */
861         while (end - start >= PUD_SIZE) {
862
863                 if (pud_large(*pud))
864                         pud_clear(pud);
865                 else
866                         unmap_pmd_range(cpa, pud, start, start + PUD_SIZE);
867
868                 start += PUD_SIZE;
869                 pud++;
870         }
871
872         /*
873          * 2M leftovers?
874          */
875         if (start < end)
876                 unmap_pmd_range(cpa, pud, start, end);
877
878         /*
879          * No need to try to free the PUD page because we'll free it in
880          * populate_pgd's error path
881          */
882 }
883
884 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
885 {
886         struct cpa_data cpa = {
887                 .flags = CPA_FREE_PAGETABLES,
888         };
889
890         __unmap_pud_range(&cpa, pgd, start, end);
891 }
892
893 void unmap_pud_range_nofree(pgd_t *pgd, unsigned long start, unsigned long end)
894 {
895         struct cpa_data cpa = {
896                 .flags = 0,
897         };
898
899         __unmap_pud_range(&cpa, pgd, start, end);
900 }
901
902 static int alloc_pte_page(pmd_t *pmd)
903 {
904         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
905         if (!pte)
906                 return -1;
907
908         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
909         return 0;
910 }
911
912 static int alloc_pmd_page(pud_t *pud)
913 {
914         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
915         if (!pmd)
916                 return -1;
917
918         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
919         return 0;
920 }
921
922 static void populate_pte(struct cpa_data *cpa,
923                          unsigned long start, unsigned long end,
924                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
925 {
926         pte_t *pte;
927
928         pte = pte_offset_kernel(pmd, start);
929
930         /*
931          * Set the GLOBAL flags only if the PRESENT flag is
932          * set otherwise pte_present will return true even on
933          * a non present pte. The canon_pgprot will clear
934          * _PAGE_GLOBAL for the ancient hardware that doesn't
935          * support it.
936          */
937         if (pgprot_val(pgprot) & _PAGE_PRESENT)
938                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
939         else
940                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
941
942         pgprot = canon_pgprot(pgprot);
943
944         while (num_pages-- && start < end) {
945                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
946
947                 start    += PAGE_SIZE;
948                 cpa->pfn++;
949                 pte++;
950         }
951 }
952
953 static long populate_pmd(struct cpa_data *cpa,
954                          unsigned long start, unsigned long end,
955                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
956 {
957         long cur_pages = 0;
958         pmd_t *pmd;
959         pgprot_t pmd_pgprot;
960
961         /*
962          * Not on a 2M boundary?
963          */
964         if (start & (PMD_SIZE - 1)) {
965                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
966                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
967
968                 pre_end   = min_t(unsigned long, pre_end, next_page);
969                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
970                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
971
972                 /*
973                  * Need a PTE page?
974                  */
975                 pmd = pmd_offset(pud, start);
976                 if (pmd_none(*pmd))
977                         if (alloc_pte_page(pmd))
978                                 return -1;
979
980                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
981
982                 start = pre_end;
983         }
984
985         /*
986          * We mapped them all?
987          */
988         if (num_pages == cur_pages)
989                 return cur_pages;
990
991         pmd_pgprot = pgprot_4k_2_large(pgprot);
992
993         while (end - start >= PMD_SIZE) {
994
995                 /*
996                  * We cannot use a 1G page so allocate a PMD page if needed.
997                  */
998                 if (pud_none(*pud))
999                         if (alloc_pmd_page(pud))
1000                                 return -1;
1001
1002                 pmd = pmd_offset(pud, start);
1003
1004                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1005                                         canon_pgprot(pmd_pgprot))));
1006
1007                 start     += PMD_SIZE;
1008                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1009                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1010         }
1011
1012         /*
1013          * Map trailing 4K pages.
1014          */
1015         if (start < end) {
1016                 pmd = pmd_offset(pud, start);
1017                 if (pmd_none(*pmd))
1018                         if (alloc_pte_page(pmd))
1019                                 return -1;
1020
1021                 populate_pte(cpa, start, end, num_pages - cur_pages,
1022                              pmd, pgprot);
1023         }
1024         return num_pages;
1025 }
1026
1027 static long populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1028                          pgprot_t pgprot)
1029 {
1030         pud_t *pud;
1031         unsigned long end;
1032         long cur_pages = 0;
1033         pgprot_t pud_pgprot;
1034
1035         end = start + (cpa->numpages << PAGE_SHIFT);
1036
1037         /*
1038          * Not on a Gb page boundary? => map everything up to it with
1039          * smaller pages.
