GNU Linux-libre 4.19.281-gnu1
[releases.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67
68 /* Bits supported by the hardware: */
69 pteval_t __supported_pte_mask __read_mostly = ~0;
70 /* Bits allowed in normal kernel mappings: */
71 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
72 EXPORT_SYMBOL_GPL(__supported_pte_mask);
73 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
74 EXPORT_SYMBOL(__default_kernel_pte_mask);
75
76 int force_personality32;
77
78 /*
79  * noexec32=on|off
80  * Control non executable heap for 32bit processes.
81  * To control the stack too use noexec=off
82  *
83  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
84  * off  PROT_READ implies PROT_EXEC
85  */
86 static int __init nonx32_setup(char *str)
87 {
88         if (!strcmp(str, "on"))
89                 force_personality32 &= ~READ_IMPLIES_EXEC;
90         else if (!strcmp(str, "off"))
91                 force_personality32 |= READ_IMPLIES_EXEC;
92         return 1;
93 }
94 __setup("noexec32=", nonx32_setup);
95
96 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
97 {
98         unsigned long addr;
99
100         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
101                 const pgd_t *pgd_ref = pgd_offset_k(addr);
102                 struct page *page;
103
104                 /* Check for overflow */
105                 if (addr < start)
106                         break;
107
108                 if (pgd_none(*pgd_ref))
109                         continue;
110
111                 spin_lock(&pgd_lock);
112                 list_for_each_entry(page, &pgd_list, lru) {
113                         pgd_t *pgd;
114                         spinlock_t *pgt_lock;
115
116                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
117                         /* the pgt_lock only for Xen */
118                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
119                         spin_lock(pgt_lock);
120
121                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
122                                 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
123
124                         if (pgd_none(*pgd))
125                                 set_pgd(pgd, *pgd_ref);
126
127                         spin_unlock(pgt_lock);
128                 }
129                 spin_unlock(&pgd_lock);
130         }
131 }
132
133 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
134 {
135         unsigned long addr;
136
137         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138                 pgd_t *pgd_ref = pgd_offset_k(addr);
139                 const p4d_t *p4d_ref;
140                 struct page *page;
141
142                 /*
143                  * With folded p4d, pgd_none() is always false, we need to
144                  * handle synchonization on p4d level.
145                  */
146                 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
147                 p4d_ref = p4d_offset(pgd_ref, addr);
148
149                 if (p4d_none(*p4d_ref))
150                         continue;
151
152                 spin_lock(&pgd_lock);
153                 list_for_each_entry(page, &pgd_list, lru) {
154                         pgd_t *pgd;
155                         p4d_t *p4d;
156                         spinlock_t *pgt_lock;
157
158                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
159                         p4d = p4d_offset(pgd, addr);
160                         /* the pgt_lock only for Xen */
161                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
162                         spin_lock(pgt_lock);
163
164                         if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
165                                 BUG_ON(p4d_page_vaddr(*p4d)
166                                        != p4d_page_vaddr(*p4d_ref));
167
168                         if (p4d_none(*p4d))
169                                 set_p4d(p4d, *p4d_ref);
170
171                         spin_unlock(pgt_lock);
172                 }
173                 spin_unlock(&pgd_lock);
174         }
175 }
176
177 /*
178  * When memory was added make sure all the processes MM have
179  * suitable PGD entries in the local PGD level page.
180  */
181 void sync_global_pgds(unsigned long start, unsigned long end)
182 {
183         if (pgtable_l5_enabled())
184                 sync_global_pgds_l5(start, end);
185         else
186                 sync_global_pgds_l4(start, end);
187 }
188
189 /*
190  * NOTE: This function is marked __ref because it calls __init function
191  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
192  */
193 static __ref void *spp_getpage(void)
194 {
195         void *ptr;
196
197         if (after_bootmem)
198                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
199         else
200                 ptr = alloc_bootmem_pages(PAGE_SIZE);
201
202         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
203                 panic("set_pte_phys: cannot allocate page data %s\n",
204                         after_bootmem ? "after bootmem" : "");
205         }
206
207         pr_debug("spp_getpage %p\n", ptr);
208
209         return ptr;
210 }
211
212 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
213 {
214         if (pgd_none(*pgd)) {
215                 p4d_t *p4d = (p4d_t *)spp_getpage();
216                 pgd_populate(&init_mm, pgd, p4d);
217                 if (p4d != p4d_offset(pgd, 0))
218                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
219                                p4d, p4d_offset(pgd, 0));
220         }
221         return p4d_offset(pgd, vaddr);
222 }
223
224 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
225 {
226         if (p4d_none(*p4d)) {
227                 pud_t *pud = (pud_t *)spp_getpage();
228                 p4d_populate(&init_mm, p4d, pud);
229                 if (pud != pud_offset(p4d, 0))
230                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
231                                pud, pud_offset(p4d, 0));
232         }
233         return pud_offset(p4d, vaddr);
234 }
235
236 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
237 {
238         if (pud_none(*pud)) {
239                 pmd_t *pmd = (pmd_t *) spp_getpage();
240                 pud_populate(&init_mm, pud, pmd);
241                 if (pmd != pmd_offset(pud, 0))
242                         printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
243                                pmd, pmd_offset(pud, 0));
244         }
245         return pmd_offset(pud, vaddr);
246 }
247
248 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
249 {
250         if (pmd_none(*pmd)) {
251                 pte_t *pte = (pte_t *) spp_getpage();
252                 pmd_populate_kernel(&init_mm, pmd, pte);
253                 if (pte != pte_offset_kernel(pmd, 0))
254                         printk(KERN_ERR "PAGETABLE BUG #03!\n");
255         }
256         return pte_offset_kernel(pmd, vaddr);
257 }
258
259 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
260 {
261         pmd_t *pmd = fill_pmd(pud, vaddr);
262         pte_t *pte = fill_pte(pmd, vaddr);
263
264         set_pte(pte, new_pte);
265
266         /*
267          * It's enough to flush this one mapping.
