GNU Linux-libre 5.15.54-gnu
[releases.git] / arch / x86 / mm / ioremap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Re-map IO memory to kernel address space so that we can access it.
4  * This is needed for high PCI addresses that aren't mapped in the
5  * 640k-1MB IO memory area on PC's
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  */
9
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29
30 #include "physaddr.h"
31
32 /*
33  * Descriptor controlling ioremap() behavior.
34  */
35 struct ioremap_desc {
36         unsigned int flags;
37 };
38
39 /*
40  * Fix up the linear direct mapping of the kernel to avoid cache attribute
41  * conflicts.
42  */
43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44                         enum page_cache_mode pcm)
45 {
46         unsigned long nrpages = size >> PAGE_SHIFT;
47         int err;
48
49         switch (pcm) {
50         case _PAGE_CACHE_MODE_UC:
51         default:
52                 err = _set_memory_uc(vaddr, nrpages);
53                 break;
54         case _PAGE_CACHE_MODE_WC:
55                 err = _set_memory_wc(vaddr, nrpages);
56                 break;
57         case _PAGE_CACHE_MODE_WT:
58                 err = _set_memory_wt(vaddr, nrpages);
59                 break;
60         case _PAGE_CACHE_MODE_WB:
61                 err = _set_memory_wb(vaddr, nrpages);
62                 break;
63         }
64
65         return err;
66 }
67
68 /* Does the range (or a subset of) contain normal RAM? */
69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71         unsigned long start_pfn, stop_pfn;
72         unsigned long i;
73
74         if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75                 return 0;
76
77         start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78         stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79         if (stop_pfn > start_pfn) {
80                 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81                         if (pfn_valid(start_pfn + i) &&
82                             !PageReserved(pfn_to_page(start_pfn + i)))
83                                 return IORES_MAP_SYSTEM_RAM;
84         }
85
86         return 0;
87 }
88
89 /*
90  * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91  * there the whole memory is already encrypted.
92  */
93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95         if (!sev_active())
96                 return 0;
97
98         switch (res->desc) {
99         case IORES_DESC_NONE:
100         case IORES_DESC_RESERVED:
101                 break;
102         default:
103                 return IORES_MAP_ENCRYPTED;
104         }
105
106         return 0;
107 }
108
109 /*
110  * The EFI runtime services data area is not covered by walk_mem_res(), but must
111  * be mapped encrypted when SEV is active.
112  */
113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115         if (!sev_active())
116                 return;
117
118         if (!IS_ENABLED(CONFIG_EFI))
119                 return;
120
121         if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122             (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123              efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124                 desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126
127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129         struct ioremap_desc *desc = arg;
130
131         if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132                 desc->flags |= __ioremap_check_ram(res);
133
134         if (!(desc->flags & IORES_MAP_ENCRYPTED))
135                 desc->flags |= __ioremap_check_encrypted(res);
136
137         return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138                                (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140
141 /*
142  * To avoid multiple resource walks, this function walks resources marked as
143  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145  *
146  * After that, deal with misc other ranges in __ioremap_check_other() which do
147  * not fall into the above category.
148  */
149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150                                 struct ioremap_desc *desc)
151 {
152         u64 start, end;
153
154         start = (u64)addr;
155         end = start + size - 1;
156         memset(desc, 0, sizeof(struct ioremap_desc));
157
158         walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159
160         __ioremap_check_other(addr, desc);
161 }
162
163 /*
164  * Remap an arbitrary physical address space into the kernel virtual
165  * address space. It transparently creates kernel huge I/O mapping when
166  * the physical address is aligned by a huge page size (1GB or 2MB) and
167  * the requested size is at least the huge page size.
168  *
169  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170  * Therefore, the mapping code falls back to use a smaller page toward 4KB
171  * when a mapping range is covered by non-WB type of MTRRs.
172  *
173  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174  * have to convert them into an offset in a page-aligned mapping, but the
175  * caller shouldn't need to know that small detail.
