GNU Linux-libre 4.4.285-gnu1
[releases.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/setup.h>
56
57 #include "mm_internal.h"
58
59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60                            unsigned long addr, unsigned long end)
61 {
62         addr &= PMD_MASK;
63         for (; addr < end; addr += PMD_SIZE) {
64                 pmd_t *pmd = pmd_page + pmd_index(addr);
65
66                 if (!pmd_present(*pmd))
67                         set_pmd(pmd, __pmd(addr | pmd_flag));
68         }
69 }
70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71                           unsigned long addr, unsigned long end)
72 {
73         unsigned long next;
74
75         for (; addr < end; addr = next) {
76                 pud_t *pud = pud_page + pud_index(addr);
77                 pmd_t *pmd;
78
79                 next = (addr & PUD_MASK) + PUD_SIZE;
80                 if (next > end)
81                         next = end;
82
83                 if (pud_present(*pud)) {
84                         pmd = pmd_offset(pud, 0);
85                         ident_pmd_init(info->pmd_flag, pmd, addr, next);
86                         continue;
87                 }
88                 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89                 if (!pmd)
90                         return -ENOMEM;
91                 ident_pmd_init(info->pmd_flag, pmd, addr, next);
92                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93         }
94
95         return 0;
96 }
97
98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99                               unsigned long addr, unsigned long end)
100 {
101         unsigned long next;
102         int result;
103         int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104
105         for (; addr < end; addr = next) {
106                 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107                 pud_t *pud;
108
109                 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110                 if (next > end)
111                         next = end;
112
113                 if (pgd_present(*pgd)) {
114                         pud = pud_offset(pgd, 0);
115                         result = ident_pud_init(info, pud, addr, next);
116                         if (result)
117                                 return result;
118                         continue;
119                 }
120
121                 pud = (pud_t *)info->alloc_pgt_page(info->context);
122                 if (!pud)
123                         return -ENOMEM;
124                 result = ident_pud_init(info, pud, addr, next);
125                 if (result)
126                         return result;
127                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128         }
129
130         return 0;
131 }
132
133 /*
134  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
135  * physical space so we can cache the place of the first one and move
136  * around without checking the pgd every time.
137  */
138
139 pteval_t __supported_pte_mask __read_mostly = ~0;
140 EXPORT_SYMBOL_GPL(__supported_pte_mask);
141
142 int force_personality32;
143
144 /*
145  * noexec32=on|off
146  * Control non executable heap for 32bit processes.
147  * To control the stack too use noexec=off
148  *
149  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
150  * off  PROT_READ implies PROT_EXEC
151  */
152 static int __init nonx32_setup(char *str)
153 {
154         if (!strcmp(str, "on"))
155                 force_personality32 &= ~READ_IMPLIES_EXEC;
156         else if (!strcmp(str, "off"))
157                 force_personality32 |= READ_IMPLIES_EXEC;
158         return 1;
159 }
160 __setup("noexec32=", nonx32_setup);
161
162 /*
163  * When memory was added/removed make sure all the processes MM have
164  * suitable PGD entries in the local PGD level page.
165  */
166 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
167 {
168         unsigned long address;
169
170         for (address = start; address <= end; address += PGDIR_SIZE) {
171                 const pgd_t *pgd_ref = pgd_offset_k(address);
172                 struct page *page;
173
174                 /*
175                  * When it is called after memory hot remove, pgd_none()
176                  * returns true. In this case (removed == 1), we must clear
177                  * the PGD entries in the local PGD level page.
178                  */
179                 if (pgd_none(*pgd_ref) && !removed)
180                         continue;
181
182                 spin_lock(&pgd_lock);
183                 list_for_each_entry(page, &pgd_list, lru) {
184                         pgd_t *pgd;
185                         spinlock_t *pgt_lock;
186
187                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
188                         /* the pgt_lock only for Xen */
189                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
190                         spin_lock(pgt_lock);
191
192                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
193                                 BUG_ON(pgd_page_vaddr(*pgd)
194                                        != pgd_page_vaddr(*pgd_ref));
195
196                         if (removed) {
197                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
198                                         pgd_clear(pgd);
199                         } else {
200                                 if (pgd_none(*pgd))
201                                         set_pgd(pgd, *pgd_ref);
202                         }
203
204                         spin_unlock(pgt_lock);
205                 }
206                 spin_unlock(&pgd_lock);
207         }
208 }
209
210 /*
211  * NOTE: This function is marked __ref because it calls __init function
212  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
213  */
214 static __ref void *spp_getpage(void)
215 {
216         void *ptr;
217
218         if (after_bootmem)
219                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
220         else
221                 ptr = alloc_bootmem_pages(PAGE_SIZE);
222
223         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
224                 panic("set_pte_phys: cannot allocate page data %s\n",
225                         after_bootmem ? "after bootmem" : "");
226         }
227
228         pr_debug("spp_getpage %p\n", ptr);
229
230         return ptr;
231 }
232
233 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
234 {
235         if (pgd_none(*pgd)) {
236                 pud_t *pud = (pud_t *)spp_getpage();
237                 pgd_populate(&init_mm, pgd, pud);
238                 if (pud != pud_offset(pgd, 0))
239                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
240                                pud, pud_offset(pgd, 0));
241         }
242         return pud_offset(pgd, vaddr);
243 }
244
245 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
246 {
247         if (pud_none(*pud)) {
248                 pmd_t *pmd = (pmd_t *) spp_getpage();
249                 pud_populate(&init_mm, pud, pmd);
250                 if (pmd != pmd_offset(pud, 0))
251                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
252                                pmd, pmd_offset(pud, 0));
253         }
254         return pmd_offset(pud, vaddr);
255 }
256
257 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
258 {
259         if (pmd_none(*pmd)) {
260                 pte_t *pte = (pte_t *) spp_getpage();
261                 pmd_populate_kernel(&init_mm, pmd, pte);
262                 if (pte != pte_offset_kernel(pmd, 0))
263                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
264         }
265         return pte_offset_kernel(pmd, vaddr);
266 }
267
268 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
269 {
270         pud_t *pud;
271         pmd_t *pmd;
272         pte_t *pte;
273
274         pud = pud_page + pud_index(vaddr);
275         pmd = fill_pmd(pud, vaddr);
276         pte = fill_pte(pmd, vaddr);
277
278         set_pte(pte, new_pte);
279
280         /*
281          * It's enough to flush this one mapping.