1040          */
1041         if (start & (PUD_SIZE - 1)) {
1042                 unsigned long pre_end;
1043                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1044
1045                 pre_end   = min_t(unsigned long, end, next_page);
1046                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1047                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1048
1049                 pud = pud_offset(pgd, start);
1050
1051                 /*
1052                  * Need a PMD page?
1053                  */
1054                 if (pud_none(*pud))
1055                         if (alloc_pmd_page(pud))
1056                                 return -1;
1057
1058                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1059                                          pud, pgprot);
1060                 if (cur_pages < 0)
1061                         return cur_pages;
1062
1063                 start = pre_end;
1064         }
1065
1066         /* We mapped them all? */
1067         if (cpa->numpages == cur_pages)
1068                 return cur_pages;
1069
1070         pud = pud_offset(pgd, start);
1071         pud_pgprot = pgprot_4k_2_large(pgprot);
1072
1073         /*
1074          * Map everything starting from the Gb boundary, possibly with 1G pages
1075          */
1076         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1077                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1078                                    canon_pgprot(pud_pgprot))));
1079
1080                 start     += PUD_SIZE;
1081                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1082                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1083                 pud++;
1084         }
1085
1086         /* Map trailing leftover */
1087         if (start < end) {
1088                 long tmp;
1089
1090                 pud = pud_offset(pgd, start);
1091                 if (pud_none(*pud))
1092                         if (alloc_pmd_page(pud))
1093                                 return -1;
1094
1095                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1096                                    pud, pgprot);
1097                 if (tmp < 0)
1098                         return cur_pages;
1099
1100                 cur_pages += tmp;
1101         }
1102         return cur_pages;
1103 }
1104
1105 /*
1106  * Restrictions for kernel page table do not necessarily apply when mapping in
1107  * an alternate PGD.
1108  */
1109 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1110 {
1111         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1112         pud_t *pud = NULL;      /* shut up gcc */
1113         pgd_t *pgd_entry;
1114         long ret;
1115
1116         pgd_entry = cpa->pgd + pgd_index(addr);
1117
1118         /*
1119          * Allocate a PUD page and hand it down for mapping.
1120          */
1121         if (pgd_none(*pgd_entry)) {
1122                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1123                 if (!pud)
1124                         return -1;
1125
1126                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1127         }
1128
1129         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1130         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1131
1132         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1133         if (ret < 0) {
1134                 /*
1135                  * Leave the PUD page in place in case some other CPU or thread
1136                  * already found it, but remove any useless entries we just
1137                  * added to it.
1138                  */
1139                 unmap_pud_range(pgd_entry, addr,
1140                                 addr + (cpa->numpages << PAGE_SHIFT));
1141                 return ret;
1142         }
1143
1144         cpa->numpages = ret;
1145         return 0;
1146 }
1147
1148 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1149                                int primary)
1150 {
1151         if (cpa->pgd) {
1152                 /*
1153                  * Right now, we only execute this code path when mapping
1154                  * the EFI virtual memory map regions, no other users
1155                  * provide a ->pgd value. This may change in the future.
1156                  */
1157                 return populate_pgd(cpa, vaddr);
1158         }
1159
1160         /*
1161          * Ignore all non primary paths.
1162          */
1163         if (!primary) {
1164                 cpa->numpages = 1;
1165                 return 0;
1166         }
1167
1168         /*
1169          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1170          * to have holes.
1171          * Also set numpages to '1' indicating that we processed cpa req for
1172          * one virtual address page and its pfn. TBD: numpages can be set based
1173          * on the initial value and the level returned by lookup_address().