268          * (PGE mappings get flushed as well)
269          */
270         __flush_tlb_one_kernel(vaddr);
271 }
272
273 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
274 {
275         p4d_t *p4d = p4d_page + p4d_index(vaddr);
276         pud_t *pud = fill_pud(p4d, vaddr);
277
278         __set_pte_vaddr(pud, vaddr, new_pte);
279 }
280
281 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
282 {
283         pud_t *pud = pud_page + pud_index(vaddr);
284
285         __set_pte_vaddr(pud, vaddr, new_pte);
286 }
287
288 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
289 {
290         pgd_t *pgd;
291         p4d_t *p4d_page;
292
293         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
294
295         pgd = pgd_offset_k(vaddr);
296         if (pgd_none(*pgd)) {
297                 printk(KERN_ERR
298                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
299                 return;
300         }
301
302         p4d_page = p4d_offset(pgd, 0);
303         set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
304 }
305
306 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
307 {
308         pgd_t *pgd;
309         p4d_t *p4d;
310         pud_t *pud;
311
312         pgd = pgd_offset_k(vaddr);
313         p4d = fill_p4d(pgd, vaddr);
314         pud = fill_pud(p4d, vaddr);
315         return fill_pmd(pud, vaddr);
316 }
317
318 pte_t * __init populate_extra_pte(unsigned long vaddr)
319 {
320         pmd_t *pmd;
321
322         pmd = populate_extra_pmd(vaddr);
323         return fill_pte(pmd, vaddr);
324 }
325
326 /*
327  * Create large page table mappings for a range of physical addresses.
328  */
329 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
330                                         enum page_cache_mode cache)
331 {
332         pgd_t *pgd;
333         p4d_t *p4d;
334         pud_t *pud;
335         pmd_t *pmd;
336         pgprot_t prot;
337
338         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
339                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
340         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
341         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
342                 pgd = pgd_offset_k((unsigned long)__va(phys));
343                 if (pgd_none(*pgd)) {
344                         p4d = (p4d_t *) spp_getpage();
345                         set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
346                                                 _PAGE_USER));
347                 }
348                 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
349                 if (p4d_none(*p4d)) {
350                         pud = (pud_t *) spp_getpage();
351                         set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
352                                                 _PAGE_USER));
353                 }
354                 pud = pud_offset(p4d, (unsigned long)__va(phys));
355                 if (pud_none(*pud)) {
356                         pmd = (pmd_t *) spp_getpage();
357                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
358                                                 _PAGE_USER));
359                 }
360                 pmd = pmd_offset(pud, phys);
361                 BUG_ON(!pmd_none(*pmd));
362                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
363         }
364 }
365
366 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
367 {
368         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
369 }
370
371 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
372 {
373         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
374 }
375
376 /*
377  * The head.S code sets up the kernel high mapping:
378  *
379  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
380  *
381  * phys_base holds the negative offset to the kernel, which is added
382  * to the compile time generated pmds. This results in invalid pmds up
383  * to the point where we hit the physaddr 0 mapping.
384  *
385  * We limit the mappings to the region from _text to _brk_end.  _brk_end
386  * is rounded up to the 2MB boundary. This catches the invalid pmds as
387  * well, as they are located before _text:
388  */
389 void __init cleanup_highmap(void)
390 {
391         unsigned long vaddr = __START_KERNEL_map;
392         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
393         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
394         pmd_t *pmd = level2_kernel_pgt;
395
396         /*
397          * Native path, max_pfn_mapped is not set yet.
398          * Xen has valid max_pfn_mapped set in
399          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
400          */
401         if (max_pfn_mapped)
402                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
403
404         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
405                 if (pmd_none(*pmd))
406                         continue;
407                 if (vaddr < (unsigned long) _text || vaddr > end)
408                         set_pmd(pmd, __pmd(0));
409         }
410 }
411
412 /*
413  * Create PTE level page table mapping for physical addresses.
414  * It returns the last physical address mapped.
415  */
416 static unsigned long __meminit
417 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
418               pgprot_t prot)
419 {
420         unsigned long pages = 0, paddr_next;
421         unsigned long paddr_last = paddr_end;
422         pte_t *pte;
423         int i;
424
425         pte = pte_page + pte_index(paddr);
426         i = pte_index(paddr);
427
428         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
429                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
430                 if (paddr >= paddr_end) {
431                         if (!after_bootmem &&
432                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
433                                              E820_TYPE_RAM) &&
434                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
435                                              E820_TYPE_RESERVED_KERN))
436                                 set_pte(pte, __pte(0));
437                         continue;
438                 }
439
440                 /*
441                  * We will re-use the existing mapping.
442                  * Xen for example has some special requirements, like mapping
443                  * pagetable pages as RO. So assume someone who pre-setup
444                  * these mappings are more intelligent.
445                  */
446                 if (!pte_none(*pte)) {
447                         if (!after_bootmem)
448                                 pages++;
449                         continue;
450                 }
451
452                 if (0)
453                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
454                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
455                 pages++;
456                 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
457                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
458         }
459
460         update_page_count(PG_LEVEL_4K, pages);
461
462         return paddr_last;
463 }
464
465 /*
466  * Create PMD level page table mapping for physical addresses. The virtual
467  * and physical address have to be aligned at this level.