282          * (PGE mappings get flushed as well)
283          */
284         __flush_tlb_one(vaddr);
285 }
286
287 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
288 {
289         pgd_t *pgd;
290         pud_t *pud_page;
291
292         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
293
294         pgd = pgd_offset_k(vaddr);
295         if (pgd_none(*pgd)) {
296                 printk(KERN_ERR
297                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
298                 return;
299         }
300         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
301         set_pte_vaddr_pud(pud_page, vaddr, pteval);
302 }
303
304 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
305 {
306         pgd_t *pgd;
307         pud_t *pud;
308
309         pgd = pgd_offset_k(vaddr);
310         pud = fill_pud(pgd, vaddr);
311         return fill_pmd(pud, vaddr);
312 }
313
314 pte_t * __init populate_extra_pte(unsigned long vaddr)
315 {
316         pmd_t *pmd;
317
318         pmd = populate_extra_pmd(vaddr);
319         return fill_pte(pmd, vaddr);
320 }
321
322 /*
323  * Create large page table mappings for a range of physical addresses.
324  */
325 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
326                                         enum page_cache_mode cache)
327 {
328         pgd_t *pgd;
329         pud_t *pud;
330         pmd_t *pmd;
331         pgprot_t prot;
332
333         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
334                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
335         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
336         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
337                 pgd = pgd_offset_k((unsigned long)__va(phys));
338                 if (pgd_none(*pgd)) {
339                         pud = (pud_t *) spp_getpage();
340                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
341                                                 _PAGE_USER));
342                 }
343                 pud = pud_offset(pgd, (unsigned long)__va(phys));
344                 if (pud_none(*pud)) {
345                         pmd = (pmd_t *) spp_getpage();
346                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
347                                                 _PAGE_USER));
348                 }
349                 pmd = pmd_offset(pud, phys);
350                 BUG_ON(!pmd_none(*pmd));
351                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
352         }
353 }
354
355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
356 {
357         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
358 }
359
360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
361 {
362         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
363 }
364
365 /*
366  * The head.S code sets up the kernel high mapping:
367  *
368  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
369  *
370  * phys_base holds the negative offset to the kernel, which is added
371  * to the compile time generated pmds. This results in invalid pmds up
372  * to the point where we hit the physaddr 0 mapping.
373  *
374  * We limit the mappings to the region from _text to _brk_end.  _brk_end
375  * is rounded up to the 2MB boundary. This catches the invalid pmds as
376  * well, as they are located before _text:
377  */
378 void __init cleanup_highmap(void)
379 {
380         unsigned long vaddr = __START_KERNEL_map;
381         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
382         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
383         pmd_t *pmd = level2_kernel_pgt;
384
385         /*
386          * Native path, max_pfn_mapped is not set yet.
387          * Xen has valid max_pfn_mapped set in
388          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
389          */
390         if (max_pfn_mapped)
391                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
392
393         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
394                 if (pmd_none(*pmd))
395                         continue;
396                 if (vaddr < (unsigned long) _text || vaddr > end)
397                         set_pmd(pmd, __pmd(0));
398                 else if (kaiser_enabled) {
399                         /*
400                          * level2_kernel_pgt is initialized with _PAGE_GLOBAL:
401                          * clear that now.  This is not important, so long as
402                          * CR4.PGE remains clear, but it removes an anomaly.
403                          * Physical mapping setup below avoids _PAGE_GLOBAL
404                          * by use of massage_pgprot() inside pfn_pte() etc.