1174          */
1175         if (within(vaddr, PAGE_OFFSET,
1176                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1177                 cpa->numpages = 1;
1178                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1179                 return 0;
1180         } else {
1181                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1182                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1183                         *cpa->vaddr);
1184
1185                 return -EFAULT;
1186         }
1187 }
1188
1189 static int __change_page_attr(struct cpa_data *cpa, int primary)
1190 {
1191         unsigned long address;
1192         int do_split, err;
1193         unsigned int level;
1194         pte_t *kpte, old_pte;
1195
1196         if (cpa->flags & CPA_PAGES_ARRAY) {
1197                 struct page *page = cpa->pages[cpa->curpage];
1198                 if (unlikely(PageHighMem(page)))
1199                         return 0;
1200                 address = (unsigned long)page_address(page);
1201         } else if (cpa->flags & CPA_ARRAY)
1202                 address = cpa->vaddr[cpa->curpage];
1203         else
1204                 address = *cpa->vaddr;
1205 repeat:
1206         kpte = _lookup_address_cpa(cpa, address, &level);
1207         if (!kpte)
1208                 return __cpa_process_fault(cpa, address, primary);
1209
1210         old_pte = *kpte;
1211         if (pte_none(old_pte))
1212                 return __cpa_process_fault(cpa, address, primary);
1213
1214         if (level == PG_LEVEL_4K) {
1215                 pte_t new_pte;
1216                 pgprot_t new_prot = pte_pgprot(old_pte);
1217                 unsigned long pfn = pte_pfn(old_pte);
1218
1219                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1220                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1221
1222                 new_prot = static_protections(new_prot, address, pfn);
1223
1224                 /*
1225                  * Set the GLOBAL flags only if the PRESENT flag is
1226                  * set otherwise pte_present will return true even on
1227                  * a non present pte. The canon_pgprot will clear
1228                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1229                  * support it.
1230                  */
1231                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1232                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1233                 else
1234                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1235
1236                 /*
1237                  * We need to keep the pfn from the existing PTE,
1238                  * after all we're only going to change it's attributes
1239                  * not the memory it points to
1240                  */
1241                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1242                 cpa->pfn = pfn;
1243                 /*
1244                  * Do we really change anything ?
1245                  */
1246                 if (pte_val(old_pte) != pte_val(new_pte)) {
1247                         set_pte_atomic(kpte, new_pte);
1248                         cpa->flags |= CPA_FLUSHTLB;
1249                 }
1250                 cpa->numpages = 1;
1251                 return 0;
1252         }
1253
1254         /*
1255          * Check, whether we can keep the large page intact
1256          * and just change the pte:
1257          */
1258         do_split = try_preserve_large_page(kpte, address, cpa);
1259         /*
1260          * When the range fits into the existing large page,
1261          * return. cp->numpages and cpa->tlbflush have been updated in
1262          * try_large_page:
1263          */
1264         if (do_split <= 0)
1265                 return do_split;
1266
1267         /*
1268          * We have to split the large page:
1269          */
1270         err = split_large_page(cpa, kpte, address);
1271         if (!err) {
1272                 /*
1273                  * Do a global flush tlb after splitting the large page
1274                  * and before we do the actual change page attribute in the PTE.
1275                  *
1276                  * With out this, we violate the TLB application note, that says
1277                  * "The TLBs may contain both ordinary and large-page
1278                  *  translations for a 4-KByte range of linear addresses. This
1279                  *  may occur if software modifies the paging structures so that
1280                  *  the page size used for the address range changes. If the two
1281                  *  translations differ with respect to page frame or attributes
1282                  *  (e.g., permissions), processor behavior is undefined and may
1283                  *  be implementation-specific."
1284                  *
1285                  * We do this global tlb flush inside the cpa_lock, so that we
1286                  * don't allow any other cpu, with stale tlb entries change the
1287                  * page attribute in parallel, that also falls into the
1288                  * just split large page entry.
