1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
21 #include <asm/traps.h> /* dotraplinkage, ... */
22 #include <asm/pgalloc.h> /* pgd_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
27 #include <asm/sections.h>
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
33 * Returns 0 if mmiotrace is disabled, or if the fault is not
34 * handled by mmiotrace:
36 static nokprobe_inline int
37 kmmio_fault(struct pt_regs *regs, unsigned long addr)
39 if (unlikely(is_kmmio_active()))
40 if (kmmio_handler(regs, addr) == 1)
45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
49 /* kprobe_running() needs smp_processor_id() */
50 if (kprobes_built_in() && !user_mode(regs)) {
52 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66 * Check that here and ignore it.
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
73 * Opcode checker based on code by Richard Brunner.
76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 unsigned char opcode, int *prefetch)
79 unsigned char instr_hi = opcode & 0xf0;
80 unsigned char instr_lo = opcode & 0x0f;
86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 * In X86_64 long mode, the CPU will signal invalid
88 * opcode if some of these prefixes are present so
89 * X86_64 will never get here anyway
91 return ((instr_lo & 7) == 0x6);
95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 * Need to figure out under what instruction mode the
97 * instruction was issued. Could check the LDT for lm,
98 * but for now it's good enough to assume that long
99 * mode only uses well known segments or kernel.
101 return (!user_mode(regs) || user_64bit_mode(regs));
104 /* 0x64 thru 0x67 are valid prefixes in all modes. */
105 return (instr_lo & 0xC) == 0x4;
107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 return !instr_lo || (instr_lo>>1) == 1;
110 /* Prefetch instruction is 0x0F0D or 0x0F18 */
111 if (probe_kernel_address(instr, opcode))
114 *prefetch = (instr_lo == 0xF) &&
115 (opcode == 0x0D || opcode == 0x18);
123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
125 unsigned char *max_instr;
126 unsigned char *instr;
130 * If it was a exec (instruction fetch) fault on NX page, then
131 * do not ignore the fault:
133 if (error_code & X86_PF_INSTR)
136 instr = (void *)convert_ip_to_linear(current, regs);
137 max_instr = instr + 15;
139 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
142 while (instr < max_instr) {
143 unsigned char opcode;
145 if (probe_kernel_address(instr, opcode))
150 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
157 * A protection key fault means that the PKRU value did not allow
158 * access to some PTE. Userspace can figure out what PKRU was
159 * from the XSAVE state, and this function fills out a field in
160 * siginfo so userspace can discover which protection key was set
163 * If we get here, we know that the hardware signaled a X86_PF_PK
164 * fault and that there was a VMA once we got in the fault
165 * handler. It does *not* guarantee that the VMA we find here
166 * was the one that we faulted on.
168 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
169 * 2. T1 : set PKRU to deny access to pkey=4, touches page
171 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172 * 5. T1 : enters fault handler, takes mmap_sem, etc...
173 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
174 * faulted on a pte with its pkey=4.
176 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
179 /* This is effectively an #ifdef */
180 if (!boot_cpu_has(X86_FEATURE_OSPKE))
183 /* Fault not from Protection Keys: nothing to do */
184 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
187 * force_sig_info_fault() is called from a number of
188 * contexts, some of which have a VMA and some of which
189 * do not. The X86_PF_PK handing happens after we have a
190 * valid VMA, so we should never reach this without a
194 WARN_ONCE(1, "PKU fault with no VMA passed in");
199 * si_pkey should be thought of as a strong hint, but not
200 * absolutely guranteed to be 100% accurate because of
201 * the race explained above.