405                          */
406                         set_pmd(pmd, pmd_clear_flags(*pmd, _PAGE_GLOBAL));
407                 }
408         }
409 }
410
411 static unsigned long __meminit
412 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
413               pgprot_t prot)
414 {
415         unsigned long pages = 0, next;
416         unsigned long last_map_addr = end;
417         int i;
418
419         pte_t *pte = pte_page + pte_index(addr);
420
421         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
422                 next = (addr & PAGE_MASK) + PAGE_SIZE;
423                 if (addr >= end) {
424                         if (!after_bootmem &&
425                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
426                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
427                                 set_pte(pte, __pte(0));
428                         continue;
429                 }
430
431                 /*
432                  * We will re-use the existing mapping.
433                  * Xen for example has some special requirements, like mapping
434                  * pagetable pages as RO. So assume someone who pre-setup
435                  * these mappings are more intelligent.
436                  */
437                 if (pte_val(*pte)) {
438                         if (!after_bootmem)
439                                 pages++;
440                         continue;
441                 }
442
443                 if (0)
444                         printk("   pte=%p addr=%lx pte=%016lx\n",
445                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
446                 pages++;
447                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
448                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
449         }
450
451         update_page_count(PG_LEVEL_4K, pages);
452
453         return last_map_addr;
454 }
455
456 static unsigned long __meminit
457 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
458               unsigned long page_size_mask, pgprot_t prot)
459 {
460         unsigned long pages = 0, next;
461         unsigned long last_map_addr = end;
462
463         int i = pmd_index(address);
464
465         for (; i < PTRS_PER_PMD; i++, address = next) {
466                 pmd_t *pmd = pmd_page + pmd_index(address);
467                 pte_t *pte;
468                 pgprot_t new_prot = prot;
469
470                 next = (address & PMD_MASK) + PMD_SIZE;
471                 if (address >= end) {
472                         if (!after_bootmem &&
473                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
474                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
475                                 set_pmd(pmd, __pmd(0));
476                         continue;
477                 }
478
479                 if (pmd_val(*pmd)) {
480                         if (!pmd_large(*pmd)) {
481                                 spin_lock(&init_mm.page_table_lock);
482                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
483                                 last_map_addr = phys_pte_init(pte, address,
484                                                                 end, prot);
485                                 spin_unlock(&init_mm.page_table_lock);
486                                 continue;
487                         }
488                         /*
489                          * If we are ok with PG_LEVEL_2M mapping, then we will
490                          * use the existing mapping,
491                          *
492                          * Otherwise, we will split the large page mapping but
493                          * use the same existing protection bits except for
494                          * large page, so that we don't violate Intel's TLB
495                          * Application note (317080) which says, while changing
496                          * the page sizes, new and old translations should
497                          * not differ with respect to page frame and
498                          * attributes.
499                          */
500                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
501                                 if (!after_bootmem)
502                                         pages++;
503                                 last_map_addr = next;
504                                 continue;
505                         }
506                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
507                 }
508
509                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
510                         pages++;
511                         spin_lock(&init_mm.page_table_lock);
512                         set_pte((pte_t *)pmd,
513                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
514                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
515                         spin_unlock(&init_mm.page_table_lock);
516                         last_map_addr = next;
517                         continue;
518                 }
519
520                 pte = alloc_low_page();
521                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
522
523                 spin_lock(&init_mm.page_table_lock);
524                 pmd_populate_kernel(&init_mm, pmd, pte);
525                 spin_unlock(&init_mm.page_table_lock);
526         }
527         update_page_count(PG_LEVEL_2M, pages);
528         return last_map_addr;
529 }
530
531 static unsigned long __meminit
532 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
533                          unsigned long page_size_mask)
534 {
535         unsigned long pages = 0, next;
536         unsigned long last_map_addr = end;
537         int i = pud_index(addr);
538
539         for (; i < PTRS_PER_PUD; i++, addr = next) {
540                 pud_t *pud = pud_page + pud_index(addr);
541                 pmd_t *pmd;
542                 pgprot_t prot = PAGE_KERNEL;
543
544                 next = (addr & PUD_MASK) + PUD_SIZE;
545                 if (addr >= end) {
546                         if (!after_bootmem &&
547                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
548                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
549                                 set_pud(pud, __pud(0));
550                         continue;
551                 }
552
553                 if (pud_val(*pud)) {
554                         if (!pud_large(*pud)) {
555                                 pmd = pmd_offset(pud, 0);
556                                 last_map_addr = phys_pmd_init(pmd, addr, end,
557                                                          page_size_mask, prot);
558                                 __flush_tlb_all();
559                                 continue;
560                         }
561                         /*
562                          * If we are ok with PG_LEVEL_1G mapping, then we will
563                          * use the existing mapping.
564                          *
565                          * Otherwise, we will split the gbpage mapping but use
566                          * the same existing protection  bits except for large
567                          * page, so that we don't violate Intel's TLB
568                          * Application note (317080) which says, while changing
569                          * the page sizes, new and old translations should
570                          * not differ with respect to page frame and
571                          * attributes.