468  * It returns the last physical address mapped.
469  */
470 static unsigned long __meminit
471 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
472               unsigned long page_size_mask, pgprot_t prot)
473 {
474         unsigned long pages = 0, paddr_next;
475         unsigned long paddr_last = paddr_end;
476
477         int i = pmd_index(paddr);
478
479         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
480                 pmd_t *pmd = pmd_page + pmd_index(paddr);
481                 pte_t *pte;
482                 pgprot_t new_prot = prot;
483
484                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
485                 if (paddr >= paddr_end) {
486                         if (!after_bootmem &&
487                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
488                                              E820_TYPE_RAM) &&
489                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
490                                              E820_TYPE_RESERVED_KERN))
491                                 set_pmd(pmd, __pmd(0));
492                         continue;
493                 }
494
495                 if (!pmd_none(*pmd)) {
496                         if (!pmd_large(*pmd)) {
497                                 spin_lock(&init_mm.page_table_lock);
498                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
499                                 paddr_last = phys_pte_init(pte, paddr,
500                                                            paddr_end, prot);
501                                 spin_unlock(&init_mm.page_table_lock);
502                                 continue;
503                         }
504                         /*
505                          * If we are ok with PG_LEVEL_2M mapping, then we will
506                          * use the existing mapping,
507                          *
508                          * Otherwise, we will split the large page mapping but
509                          * use the same existing protection bits except for
510                          * large page, so that we don't violate Intel's TLB
511                          * Application note (317080) which says, while changing
512                          * the page sizes, new and old translations should
513                          * not differ with respect to page frame and
514                          * attributes.
515                          */
516                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
517                                 if (!after_bootmem)
518                                         pages++;
519                                 paddr_last = paddr_next;
520                                 continue;
521                         }
522                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
523                 }
524
525                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
526                         pages++;
527                         spin_lock(&init_mm.page_table_lock);
528                         set_pte((pte_t *)pmd,
529                                 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
530                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
531                         spin_unlock(&init_mm.page_table_lock);
532                         paddr_last = paddr_next;
533                         continue;
534                 }
535
536                 pte = alloc_low_page();
537                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
538
539                 spin_lock(&init_mm.page_table_lock);
540                 pmd_populate_kernel(&init_mm, pmd, pte);
541                 spin_unlock(&init_mm.page_table_lock);
542         }
543         update_page_count(PG_LEVEL_2M, pages);
544         return paddr_last;
545 }
546
547 /*
548  * Create PUD level page table mapping for physical addresses. The virtual
549  * and physical address do not have to be aligned at this level. KASLR can
550  * randomize virtual addresses up to this level.
551  * It returns the last physical address mapped.
552  */
553 static unsigned long __meminit
554 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
555               unsigned long page_size_mask)
556 {
557         unsigned long pages = 0, paddr_next;
558         unsigned long paddr_last = paddr_end;
559         unsigned long vaddr = (unsigned long)__va(paddr);
560         int i = pud_index(vaddr);
561
562         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
563                 pud_t *pud;
564                 pmd_t *pmd;
565                 pgprot_t prot = PAGE_KERNEL;
566
567                 vaddr = (unsigned long)__va(paddr);
568                 pud = pud_page + pud_index(vaddr);
569                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
570
571                 if (paddr >= paddr_end) {
572                         if (!after_bootmem &&
573                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
574                                              E820_TYPE_RAM) &&
575                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
576                                              E820_TYPE_RESERVED_KERN))
577                                 set_pud(pud, __pud(0));
578                         continue;
579                 }
580
581                 if (!pud_none(*pud)) {
582                         if (!pud_large(*pud)) {
583                                 pmd = pmd_offset(pud, 0);
584                                 paddr_last = phys_pmd_init(pmd, paddr,
585                                                            paddr_end,
586                                                            page_size_mask,
587                                                            prot);
588                                 continue;
589                         }
590                         /*
591                          * If we are ok with PG_LEVEL_1G mapping, then we will
592                          * use the existing mapping.
593                          *
594                          * Otherwise, we will split the gbpage mapping but use
595                          * the same existing protection  bits except for large
596                          * page, so that we don't violate Intel's TLB
597                          * Application note (317080) which says, while changing
598                          * the page sizes, new and old translations should
599                          * not differ with respect to page frame and
600                          * attributes.
