GNU Linux-libre 4.9.318-gnu1
[releases.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70
71 int force_personality32;
72
73 /*
74  * noexec32=on|off
75  * Control non executable heap for 32bit processes.
76  * To control the stack too use noexec=off
77  *
78  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79  * off  PROT_READ implies PROT_EXEC
80  */
81 static int __init nonx32_setup(char *str)
82 {
83         if (!strcmp(str, "on"))
84                 force_personality32 &= ~READ_IMPLIES_EXEC;
85         else if (!strcmp(str, "off"))
86                 force_personality32 |= READ_IMPLIES_EXEC;
87         return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90
91 /*
92  * When memory was added/removed make sure all the processes MM have
93  * suitable PGD entries in the local PGD level page.
94  */
95 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
96 {
97         unsigned long addr;
98
99         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
100                 const pgd_t *pgd_ref = pgd_offset_k(addr);
101                 struct page *page;
102
103                 /*
104                  * When it is called after memory hot remove, pgd_none()
105                  * returns true. In this case (removed == 1), we must clear
106                  * the PGD entries in the local PGD level page.
107                  */
108                 if (pgd_none(*pgd_ref) && !removed)
109                         continue;
110
111                 spin_lock(&pgd_lock);
112                 list_for_each_entry(page, &pgd_list, lru) {
113                         pgd_t *pgd;
114                         spinlock_t *pgt_lock;
115
116                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
117                         /* the pgt_lock only for Xen */
118                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
119                         spin_lock(pgt_lock);
120
121                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
122                                 BUG_ON(pgd_page_vaddr(*pgd)
123                                        != pgd_page_vaddr(*pgd_ref));
124
125                         if (removed) {
126                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
127                                         pgd_clear(pgd);
128                         } else {
129                                 if (pgd_none(*pgd))
130                                         set_pgd(pgd, *pgd_ref);
131                         }
132
133                         spin_unlock(pgt_lock);
134                 }
135                 spin_unlock(&pgd_lock);
136         }
137 }
138
139 /*
140  * NOTE: This function is marked __ref because it calls __init function
141  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
142  */
143 static __ref void *spp_getpage(void)
144 {
145         void *ptr;
146
147         if (after_bootmem)
148                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
149         else
150                 ptr = alloc_bootmem_pages(PAGE_SIZE);
151
152         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
153                 panic("set_pte_phys: cannot allocate page data %s\n",
154                         after_bootmem ? "after bootmem" : "");
155         }
156
157         pr_debug("spp_getpage %p\n", ptr);
158
159         return ptr;
160 }
161
162 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
163 {
164         if (pgd_none(*pgd)) {
165                 pud_t *pud = (pud_t *)spp_getpage();
166                 pgd_populate(&init_mm, pgd, pud);
167                 if (pud != pud_offset(pgd, 0))
168                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
169                                pud, pud_offset(pgd, 0));
170         }
171         return pud_offset(pgd, vaddr);
172 }
173
174 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
175 {
176         if (pud_none(*pud)) {
177                 pmd_t *pmd = (pmd_t *) spp_getpage();
178                 pud_populate(&init_mm, pud, pmd);
179                 if (pmd != pmd_offset(pud, 0))
180                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
181                                pmd, pmd_offset(pud, 0));
182         }
183         return pmd_offset(pud, vaddr);
184 }
185
186 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
187 {
188         if (pmd_none(*pmd)) {
189                 pte_t *pte = (pte_t *) spp_getpage();
190                 pmd_populate_kernel(&init_mm, pmd, pte);
191                 if (pte != pte_offset_kernel(pmd, 0))
192                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
193         }
194         return pte_offset_kernel(pmd, vaddr);
195 }
196
197 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
198 {
199         pud_t *pud;
200         pmd_t *pmd;
201         pte_t *pte;
202
203         pud = pud_page + pud_index(vaddr);
204         pmd = fill_pmd(pud, vaddr);
205         pte = fill_pte(pmd, vaddr);
206
207         set_pte(pte, new_pte);
208
209         /*
210          * It's enough to flush this one mapping.
211          * (PGE mappings get flushed as well)
212          */
213         __flush_tlb_one(vaddr);
214 }
215
216 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
217 {
218         pgd_t *pgd;
219         pud_t *pud_page;
220
221         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
222
223         pgd = pgd_offset_k(vaddr);
224         if (pgd_none(*pgd)) {
225                 printk(KERN_ERR
226                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
227                 return;
228         }
229         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
230         set_pte_vaddr_pud(pud_page, vaddr, pteval);
231 }
232
233 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
234 {
235         pgd_t *pgd;
236         pud_t *pud;
237
238         pgd = pgd_offset_k(vaddr);
239         pud = fill_pud(pgd, vaddr);
240         return fill_pmd(pud, vaddr);
241 }
242
243 pte_t * __init populate_extra_pte(unsigned long vaddr)
244 {
245         pmd_t *pmd;
246
247         pmd = populate_extra_pmd(vaddr);
248         return fill_pte(pmd, vaddr);
249 }
250
251 /*
252  * Create large page table mappings for a range of physical addresses.