1289                  */
1290                 flush_tlb_all();
1291                 goto repeat;
1292         }
1293
1294         return err;
1295 }
1296
1297 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1298
1299 static int cpa_process_alias(struct cpa_data *cpa)
1300 {
1301         struct cpa_data alias_cpa;
1302         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1303         unsigned long vaddr;
1304         int ret;
1305
1306         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1307                 return 0;
1308
1309         /*
1310          * No need to redo, when the primary call touched the direct
1311          * mapping already:
1312          */
1313         if (cpa->flags & CPA_PAGES_ARRAY) {
1314                 struct page *page = cpa->pages[cpa->curpage];
1315                 if (unlikely(PageHighMem(page)))
1316                         return 0;
1317                 vaddr = (unsigned long)page_address(page);
1318         } else if (cpa->flags & CPA_ARRAY)
1319                 vaddr = cpa->vaddr[cpa->curpage];
1320         else
1321                 vaddr = *cpa->vaddr;
1322
1323         if (!(within(vaddr, PAGE_OFFSET,
1324                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1325
1326                 alias_cpa = *cpa;
1327                 alias_cpa.vaddr = &laddr;
1328                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1329
1330                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1331                 if (ret)
1332                         return ret;
1333         }
1334
1335 #ifdef CONFIG_X86_64
1336         /*
1337          * If the primary call didn't touch the high mapping already
1338          * and the physical address is inside the kernel map, we need
1339          * to touch the high mapped kernel as well:
1340          */
1341         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1342             within_inclusive(cpa->pfn, highmap_start_pfn(),
1343                              highmap_end_pfn())) {
1344                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1345                                                __START_KERNEL_map - phys_base;
1346                 alias_cpa = *cpa;
1347                 alias_cpa.vaddr = &temp_cpa_vaddr;
1348                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1349
1350                 /*
1351                  * The high mapping range is imprecise, so ignore the
1352                  * return value.
1353                  */
1354                 __change_page_attr_set_clr(&alias_cpa, 0);
1355         }
1356 #endif
1357
1358         return 0;
1359 }
1360
1361 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1362 {
1363         unsigned long numpages = cpa->numpages;
1364         int ret;
1365
1366         while (numpages) {
1367                 /*
1368                  * Store the remaining nr of pages for the large page
1369                  * preservation check.
1370                  */
1371                 cpa->numpages = numpages;
1372                 /* for array changes, we can't use large page */
1373                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1374                         cpa->numpages = 1;
1375
1376                 if (!debug_pagealloc_enabled())
1377                         spin_lock(&cpa_lock);
1378                 ret = __change_page_attr(cpa, checkalias);
1379                 if (!debug_pagealloc_enabled())
1380                         spin_unlock(&cpa_lock);
1381                 if (ret)
1382                         return ret;
1383
1384                 if (checkalias) {
1385                         ret = cpa_process_alias(cpa);
1386                         if (ret)
1387                                 return ret;
1388                 }
1389
1390                 /*
1391                  * Adjust the number of pages with the result of the
1392                  * CPA operation. Either a large page has been
1393                  * preserved or a single page update happened.
1394                  */
1395                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1396                 numpages -= cpa->numpages;
1397                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1398                         cpa->curpage++;
1399                 else
1400                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1401
1402         }
1403         return 0;
1404 }
1405
1406 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1407                                     pgprot_t mask_set, pgprot_t mask_clr,
1408                                     int force_split, int in_flag,
1409                                     struct page **pages)
1410 {
1411         struct cpa_data cpa;
1412         int ret, cache, checkalias;
1413         unsigned long baddr = 0;
1414
1415         memset(&cpa, 0, sizeof(cpa));
1416
1417         /*
1418          * Check, if we are requested to change a not supported
1419          * feature:
1420          */
1421         mask_set = canon_pgprot(mask_set);
1422         mask_clr = canon_pgprot(mask_clr);
1423         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1424                 return 0;
1425
1426         /* Ensure we are PAGE_SIZE aligned */
1427         if (in_flag & CPA_ARRAY) {
1428                 int i;
1429                 for (i = 0; i < numpages; i++) {
1430                         if (addr[i] & ~PAGE_MASK) {
1431                                 addr[i] &= PAGE_MASK;
1432                                 WARN_ON_ONCE(1);
1433                         }
1434                 }
1435         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1436                 /*
1437                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1438                  * No need to cehck in that case
1439                  */
1440                 if (*addr & ~PAGE_MASK) {
1441                         *addr &= PAGE_MASK;
1442                         /*
1443                          * People should not be passing in unaligned addresses:
1444                          */
1445                         WARN_ON_ONCE(1);
1446                 }
1447                 /*
1448                  * Save address for cache flush. *addr is modified in the call
1449                  * to __change_page_attr_set_clr() below.