203 info->si_pkey = *pkey;
207 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
208 struct task_struct *tsk, u32 *pkey, int fault)
213 info.si_signo = si_signo;
215 info.si_code = si_code;
216 info.si_addr = (void __user *)address;
217 if (fault & VM_FAULT_HWPOISON_LARGE)
218 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
219 if (fault & VM_FAULT_HWPOISON)
221 info.si_addr_lsb = lsb;
223 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
225 force_sig_info(si_signo, &info, tsk);
228 DEFINE_SPINLOCK(pgd_lock);
232 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
234 unsigned index = pgd_index(address);
241 pgd_k = init_mm.pgd + index;
243 if (!pgd_present(*pgd_k))
247 * set_pgd(pgd, *pgd_k); here would be useless on PAE
248 * and redundant with the set_pmd() on non-PAE. As would
251 p4d = p4d_offset(pgd, address);
252 p4d_k = p4d_offset(pgd_k, address);
253 if (!p4d_present(*p4d_k))
256 pud = pud_offset(p4d, address);
257 pud_k = pud_offset(p4d_k, address);
258 if (!pud_present(*pud_k))
261 pmd = pmd_offset(pud, address);
262 pmd_k = pmd_offset(pud_k, address);
264 if (pmd_present(*pmd) != pmd_present(*pmd_k))
265 set_pmd(pmd, *pmd_k);
267 if (!pmd_present(*pmd_k))
270 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
275 static void vmalloc_sync(void)
277 unsigned long address;
279 if (SHARED_KERNEL_PMD)
282 for (address = VMALLOC_START & PMD_MASK;
283 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
284 address += PMD_SIZE) {
287 spin_lock(&pgd_lock);
288 list_for_each_entry(page, &pgd_list, lru) {
289 spinlock_t *pgt_lock;
291 /* the pgt_lock only for Xen */
292 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
295 vmalloc_sync_one(page_address(page), address);
296 spin_unlock(pgt_lock);
298 spin_unlock(&pgd_lock);
302 void vmalloc_sync_mappings(void)
307 void vmalloc_sync_unmappings(void)
315 * Handle a fault on the vmalloc or module mapping area
317 static noinline int vmalloc_fault(unsigned long address)
319 unsigned long pgd_paddr;
323 /* Make sure we are in vmalloc area: */
324 if (!(address >= VMALLOC_START && address < VMALLOC_END))
328 * Synchronize this task's top level page-table
329 * with the 'reference' page table.
331 * Do _not_ use "current" here. We might be inside
332 * an interrupt in the middle of a task switch..
334 pgd_paddr = read_cr3_pa();
335 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
339 if (pmd_large(*pmd_k))
342 pte_k = pte_offset_kernel(pmd_k, address);
343 if (!pte_present(*pte_k))
348 NOKPROBE_SYMBOL(vmalloc_fault);
351 * Did it hit the DOS screen memory VA from vm86 mode?
354 check_v8086_mode(struct pt_regs *regs, unsigned long address,
355 struct task_struct *tsk)
360 if (!v8086_mode(regs) || !tsk->thread.vm86)
363 bit = (address - 0xA0000) >> PAGE_SHIFT;
365 tsk->thread.vm86->screen_bitmap |= 1 << bit;
369 static bool low_pfn(unsigned long pfn)
371 return pfn < max_low_pfn;
374 static void dump_pagetable(unsigned long address)
376 pgd_t *base = __va(read_cr3_pa());
377 pgd_t *pgd = &base[pgd_index(address)];
383 #ifdef CONFIG_X86_PAE
384 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
385 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
387 #define pr_pde pr_cont
389 #define pr_pde pr_info
391 p4d = p4d_offset(pgd, address);
392 pud = pud_offset(p4d, address);
393 pmd = pmd_offset(pud, address);
394 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
398 * We must not directly access the pte in the highpte
399 * case if the page table is located in highmem.
400 * And let's rather not kmap-atomic the pte, just in case
401 * it's allocated already:
403 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
406 pte = pte_offset_kernel(pmd, address);
407 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
412 #else /* CONFIG_X86_64: */
414 void vmalloc_sync_mappings(void)
417 * 64-bit mappings might allocate new p4d/pud pages
418 * that need to be propagated to all tasks' PGDs.
420 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
423 void vmalloc_sync_unmappings(void)
426 * Unmappings never allocate or free p4d/pud pages.
427 * No work is required here.