572                          */
573                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
574                                 if (!after_bootmem)
575                                         pages++;
576                                 last_map_addr = next;
577                                 continue;
578                         }
579                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
580                 }
581
582                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
583                         pages++;
584                         spin_lock(&init_mm.page_table_lock);
585                         set_pte((pte_t *)pud,
586                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
587                                         PAGE_KERNEL_LARGE));
588                         spin_unlock(&init_mm.page_table_lock);
589                         last_map_addr = next;
590                         continue;
591                 }
592
593                 pmd = alloc_low_page();
594                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
595                                               prot);
596
597                 spin_lock(&init_mm.page_table_lock);
598                 pud_populate(&init_mm, pud, pmd);
599                 spin_unlock(&init_mm.page_table_lock);
600         }
601         __flush_tlb_all();
602
603         update_page_count(PG_LEVEL_1G, pages);
604
605         return last_map_addr;
606 }
607
608 unsigned long __meminit
609 kernel_physical_mapping_init(unsigned long start,
610                              unsigned long end,
611                              unsigned long page_size_mask)
612 {
613         bool pgd_changed = false;
614         unsigned long next, last_map_addr = end;
615         unsigned long addr;
616
617         start = (unsigned long)__va(start);
618         end = (unsigned long)__va(end);
619         addr = start;
620
621         for (; start < end; start = next) {
622                 pgd_t *pgd = pgd_offset_k(start);
623                 pud_t *pud;
624
625                 next = (start & PGDIR_MASK) + PGDIR_SIZE;
626
627                 if (pgd_val(*pgd)) {
628                         pud = (pud_t *)pgd_page_vaddr(*pgd);
629                         last_map_addr = phys_pud_init(pud, __pa(start),
630                                                  __pa(end), page_size_mask);
631                         continue;
632                 }
633
634                 pud = alloc_low_page();
635                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
636                                                  page_size_mask);
637
638                 spin_lock(&init_mm.page_table_lock);
639                 pgd_populate(&init_mm, pgd, pud);
640                 spin_unlock(&init_mm.page_table_lock);
641                 pgd_changed = true;
642         }
643
644         if (pgd_changed)
645                 sync_global_pgds(addr, end - 1, 0);
646
647         __flush_tlb_all();
648
649         return last_map_addr;
650 }
651
652 #ifndef CONFIG_NUMA
653 void __init initmem_init(void)
654 {
655         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
656 }
657 #endif
658
659 void __init paging_init(void)
660 {
661         sparse_memory_present_with_active_regions(MAX_NUMNODES);
662         sparse_init();
663
664         /*
665          * clear the default setting with node 0
666          * note: don't use nodes_clear here, that is really clearing when
667          *       numa support is not compiled in, and later node_set_state
668          *       will not set it back.
669          */
670         node_clear_state(0, N_MEMORY);
671         if (N_MEMORY != N_NORMAL_MEMORY)
672                 node_clear_state(0, N_NORMAL_MEMORY);
673
674         zone_sizes_init();
675 }
676
677 /*
678  * Memory hotplug specific functions
679  */
680 #ifdef CONFIG_MEMORY_HOTPLUG
681 /*
682  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
683  * updating.
684  */
685 static void  update_end_of_memory_vars(u64 start, u64 size)
686 {
687         unsigned long end_pfn = PFN_UP(start + size);
688
689         if (end_pfn > max_pfn) {
690                 max_pfn = end_pfn;
691                 max_low_pfn = end_pfn;
692                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
693         }
694 }
695
696 /*
697  * Memory is added always to NORMAL zone. This means you will never get
698  * additional DMA/DMA32 memory.