253  */
254 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
255                                         enum page_cache_mode cache)
256 {
257         pgd_t *pgd;
258         pud_t *pud;
259         pmd_t *pmd;
260         pgprot_t prot;
261
262         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
263                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
264         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
265         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
266                 pgd = pgd_offset_k((unsigned long)__va(phys));
267                 if (pgd_none(*pgd)) {
268                         pud = (pud_t *) spp_getpage();
269                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
270                                                 _PAGE_USER));
271                 }
272                 pud = pud_offset(pgd, (unsigned long)__va(phys));
273                 if (pud_none(*pud)) {
274                         pmd = (pmd_t *) spp_getpage();
275                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
276                                                 _PAGE_USER));
277                 }
278                 pmd = pmd_offset(pud, phys);
279                 BUG_ON(!pmd_none(*pmd));
280                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
281         }
282 }
283
284 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
285 {
286         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
287 }
288
289 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
290 {
291         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
292 }
293
294 /*
295  * The head.S code sets up the kernel high mapping:
296  *
297  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
298  *
299  * phys_base holds the negative offset to the kernel, which is added
300  * to the compile time generated pmds. This results in invalid pmds up
301  * to the point where we hit the physaddr 0 mapping.
302  *
303  * We limit the mappings to the region from _text to _brk_end.  _brk_end
304  * is rounded up to the 2MB boundary. This catches the invalid pmds as
305  * well, as they are located before _text:
306  */
307 void __init cleanup_highmap(void)
308 {
309         unsigned long vaddr = __START_KERNEL_map;
310         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
311         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
312         pmd_t *pmd = level2_kernel_pgt;
313
314         /*
315          * Native path, max_pfn_mapped is not set yet.
316          * Xen has valid max_pfn_mapped set in
317          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
318          */
319         if (max_pfn_mapped)
320                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
321
322         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
323                 if (pmd_none(*pmd))
324                         continue;
325                 if (vaddr < (unsigned long) _text || vaddr > end)
326                         set_pmd(pmd, __pmd(0));
327                 else if (kaiser_enabled) {
328                         /*
329                          * level2_kernel_pgt is initialized with _PAGE_GLOBAL:
330                          * clear that now.  This is not important, so long as
331                          * CR4.PGE remains clear, but it removes an anomaly.
332                          * Physical mapping setup below avoids _PAGE_GLOBAL
333                          * by use of massage_pgprot() inside pfn_pte() etc.
334                          */
335                         set_pmd(pmd, pmd_clear_flags(*pmd, _PAGE_GLOBAL));
336                 }
337         }
338 }
339
340 /*
341  * Create PTE level page table mapping for physical addresses.
342  * It returns the last physical address mapped.
343  */
344 static unsigned long __meminit
345 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
346               pgprot_t prot)
347 {
348         unsigned long pages = 0, paddr_next;
349         unsigned long paddr_last = paddr_end;
350         pte_t *pte;
351         int i;
352
353         pte = pte_page + pte_index(paddr);
354         i = pte_index(paddr);
355
356         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
357                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
358                 if (paddr >= paddr_end) {
359                         if (!after_bootmem &&
360                             !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
361                                              E820_RAM) &&
362                             !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
363                                              E820_RESERVED_KERN))
364                                 set_pte(pte, __pte(0));
365                         continue;
366                 }
367
368                 /*
369                  * We will re-use the existing mapping.
370                  * Xen for example has some special requirements, like mapping
371                  * pagetable pages as RO. So assume someone who pre-setup
372                  * these mappings are more intelligent.
373                  */
374                 if (!pte_none(*pte)) {
375                         if (!after_bootmem)
376                                 pages++;
377                         continue;
378                 }
379
380                 if (0)
381                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
382                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
383                 pages++;
384                 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
385                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
386         }
387
388         update_page_count(PG_LEVEL_4K, pages);
389
390         return paddr_last;
391 }
392
393 /*
394  * Create PMD level page table mapping for physical addresses. The virtual
395  * and physical address have to be aligned at this level.
396  * It returns the last physical address mapped.