434 * Handle a fault on the vmalloc area
436 static noinline int vmalloc_fault(unsigned long address)
438 pgd_t *pgd, *pgd_ref;
439 p4d_t *p4d, *p4d_ref;
440 pud_t *pud, *pud_ref;
441 pmd_t *pmd, *pmd_ref;
442 pte_t *pte, *pte_ref;
444 /* Make sure we are in vmalloc area: */
445 if (!(address >= VMALLOC_START && address < VMALLOC_END))
449 * Copy kernel mappings over when needed. This can also
450 * happen within a race in page table update. In the later
453 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
454 pgd_ref = pgd_offset_k(address);
455 if (pgd_none(*pgd_ref))
458 if (pgd_none(*pgd)) {
459 set_pgd(pgd, *pgd_ref);
460 arch_flush_lazy_mmu_mode();
461 } else if (CONFIG_PGTABLE_LEVELS > 4) {
463 * With folded p4d, pgd_none() is always false, so the pgd may
464 * point to an empty page table entry and pgd_page_vaddr()
465 * will return garbage.
467 * We will do the correct sanity check on the p4d level.
469 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
472 /* With 4-level paging, copying happens on the p4d level. */
473 p4d = p4d_offset(pgd, address);
474 p4d_ref = p4d_offset(pgd_ref, address);
475 if (p4d_none(*p4d_ref))
478 if (p4d_none(*p4d)) {
479 set_p4d(p4d, *p4d_ref);
480 arch_flush_lazy_mmu_mode();
482 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
486 * Below here mismatches are bugs because these lower tables
490 pud = pud_offset(p4d, address);
491 pud_ref = pud_offset(p4d_ref, address);
492 if (pud_none(*pud_ref))
495 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
501 pmd = pmd_offset(pud, address);
502 pmd_ref = pmd_offset(pud_ref, address);
503 if (pmd_none(*pmd_ref))
506 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
512 pte_ref = pte_offset_kernel(pmd_ref, address);
513 if (!pte_present(*pte_ref))
516 pte = pte_offset_kernel(pmd, address);
519 * Don't use pte_page here, because the mappings can point
520 * outside mem_map, and the NUMA hash lookup cannot handle
523 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
528 NOKPROBE_SYMBOL(vmalloc_fault);
530 #ifdef CONFIG_CPU_SUP_AMD
531 static const char errata93_warning[] =
533 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
534 "******* Working around it, but it may cause SEGVs or burn power.\n"
535 "******* Please consider a BIOS update.\n"
536 "******* Disabling USB legacy in the BIOS may also help.\n";
540 * No vm86 mode in 64-bit mode:
543 check_v8086_mode(struct pt_regs *regs, unsigned long address,
544 struct task_struct *tsk)
548 static int bad_address(void *p)
552 return probe_kernel_address((unsigned long *)p, dummy);
555 static void dump_pagetable(unsigned long address)
557 pgd_t *base = __va(read_cr3_pa());
558 pgd_t *pgd = base + pgd_index(address);
564 if (bad_address(pgd))
567 pr_info("PGD %lx ", pgd_val(*pgd));
569 if (!pgd_present(*pgd))
572 p4d = p4d_offset(pgd, address);
573 if (bad_address(p4d))
576 pr_cont("P4D %lx ", p4d_val(*p4d));
577 if (!p4d_present(*p4d) || p4d_large(*p4d))
580 pud = pud_offset(p4d, address);
581 if (bad_address(pud))
584 pr_cont("PUD %lx ", pud_val(*pud));
585 if (!pud_present(*pud) || pud_large(*pud))
588 pmd = pmd_offset(pud, address);
589 if (bad_address(pmd))
592 pr_cont("PMD %lx ", pmd_val(*pmd));
593 if (!pmd_present(*pmd) || pmd_large(*pmd))
596 pte = pte_offset_kernel(pmd, address);
597 if (bad_address(pte))
600 pr_cont("PTE %lx", pte_val(*pte));
608 #endif /* CONFIG_X86_64 */
611 * Workaround for K8 erratum #93 & buggy BIOS.
613 * BIOS SMM functions are required to use a specific workaround
614 * to avoid corruption of the 64bit RIP register on C stepping K8.