1450                  */
1451                 baddr = *addr;
1452         }
1453
1454         /* Must avoid aliasing mappings in the highmem code */
1455         kmap_flush_unused();
1456
1457         vm_unmap_aliases();
1458
1459         cpa.vaddr = addr;
1460         cpa.pages = pages;
1461         cpa.numpages = numpages;
1462         cpa.mask_set = mask_set;
1463         cpa.mask_clr = mask_clr;
1464         cpa.flags = 0;
1465         cpa.curpage = 0;
1466         cpa.force_split = force_split;
1467
1468         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1469                 cpa.flags |= in_flag;
1470
1471         /* No alias checking for _NX bit modifications */
1472         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1473
1474         ret = __change_page_attr_set_clr(&cpa, checkalias);
1475
1476         /*
1477          * Check whether we really changed something:
1478          */
1479         if (!(cpa.flags & CPA_FLUSHTLB))
1480                 goto out;
1481
1482         /*
1483          * No need to flush, when we did not set any of the caching
1484          * attributes:
1485          */
1486         cache = !!pgprot2cachemode(mask_set);
1487
1488         /*
1489          * On success we use CLFLUSH, when the CPU supports it to
1490          * avoid the WBINVD. If the CPU does not support it and in the
1491          * error case we fall back to cpa_flush_all (which uses
1492          * WBINVD):
1493          */
1494         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1495                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1496                         cpa_flush_array(addr, numpages, cache,
1497                                         cpa.flags, pages);
1498                 } else
1499                         cpa_flush_range(baddr, numpages, cache);
1500         } else
1501                 cpa_flush_all(cache);
1502
1503 out:
1504         return ret;
1505 }
1506
1507 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1508                                        pgprot_t mask, int array)
1509 {
1510         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1511                 (array ? CPA_ARRAY : 0), NULL);
1512 }
1513
1514 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1515                                          pgprot_t mask, int array)
1516 {
1517         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1518                 (array ? CPA_ARRAY : 0), NULL);
1519 }
1520
1521 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1522                                        pgprot_t mask)
1523 {
1524         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1525                 CPA_PAGES_ARRAY, pages);
1526 }
1527
1528 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1529                                          pgprot_t mask)
1530 {
1531         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1532                 CPA_PAGES_ARRAY, pages);
1533 }
1534
1535 int _set_memory_uc(unsigned long addr, int numpages)
1536 {
1537         /*
1538          * for now UC MINUS. see comments in ioremap_nocache()
1539          * If you really need strong UC use ioremap_uc(), but note
1540          * that you cannot override IO areas with set_memory_*() as
1541          * these helpers cannot work with IO memory.
1542          */
1543         return change_page_attr_set(&addr, numpages,
1544                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1545                                     0);
1546 }
1547
1548 int set_memory_uc(unsigned long addr, int numpages)
1549 {
1550         int ret;
1551
1552         /*
1553          * for now UC MINUS. see comments in ioremap_nocache()
1554          */
1555         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1556                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1557         if (ret)
1558                 goto out_err;
1559
1560         ret = _set_memory_uc(addr, numpages);
1561         if (ret)
1562                 goto out_free;
1563
1564         return 0;
1565
1566 out_free:
1567         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1568 out_err:
1569         return ret;
1570 }
1571 EXPORT_SYMBOL(set_memory_uc);
1572
1573 static int _set_memory_array(unsigned long *addr, int addrinarray,
1574                 enum page_cache_mode new_type)
1575 {
1576         enum page_cache_mode set_type;
1577         int i, j;
1578         int ret;
1579
1580         for (i = 0; i < addrinarray; i++) {
1581                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1582                                         new_type, NULL);
1583                 if (ret)
1584                         goto out_free;
1585         }
1586
1587         /* If WC, set to UC- first and then WC */
1588         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1589                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1590
1591         ret = change_page_attr_set(addr, addrinarray,
1592                                    cachemode2pgprot(set_type), 1);
1593
1594         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1595                 ret = change_page_attr_set_clr(addr, addrinarray,
1596                                                cachemode2pgprot(
1597                                                 _PAGE_CACHE_MODE_WC),
1598                                                __pgprot(_PAGE_CACHE_MASK),