699  */
700 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
701 {
702         struct pglist_data *pgdat = NODE_DATA(nid);
703         struct zone *zone = pgdat->node_zones +
704                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
705         unsigned long start_pfn = start >> PAGE_SHIFT;
706         unsigned long nr_pages = size >> PAGE_SHIFT;
707         int ret;
708
709         init_memory_mapping(start, start + size);
710
711         ret = __add_pages(nid, zone, start_pfn, nr_pages);
712         WARN_ON_ONCE(ret);
713
714         /* update max_pfn, max_low_pfn and high_memory */
715         update_end_of_memory_vars(start, size);
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(arch_add_memory);
720
721 #define PAGE_INUSE 0xFD
722
723 static void __meminit free_pagetable(struct page *page, int order)
724 {
725         unsigned long magic;
726         unsigned int nr_pages = 1 << order;
727
728         /* bootmem page has reserved flag */
729         if (PageReserved(page)) {
730                 __ClearPageReserved(page);
731
732                 magic = (unsigned long)page->lru.next;
733                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
734                         while (nr_pages--)
735                                 put_page_bootmem(page++);
736                 } else
737                         while (nr_pages--)
738                                 free_reserved_page(page++);
739         } else
740                 free_pages((unsigned long)page_address(page), order);
741 }
742
743 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
744 {
745         pte_t *pte;
746         int i;
747
748         for (i = 0; i < PTRS_PER_PTE; i++) {
749                 pte = pte_start + i;
750                 if (pte_val(*pte))
751                         return;
752         }
753
754         /* free a pte talbe */
755         free_pagetable(pmd_page(*pmd), 0);
756         spin_lock(&init_mm.page_table_lock);
757         pmd_clear(pmd);
758         spin_unlock(&init_mm.page_table_lock);
759 }
760
761 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
762 {
763         pmd_t *pmd;
764         int i;
765
766         for (i = 0; i < PTRS_PER_PMD; i++) {
767                 pmd = pmd_start + i;
768                 if (pmd_val(*pmd))
769                         return;
770         }
771
772         /* free a pmd talbe */
773         free_pagetable(pud_page(*pud), 0);
774         spin_lock(&init_mm.page_table_lock);
775         pud_clear(pud);
776         spin_unlock(&init_mm.page_table_lock);
777 }
778
779 /* Return true if pgd is changed, otherwise return false. */
780 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
781 {
782         pud_t *pud;
783         int i;
784
785         for (i = 0; i < PTRS_PER_PUD; i++) {
786                 pud = pud_start + i;
787                 if (pud_val(*pud))
788                         return false;
789         }
790
791         /* free a pud table */
792         free_pagetable(pgd_page(*pgd), 0);
793         spin_lock(&init_mm.page_table_lock);
794         pgd_clear(pgd);
795         spin_unlock(&init_mm.page_table_lock);
796
797         return true;
798 }
799
800 static void __meminit
801 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
802                  bool direct)
803 {
804         unsigned long next, pages = 0;
805         pte_t *pte;
806         void *page_addr;
807         phys_addr_t phys_addr;
808
809         pte = pte_start + pte_index(addr);
810         for (; addr < end; addr = next, pte++) {
811                 next = (addr + PAGE_SIZE) & PAGE_MASK;
812                 if (next > end)
813                         next = end;
814
815                 if (!pte_present(*pte))
816                         continue;
817
818                 /*
819                  * We mapped [0,1G) memory as identity mapping when
820                  * initializing, in arch/x86/kernel/head_64.S. These
821                  * pagetables cannot be removed.
822                  */
823                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
824                 if (phys_addr < (phys_addr_t)0x40000000)
825                         return;
826
827                 if (IS_ALIGNED(addr, PAGE_SIZE) &&
828                     IS_ALIGNED(next, PAGE_SIZE)) {
829                         /*
830                          * Do not free direct mapping pages since they were
831                          * freed when offlining, or simplely not in use.
832                          */
833                         if (!direct)
834                                 free_pagetable(pte_page(*pte), 0);
835
836                         spin_lock(&init_mm.page_table_lock);
837                         pte_clear(&init_mm, addr, pte);
838                         spin_unlock(&init_mm.page_table_lock);
839
840                         /* For non-direct mapping, pages means nothing. */
841                         pages++;
842                 } else {
843                         /*
844                          * If we are here, we are freeing vmemmap pages since
845                          * direct mapped memory ranges to be freed are aligned.
846                          *
847                          * If we are not removing the whole page, it means
848                          * other page structs in this page are being used and
849                          * we canot remove them. So fill the unused page_structs
850                          * with 0xFD, and remove the page when it is wholly
851                          * filled with 0xFD.
852                          */
853                         memset((void *)addr, PAGE_INUSE, next - addr);
854
855                         page_addr = page_address(pte_page(*pte));
856                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
857                                 free_pagetable(pte_page(*pte), 0);
858
859                                 spin_lock(&init_mm.page_table_lock);
860                                 pte_clear(&init_mm, addr, pte);
861                                 spin_unlock(&init_mm.page_table_lock);
862                         }
863                 }
864         }
865
866         /* Call free_pte_table() in remove_pmd_table(). */
867         flush_tlb_all();
868         if (direct)
869                 update_page_count(PG_LEVEL_4K, -pages);
870 }
871
872 static void __meminit