616 * A lot of BIOS that didn't get tested properly miss this.
618 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
619 * Try to work around it here.
621 * Note we only handle faults in kernel here.
622 * Does nothing on 32-bit.
624 static int is_errata93(struct pt_regs *regs, unsigned long address)
626 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
627 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
628 || boot_cpu_data.x86 != 0xf)
631 if (address != regs->ip)
634 if ((address >> 32) != 0)
637 address |= 0xffffffffUL << 32;
638 if ((address >= (u64)_stext && address <= (u64)_etext) ||
639 (address >= MODULES_VADDR && address <= MODULES_END)) {
640 printk_once(errata93_warning);
649 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
650 * to illegal addresses >4GB.
652 * We catch this in the page fault handler because these addresses
653 * are not reachable. Just detect this case and return. Any code
654 * segment in LDT is compatibility mode.
656 static int is_errata100(struct pt_regs *regs, unsigned long address)
659 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
665 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
667 #ifdef CONFIG_X86_F00F_BUG
671 * Pentium F0 0F C7 C8 bug workaround:
673 if (boot_cpu_has_bug(X86_BUG_F00F)) {
674 nr = (address - idt_descr.address) >> 3;
677 do_invalid_op(regs, 0);
685 static const char nx_warning[] = KERN_CRIT
686 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
687 static const char smep_warning[] = KERN_CRIT
688 "unable to execute userspace code (SMEP?) (uid: %d)\n";
691 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
692 unsigned long address)
694 if (!oops_may_print())
697 if (error_code & X86_PF_INSTR) {
702 pgd = __va(read_cr3_pa());
703 pgd += pgd_index(address);
705 pte = lookup_address_in_pgd(pgd, address, &level);
707 if (pte && pte_present(*pte) && !pte_exec(*pte))
708 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
709 if (pte && pte_present(*pte) && pte_exec(*pte) &&
710 (pgd_flags(*pgd) & _PAGE_USER) &&
711 (__read_cr4() & X86_CR4_SMEP))
712 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
715 printk(KERN_ALERT "BUG: unable to handle kernel ");
716 if (address < PAGE_SIZE)
717 printk(KERN_CONT "NULL pointer dereference");
719 printk(KERN_CONT "paging request");
721 printk(KERN_CONT " at %p\n", (void *) address);
722 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
724 dump_pagetable(address);
728 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
729 unsigned long address)
731 struct task_struct *tsk;
735 flags = oops_begin();
739 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
741 dump_pagetable(address);
743 tsk->thread.cr2 = address;
744 tsk->thread.trap_nr = X86_TRAP_PF;
745 tsk->thread.error_code = error_code;
747 if (__die("Bad pagetable", regs, error_code))
750 oops_end(flags, regs, sig);
754 no_context(struct pt_regs *regs, unsigned long error_code,
755 unsigned long address, int signal, int si_code)
757 struct task_struct *tsk = current;
761 /* Are we prepared to handle this kernel fault? */
762 if (fixup_exception(regs, X86_TRAP_PF)) {
764 * Any interrupt that takes a fault gets the fixup. This makes
765 * the below recursive fault logic only apply to a faults from
772 * Per the above we're !in_interrupt(), aka. task context.
774 * In this case we need to make sure we're not recursively
775 * faulting through the emulate_vsyscall() logic.
777 if (current->thread.sig_on_uaccess_err && signal) {
778 tsk->thread.trap_nr = X86_TRAP_PF;
779 tsk->thread.error_code = error_code | X86_PF_USER;
780 tsk->thread.cr2 = address;
782 /* XXX: hwpoison faults will set the wrong code. */
783 force_sig_info_fault(signal, si_code, address,
788 * Barring that, we can do the fixup and be happy.
793 #ifdef CONFIG_VMAP_STACK
795 * Stack overflow? During boot, we can fault near the initial
796 * stack in the direct map, but that's not an overflow -- check
797 * that we're in vmalloc space to avoid this.