1599                                                0, CPA_ARRAY, NULL);
1600         if (ret)
1601                 goto out_free;
1602
1603         return 0;
1604
1605 out_free:
1606         for (j = 0; j < i; j++)
1607                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1608
1609         return ret;
1610 }
1611
1612 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1613 {
1614         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1615 }
1616 EXPORT_SYMBOL(set_memory_array_uc);
1617
1618 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1619 {
1620         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1621 }
1622 EXPORT_SYMBOL(set_memory_array_wc);
1623
1624 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1625 {
1626         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1627 }
1628 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1629
1630 int _set_memory_wc(unsigned long addr, int numpages)
1631 {
1632         int ret;
1633         unsigned long addr_copy = addr;
1634
1635         ret = change_page_attr_set(&addr, numpages,
1636                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1637                                    0);
1638         if (!ret) {
1639                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1640                                                cachemode2pgprot(
1641                                                 _PAGE_CACHE_MODE_WC),
1642                                                __pgprot(_PAGE_CACHE_MASK),
1643                                                0, 0, NULL);
1644         }
1645         return ret;
1646 }
1647
1648 int set_memory_wc(unsigned long addr, int numpages)
1649 {
1650         int ret;
1651
1652         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1653                 _PAGE_CACHE_MODE_WC, NULL);
1654         if (ret)
1655                 return ret;
1656
1657         ret = _set_memory_wc(addr, numpages);
1658         if (ret)
1659                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1660
1661         return ret;
1662 }
1663 EXPORT_SYMBOL(set_memory_wc);
1664
1665 int _set_memory_wt(unsigned long addr, int numpages)
1666 {
1667         return change_page_attr_set(&addr, numpages,
1668                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1669 }
1670
1671 int set_memory_wt(unsigned long addr, int numpages)
1672 {
1673         int ret;
1674
1675         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1676                               _PAGE_CACHE_MODE_WT, NULL);
1677         if (ret)
1678                 return ret;
1679
1680         ret = _set_memory_wt(addr, numpages);
1681         if (ret)
1682                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1683
1684         return ret;
1685 }
1686 EXPORT_SYMBOL_GPL(set_memory_wt);
1687
1688 int _set_memory_wb(unsigned long addr, int numpages)
1689 {
1690         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1691         return change_page_attr_clear(&addr, numpages,
1692                                       __pgprot(_PAGE_CACHE_MASK), 0);
1693 }
1694
1695 int set_memory_wb(unsigned long addr, int numpages)
1696 {
1697         int ret;
1698
1699         ret = _set_memory_wb(addr, numpages);
1700         if (ret)
1701                 return ret;
1702
1703         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1704         return 0;
1705 }
1706 EXPORT_SYMBOL(set_memory_wb);
1707
1708 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1709 {
1710         int i;
1711         int ret;
1712
1713         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1714         ret = change_page_attr_clear(addr, addrinarray,
1715                                       __pgprot(_PAGE_CACHE_MASK), 1);
1716         if (ret)
1717                 return ret;
1718
1719         for (i = 0; i < addrinarray; i++)
1720                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1721
1722         return 0;
1723 }
1724 EXPORT_SYMBOL(set_memory_array_wb);
1725
1726 int set_memory_x(unsigned long addr, int numpages)
1727 {
1728         if (!(__supported_pte_mask & _PAGE_NX))
1729                 return 0;
1730
1731         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1732 }
1733 EXPORT_SYMBOL(set_memory_x);
1734
1735 int set_memory_nx(unsigned long addr, int numpages)
1736 {
1737         if (!(__supported_pte_mask & _PAGE_NX))
1738                 return 0;
1739
1740         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1741 }
1742 EXPORT_SYMBOL(set_memory_nx);
1743
1744 int set_memory_ro(unsigned long addr, int numpages)
1745 {
1746         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1747 }
1748
1749 int set_memory_rw(unsigned long addr, int numpages)
1750 {
1751         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1752 }
1753
1754 int set_memory_np(unsigned long addr, int numpages)
1755 {
1756         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1757 }
1758
1759 int set_memory_4k(unsigned long addr, int numpages)
1760 {
1761         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1762                                         __pgprot(0), 1, 0, NULL);
1763 }
1764
1765 int set_pages_uc(struct page *page, int numpages)
1766 {
1767         unsigned long addr = (unsigned long)page_address(page);
1768