397  */
398 static unsigned long __meminit
399 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
400               unsigned long page_size_mask, pgprot_t prot)
401 {
402         unsigned long pages = 0, paddr_next;
403         unsigned long paddr_last = paddr_end;
404
405         int i = pmd_index(paddr);
406
407         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
408                 pmd_t *pmd = pmd_page + pmd_index(paddr);
409                 pte_t *pte;
410                 pgprot_t new_prot = prot;
411
412                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
413                 if (paddr >= paddr_end) {
414                         if (!after_bootmem &&
415                             !e820_any_mapped(paddr & PMD_MASK, paddr_next,
416                                              E820_RAM) &&
417                             !e820_any_mapped(paddr & PMD_MASK, paddr_next,
418                                              E820_RESERVED_KERN))
419                                 set_pmd(pmd, __pmd(0));
420                         continue;
421                 }
422
423                 if (!pmd_none(*pmd)) {
424                         if (!pmd_large(*pmd)) {
425                                 spin_lock(&init_mm.page_table_lock);
426                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
427                                 paddr_last = phys_pte_init(pte, paddr,
428                                                            paddr_end, prot);
429                                 spin_unlock(&init_mm.page_table_lock);
430                                 continue;
431                         }
432                         /*
433                          * If we are ok with PG_LEVEL_2M mapping, then we will
434                          * use the existing mapping,
435                          *
436                          * Otherwise, we will split the large page mapping but
437                          * use the same existing protection bits except for
438                          * large page, so that we don't violate Intel's TLB
439                          * Application note (317080) which says, while changing
440                          * the page sizes, new and old translations should
441                          * not differ with respect to page frame and
442                          * attributes.
443                          */
444                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
445                                 if (!after_bootmem)
446                                         pages++;
447                                 paddr_last = paddr_next;
448                                 continue;
449                         }
450                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
451                 }
452
453                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
454                         pages++;
455                         spin_lock(&init_mm.page_table_lock);
456                         set_pte((pte_t *)pmd,
457                                 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
458                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
459                         spin_unlock(&init_mm.page_table_lock);
460                         paddr_last = paddr_next;
461                         continue;
462                 }
463
464                 pte = alloc_low_page();
465                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
466
467                 spin_lock(&init_mm.page_table_lock);
468                 pmd_populate_kernel(&init_mm, pmd, pte);
469                 spin_unlock(&init_mm.page_table_lock);
470         }
471         update_page_count(PG_LEVEL_2M, pages);
472         return paddr_last;
473 }
474
475 /*
476  * Create PUD level page table mapping for physical addresses. The virtual
477  * and physical address do not have to be aligned at this level. KASLR can
478  * randomize virtual addresses up to this level.
479  * It returns the last physical address mapped.
480  */
481 static unsigned long __meminit
482 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
483               unsigned long page_size_mask)
484 {
485         unsigned long pages = 0, paddr_next;
486         unsigned long paddr_last = paddr_end;
487         unsigned long vaddr = (unsigned long)__va(paddr);
488         int i = pud_index(vaddr);
489
490         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
491                 pud_t *pud;
492                 pmd_t *pmd;
493                 pgprot_t prot = PAGE_KERNEL;
494
495                 vaddr = (unsigned long)__va(paddr);
496                 pud = pud_page + pud_index(vaddr);
497                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
498
499                 if (paddr >= paddr_end) {
500                         if (!after_bootmem &&
501                             !e820_any_mapped(paddr & PUD_MASK, paddr_next,
502                                              E820_RAM) &&
503                             !e820_any_mapped(paddr & PUD_MASK, paddr_next,
504                                              E820_RESERVED_KERN))
505                                 set_pud(pud, __pud(0));
506                         continue;
507                 }
508
509                 if (!pud_none(*pud)) {
510                         if (!pud_large(*pud)) {
511                                 pmd = pmd_offset(pud, 0);
512                                 paddr_last = phys_pmd_init(pmd, paddr,
513                                                            paddr_end,
514                                                            page_size_mask,
515                                                            prot);
516                                 __flush_tlb_all();
517                                 continue;
518                         }
519                         /*
520                          * If we are ok with PG_LEVEL_1G mapping, then we will
521                          * use the existing mapping.
522                          *
523                          * Otherwise, we will split the gbpage mapping but use
524                          * the same existing protection  bits except for large
525                          * page, so that we don't violate Intel's TLB
526                          * Application note (317080) which says, while changing
527                          * the page sizes, new and old translations should
528                          * not differ with respect to page frame and
529                          * attributes.
530                          */
531                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
532                                 if (!after_bootmem)
533                                         pages++;
534                                 paddr_last = paddr_next;
535                                 continue;
536                         }
537                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
538                 }
539
540                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
541                         pages++;
542                         spin_lock(&init_mm.page_table_lock);
543                         set_pte((pte_t *)pud,
544                                 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
545                                         PAGE_KERNEL_LARGE));
546                         spin_unlock(&init_mm.page_table_lock);
547                         paddr_last = paddr_next;
548                         continue;
549                 }
550
551                 pmd = alloc_low_page();
552                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
553                                            page_size_mask, prot);
554
555                 spin_lock(&init_mm.page_table_lock);
556                 pud_populate(&init_mm, pud, pmd);
557                 spin_unlock(&init_mm.page_table_lock);
558         }
559         __flush_tlb_all();
560
561         update_page_count(PG_LEVEL_1G, pages);
562
563         return paddr_last;
564 }
565
566 /*
567  * Create page table mapping for the physical memory for specific physical
568  * addresses. The virtual and physical addresses have to be aligned on PMD level
569  * down. It returns the last physical address mapped.