873 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
874                  bool direct)
875 {
876         unsigned long next, pages = 0;
877         pte_t *pte_base;
878         pmd_t *pmd;
879         void *page_addr;
880
881         pmd = pmd_start + pmd_index(addr);
882         for (; addr < end; addr = next, pmd++) {
883                 next = pmd_addr_end(addr, end);
884
885                 if (!pmd_present(*pmd))
886                         continue;
887
888                 if (pmd_large(*pmd)) {
889                         if (IS_ALIGNED(addr, PMD_SIZE) &&
890                             IS_ALIGNED(next, PMD_SIZE)) {
891                                 if (!direct)
892                                         free_pagetable(pmd_page(*pmd),
893                                                        get_order(PMD_SIZE));
894
895                                 spin_lock(&init_mm.page_table_lock);
896                                 pmd_clear(pmd);
897                                 spin_unlock(&init_mm.page_table_lock);
898                                 pages++;
899                         } else {
900                                 /* If here, we are freeing vmemmap pages. */
901                                 memset((void *)addr, PAGE_INUSE, next - addr);
902
903                                 page_addr = page_address(pmd_page(*pmd));
904                                 if (!memchr_inv(page_addr, PAGE_INUSE,
905                                                 PMD_SIZE)) {
906                                         free_pagetable(pmd_page(*pmd),
907                                                        get_order(PMD_SIZE));
908
909                                         spin_lock(&init_mm.page_table_lock);
910                                         pmd_clear(pmd);
911                                         spin_unlock(&init_mm.page_table_lock);
912                                 }
913                         }
914
915                         continue;
916                 }
917
918                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
919                 remove_pte_table(pte_base, addr, next, direct);
920                 free_pte_table(pte_base, pmd);
921         }
922
923         /* Call free_pmd_table() in remove_pud_table(). */
924         if (direct)
925                 update_page_count(PG_LEVEL_2M, -pages);
926 }
927
928 static void __meminit
929 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
930                  bool direct)
931 {
932         unsigned long next, pages = 0;
933         pmd_t *pmd_base;
934         pud_t *pud;
935         void *page_addr;
936
937         pud = pud_start + pud_index(addr);
938         for (; addr < end; addr = next, pud++) {
939                 next = pud_addr_end(addr, end);
940
941                 if (!pud_present(*pud))
942                         continue;
943
944                 if (pud_large(*pud)) {
945                         if (IS_ALIGNED(addr, PUD_SIZE) &&
946                             IS_ALIGNED(next, PUD_SIZE)) {
947                                 if (!direct)
948                                         free_pagetable(pud_page(*pud),
949                                                        get_order(PUD_SIZE));
950
951                                 spin_lock(&init_mm.page_table_lock);
952                                 pud_clear(pud);
953                                 spin_unlock(&init_mm.page_table_lock);
954                                 pages++;
955                         } else {
956                                 /* If here, we are freeing vmemmap pages. */
957                                 memset((void *)addr, PAGE_INUSE, next - addr);
958
959                                 page_addr = page_address(pud_page(*pud));
960                                 if (!memchr_inv(page_addr, PAGE_INUSE,
961                                                 PUD_SIZE)) {
962                                         free_pagetable(pud_page(*pud),
963                                                        get_order(PUD_SIZE));
964
965                                         spin_lock(&init_mm.page_table_lock);
966                                         pud_clear(pud);
967                                         spin_unlock(&init_mm.page_table_lock);
968                                 }
969                         }
970
971                         continue;
972                 }
973
974                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
975                 remove_pmd_table(pmd_base, addr, next, direct);
976                 free_pmd_table(pmd_base, pud);
977         }
978
979         if (direct)
980                 update_page_count(PG_LEVEL_1G, -pages);
981 }
982
983 /* start and end are both virtual address. */
984 static void __meminit
985 remove_pagetable(unsigned long start, unsigned long end, bool direct)
986 {
987         unsigned long next;
988         unsigned long addr;
989         pgd_t *pgd;
990         pud_t *pud;
991         bool pgd_changed = false;
992
993         for (addr = start; addr < end; addr = next) {
994                 next = pgd_addr_end(addr, end);
995
996                 pgd = pgd_offset_k(addr);
997                 if (!pgd_present(*pgd))
998                         continue;
999
1000                 pud = (pud_t *)pgd_page_vaddr(*pgd);
1001                 remove_pud_table(pud, addr, next, direct);
1002                 if (free_pud_table(pud, pgd))
1003                         pgd_changed = true;
1004         }
1005
1006         if (pgd_changed)
1007                 sync_global_pgds(start, end - 1, 1);
1008
1009         flush_tlb_all();
1010 }
1011
1012 void __ref vmemmap_free(unsigned long start, unsigned long end)
1013 {
1014         remove_pagetable(start, end, false);
1015 }
1016
1017 #ifdef CONFIG_MEMORY_HOTREMOVE
1018 static void __meminit
1019 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1020 {
1021         start = (unsigned long)__va(start);
1022         end = (unsigned long)__va(end);
1023
1024         remove_pagetable(start, end, true);
1025 }
1026
1027 int __ref arch_remove_memory(u64 start, u64 size)
1028 {
1029         unsigned long start_pfn = start >> PAGE_SHIFT;
1030         unsigned long nr_pages = size >> PAGE_SHIFT;
1031         struct zone *zone;
1032         int ret;
1033
1034         zone = page_zone(pfn_to_page(start_pfn));