601                          */
602                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
603                                 if (!after_bootmem)
604                                         pages++;
605                                 paddr_last = paddr_next;
606                                 continue;
607                         }
608                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
609                 }
610
611                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
612                         pages++;
613                         spin_lock(&init_mm.page_table_lock);
614                         set_pte((pte_t *)pud,
615                                 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
616                                         PAGE_KERNEL_LARGE));
617                         spin_unlock(&init_mm.page_table_lock);
618                         paddr_last = paddr_next;
619                         continue;
620                 }
621
622                 pmd = alloc_low_page();
623                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
624                                            page_size_mask, prot);
625
626                 spin_lock(&init_mm.page_table_lock);
627                 pud_populate(&init_mm, pud, pmd);
628                 spin_unlock(&init_mm.page_table_lock);
629         }
630
631         update_page_count(PG_LEVEL_1G, pages);
632
633         return paddr_last;
634 }
635
636 static unsigned long __meminit
637 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
638               unsigned long page_size_mask)
639 {
640         unsigned long paddr_next, paddr_last = paddr_end;
641         unsigned long vaddr = (unsigned long)__va(paddr);
642         int i = p4d_index(vaddr);
643
644         if (!pgtable_l5_enabled())
645                 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask);
646
647         for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) {
648                 p4d_t *p4d;
649                 pud_t *pud;
650
651                 vaddr = (unsigned long)__va(paddr);
652                 p4d = p4d_page + p4d_index(vaddr);
653                 paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
654
655                 if (paddr >= paddr_end) {
656                         if (!after_bootmem &&
657                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
658                                              E820_TYPE_RAM) &&
659                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
660                                              E820_TYPE_RESERVED_KERN))
661                                 set_p4d(p4d, __p4d(0));
662                         continue;
663                 }
664
665                 if (!p4d_none(*p4d)) {
666                         pud = pud_offset(p4d, 0);
667                         paddr_last = phys_pud_init(pud, paddr,
668                                         paddr_end,
669                                         page_size_mask);
670                         continue;
671                 }
672
673                 pud = alloc_low_page();
674                 paddr_last = phys_pud_init(pud, paddr, paddr_end,
675                                            page_size_mask);
676
677                 spin_lock(&init_mm.page_table_lock);
678                 p4d_populate(&init_mm, p4d, pud);
679                 spin_unlock(&init_mm.page_table_lock);
680         }
681
682         return paddr_last;
683 }
684
685 /*
686  * Create page table mapping for the physical memory for specific physical
687  * addresses. The virtual and physical addresses have to be aligned on PMD level
688  * down. It returns the last physical address mapped.
689  */
690 unsigned long __meminit
691 kernel_physical_mapping_init(unsigned long paddr_start,
692                              unsigned long paddr_end,
693                              unsigned long page_size_mask)
694 {
695         bool pgd_changed = false;
696         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
697
698         paddr_last = paddr_end;
699         vaddr = (unsigned long)__va(paddr_start);
700         vaddr_end = (unsigned long)__va(paddr_end);
701         vaddr_start = vaddr;
702
703         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
704                 pgd_t *pgd = pgd_offset_k(vaddr);
705                 p4d_t *p4d;
706
707                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
708
709                 if (pgd_val(*pgd)) {
710                         p4d = (p4d_t *)pgd_page_vaddr(*pgd);
711                         paddr_last = phys_p4d_init(p4d, __pa(vaddr),
712                                                    __pa(vaddr_end),
713                                                    page_size_mask);
714                         continue;
715                 }
716
717                 p4d = alloc_low_page();
718                 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
719                                            page_size_mask);
720
721                 spin_lock(&init_mm.page_table_lock);
722                 if (pgtable_l5_enabled())
723                         pgd_populate(&init_mm, pgd, p4d);
724                 else
725                         p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
726                 spin_unlock(&init_mm.page_table_lock);
727                 pgd_changed = true;
728         }
729
730         if (pgd_changed)
731                 sync_global_pgds(vaddr_start, vaddr_end - 1);
732
733         return paddr_last;
734 }
735
736 #ifndef CONFIG_NUMA
737 void __init initmem_init(void)
738 {
739         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
740 }
741 #endif
742
743 void __init paging_init(void)
744 {
745         sparse_memory_present_with_active_regions(MAX_NUMNODES);
746         sparse_init();
747
748         /*
749          * clear the default setting with node 0
750          * note: don't use nodes_clear here, that is really clearing when
751          *       numa support is not compiled in, and later node_set_state
752          *       will not set it back.
753          */
754         node_clear_state(0, N_MEMORY);
755         if (N_MEMORY != N_NORMAL_MEMORY)
756                 node_clear_state(0, N_NORMAL_MEMORY);
757
758         zone_sizes_init();
759 }
760
761 /*
762  * Memory hotplug specific functions
763  */
764 #ifdef CONFIG_MEMORY_HOTPLUG
765 /*
766  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
767  * updating.
768  */
769 static void update_end_of_memory_vars(u64 start, u64 size)
770 {
771         unsigned long end_pfn = PFN_UP(start + size);
772
773         if (end_pfn > max_pfn) {
774                 max_pfn = end_pfn;
775                 max_low_pfn = end_pfn;
776                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
777         }
778 }
779
780 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
781                 struct vmem_altmap *altmap, bool want_memblock)
782 {
783         int ret;
784
785         ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
786         WARN_ON_ONCE(ret);
787
788         /* update max_pfn, max_low_pfn and high_memory */
789         update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
790                                   nr_pages << PAGE_SHIFT);
791
792         return ret;
793 }
794
795 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