570  */
571 unsigned long __meminit
572 kernel_physical_mapping_init(unsigned long paddr_start,
573                              unsigned long paddr_end,
574                              unsigned long page_size_mask)
575 {
576         bool pgd_changed = false;
577         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
578
579         paddr_last = paddr_end;
580         vaddr = (unsigned long)__va(paddr_start);
581         vaddr_end = (unsigned long)__va(paddr_end);
582         vaddr_start = vaddr;
583
584         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
585                 pgd_t *pgd = pgd_offset_k(vaddr);
586                 pud_t *pud;
587
588                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
589
590                 if (pgd_val(*pgd)) {
591                         pud = (pud_t *)pgd_page_vaddr(*pgd);
592                         paddr_last = phys_pud_init(pud, __pa(vaddr),
593                                                    __pa(vaddr_end),
594                                                    page_size_mask);
595                         continue;
596                 }
597
598                 pud = alloc_low_page();
599                 paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
600                                            page_size_mask);
601
602                 spin_lock(&init_mm.page_table_lock);
603                 pgd_populate(&init_mm, pgd, pud);
604                 spin_unlock(&init_mm.page_table_lock);
605                 pgd_changed = true;
606         }
607
608         if (pgd_changed)
609                 sync_global_pgds(vaddr_start, vaddr_end - 1, 0);
610
611         __flush_tlb_all();
612
613         return paddr_last;
614 }
615
616 #ifndef CONFIG_NUMA
617 void __init initmem_init(void)
618 {
619         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
620 }
621 #endif
622
623 void __init paging_init(void)
624 {
625         sparse_memory_present_with_active_regions(MAX_NUMNODES);
626         sparse_init();
627
628         /*
629          * clear the default setting with node 0
630          * note: don't use nodes_clear here, that is really clearing when
631          *       numa support is not compiled in, and later node_set_state
632          *       will not set it back.
633          */
634         node_clear_state(0, N_MEMORY);
635         if (N_MEMORY != N_NORMAL_MEMORY)
636                 node_clear_state(0, N_NORMAL_MEMORY);
637
638         zone_sizes_init();
639 }
640
641 /*
642  * Memory hotplug specific functions
643  */
644 #ifdef CONFIG_MEMORY_HOTPLUG
645 /*
646  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
647  * updating.
648  */
649 static void  update_end_of_memory_vars(u64 start, u64 size)
650 {
651         unsigned long end_pfn = PFN_UP(start + size);
652
653         if (end_pfn > max_pfn) {
654                 max_pfn = end_pfn;
655                 max_low_pfn = end_pfn;
656                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
657         }
658 }
659
660 /*
661  * Memory is added always to NORMAL zone. This means you will never get
662  * additional DMA/DMA32 memory.
663  */
664 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
665 {
666         struct pglist_data *pgdat = NODE_DATA(nid);
667         struct zone *zone = pgdat->node_zones +
668                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
669         unsigned long start_pfn = start >> PAGE_SHIFT;
670         unsigned long nr_pages = size >> PAGE_SHIFT;
671         int ret;
672
673         init_memory_mapping(start, start + size);
674
675         ret = __add_pages(nid, zone, start_pfn, nr_pages);
676         WARN_ON_ONCE(ret);
677
678         /* update max_pfn, max_low_pfn and high_memory */
679         update_end_of_memory_vars(start, size);
680
681         return ret;
682 }
683 EXPORT_SYMBOL_GPL(arch_add_memory);
684
685 #define PAGE_INUSE 0xFD
686
687 static void __meminit free_pagetable(struct page *page, int order)
688 {
689         unsigned long magic;
690         unsigned int nr_pages = 1 << order;
691         struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
692
693         if (altmap) {
694                 vmem_altmap_free(altmap, nr_pages);
695                 return;
696         }
697
698         /* bootmem page has reserved flag */
699         if (PageReserved(page)) {
700                 __ClearPageReserved(page);
701
702                 magic = (unsigned long)page->freelist;
703                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
704                         while (nr_pages--)
705                                 put_page_bootmem(page++);
706                 } else
707                         while (nr_pages--)
708                                 free_reserved_page(page++);
709         } else
710                 free_pages((unsigned long)page_address(page), order);
711 }
712
713 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
714 {
715         pte_t *pte;
716         int i;
717
718         for (i = 0; i < PTRS_PER_PTE; i++) {
719                 pte = pte_start + i;
720                 if (!pte_none(*pte))
721                         return;
722         }
723
724         /* free a pte talbe */
725         free_pagetable(pmd_page(*pmd), 0);
726         spin_lock(&init_mm.page_table_lock);
727         pmd_clear(pmd);
728         spin_unlock(&init_mm.page_table_lock);
729 }
730
731 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
732 {
733         pmd_t *pmd;
734         int i;
735
736         for (i = 0; i < PTRS_PER_PMD; i++) {
737                 pmd = pmd_start + i;
738                 if (!pmd_none(*pmd))