1769         return set_memory_uc(addr, numpages);
1770 }
1771 EXPORT_SYMBOL(set_pages_uc);
1772
1773 static int _set_pages_array(struct page **pages, int addrinarray,
1774                 enum page_cache_mode new_type)
1775 {
1776         unsigned long start;
1777         unsigned long end;
1778         enum page_cache_mode set_type;
1779         int i;
1780         int free_idx;
1781         int ret;
1782
1783         for (i = 0; i < addrinarray; i++) {
1784                 if (PageHighMem(pages[i]))
1785                         continue;
1786                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1787                 end = start + PAGE_SIZE;
1788                 if (reserve_memtype(start, end, new_type, NULL))
1789                         goto err_out;
1790         }
1791
1792         /* If WC, set to UC- first and then WC */
1793         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1794                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1795
1796         ret = cpa_set_pages_array(pages, addrinarray,
1797                                   cachemode2pgprot(set_type));
1798         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1799                 ret = change_page_attr_set_clr(NULL, addrinarray,
1800                                                cachemode2pgprot(
1801                                                 _PAGE_CACHE_MODE_WC),
1802                                                __pgprot(_PAGE_CACHE_MASK),
1803                                                0, CPA_PAGES_ARRAY, pages);
1804         if (ret)
1805                 goto err_out;
1806         return 0; /* Success */
1807 err_out:
1808         free_idx = i;
1809         for (i = 0; i < free_idx; i++) {
1810                 if (PageHighMem(pages[i]))
1811                         continue;
1812                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1813                 end = start + PAGE_SIZE;
1814                 free_memtype(start, end);
1815         }
1816         return -EINVAL;
1817 }
1818
1819 int set_pages_array_uc(struct page **pages, int addrinarray)
1820 {
1821         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1822 }
1823 EXPORT_SYMBOL(set_pages_array_uc);
1824
1825 int set_pages_array_wc(struct page **pages, int addrinarray)
1826 {
1827         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1828 }
1829 EXPORT_SYMBOL(set_pages_array_wc);
1830
1831 int set_pages_array_wt(struct page **pages, int addrinarray)
1832 {
1833         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1834 }
1835 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1836
1837 int set_pages_wb(struct page *page, int numpages)
1838 {
1839         unsigned long addr = (unsigned long)page_address(page);
1840
1841         return set_memory_wb(addr, numpages);
1842 }
1843 EXPORT_SYMBOL(set_pages_wb);
1844
1845 int set_pages_array_wb(struct page **pages, int addrinarray)
1846 {
1847         int retval;
1848         unsigned long start;
1849         unsigned long end;
1850         int i;
1851
1852         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1853         retval = cpa_clear_pages_array(pages, addrinarray,
1854                         __pgprot(_PAGE_CACHE_MASK));
1855         if (retval)
1856                 return retval;
1857
1858         for (i = 0; i < addrinarray; i++) {
1859                 if (PageHighMem(pages[i]))
1860                         continue;
1861                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1862                 end = start + PAGE_SIZE;
1863                 free_memtype(start, end);
1864         }
1865
1866         return 0;
1867 }
1868 EXPORT_SYMBOL(set_pages_array_wb);
1869
1870 int set_pages_x(struct page *page, int numpages)
1871 {
1872         unsigned long addr = (unsigned long)page_address(page);
1873
1874         return set_memory_x(addr, numpages);
1875 }
1876 EXPORT_SYMBOL(set_pages_x);
1877
1878 int set_pages_nx(struct page *page, int numpages)
1879 {
1880         unsigned long addr = (unsigned long)page_address(page);
1881
1882         return set_memory_nx(addr, numpages);
1883 }
1884 EXPORT_SYMBOL(set_pages_nx);
1885
1886 int set_pages_ro(struct page *page, int numpages)
1887 {
1888         unsigned long addr = (unsigned long)page_address(page);
1889
1890         return set_memory_ro(addr, numpages);
1891 }
1892
1893 int set_pages_rw(struct page *page, int numpages)
1894 {
1895         unsigned long addr = (unsigned long)page_address(page);
1896
1897         return set_memory_rw(addr, numpages);
1898 }
1899
1900 #ifdef CONFIG_DEBUG_PAGEALLOC
1901
1902 static int __set_pages_p(struct page *page, int numpages)
1903 {
1904         unsigned long tempaddr = (unsigned long) page_address(page);
1905         struct cpa_data cpa = { .vaddr = &tempaddr,
1906                                 .pgd = NULL,
1907                                 .numpages = numpages,
1908                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1909                                 .mask_clr = __pgprot(0),
1910                                 .flags = 0};
1911
1912         /*
1913          * No alias checking needed for setting present flag. otherwise,
1914          * we may need to break large pages for 64-bit kernel text
1915          * mappings (this adds to complexity if we want to do this from
1916          * atomic context especially). Let's keep it simple!