796                 bool want_memblock)
797 {
798         unsigned long start_pfn = start >> PAGE_SHIFT;
799         unsigned long nr_pages = size >> PAGE_SHIFT;
800
801         init_memory_mapping(start, start + size);
802
803         return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
804 }
805
806 #define PAGE_INUSE 0xFD
807
808 static void __meminit free_pagetable(struct page *page, int order)
809 {
810         unsigned long magic;
811         unsigned int nr_pages = 1 << order;
812
813         /* bootmem page has reserved flag */
814         if (PageReserved(page)) {
815                 __ClearPageReserved(page);
816
817                 magic = (unsigned long)page->freelist;
818                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
819                         while (nr_pages--)
820                                 put_page_bootmem(page++);
821                 } else
822                         while (nr_pages--)
823                                 free_reserved_page(page++);
824         } else
825                 free_pages((unsigned long)page_address(page), order);
826 }
827
828 static void __meminit free_hugepage_table(struct page *page,
829                 struct vmem_altmap *altmap)
830 {
831         if (altmap)
832                 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
833         else
834                 free_pagetable(page, get_order(PMD_SIZE));
835 }
836
837 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
838 {
839         pte_t *pte;
840         int i;
841
842         for (i = 0; i < PTRS_PER_PTE; i++) {
843                 pte = pte_start + i;
844                 if (!pte_none(*pte))
845                         return;
846         }
847
848         /* free a pte talbe */
849         free_pagetable(pmd_page(*pmd), 0);
850         spin_lock(&init_mm.page_table_lock);
851         pmd_clear(pmd);
852         spin_unlock(&init_mm.page_table_lock);
853 }
854
855 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
856 {
857         pmd_t *pmd;
858         int i;
859
860         for (i = 0; i < PTRS_PER_PMD; i++) {
861                 pmd = pmd_start + i;
862                 if (!pmd_none(*pmd))
863                         return;
864         }
865
866         /* free a pmd talbe */
867         free_pagetable(pud_page(*pud), 0);
868         spin_lock(&init_mm.page_table_lock);
869         pud_clear(pud);
870         spin_unlock(&init_mm.page_table_lock);
871 }
872
873 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
874 {
875         pud_t *pud;
876         int i;
877
878         for (i = 0; i < PTRS_PER_PUD; i++) {
879                 pud = pud_start + i;
880                 if (!pud_none(*pud))
881                         return;
882         }
883
884         /* free a pud talbe */
885         free_pagetable(p4d_page(*p4d), 0);
886         spin_lock(&init_mm.page_table_lock);
887         p4d_clear(p4d);
888         spin_unlock(&init_mm.page_table_lock);
889 }
890
891 static void __meminit
892 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
893                  bool direct)
894 {
895         unsigned long next, pages = 0;
896         pte_t *pte;
897         void *page_addr;
898         phys_addr_t phys_addr;
899
900         pte = pte_start + pte_index(addr);
901         for (; addr < end; addr = next, pte++) {
902                 next = (addr + PAGE_SIZE) & PAGE_MASK;
903                 if (next > end)
904                         next = end;
905
906                 if (!pte_present(*pte))
907                         continue;
908
909                 /*
910                  * We mapped [0,1G) memory as identity mapping when
911                  * initializing, in arch/x86/kernel/head_64.S. These
912                  * pagetables cannot be removed.
913                  */
914                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
915                 if (phys_addr < (phys_addr_t)0x40000000)
916                         return;
917
918                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
919                         /*
920                          * Do not free direct mapping pages since they were
921                          * freed when offlining, or simplely not in use.
922                          */
923                         if (!direct)
924                                 free_pagetable(pte_page(*pte), 0);
925
926                         spin_lock(&init_mm.page_table_lock);
927                         pte_clear(&init_mm, addr, pte);
928                         spin_unlock(&init_mm.page_table_lock);
929
930                         /* For non-direct mapping, pages means nothing. */
931                         pages++;
932                 } else {
933                         /*
934                          * If we are here, we are freeing vmemmap pages since
935                          * direct mapped memory ranges to be freed are aligned.
936                          *
937                          * If we are not removing the whole page, it means
938                          * other page structs in this page are being used and
939                          * we canot remove them. So fill the unused page_structs
940                          * with 0xFD, and remove the page when it is wholly
941                          * filled with 0xFD.
942                          */
943                         memset((void *)addr, PAGE_INUSE, next - addr);
944
945                         page_addr = page_address(pte_page(*pte));
946                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
947                                 free_pagetable(pte_page(*pte), 0);
948
949                                 spin_lock(&init_mm.page_table_lock);
950                                 pte_clear(&init_mm, addr, pte);
951                                 spin_unlock(&init_mm.page_table_lock);
952                         }
953                 }
954         }
955
956         /* Call free_pte_table() in remove_pmd_table(). */
957         flush_tlb_all();
958         if (direct)
959                 update_page_count(PG_LEVEL_4K, -pages);
960 }
961
962 static void __meminit
963 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
964                  bool direct, struct vmem_altmap *altmap)
965 {
966         unsigned long next, pages = 0;
967         pte_t *pte_base;
968         pmd_t *pmd;
969         void *page_addr;
970
971         pmd = pmd_start + pmd_index(addr);
972         for (; addr < end; addr = next, pmd++) {
973                 next = pmd_addr_end(addr, end);
974
975                 if (!pmd_present(*pmd))
976                         continue;
977
978                 if (pmd_large(*pmd)) {
979                         if (IS_ALIGNED(addr, PMD_SIZE) &&
980                             IS_ALIGNED(next, PMD_SIZE)) {
981                                 if (!direct)
982                                         free_hugepage_table(pmd_page(*pmd),
983                                                             altmap);
984
985                                 spin_lock(&init_mm.page_table_lock);
986                                 pmd_clear(pmd);
987                                 spin_unlock(&init_mm.page_table_lock);
988                                 pages++;
989                         } else {
990                                 /* If here, we are freeing vmemmap pages. */