739                         return;
740         }
741
742         /* free a pmd talbe */
743         free_pagetable(pud_page(*pud), 0);
744         spin_lock(&init_mm.page_table_lock);
745         pud_clear(pud);
746         spin_unlock(&init_mm.page_table_lock);
747 }
748
749 static void __meminit
750 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
751                  bool direct)
752 {
753         unsigned long next, pages = 0;
754         pte_t *pte;
755         void *page_addr;
756         phys_addr_t phys_addr;
757
758         pte = pte_start + pte_index(addr);
759         for (; addr < end; addr = next, pte++) {
760                 next = (addr + PAGE_SIZE) & PAGE_MASK;
761                 if (next > end)
762                         next = end;
763
764                 if (!pte_present(*pte))
765                         continue;
766
767                 /*
768                  * We mapped [0,1G) memory as identity mapping when
769                  * initializing, in arch/x86/kernel/head_64.S. These
770                  * pagetables cannot be removed.
771                  */
772                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
773                 if (phys_addr < (phys_addr_t)0x40000000)
774                         return;
775
776                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
777                         /*
778                          * Do not free direct mapping pages since they were
779                          * freed when offlining, or simplely not in use.
780                          */
781                         if (!direct)
782                                 free_pagetable(pte_page(*pte), 0);
783
784                         spin_lock(&init_mm.page_table_lock);
785                         pte_clear(&init_mm, addr, pte);
786                         spin_unlock(&init_mm.page_table_lock);
787
788                         /* For non-direct mapping, pages means nothing. */
789                         pages++;
790                 } else {
791                         /*
792                          * If we are here, we are freeing vmemmap pages since
793                          * direct mapped memory ranges to be freed are aligned.
794                          *
795                          * If we are not removing the whole page, it means
796                          * other page structs in this page are being used and
797                          * we canot remove them. So fill the unused page_structs
798                          * with 0xFD, and remove the page when it is wholly
799                          * filled with 0xFD.
800                          */
801                         memset((void *)addr, PAGE_INUSE, next - addr);
802
803                         page_addr = page_address(pte_page(*pte));
804                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
805                                 free_pagetable(pte_page(*pte), 0);
806
807                                 spin_lock(&init_mm.page_table_lock);
808                                 pte_clear(&init_mm, addr, pte);
809                                 spin_unlock(&init_mm.page_table_lock);
810                         }
811                 }
812         }
813
814         /* Call free_pte_table() in remove_pmd_table(). */
815         flush_tlb_all();
816         if (direct)
817                 update_page_count(PG_LEVEL_4K, -pages);
818 }
819
820 static void __meminit
821 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
822                  bool direct)
823 {
824         unsigned long next, pages = 0;
825         pte_t *pte_base;
826         pmd_t *pmd;
827         void *page_addr;
828
829         pmd = pmd_start + pmd_index(addr);
830         for (; addr < end; addr = next, pmd++) {
831                 next = pmd_addr_end(addr, end);
832
833                 if (!pmd_present(*pmd))
834                         continue;
835
836                 if (pmd_large(*pmd)) {
837                         if (IS_ALIGNED(addr, PMD_SIZE) &&
838                             IS_ALIGNED(next, PMD_SIZE)) {
839                                 if (!direct)
840                                         free_pagetable(pmd_page(*pmd),
841                                                        get_order(PMD_SIZE));
842
843                                 spin_lock(&init_mm.page_table_lock);
844                                 pmd_clear(pmd);
845                                 spin_unlock(&init_mm.page_table_lock);
846                                 pages++;
847                         } else {
848                                 /* If here, we are freeing vmemmap pages. */
849                                 memset((void *)addr, PAGE_INUSE, next - addr);
850
851                                 page_addr = page_address(pmd_page(*pmd));
852                                 if (!memchr_inv(page_addr, PAGE_INUSE,
853                                                 PMD_SIZE)) {
854                                         free_pagetable(pmd_page(*pmd),
855                                                        get_order(PMD_SIZE));
856
857                                         spin_lock(&init_mm.page_table_lock);
858                                         pmd_clear(pmd);
859                                         spin_unlock(&init_mm.page_table_lock);
860                                 }
861                         }
862
863                         continue;
864                 }
865
866                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
867                 remove_pte_table(pte_base, addr, next, direct);