799 if (is_vmalloc_addr((void *)address) &&
800 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
801 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
802 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
804 * We're likely to be running with very little stack space
805 * left. It's plausible that we'd hit this condition but
806 * double-fault even before we get this far, in which case
807 * we're fine: the double-fault handler will deal with it.
809 * We don't want to make it all the way into the oops code
810 * and then double-fault, though, because we're likely to
811 * break the console driver and lose most of the stack dump.
813 asm volatile ("movq %[stack], %%rsp\n\t"
814 "call handle_stack_overflow\n\t"
816 : ASM_CALL_CONSTRAINT
817 : "D" ("kernel stack overflow (page fault)"),
818 "S" (regs), "d" (address),
819 [stack] "rm" (stack));
827 * Valid to do another page fault here, because if this fault
828 * had been triggered by is_prefetch fixup_exception would have
833 * Hall of shame of CPU/BIOS bugs.
835 if (is_prefetch(regs, error_code, address))
838 if (is_errata93(regs, address))
842 * Oops. The kernel tried to access some bad page. We'll have to
843 * terminate things with extreme prejudice:
845 flags = oops_begin();
847 show_fault_oops(regs, error_code, address);
849 if (task_stack_end_corrupted(tsk))
850 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
852 tsk->thread.cr2 = address;
853 tsk->thread.trap_nr = X86_TRAP_PF;
854 tsk->thread.error_code = error_code;
857 if (__die("Oops", regs, error_code))
860 /* Executive summary in case the body of the oops scrolled away */
861 printk(KERN_DEFAULT "CR2: %016lx\n", address);
863 oops_end(flags, regs, sig);
867 * Print out info about fatal segfaults, if the show_unhandled_signals
871 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
872 unsigned long address, struct task_struct *tsk)
874 if (!unhandled_signal(tsk, SIGSEGV))
877 if (!printk_ratelimit())
880 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
881 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
882 tsk->comm, task_pid_nr(tsk), address,
883 (void *)regs->ip, (void *)regs->sp, error_code);
885 print_vma_addr(KERN_CONT " in ", regs->ip);
887 printk(KERN_CONT "\n");
891 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
892 unsigned long address, u32 *pkey, int si_code)
894 struct task_struct *tsk = current;
896 /* User mode accesses just cause a SIGSEGV */
897 if (error_code & X86_PF_USER) {
899 * It's possible to have interrupts off here:
904 * Valid to do another page fault here because this one came
907 if (is_prefetch(regs, error_code, address))
910 if (is_errata100(regs, address))
915 * Instruction fetch faults in the vsyscall page might need
918 if (unlikely((error_code & X86_PF_INSTR) &&
919 ((address & ~0xfff) == VSYSCALL_ADDR))) {
920 if (emulate_vsyscall(regs, address))
926 * To avoid leaking information about the kernel page table
927 * layout, pretend that user-mode accesses to kernel addresses
928 * are always protection faults.
930 if (address >= TASK_SIZE_MAX)
931 error_code |= X86_PF_PROT;
933 if (likely(show_unhandled_signals))
934 show_signal_msg(regs, error_code, address, tsk);
936 tsk->thread.cr2 = address;
937 tsk->thread.error_code = error_code;
938 tsk->thread.trap_nr = X86_TRAP_PF;
940 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
945 if (is_f00f_bug(regs, address))
948 no_context(regs, error_code, address, SIGSEGV, si_code);
952 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
953 unsigned long address, u32 *pkey)
955 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
959 __bad_area(struct pt_regs *regs, unsigned long error_code,
960 unsigned long address, struct vm_area_struct *vma, int si_code)
962 struct mm_struct *mm = current->mm;
966 pkey = vma_pkey(vma);
969 * Something tried to access memory that isn't in our memory map..
970 * Fix it, but check if it's kernel or user first..
972 up_read(&mm->mmap_sem);
974 __bad_area_nosemaphore(regs, error_code, address,
975 (vma) ? &pkey : NULL, si_code);
979 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
981 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
984 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
985 struct vm_area_struct *vma)
987 /* This code is always called on the current mm */
988 bool foreign = false;
990 if (!boot_cpu_has(X86_FEATURE_OSPKE))
992 if (error_code & X86_PF_PK)
994 /* this checks permission keys on the VMA: */
995 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
996 (error_code & X86_PF_INSTR), foreign))
1001 static noinline void
1002 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1003 unsigned long address, struct vm_area_struct *vma)
1006 * This OSPKE check is not strictly necessary at runtime.