991                                 memset((void *)addr, PAGE_INUSE, next - addr);
992
993                                 page_addr = page_address(pmd_page(*pmd));
994                                 if (!memchr_inv(page_addr, PAGE_INUSE,
995                                                 PMD_SIZE)) {
996                                         free_hugepage_table(pmd_page(*pmd),
997                                                             altmap);
998
999                                         spin_lock(&init_mm.page_table_lock);
1000                                         pmd_clear(pmd);
1001                                         spin_unlock(&init_mm.page_table_lock);
1002                                 }
1003                         }
1004
1005                         continue;
1006                 }
1007
1008                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1009                 remove_pte_table(pte_base, addr, next, direct);
1010                 free_pte_table(pte_base, pmd);
1011         }
1012
1013         /* Call free_pmd_table() in remove_pud_table(). */
1014         if (direct)
1015                 update_page_count(PG_LEVEL_2M, -pages);
1016 }
1017
1018 static void __meminit
1019 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1020                  struct vmem_altmap *altmap, bool direct)
1021 {
1022         unsigned long next, pages = 0;
1023         pmd_t *pmd_base;
1024         pud_t *pud;
1025         void *page_addr;
1026
1027         pud = pud_start + pud_index(addr);
1028         for (; addr < end; addr = next, pud++) {
1029                 next = pud_addr_end(addr, end);
1030
1031                 if (!pud_present(*pud))
1032                         continue;
1033
1034                 if (pud_large(*pud)) {
1035                         if (IS_ALIGNED(addr, PUD_SIZE) &&
1036                             IS_ALIGNED(next, PUD_SIZE)) {
1037                                 if (!direct)
1038                                         free_pagetable(pud_page(*pud),
1039                                                        get_order(PUD_SIZE));
1040
1041                                 spin_lock(&init_mm.page_table_lock);
1042                                 pud_clear(pud);
1043                                 spin_unlock(&init_mm.page_table_lock);
1044                                 pages++;
1045                         } else {
1046                                 /* If here, we are freeing vmemmap pages. */
1047                                 memset((void *)addr, PAGE_INUSE, next - addr);
1048
1049                                 page_addr = page_address(pud_page(*pud));
1050                                 if (!memchr_inv(page_addr, PAGE_INUSE,
1051                                                 PUD_SIZE)) {
1052                                         free_pagetable(pud_page(*pud),
1053                                                        get_order(PUD_SIZE));
1054
1055                                         spin_lock(&init_mm.page_table_lock);
1056                                         pud_clear(pud);
1057                                         spin_unlock(&init_mm.page_table_lock);
1058                                 }
1059                         }
1060
1061                         continue;
1062                 }
1063
1064                 pmd_base = pmd_offset(pud, 0);
1065                 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1066                 free_pmd_table(pmd_base, pud);
1067         }
1068
1069         if (direct)
1070                 update_page_count(PG_LEVEL_1G, -pages);
1071 }
1072
1073 static void __meminit
1074 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1075                  struct vmem_altmap *altmap, bool direct)
1076 {
1077         unsigned long next, pages = 0;
1078         pud_t *pud_base;
1079         p4d_t *p4d;
1080
1081         p4d = p4d_start + p4d_index(addr);
1082         for (; addr < end; addr = next, p4d++) {
1083                 next = p4d_addr_end(addr, end);
1084
1085                 if (!p4d_present(*p4d))
1086                         continue;
1087
1088                 BUILD_BUG_ON(p4d_large(*p4d));
1089
1090                 pud_base = pud_offset(p4d, 0);
1091                 remove_pud_table(pud_base, addr, next, altmap, direct);
1092                 /*
1093                  * For 4-level page tables we do not want to free PUDs, but in the
1094                  * 5-level case we should free them. This code will have to change
1095                  * to adapt for boot-time switching between 4 and 5 level page tables.
1096                  */
1097                 if (pgtable_l5_enabled())
1098                         free_pud_table(pud_base, p4d);
1099         }
1100
1101         if (direct)
1102                 update_page_count(PG_LEVEL_512G, -pages);
1103 }
1104
1105 /* start and end are both virtual address. */
1106 static void __meminit
1107 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1108                 struct vmem_altmap *altmap)
1109 {
1110         unsigned long next;
1111         unsigned long addr;
1112         pgd_t *pgd;
1113         p4d_t *p4d;
1114
1115         for (addr = start; addr < end; addr = next) {
1116                 next = pgd_addr_end(addr, end);
1117
1118                 pgd = pgd_offset_k(addr);
1119                 if (!pgd_present(*pgd))
1120                         continue;
1121
1122                 p4d = p4d_offset(pgd, 0);
1123                 remove_p4d_table(p4d, addr, next, altmap, direct);
1124         }
1125
1126         flush_tlb_all();
1127 }
1128
1129 void __ref vmemmap_free(unsigned long start, unsigned long end,
1130                 struct vmem_altmap *altmap)
1131 {
1132         remove_pagetable(start, end, false, altmap);
1133 }
1134
1135 static void __meminit
1136 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1137 {
1138         start = (unsigned long)__va(start);
1139         end = (unsigned long)__va(end);
1140
1141         remove_pagetable(start, end, true, NULL);
1142 }
1143
1144 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1145                               struct vmem_altmap *altmap)
1146 {
1147         unsigned long start_pfn = start >> PAGE_SHIFT;
1148         unsigned long nr_pages = size >> PAGE_SHIFT;
1149
1150         __remove_pages(start_pfn, nr_pages, altmap);
1151         kernel_physical_mapping_remove(start, start + size);
1152 }
1153 #endif /* CONFIG_MEMORY_HOTPLUG */
1154
1155 static struct kcore_list kcore_vsyscall;
1156
1157 static void __init register_page_bootmem_info(void)
1158 {
1159 #ifdef CONFIG_NUMA
1160         int i;
1161
1162         for_each_online_node(i)
1163                 register_page_bootmem_info_node(NODE_DATA(i));
1164 #endif
1165 }
1166
1167 void __init mem_init(void)
1168 {
1169         pci_iommu_alloc();
1170
1171         /* clear_bss() already clear the empty_zero_page */
1172
1173         /* this will put all memory onto the freelists */
1174         free_all_bootmem();
1175         after_bootmem = 1;
1176         x86_init.hyper.init_after_bootmem();
1177
1178         /*
1179          * Must be done after boot memory is put on freelist, because here we
1180          * might set fields in deferred struct pages that have not yet been
1181          * initialized, and free_all_bootmem() initializes all the reserved
1182          * deferred pages for us.