176  */
177 static void __iomem *
178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179                  enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181         unsigned long offset, vaddr;
182         resource_size_t last_addr;
183         const resource_size_t unaligned_phys_addr = phys_addr;
184         const unsigned long unaligned_size = size;
185         struct ioremap_desc io_desc;
186         struct vm_struct *area;
187         enum page_cache_mode new_pcm;
188         pgprot_t prot;
189         int retval;
190         void __iomem *ret_addr;
191
192         /* Don't allow wraparound or zero size */
193         last_addr = phys_addr + size - 1;
194         if (!size || last_addr < phys_addr)
195                 return NULL;
196
197         if (!phys_addr_valid(phys_addr)) {
198                 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199                        (unsigned long long)phys_addr);
200                 WARN_ON_ONCE(1);
201                 return NULL;
202         }
203
204         __ioremap_check_mem(phys_addr, size, &io_desc);
205
206         /*
207          * Don't allow anybody to remap normal RAM that we're using..
208          */
209         if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210                 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211                           &phys_addr, &last_addr);
212                 return NULL;
213         }
214
215         /*
216          * Mappings have to be page-aligned
217          */
218         offset = phys_addr & ~PAGE_MASK;
219         phys_addr &= PHYSICAL_PAGE_MASK;
220         size = PAGE_ALIGN(last_addr+1) - phys_addr;
221
222         retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
223                                                 pcm, &new_pcm);
224         if (retval) {
225                 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
226                 return NULL;
227         }
228
229         if (pcm != new_pcm) {
230                 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
231                         printk(KERN_ERR
232                 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
233                                 (unsigned long long)phys_addr,
234                                 (unsigned long long)(phys_addr + size),
235                                 pcm, new_pcm);
236                         goto err_free_memtype;
237                 }
238                 pcm = new_pcm;
239         }
240
241         /*
242          * If the page being mapped is in memory and SEV is active then
243          * make sure the memory encryption attribute is enabled in the
244          * resulting mapping.
245          */
246         prot = PAGE_KERNEL_IO;
247         if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
248                 prot = pgprot_encrypted(prot);
249
250         switch (pcm) {
251         case _PAGE_CACHE_MODE_UC:
252         default:
253                 prot = __pgprot(pgprot_val(prot) |
254                                 cachemode2protval(_PAGE_CACHE_MODE_UC));
255                 break;
256         case _PAGE_CACHE_MODE_UC_MINUS:
257                 prot = __pgprot(pgprot_val(prot) |
258                                 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
259                 break;
260         case _PAGE_CACHE_MODE_WC:
261                 prot = __pgprot(pgprot_val(prot) |
262                                 cachemode2protval(_PAGE_CACHE_MODE_WC));
263                 break;
264         case _PAGE_CACHE_MODE_WT:
265                 prot = __pgprot(pgprot_val(prot) |
266                                 cachemode2protval(_PAGE_CACHE_MODE_WT));
267                 break;
268         case _PAGE_CACHE_MODE_WB:
269                 break;
270         }
271
272         /*
273          * Ok, go for it..
274          */
275         area = get_vm_area_caller(size, VM_IOREMAP, caller);
276         if (!area)
277                 goto err_free_memtype;
278         area->phys_addr = phys_addr;
279         vaddr = (unsigned long) area->addr;
280
281         if (memtype_kernel_map_sync(phys_addr, size, pcm))
282                 goto err_free_area;
283
284         if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
285                 goto err_free_area;
286
287         ret_addr = (void __iomem *) (vaddr + offset);
288         mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
289
290         /*
291          * Check if the request spans more than any BAR in the iomem resource
292          * tree.
293          */
294         if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
295                 pr_warn("caller %pS mapping multiple BARs\n", caller);
296
297         return ret_addr;
298 err_free_area:
299         free_vm_area(area);
300 err_free_memtype:
301         memtype_free(phys_addr, phys_addr + size);
302         return NULL;
303 }
304
305 /**
306  * ioremap     -   map bus memory into CPU space
307  * @phys_addr:    bus address of the memory
308  * @size:      size of the resource to map
309  *
310  * ioremap performs a platform specific sequence of operations to
311  * make bus memory CPU accessible via the readb/readw/readl/writeb/
312  * writew/writel functions and the other mmio helpers. The returned
313  * address is not guaranteed to be usable directly as a virtual
314  * address.