868                 free_pte_table(pte_base, pmd);
869         }
870
871         /* Call free_pmd_table() in remove_pud_table(). */
872         if (direct)
873                 update_page_count(PG_LEVEL_2M, -pages);
874 }
875
876 static void __meminit
877 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
878                  bool direct)
879 {
880         unsigned long next, pages = 0;
881         pmd_t *pmd_base;
882         pud_t *pud;
883         void *page_addr;
884
885         pud = pud_start + pud_index(addr);
886         for (; addr < end; addr = next, pud++) {
887                 next = pud_addr_end(addr, end);
888
889                 if (!pud_present(*pud))
890                         continue;
891
892                 if (pud_large(*pud)) {
893                         if (IS_ALIGNED(addr, PUD_SIZE) &&
894                             IS_ALIGNED(next, PUD_SIZE)) {
895                                 if (!direct)
896                                         free_pagetable(pud_page(*pud),
897                                                        get_order(PUD_SIZE));
898
899                                 spin_lock(&init_mm.page_table_lock);
900                                 pud_clear(pud);
901                                 spin_unlock(&init_mm.page_table_lock);
902                                 pages++;
903                         } else {
904                                 /* If here, we are freeing vmemmap pages. */
905                                 memset((void *)addr, PAGE_INUSE, next - addr);
906
907                                 page_addr = page_address(pud_page(*pud));
908                                 if (!memchr_inv(page_addr, PAGE_INUSE,
909                                                 PUD_SIZE)) {
910                                         free_pagetable(pud_page(*pud),
911                                                        get_order(PUD_SIZE));
912
913                                         spin_lock(&init_mm.page_table_lock);
914                                         pud_clear(pud);
915                                         spin_unlock(&init_mm.page_table_lock);
916                                 }
917                         }
918
919                         continue;
920                 }
921
922                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
923                 remove_pmd_table(pmd_base, addr, next, direct);
924                 free_pmd_table(pmd_base, pud);
925         }
926
927         if (direct)
928                 update_page_count(PG_LEVEL_1G, -pages);
929 }
930
931 /* start and end are both virtual address. */
932 static void __meminit
933 remove_pagetable(unsigned long start, unsigned long end, bool direct)
934 {
935         unsigned long next;
936         unsigned long addr;
937         pgd_t *pgd;
938         pud_t *pud;
939
940         for (addr = start; addr < end; addr = next) {
941                 next = pgd_addr_end(addr, end);
942
943                 pgd = pgd_offset_k(addr);
944                 if (!pgd_present(*pgd))
945                         continue;
946
947                 pud = (pud_t *)pgd_page_vaddr(*pgd);
948                 remove_pud_table(pud, addr, next, direct);
949         }
950
951         flush_tlb_all();
952 }
953
954 void __ref vmemmap_free(unsigned long start, unsigned long end)
955 {
956         remove_pagetable(start, end, false);
957 }
958
959 #ifdef CONFIG_MEMORY_HOTREMOVE
960 static void __meminit
961 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
962 {
963         start = (unsigned long)__va(start);
964         end = (unsigned long)__va(end);
965
966         remove_pagetable(start, end, true);
967 }
968
969 int __ref arch_remove_memory(u64 start, u64 size)
970 {
971         unsigned long start_pfn = start >> PAGE_SHIFT;
972         unsigned long nr_pages = size >> PAGE_SHIFT;
973         struct page *page = pfn_to_page(start_pfn);
974         struct vmem_altmap *altmap;
975         struct zone *zone;
976         int ret;
977
978         /* With altmap the first mapped page is offset from @start */
979         altmap = to_vmem_altmap((unsigned long) page);
980         if (altmap)
981                 page += vmem_altmap_offset(altmap);
982         zone = page_zone(page);
983         ret = __remove_pages(zone, start_pfn, nr_pages);
984         WARN_ON_ONCE(ret);
985         kernel_physical_mapping_remove(start, start + size);
986
987         return ret;
988 }
989 #endif
990 #endif /* CONFIG_MEMORY_HOTPLUG */
991
992 static struct kcore_list kcore_vsyscall;
993
994 static void __init register_page_bootmem_info(void)
995 {
996 #ifdef CONFIG_NUMA
997         int i;
998
999         for_each_online_node(i)
1000                 register_page_bootmem_info_node(NODE_DATA(i));
1001 #endif
1002 }
1003
1004 void __init mem_init(void)
1005 {
1006         pci_iommu_alloc();
1007
1008         /* clear_bss() already clear the empty_zero_page */
1009
1010         register_page_bootmem_info();
1011
1012         /* this will put all memory onto the freelists */
1013         free_all_bootmem();
1014         after_bootmem = 1;
1015
1016         /* Register memory areas for /proc/kcore */
1017         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1018
1019         mem_init_print_info(NULL);
1020 }
1021
1022 const int rodata_test_data = 0xC3;
1023 EXPORT_SYMBOL_GPL(rodata_test_data);
1024
1025 int kernel_set_to_readonly;
1026
1027 void set_kernel_text_rw(void)
1028 {
1029         unsigned long start = PFN_ALIGN(_text);
1030         unsigned long end = PFN_ALIGN(__stop___ex_table);
1031
1032         if (!kernel_set_to_readonly)
1033                 return;