1917          */
1918         return __change_page_attr_set_clr(&cpa, 0);
1919 }
1920
1921 static int __set_pages_np(struct page *page, int numpages)
1922 {
1923         unsigned long tempaddr = (unsigned long) page_address(page);
1924         struct cpa_data cpa = { .vaddr = &tempaddr,
1925                                 .pgd = NULL,
1926                                 .numpages = numpages,
1927                                 .mask_set = __pgprot(0),
1928                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1929                                 .flags = 0};
1930
1931         /*
1932          * No alias checking needed for setting not present flag. otherwise,
1933          * we may need to break large pages for 64-bit kernel text
1934          * mappings (this adds to complexity if we want to do this from
1935          * atomic context especially). Let's keep it simple!
1936          */
1937         return __change_page_attr_set_clr(&cpa, 0);
1938 }
1939
1940 void __kernel_map_pages(struct page *page, int numpages, int enable)
1941 {
1942         if (PageHighMem(page))
1943                 return;
1944         if (!enable) {
1945                 debug_check_no_locks_freed(page_address(page),
1946                                            numpages * PAGE_SIZE);
1947         }
1948
1949         /*
1950          * The return value is ignored as the calls cannot fail.
1951          * Large pages for identity mappings are not used at boot time
1952          * and hence no memory allocations during large page split.
1953          */
1954         if (enable)
1955                 __set_pages_p(page, numpages);
1956         else
1957                 __set_pages_np(page, numpages);
1958
1959         /*
1960          * We should perform an IPI and flush all tlbs,
1961          * but that can deadlock->flush only current cpu:
1962          */
1963         __flush_tlb_all();
1964
1965         arch_flush_lazy_mmu_mode();
1966 }
1967
1968 #ifdef CONFIG_HIBERNATION
1969
1970 bool kernel_page_present(struct page *page)
1971 {
1972         unsigned int level;
1973         pte_t *pte;
1974
1975         if (PageHighMem(page))
1976                 return false;
1977
1978         pte = lookup_address((unsigned long)page_address(page), &level);
1979         return (pte_val(*pte) & _PAGE_PRESENT);
1980 }
1981
1982 #endif /* CONFIG_HIBERNATION */
1983
1984 #endif /* CONFIG_DEBUG_PAGEALLOC */
1985
1986 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1987                             unsigned numpages, unsigned long page_flags)
1988 {
1989         int retval = -EINVAL;
1990
1991         struct cpa_data cpa = {
1992                 .vaddr = &address,
1993                 .pfn = pfn,
1994                 .pgd = pgd,
1995                 .numpages = numpages,
1996                 .mask_set = __pgprot(0),
1997                 .mask_clr = __pgprot(0),
1998                 .flags = 0,
1999         };
2000
2001         if (!(__supported_pte_mask & _PAGE_NX))
2002                 goto out;
2003
2004         if (!(page_flags & _PAGE_NX))
2005                 cpa.mask_clr = __pgprot(_PAGE_NX);
2006
2007         if (!(page_flags & _PAGE_RW))
2008                 cpa.mask_clr = __pgprot(_PAGE_RW);
2009
2010         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2011
2012         retval = __change_page_attr_set_clr(&cpa, 0);
2013         __flush_tlb_all();
2014
2015 out:
2016         return retval;
2017 }
2018
2019 /*
2020  * The testcases use internal knowledge of the implementation that shouldn't
2021  * be exposed to the rest of the kernel. Include these directly here.
2022  */
2023 #ifdef CONFIG_CPA_DEBUG
2024 #include "pageattr-test.c"
2025 #endif