315  *
316  * This version of ioremap ensures that the memory is marked uncachable
317  * on the CPU as well as honouring existing caching rules from things like
318  * the PCI bus. Note that there are other caches and buffers on many
319  * busses. In particular driver authors should read up on PCI writes
320  *
321  * It's useful if some control registers are in such an area and
322  * write combining or read caching is not desirable:
323  *
324  * Must be freed with iounmap.
325  */
326 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
327 {
328         /*
329          * Ideally, this should be:
330          *      pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
331          *
332          * Till we fix all X drivers to use ioremap_wc(), we will use
333          * UC MINUS. Drivers that are certain they need or can already
334          * be converted over to strong UC can use ioremap_uc().
335          */
336         enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
337
338         return __ioremap_caller(phys_addr, size, pcm,
339                                 __builtin_return_address(0), false);
340 }
341 EXPORT_SYMBOL(ioremap);
342
343 /**
344  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
345  * @phys_addr:    bus address of the memory
346  * @size:      size of the resource to map
347  *
348  * ioremap_uc performs a platform specific sequence of operations to
349  * make bus memory CPU accessible via the readb/readw/readl/writeb/
350  * writew/writel functions and the other mmio helpers. The returned
351  * address is not guaranteed to be usable directly as a virtual
352  * address.
353  *
354  * This version of ioremap ensures that the memory is marked with a strong
355  * preference as completely uncachable on the CPU when possible. For non-PAT
356  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
357  * systems this will set the PAT entry for the pages as strong UC.  This call
358  * will honor existing caching rules from things like the PCI bus. Note that
359  * there are other caches and buffers on many busses. In particular driver
360  * authors should read up on PCI writes.
361  *
362  * It's useful if some control registers are in such an area and
363  * write combining or read caching is not desirable:
364  *
365  * Must be freed with iounmap.
366  */
367 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
368 {
369         enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
370
371         return __ioremap_caller(phys_addr, size, pcm,
372                                 __builtin_return_address(0), false);
373 }
374 EXPORT_SYMBOL_GPL(ioremap_uc);
375
376 /**
377  * ioremap_wc   -       map memory into CPU space write combined
378  * @phys_addr:  bus address of the memory
379  * @size:       size of the resource to map
380  *
381  * This version of ioremap ensures that the memory is marked write combining.
382  * Write combining allows faster writes to some hardware devices.
383  *
384  * Must be freed with iounmap.
385  */
386 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
387 {
388         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
389                                         __builtin_return_address(0), false);
390 }
391 EXPORT_SYMBOL(ioremap_wc);
392
393 /**
394  * ioremap_wt   -       map memory into CPU space write through
395  * @phys_addr:  bus address of the memory
396  * @size:       size of the resource to map
397  *
398  * This version of ioremap ensures that the memory is marked write through.
399  * Write through stores data into memory while keeping the cache up-to-date.
400  *
401  * Must be freed with iounmap.
402  */
403 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
404 {
405         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
406                                         __builtin_return_address(0), false);
407 }
408 EXPORT_SYMBOL(ioremap_wt);
409
410 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
411 {
412         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
413                                 __builtin_return_address(0), true);
414 }
415 EXPORT_SYMBOL(ioremap_encrypted);
416
417 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
418 {
419         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
420                                 __builtin_return_address(0), false);
421 }
422 EXPORT_SYMBOL(ioremap_cache);
423
424 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
425                                 unsigned long prot_val)
426 {
427         return __ioremap_caller(phys_addr, size,
428                                 pgprot2cachemode(__pgprot(prot_val)),
429                                 __builtin_return_address(0), false);
430 }
431 EXPORT_SYMBOL(ioremap_prot);
432
433 /**
434  * iounmap - Free a IO remapping
435  * @addr: virtual address from ioremap_*
436  *
437  * Caller must ensure there is only one unmapping for the same pointer.
438  */
439 void iounmap(volatile void __iomem *addr)
440 {
441         struct vm_struct *p, *o;
442
443         if ((void __force *)addr <= high_memory)
444                 return;
445
446         /*
447          * The PCI/ISA range special-casing was removed from __ioremap()
448          * so this check, in theory, can be removed. However, there are
449          * cases where iounmap() is called for addresses not obtained via
450          * ioremap() (vga16fb for example). Add a warning so that these
451          * cases can be caught and fixed.