1034
1035         pr_debug("Set kernel text: %lx - %lx for read write\n",
1036                  start, end);
1037
1038         /*
1039          * Make the kernel identity mapping for text RW. Kernel text
1040          * mapping will always be RO. Refer to the comment in
1041          * static_protections() in pageattr.c
1042          */
1043         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1044 }
1045
1046 void set_kernel_text_ro(void)
1047 {
1048         unsigned long start = PFN_ALIGN(_text);
1049         unsigned long end = PFN_ALIGN(__stop___ex_table);
1050
1051         if (!kernel_set_to_readonly)
1052                 return;
1053
1054         pr_debug("Set kernel text: %lx - %lx for read only\n",
1055                  start, end);
1056
1057         /*
1058          * Set the kernel identity mapping for text RO.
1059          */
1060         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1061 }
1062
1063 void mark_rodata_ro(void)
1064 {
1065         unsigned long start = PFN_ALIGN(_text);
1066         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1067         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1068         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1069         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1070         unsigned long all_end;
1071
1072         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1073                (end - start) >> 10);
1074         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1075
1076         kernel_set_to_readonly = 1;
1077
1078         /*
1079          * The rodata/data/bss/brk section (but not the kernel text!)
1080          * should also be not-executable.
1081          *
1082          * We align all_end to PMD_SIZE because the existing mapping
1083          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1084          * split the PMD and the reminder between _brk_end and the end
1085          * of the PMD will remain mapped executable.
1086          *
1087          * Any PMD which was setup after the one which covers _brk_end
1088          * has been zapped already via cleanup_highmem().
1089          */
1090         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1091         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1092
1093         rodata_test();
1094
1095 #ifdef CONFIG_CPA_DEBUG
1096         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1097         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1098
1099         printk(KERN_INFO "Testing CPA: again\n");
1100         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1101 #endif
1102
1103         free_init_pages("unused kernel",
1104                         (unsigned long) __va(__pa_symbol(text_end)),
1105                         (unsigned long) __va(__pa_symbol(rodata_start)));
1106         free_init_pages("unused kernel",
1107                         (unsigned long) __va(__pa_symbol(rodata_end)),
1108                         (unsigned long) __va(__pa_symbol(_sdata)));
1109
1110         debug_checkwx();
1111 }
1112
1113 int kern_addr_valid(unsigned long addr)
1114 {
1115         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1116         pgd_t *pgd;
1117         pud_t *pud;
1118         pmd_t *pmd;
1119         pte_t *pte;
1120
1121         if (above != 0 && above != -1UL)
1122                 return 0;
1123
1124         pgd = pgd_offset_k(addr);
1125         if (pgd_none(*pgd))
1126                 return 0;
1127
1128         pud = pud_offset(pgd, addr);
1129         if (!pud_present(*pud))
1130                 return 0;
1131
1132         if (pud_large(*pud))
1133                 return pfn_valid(pud_pfn(*pud));
1134
1135         pmd = pmd_offset(pud, addr);
1136         if (!pmd_present(*pmd))
1137                 return 0;
1138
1139         if (pmd_large(*pmd))
1140                 return pfn_valid(pmd_pfn(*pmd));
1141
1142         pte = pte_offset_kernel(pmd, addr);
1143         if (!pte_present(*pte))
1144                 return 0;
1145
1146         return pfn_valid(pte_pfn(*pte));
1147 }
1148
1149 static unsigned long probe_memory_block_size(void)
1150 {
1151         unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1152
1153         /* if system is UV or has 64GB of RAM or more, use large blocks */
1154         if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1155                 bz = 2UL << 30; /* 2GB */
1156
1157         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1158
1159         return bz;
1160 }
1161
1162 static unsigned long memory_block_size_probed;
1163 unsigned long memory_block_size_bytes(void)
1164 {
1165         if (!memory_block_size_probed)
1166                 memory_block_size_probed = probe_memory_block_size();
1167
1168         return memory_block_size_probed;
1169 }
1170
1171 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1172 /*
1173  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1174  */
1175 static long __meminitdata addr_start, addr_end;
1176 static void __meminitdata *p_start, *p_end;
1177 static int __meminitdata node_start;
1178
1179 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1180                 unsigned long end, int node, struct vmem_altmap *altmap)
1181 {
1182         unsigned long addr;
1183         unsigned long next;
1184         pgd_t *pgd;
1185         pud_t *pud;
1186         pmd_t *pmd;
1187
1188         for (addr = start; addr < end; addr = next) {
1189                 next = pmd_addr_end(addr, end);
1190
1191                 pgd = vmemmap_pgd_populate(addr, node);
1192                 if (!pgd)
1193                         return -ENOMEM;
1194