1183          */
1184         register_page_bootmem_info();
1185
1186         /* Register memory areas for /proc/kcore */
1187         if (get_gate_vma(&init_mm))
1188                 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1189
1190         mem_init_print_info(NULL);
1191 }
1192
1193 int kernel_set_to_readonly;
1194
1195 void set_kernel_text_rw(void)
1196 {
1197         unsigned long start = PFN_ALIGN(_text);
1198         unsigned long end = PFN_ALIGN(__stop___ex_table);
1199
1200         if (!kernel_set_to_readonly)
1201                 return;
1202
1203         pr_debug("Set kernel text: %lx - %lx for read write\n",
1204                  start, end);
1205
1206         /*
1207          * Make the kernel identity mapping for text RW. Kernel text
1208          * mapping will always be RO. Refer to the comment in
1209          * static_protections() in pageattr.c
1210          */
1211         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1212 }
1213
1214 void set_kernel_text_ro(void)
1215 {
1216         unsigned long start = PFN_ALIGN(_text);
1217         unsigned long end = PFN_ALIGN(__stop___ex_table);
1218
1219         if (!kernel_set_to_readonly)
1220                 return;
1221
1222         pr_debug("Set kernel text: %lx - %lx for read only\n",
1223                  start, end);
1224
1225         /*
1226          * Set the kernel identity mapping for text RO.
1227          */
1228         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1229 }
1230
1231 void mark_rodata_ro(void)
1232 {
1233         unsigned long start = PFN_ALIGN(_text);
1234         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1235         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1236         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1237         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1238         unsigned long all_end;
1239
1240         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1241                (end - start) >> 10);
1242         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1243
1244         kernel_set_to_readonly = 1;
1245
1246         /*
1247          * The rodata/data/bss/brk section (but not the kernel text!)
1248          * should also be not-executable.
1249          *
1250          * We align all_end to PMD_SIZE because the existing mapping
1251          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1252          * split the PMD and the reminder between _brk_end and the end
1253          * of the PMD will remain mapped executable.
1254          *
1255          * Any PMD which was setup after the one which covers _brk_end
1256          * has been zapped already via cleanup_highmem().
1257          */
1258         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1259         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1260
1261 #ifdef CONFIG_CPA_DEBUG
1262         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1263         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1264
1265         printk(KERN_INFO "Testing CPA: again\n");
1266         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1267 #endif
1268
1269         free_kernel_image_pages((void *)text_end, (void *)rodata_start);
1270         free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
1271
1272         debug_checkwx();
1273 }
1274
1275 int kern_addr_valid(unsigned long addr)
1276 {
1277         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1278         pgd_t *pgd;
1279         p4d_t *p4d;
1280         pud_t *pud;
1281         pmd_t *pmd;
1282         pte_t *pte;
1283
1284         if (above != 0 && above != -1UL)
1285                 return 0;
1286
1287         pgd = pgd_offset_k(addr);
1288         if (pgd_none(*pgd))
1289                 return 0;
1290
1291         p4d = p4d_offset(pgd, addr);
1292         if (!p4d_present(*p4d))
1293                 return 0;
1294
1295         pud = pud_offset(p4d, addr);
1296         if (!pud_present(*pud))
1297                 return 0;
1298
1299         if (pud_large(*pud))
1300                 return pfn_valid(pud_pfn(*pud));
1301
1302         pmd = pmd_offset(pud, addr);
1303         if (!pmd_present(*pmd))
1304                 return 0;
1305
1306         if (pmd_large(*pmd))
1307                 return pfn_valid(pmd_pfn(*pmd));
1308
1309         pte = pte_offset_kernel(pmd, addr);
1310         if (pte_none(*pte))
1311                 return 0;
1312
1313         return pfn_valid(pte_pfn(*pte));
1314 }
1315
1316 /*
1317  * Block size is the minimum amount of memory which can be hotplugged or
1318  * hotremoved. It must be power of two and must be equal or larger than
1319  * MIN_MEMORY_BLOCK_SIZE.