1035         kernel_physical_mapping_remove(start, start + size);
1036         ret = __remove_pages(zone, start_pfn, nr_pages);
1037         WARN_ON_ONCE(ret);
1038
1039         return ret;
1040 }
1041 #endif
1042 #endif /* CONFIG_MEMORY_HOTPLUG */
1043
1044 static struct kcore_list kcore_vsyscall;
1045
1046 static void __init register_page_bootmem_info(void)
1047 {
1048 #ifdef CONFIG_NUMA
1049         int i;
1050
1051         for_each_online_node(i)
1052                 register_page_bootmem_info_node(NODE_DATA(i));
1053 #endif
1054 }
1055
1056 void __init mem_init(void)
1057 {
1058         pci_iommu_alloc();
1059
1060         /* clear_bss() already clear the empty_zero_page */
1061
1062         register_page_bootmem_info();
1063
1064         /* this will put all memory onto the freelists */
1065         free_all_bootmem();
1066         after_bootmem = 1;
1067
1068         /* Register memory areas for /proc/kcore */
1069         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1070                          PAGE_SIZE, KCORE_OTHER);
1071
1072         mem_init_print_info(NULL);
1073 }
1074
1075 #ifdef CONFIG_DEBUG_RODATA
1076 const int rodata_test_data = 0xC3;
1077 EXPORT_SYMBOL_GPL(rodata_test_data);
1078
1079 int kernel_set_to_readonly;
1080
1081 void set_kernel_text_rw(void)
1082 {
1083         unsigned long start = PFN_ALIGN(_text);
1084         unsigned long end = PFN_ALIGN(__stop___ex_table);
1085
1086         if (!kernel_set_to_readonly)
1087                 return;
1088
1089         pr_debug("Set kernel text: %lx - %lx for read write\n",
1090                  start, end);
1091
1092         /*
1093          * Make the kernel identity mapping for text RW. Kernel text
1094          * mapping will always be RO. Refer to the comment in
1095          * static_protections() in pageattr.c
1096          */
1097         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1098 }
1099
1100 void set_kernel_text_ro(void)
1101 {
1102         unsigned long start = PFN_ALIGN(_text);
1103         unsigned long end = PFN_ALIGN(__stop___ex_table);
1104
1105         if (!kernel_set_to_readonly)
1106                 return;
1107
1108         pr_debug("Set kernel text: %lx - %lx for read only\n",
1109                  start, end);
1110
1111         /*
1112          * Set the kernel identity mapping for text RO.
1113          */
1114         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1115 }
1116
1117 void mark_rodata_ro(void)
1118 {
1119         unsigned long start = PFN_ALIGN(_text);
1120         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1121         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1122         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1123         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1124         unsigned long all_end;
1125
1126         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1127                (end - start) >> 10);
1128         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1129
1130         kernel_set_to_readonly = 1;
1131
1132         /*
1133          * The rodata/data/bss/brk section (but not the kernel text!)
1134          * should also be not-executable.
1135          *
1136          * We align all_end to PMD_SIZE because the existing mapping
1137          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1138          * split the PMD and the reminder between _brk_end and the end
1139          * of the PMD will remain mapped executable.
1140          *
1141          * Any PMD which was setup after the one which covers _brk_end
1142          * has been zapped already via cleanup_highmem().
1143          */
1144         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1145         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1146
1147         rodata_test();
1148
1149 #ifdef CONFIG_CPA_DEBUG
1150         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1151         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1152
1153         printk(KERN_INFO "Testing CPA: again\n");
1154         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1155 #endif
1156
1157         free_init_pages("unused kernel",
1158                         (unsigned long) __va(__pa_symbol(text_end)),
1159                         (unsigned long) __va(__pa_symbol(rodata_start)));
1160         free_init_pages("unused kernel",
1161                         (unsigned long) __va(__pa_symbol(rodata_end)),
1162                         (unsigned long) __va(__pa_symbol(_sdata)));
1163
1164         debug_checkwx();
1165 }
1166
1167 #endif
1168
1169 int kern_addr_valid(unsigned long addr)
1170 {
1171         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1172         pgd_t *pgd;
1173         pud_t *pud;
1174         pmd_t *pmd;
1175         pte_t *pte;
1176
1177         if (above != 0 && above != -1UL)
1178                 return 0;
1179
1180         pgd = pgd_offset_k(addr);
1181         if (pgd_none(*pgd))
1182                 return 0;
1183
1184         pud = pud_offset(pgd, addr);
1185         if (!pud_present(*pud))
1186                 return 0;
1187
1188         if (pud_large(*pud))
1189                 return pfn_valid(pud_pfn(*pud));
1190
1191         pmd = pmd_offset(pud, addr);
1192         if (!pmd_present(*pmd))
1193                 return 0;
1194
1195         if (pmd_large(*pmd))
1196                 return pfn_valid(pmd_pfn(*pmd));
1197
1198         pte = pte_offset_kernel(pmd, addr);
1199         if (!pte_present(*pte))
1200                 return 0;
1201
1202         return pfn_valid(pte_pfn(*pte));
1203 }
1204
1205 static unsigned long probe_memory_block_size(void)
1206 {
1207         /* start from 2g */
1208         unsigned long bz = 1UL<<31;
1209
1210         if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1211                 pr_info("Using 2GB memory block size for large-memory system\n");
1212                 return 2UL * 1024 * 1024 * 1024;
1213         }
1214
1215         /* less than 64g installed */
1216         if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1217                 return MIN_MEMORY_BLOCK_SIZE;
1218
1219         /* get the tail size */
1220         while (bz > MIN_MEMORY_BLOCK_SIZE) {
1221                 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1222                         break;
1223                 bz >>= 1;
1224         }
1225
1226         printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1227