1195                 pud = vmemmap_pud_populate(pgd, addr, node);
1196                 if (!pud)
1197                         return -ENOMEM;
1198
1199                 pmd = pmd_offset(pud, addr);
1200                 if (pmd_none(*pmd)) {
1201                         void *p;
1202
1203                         p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1204                         if (p) {
1205                                 pte_t entry;
1206
1207                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1208                                                 PAGE_KERNEL_LARGE);
1209                                 set_pmd(pmd, __pmd(pte_val(entry)));
1210
1211                                 /* check to see if we have contiguous blocks */
1212                                 if (p_end != p || node_start != node) {
1213                                         if (p_start)
1214                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1215                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1216                                         addr_start = addr;
1217                                         node_start = node;
1218                                         p_start = p;
1219                                 }
1220
1221                                 addr_end = addr + PMD_SIZE;
1222                                 p_end = p + PMD_SIZE;
1223                                 continue;
1224                         } else if (altmap)
1225                                 return -ENOMEM; /* no fallback */
1226                 } else if (pmd_large(*pmd)) {
1227                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1228                         continue;
1229                 }
1230                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1231                 if (vmemmap_populate_basepages(addr, next, node))
1232                         return -ENOMEM;
1233         }
1234         return 0;
1235 }
1236
1237 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1238 {
1239         struct vmem_altmap *altmap = to_vmem_altmap(start);
1240         int err;
1241
1242         if (boot_cpu_has(X86_FEATURE_PSE))
1243                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1244         else if (altmap) {
1245                 pr_err_once("%s: no cpu support for altmap allocations\n",
1246                                 __func__);
1247                 err = -ENOMEM;
1248         } else
1249                 err = vmemmap_populate_basepages(start, end, node);
1250         if (!err)
1251                 sync_global_pgds(start, end - 1, 0);
1252         return err;
1253 }
1254
1255 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1256 void register_page_bootmem_memmap(unsigned long section_nr,
1257                                   struct page *start_page, unsigned long size)
1258 {
1259         unsigned long addr = (unsigned long)start_page;
1260         unsigned long end = (unsigned long)(start_page + size);
1261         unsigned long next;
1262         pgd_t *pgd;
1263         pud_t *pud;
1264         pmd_t *pmd;
1265         unsigned int nr_pages;
1266         struct page *page;
1267
1268         for (; addr < end; addr = next) {
1269                 pte_t *pte = NULL;
1270
1271                 pgd = pgd_offset_k(addr);
1272                 if (pgd_none(*pgd)) {
1273                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1274                         continue;
1275                 }
1276                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1277
1278                 pud = pud_offset(pgd, addr);
1279                 if (pud_none(*pud)) {
1280                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1281                         continue;
1282                 }
1283                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1284
1285                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1286                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1287                         pmd = pmd_offset(pud, addr);
1288                         if (pmd_none(*pmd))
1289                                 continue;
1290                         get_page_bootmem(section_nr, pmd_page(*pmd),
1291                                          MIX_SECTION_INFO);
1292
1293                         pte = pte_offset_kernel(pmd, addr);
1294                         if (pte_none(*pte))
1295                                 continue;
1296                         get_page_bootmem(section_nr, pte_page(*pte),
1297                                          SECTION_INFO);
1298                 } else {
1299                         next = pmd_addr_end(addr, end);
1300
1301                         pmd = pmd_offset(pud, addr);
1302                         if (pmd_none(*pmd))
1303                                 continue;
1304
1305                         nr_pages = 1 << (get_order(PMD_SIZE));
1306                         page = pmd_page(*pmd);
1307                         while (nr_pages--)
1308                                 get_page_bootmem(section_nr, page++,
1309                                                  SECTION_INFO);
1310                 }
1311         }
1312 }
1313 #endif
1314
1315 void __meminit vmemmap_populate_print_last(void)
1316 {
1317         if (p_start) {
1318                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1319                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1320                 p_start = NULL;
1321                 p_end = NULL;
1322                 node_start = 0;
1323         }
1324 }
1325 #endif