452          */
453         if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
454             (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
455                 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
456                 return;
457         }
458
459         mmiotrace_iounmap(addr);
460
461         addr = (volatile void __iomem *)
462                 (PAGE_MASK & (unsigned long __force)addr);
463
464         /* Use the vm area unlocked, assuming the caller
465            ensures there isn't another iounmap for the same address
466            in parallel. Reuse of the virtual address is prevented by
467            leaving it in the global lists until we're done with it.
468            cpa takes care of the direct mappings. */
469         p = find_vm_area((void __force *)addr);
470
471         if (!p) {
472                 printk(KERN_ERR "iounmap: bad address %p\n", addr);
473                 dump_stack();
474                 return;
475         }
476
477         memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
478
479         /* Finally remove it */
480         o = remove_vm_area((void __force *)addr);
481         BUG_ON(p != o || o == NULL);
482         kfree(p);
483 }
484 EXPORT_SYMBOL(iounmap);
485
486 /*
487  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
488  * access
489  */
490 void *xlate_dev_mem_ptr(phys_addr_t phys)
491 {
492         unsigned long start  = phys &  PAGE_MASK;
493         unsigned long offset = phys & ~PAGE_MASK;
494         void *vaddr;
495
496         /* memremap() maps if RAM, otherwise falls back to ioremap() */
497         vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
498
499         /* Only add the offset on success and return NULL if memremap() failed */
500         if (vaddr)
501                 vaddr += offset;
502
503         return vaddr;
504 }
505
506 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
507 {
508         memunmap((void *)((unsigned long)addr & PAGE_MASK));
509 }
510
511 /*
512  * Examine the physical address to determine if it is an area of memory
513  * that should be mapped decrypted.  If the memory is not part of the
514  * kernel usable area it was accessed and created decrypted, so these
515  * areas should be mapped decrypted. And since the encryption key can
516  * change across reboots, persistent memory should also be mapped
517  * decrypted.
518  *
519  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
520  * only persistent memory should be mapped decrypted.
521  */
522 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
523                                           unsigned long size)
524 {
525         int is_pmem;
526
527         /*
528          * Check if the address is part of a persistent memory region.
529          * This check covers areas added by E820, EFI and ACPI.
530          */
531         is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
532                                     IORES_DESC_PERSISTENT_MEMORY);
533         if (is_pmem != REGION_DISJOINT)
534                 return true;
535
536         /*
537          * Check if the non-volatile attribute is set for an EFI
538          * reserved area.
539          */
540         if (efi_enabled(EFI_BOOT)) {
541                 switch (efi_mem_type(phys_addr)) {
542                 case EFI_RESERVED_TYPE:
543                         if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
544                                 return true;
545                         break;
546                 default:
547                         break;
548                 }
549         }
550
551         /* Check if the address is outside kernel usable area */
552         switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
553         case E820_TYPE_RESERVED:
554         case E820_TYPE_ACPI:
555         case E820_TYPE_NVS:
556         case E820_TYPE_UNUSABLE:
557                 /* For SEV, these areas are encrypted */
558                 if (sev_active())
559                         break;
560                 fallthrough;
561
562         case E820_TYPE_PRAM:
563                 return true;
564         default:
565                 break;
566         }
567
568         return false;
569 }
570
571 /*
572  * Examine the physical address to determine if it is EFI data. Check
573  * it against the boot params structure and EFI tables and memory types.
574  */
575 static bool memremap_is_efi_data(resource_size_t phys_addr,
576                                  unsigned long size)
577 {
578         u64 paddr;
579
580         /* Check if the address is part of EFI boot/runtime data */
581         if (!efi_enabled(EFI_BOOT))
582                 return false;
583
584         paddr = boot_params.efi_info.efi_memmap_hi;
585         paddr <<= 32;
586         paddr |= boot_params.efi_info.efi_memmap;
587         if (phys_addr == paddr)
588                 return true;
589
590         paddr = boot_params.efi_info.efi_systab_hi;
591         paddr <<= 32;
592         paddr |= boot_params.efi_info.efi_systab;
593         if (phys_addr == paddr)
594                 return true;
595
596         if (efi_is_table_address(phys_addr))
597                 return true;
598
599         switch (efi_mem_type(phys_addr)) {
600         case EFI_BOOT_SERVICES_DATA:
601         case EFI_RUNTIME_SERVICES_DATA:
602                 return true;
603         default:
604                 break;
605         }
606
607         return false;
608 }
609
610 /*
611  * Examine the physical address to determine if it is boot data by checking
612  * it against the boot params setup_data chain.