1228         return bz;
1229 }
1230
1231 static unsigned long memory_block_size_probed;
1232 unsigned long memory_block_size_bytes(void)
1233 {
1234         if (!memory_block_size_probed)
1235                 memory_block_size_probed = probe_memory_block_size();
1236
1237         return memory_block_size_probed;
1238 }
1239
1240 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1241 /*
1242  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1243  */
1244 static long __meminitdata addr_start, addr_end;
1245 static void __meminitdata *p_start, *p_end;
1246 static int __meminitdata node_start;
1247
1248 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1249                                                 unsigned long end, int node)
1250 {
1251         unsigned long addr;
1252         unsigned long next;
1253         pgd_t *pgd;
1254         pud_t *pud;
1255         pmd_t *pmd;
1256
1257         for (addr = start; addr < end; addr = next) {
1258                 next = pmd_addr_end(addr, end);
1259
1260                 pgd = vmemmap_pgd_populate(addr, node);
1261                 if (!pgd)
1262                         return -ENOMEM;
1263
1264                 pud = vmemmap_pud_populate(pgd, addr, node);
1265                 if (!pud)
1266                         return -ENOMEM;
1267
1268                 pmd = pmd_offset(pud, addr);
1269                 if (pmd_none(*pmd)) {
1270                         void *p;
1271
1272                         p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1273                         if (p) {
1274                                 pte_t entry;
1275
1276                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1277                                                 PAGE_KERNEL_LARGE);
1278                                 set_pmd(pmd, __pmd(pte_val(entry)));
1279
1280                                 /* check to see if we have contiguous blocks */
1281                                 if (p_end != p || node_start != node) {
1282                                         if (p_start)
1283                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1284                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1285                                         addr_start = addr;
1286                                         node_start = node;
1287                                         p_start = p;
1288                                 }
1289
1290                                 addr_end = addr + PMD_SIZE;
1291                                 p_end = p + PMD_SIZE;
1292                                 continue;
1293                         }
1294                 } else if (pmd_large(*pmd)) {
1295                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1296                         continue;
1297                 }
1298                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1299                 if (vmemmap_populate_basepages(addr, next, node))
1300                         return -ENOMEM;
1301         }
1302         return 0;
1303 }
1304
1305 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1306 {
1307         int err;
1308
1309         if (cpu_has_pse)
1310                 err = vmemmap_populate_hugepages(start, end, node);
1311         else
1312                 err = vmemmap_populate_basepages(start, end, node);
1313         if (!err)
1314                 sync_global_pgds(start, end - 1, 0);
1315         return err;
1316 }
1317
1318 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1319 void register_page_bootmem_memmap(unsigned long section_nr,
1320                                   struct page *start_page, unsigned long size)
1321 {
1322         unsigned long addr = (unsigned long)start_page;
1323         unsigned long end = (unsigned long)(start_page + size);
1324         unsigned long next;
1325         pgd_t *pgd;
1326         pud_t *pud;
1327         pmd_t *pmd;
1328         unsigned int nr_pages;
1329         struct page *page;
1330
1331         for (; addr < end; addr = next) {
1332                 pte_t *pte = NULL;
1333
1334                 pgd = pgd_offset_k(addr);
1335                 if (pgd_none(*pgd)) {
1336                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1337                         continue;
1338                 }
1339                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1340
1341                 pud = pud_offset(pgd, addr);
1342                 if (pud_none(*pud)) {
1343                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1344                         continue;
1345                 }
1346                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1347
1348                 if (!cpu_has_pse) {
1349                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1350                         pmd = pmd_offset(pud, addr);
1351                         if (pmd_none(*pmd))
1352                                 continue;
1353                         get_page_bootmem(section_nr, pmd_page(*pmd),
1354                                          MIX_SECTION_INFO);
1355
1356                         pte = pte_offset_kernel(pmd, addr);
1357                         if (pte_none(*pte))
1358                                 continue;
1359                         get_page_bootmem(section_nr, pte_page(*pte),
1360                                          SECTION_INFO);
1361                 } else {
1362                         next = pmd_addr_end(addr, end);
1363
1364                         pmd = pmd_offset(pud, addr);
1365                         if (pmd_none(*pmd))
1366                                 continue;
1367
1368                         nr_pages = 1 << (get_order(PMD_SIZE));
1369                         page = pmd_page(*pmd);
1370                         while (nr_pages--)
1371                                 get_page_bootmem(section_nr, page++,
1372                                                  SECTION_INFO);
1373                 }
1374         }
1375 }
1376 #endif
1377
1378 void __meminit vmemmap_populate_print_last(void)
1379 {
1380         if (p_start) {
1381                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1382                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1383                 p_start = NULL;
1384                 p_end = NULL;
1385                 node_start = 0;
1386         }
1387 }
1388 #endif