1320  */
1321 #define MAX_BLOCK_SIZE (2UL << 30)
1322
1323 /* Amount of ram needed to start using large blocks */
1324 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1325
1326 /* Adjustable memory block size */
1327 static unsigned long set_memory_block_size;
1328 int __init set_memory_block_size_order(unsigned int order)
1329 {
1330         unsigned long size = 1UL << order;
1331
1332         if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1333                 return -EINVAL;
1334
1335         set_memory_block_size = size;
1336         return 0;
1337 }
1338
1339 static unsigned long probe_memory_block_size(void)
1340 {
1341         unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1342         unsigned long bz;
1343
1344         /* If memory block size has been set, then use it */
1345         bz = set_memory_block_size;
1346         if (bz)
1347                 goto done;
1348
1349         /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1350         if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1351                 bz = MIN_MEMORY_BLOCK_SIZE;
1352                 goto done;
1353         }
1354
1355         /* Find the largest allowed block size that aligns to memory end */
1356         for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1357                 if (IS_ALIGNED(boot_mem_end, bz))
1358                         break;
1359         }
1360 done:
1361         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1362
1363         return bz;
1364 }
1365
1366 static unsigned long memory_block_size_probed;
1367 unsigned long memory_block_size_bytes(void)
1368 {
1369         if (!memory_block_size_probed)
1370                 memory_block_size_probed = probe_memory_block_size();
1371
1372         return memory_block_size_probed;
1373 }
1374
1375 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1376 /*
1377  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1378  */
1379 static long __meminitdata addr_start, addr_end;
1380 static void __meminitdata *p_start, *p_end;
1381 static int __meminitdata node_start;
1382
1383 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1384                 unsigned long end, int node, struct vmem_altmap *altmap)
1385 {
1386         unsigned long addr;
1387         unsigned long next;
1388         pgd_t *pgd;
1389         p4d_t *p4d;
1390         pud_t *pud;
1391         pmd_t *pmd;
1392
1393         for (addr = start; addr < end; addr = next) {
1394                 next = pmd_addr_end(addr, end);
1395
1396                 pgd = vmemmap_pgd_populate(addr, node);
1397                 if (!pgd)
1398                         return -ENOMEM;
1399
1400                 p4d = vmemmap_p4d_populate(pgd, addr, node);
1401                 if (!p4d)
1402                         return -ENOMEM;
1403
1404                 pud = vmemmap_pud_populate(p4d, addr, node);
1405                 if (!pud)
1406                         return -ENOMEM;
1407
1408                 pmd = pmd_offset(pud, addr);
1409                 if (pmd_none(*pmd)) {
1410                         void *p;
1411
1412                         if (altmap)
1413                                 p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1414                         else
1415                                 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1416                         if (p) {
1417                                 pte_t entry;
1418
1419                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1420                                                 PAGE_KERNEL_LARGE);
1421                                 set_pmd(pmd, __pmd(pte_val(entry)));
1422
1423                                 /* check to see if we have contiguous blocks */
1424                                 if (p_end != p || node_start != node) {
1425                                         if (p_start)
1426                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1427                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1428                                         addr_start = addr;
1429                                         node_start = node;
1430                                         p_start = p;
1431                                 }
1432
1433                                 addr_end = addr + PMD_SIZE;
1434                                 p_end = p + PMD_SIZE;
1435                                 continue;
1436                         } else if (altmap)
1437                                 return -ENOMEM; /* no fallback */
1438                 } else if (pmd_large(*pmd)) {
1439                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1440                         continue;
1441                 }
1442                 if (vmemmap_populate_basepages(addr, next, node))
1443                         return -ENOMEM;
1444         }
1445         return 0;
1446 }
1447
1448 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1449                 struct vmem_altmap *altmap)
1450 {
1451         int err;
1452
1453         if (boot_cpu_has(X86_FEATURE_PSE))
1454                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1455         else if (altmap) {
1456                 pr_err_once("%s: no cpu support for altmap allocations\n",
1457                                 __func__);
1458                 err = -ENOMEM;
1459         } else
1460                 err = vmemmap_populate_basepages(start, end, node);
1461         if (!err)
1462                 sync_global_pgds(start, end - 1);
1463         return err;
1464 }
1465
1466 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1467 void register_page_bootmem_memmap(unsigned long section_nr,
1468                                   struct page *start_page, unsigned long nr_pages)
1469 {
1470         unsigned long addr = (unsigned long)start_page;
1471         unsigned long end = (unsigned long)(start_page + nr_pages);
1472         unsigned long next;
1473         pgd_t *pgd;
1474         p4d_t *p4d;
1475         pud_t *pud;
1476         pmd_t *pmd;
1477         unsigned int nr_pmd_pages;
1478         struct page *page;
1479
1480         for (; addr < end; addr = next) {
1481                 pte_t *pte = NULL;
1482
1483                 pgd = pgd_offset_k(addr);
1484                 if (pgd_none(*pgd)) {
1485                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1486                         continue;
1487                 }
1488                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1489
1490                 p4d = p4d_offset(pgd, addr);
1491                 if (p4d_none(*p4d)) {
1492                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1493                         continue;
1494                 }
1495                 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1496
1497                 pud = pud_offset(p4d, addr);
1498                 if (pud_none(*pud)) {
1499                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1500                         continue;
1501                 }
1502                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1503
1504                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1505                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1506                         pmd = pmd_offset(pud, addr);
1507                         if (pmd_none(*pmd))
1508                                 continue;
1509                         get_page_bootmem(section_nr, pmd_page(*pmd),
1510                                          MIX_SECTION_INFO);
1511
1512                         pte = pte_offset_kernel(pmd, addr);
1513                         if (pte_none(*pte))
1514                                 continue;
1515                         get_page_bootmem(section_nr, pte_page(*pte),
1516                                          SECTION_INFO);
1517                 } else {
1518                         next = pmd_addr_end(addr, end);
1519
1520                         pmd = pmd_offset(pud, addr);
1521                         if (pmd_none(*pmd))
1522                                 continue;
1523
1524                         nr_pmd_pages = 1 << get_order(PMD_SIZE);
1525                         page = pmd_page(*pmd);
1526                         while (nr_pmd_pages--)
1527                                 get_page_bootmem(section_nr, page++,
1528                                                  SECTION_INFO);
1529                 }
1530         }
1531 }
1532 #endif
1533
1534 void __meminit vmemmap_populate_print_last(void)
1535 {
1536         if (p_start) {
1537                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1538                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1539                 p_start = NULL;
1540                 p_end = NULL;
1541                 node_start = 0;
1542         }
1543 }
1544 #endif