613  */
614 static bool memremap_is_setup_data(resource_size_t phys_addr,
615                                    unsigned long size)
616 {
617         struct setup_indirect *indirect;
618         struct setup_data *data;
619         u64 paddr, paddr_next;
620
621         paddr = boot_params.hdr.setup_data;
622         while (paddr) {
623                 unsigned int len;
624
625                 if (phys_addr == paddr)
626                         return true;
627
628                 data = memremap(paddr, sizeof(*data),
629                                 MEMREMAP_WB | MEMREMAP_DEC);
630                 if (!data) {
631                         pr_warn("failed to memremap setup_data entry\n");
632                         return false;
633                 }
634
635                 paddr_next = data->next;
636                 len = data->len;
637
638                 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
639                         memunmap(data);
640                         return true;
641                 }
642
643                 if (data->type == SETUP_INDIRECT) {
644                         memunmap(data);
645                         data = memremap(paddr, sizeof(*data) + len,
646                                         MEMREMAP_WB | MEMREMAP_DEC);
647                         if (!data) {
648                                 pr_warn("failed to memremap indirect setup_data\n");
649                                 return false;
650                         }
651
652                         indirect = (struct setup_indirect *)data->data;
653
654                         if (indirect->type != SETUP_INDIRECT) {
655                                 paddr = indirect->addr;
656                                 len = indirect->len;
657                         }
658                 }
659
660                 memunmap(data);
661
662                 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
663                         return true;
664
665                 paddr = paddr_next;
666         }
667
668         return false;
669 }
670
671 /*
672  * Examine the physical address to determine if it is boot data by checking
673  * it against the boot params setup_data chain (early boot version).
674  */
675 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
676                                                 unsigned long size)
677 {
678         struct setup_indirect *indirect;
679         struct setup_data *data;
680         u64 paddr, paddr_next;
681
682         paddr = boot_params.hdr.setup_data;
683         while (paddr) {
684                 unsigned int len, size;
685
686                 if (phys_addr == paddr)
687                         return true;
688
689                 data = early_memremap_decrypted(paddr, sizeof(*data));
690                 if (!data) {
691                         pr_warn("failed to early memremap setup_data entry\n");
692                         return false;
693                 }
694
695                 size = sizeof(*data);
696
697                 paddr_next = data->next;
698                 len = data->len;
699
700                 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
701                         early_memunmap(data, sizeof(*data));
702                         return true;
703                 }
704
705                 if (data->type == SETUP_INDIRECT) {
706                         size += len;
707                         early_memunmap(data, sizeof(*data));
708                         data = early_memremap_decrypted(paddr, size);
709                         if (!data) {
710                                 pr_warn("failed to early memremap indirect setup_data\n");
711                                 return false;
712                         }
713
714                         indirect = (struct setup_indirect *)data->data;
715
716                         if (indirect->type != SETUP_INDIRECT) {
717                                 paddr = indirect->addr;
718                                 len = indirect->len;
719                         }
720                 }
721
722                 early_memunmap(data, size);
723
724                 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
725                         return true;
726
727                 paddr = paddr_next;
728         }
729
730         return false;
731 }
732
733 /*
734  * Architecture function to determine if RAM remap is allowed. By default, a
735  * RAM remap will map the data as encrypted. Determine if a RAM remap should
736  * not be done so that the data will be mapped decrypted.
737  */
738 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
739                                  unsigned long flags)
740 {
741         if (!mem_encrypt_active())
742                 return true;
743
744         if (flags & MEMREMAP_ENC)
745                 return true;
746
747         if (flags & MEMREMAP_DEC)
748                 return false;
749
750         if (sme_active()) {
751                 if (memremap_is_setup_data(phys_addr, size) ||
752                     memremap_is_efi_data(phys_addr, size))
753                         return false;
754         }
755
756         return !memremap_should_map_decrypted(phys_addr, size);
757 }
758
759 /*
760  * Architecture override of __weak function to adjust the protection attributes
761  * used when remapping memory. By default, early_memremap() will map the data
762  * as encrypted. Determine if an encrypted mapping should not be done and set
763  * the appropriate protection attributes.
764  */
765 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
766                                              unsigned long size,
767                                              pgprot_t prot)
768 {
769         bool encrypted_prot;
770
771         if (!mem_encrypt_active())
772                 return prot;
773
774         encrypted_prot = true;
775
776         if (sme_active()) {
777                 if (early_memremap_is_setup_data(phys_addr, size) ||
778                     memremap_is_efi_data(phys_addr, size))
779                         encrypted_prot = false;
780         }
781
782         if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
783                 encrypted_prot = false;
784
785         return encrypted_prot ? pgprot_encrypted(prot)
786                               : pgprot_decrypted(prot);
787 }
788
789 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
790 {
791         return arch_memremap_can_ram_remap(phys_addr, size, 0);
792 }
793
794 #ifdef CONFIG_AMD_MEM_ENCRYPT
795 /* Remap memory with encryption */
796 void __init *early_memremap_encrypted(resource_size_t phys_addr,
797                                       unsigned long size)
798 {
799         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
800 }
801
802 /*
803  * Remap memory with encryption and write-protected - cannot be called
804  * before pat_init() is called
805  */
806 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
807                                          unsigned long size)
808 {
809         if (!x86_has_pat_wp())
810                 return NULL;
811         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
812 }
813
814 /* Remap memory without encryption */
815 void __init *early_memremap_decrypted(resource_size_t phys_addr,
816                                       unsigned long size)
817 {
818         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
819 }
820
821 /*
822  * Remap memory without encryption and write-protected - cannot be called
823  * before pat_init() is called
824  */
825 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
826                                          unsigned long size)
827 {
828         if (!x86_has_pat_wp())
829                 return NULL;
830         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
831 }
832 #endif  /* CONFIG_AMD_MEM_ENCRYPT */
833
834 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
835
836 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
837 {
838         /* Don't assume we're using swapper_pg_dir at this point */
839         pgd_t *base = __va(read_cr3_pa());
840         pgd_t *pgd = &base[pgd_index(addr)];
841         p4d_t *p4d = p4d_offset(pgd, addr);
842         pud_t *pud = pud_offset(p4d, addr);
843         pmd_t *pmd = pmd_offset(pud, addr);
844
845         return pmd;
846 }
847
848 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
849 {
850         return &bm_pte[pte_index(addr)];
851 }
852
853 bool __init is_early_ioremap_ptep(pte_t *ptep)
854 {
855         return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
856 }
857
858 void __init early_ioremap_init(void)
859 {
860         pmd_t *pmd;
861
862 #ifdef CONFIG_X86_64
863         BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
864 #else
865         WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
866 #endif
867
868         early_ioremap_setup();
869
870         pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
871         memset(bm_pte, 0, sizeof(bm_pte));
872         pmd_populate_kernel(&init_mm, pmd, bm_pte);
873
874         /*
875          * The boot-ioremap range spans multiple pmds, for which
876          * we are not prepared:
877          */
878 #define __FIXADDR_TOP (-PAGE_SIZE)
879         BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
880                      != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
881 #undef __FIXADDR_TOP
882         if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
883                 WARN_ON(1);
884                 printk(KERN_WARNING "pmd %p != %p\n",
885                        pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
886                 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
887                         fix_to_virt(FIX_BTMAP_BEGIN));
888                 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
889                         fix_to_virt(FIX_BTMAP_END));
890
891                 printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
892                 printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
893                        FIX_BTMAP_BEGIN);
894         }
895 }
896
897 void __init __early_set_fixmap(enum fixed_addresses idx,
898                                phys_addr_t phys, pgprot_t flags)
899 {
900         unsigned long addr = __fix_to_virt(idx);
901         pte_t *pte;
902
903         if (idx >= __end_of_fixed_addresses) {
904                 BUG();
905                 return;
906         }
907         pte = early_ioremap_pte(addr);
908
909         /* Sanitize 'prot' against any unsupported bits: */
910         pgprot_val(flags) &= __supported_pte_mask;
911
912         if (pgprot_val(flags))
913                 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
914         else
915                 pte_clear(&init_mm, addr, pte);
916         flush_tlb_one_kernel(addr);
917 }