1007 * But, doing it this way allows compiler optimizations
1008 * if pkeys are compiled out.
1010 if (bad_area_access_from_pkeys(error_code, vma))
1011 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1013 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1017 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1018 u32 *pkey, unsigned int fault)
1020 struct task_struct *tsk = current;
1021 int code = BUS_ADRERR;
1023 /* Kernel mode? Handle exceptions or die: */
1024 if (!(error_code & X86_PF_USER)) {
1025 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1029 /* User-space => ok to do another page fault: */
1030 if (is_prefetch(regs, error_code, address))
1033 tsk->thread.cr2 = address;
1034 tsk->thread.error_code = error_code;
1035 tsk->thread.trap_nr = X86_TRAP_PF;
1037 #ifdef CONFIG_MEMORY_FAILURE
1038 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1040 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1041 tsk->comm, tsk->pid, address);
1042 code = BUS_MCEERR_AR;
1045 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1048 static noinline void
1049 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1050 unsigned long address, u32 *pkey, unsigned int fault)
1052 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1053 no_context(regs, error_code, address, 0, 0);
1057 if (fault & VM_FAULT_OOM) {
1058 /* Kernel mode? Handle exceptions or die: */
1059 if (!(error_code & X86_PF_USER)) {
1060 no_context(regs, error_code, address,
1061 SIGSEGV, SEGV_MAPERR);
1066 * We ran out of memory, call the OOM killer, and return the
1067 * userspace (which will retry the fault, or kill us if we got
1070 pagefault_out_of_memory();
1072 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1073 VM_FAULT_HWPOISON_LARGE))
1074 do_sigbus(regs, error_code, address, pkey, fault);
1075 else if (fault & VM_FAULT_SIGSEGV)
1076 bad_area_nosemaphore(regs, error_code, address, pkey);
1082 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1084 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1087 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1090 * Note: We do not do lazy flushing on protection key
1091 * changes, so no spurious fault will ever set X86_PF_PK.
1093 if ((error_code & X86_PF_PK))
1100 * Handle a spurious fault caused by a stale TLB entry.
1102 * This allows us to lazily refresh the TLB when increasing the
1103 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1104 * eagerly is very expensive since that implies doing a full
1105 * cross-processor TLB flush, even if no stale TLB entries exist
1106 * on other processors.
1108 * Spurious faults may only occur if the TLB contains an entry with
1109 * fewer permission than the page table entry. Non-present (P = 0)
1110 * and reserved bit (R = 1) faults are never spurious.
1112 * There are no security implications to leaving a stale TLB when
1113 * increasing the permissions on a page.
1115 * Returns non-zero if a spurious fault was handled, zero otherwise.
1117 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1118 * (Optional Invalidation).
1121 spurious_fault(unsigned long error_code, unsigned long address)
1131 * Only writes to RO or instruction fetches from NX may cause
1134 * These could be from user or supervisor accesses but the TLB
1135 * is only lazily flushed after a kernel mapping protection
1136 * change, so user accesses are not expected to cause spurious
1139 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1140 error_code != (X86_PF_INSTR | X86_PF_PROT))
1143 pgd = init_mm.pgd + pgd_index(address);
1144 if (!pgd_present(*pgd))
1147 p4d = p4d_offset(pgd, address);
1148 if (!p4d_present(*p4d))
1151 if (p4d_large(*p4d))
1152 return spurious_fault_check(error_code, (pte_t *) p4d);
1154 pud = pud_offset(p4d, address);
1155 if (!pud_present(*pud))
1158 if (pud_large(*pud))
1159 return spurious_fault_check(error_code, (pte_t *) pud);
1161 pmd = pmd_offset(pud, address);
1162 if (!pmd_present(*pmd))
1165 if (pmd_large(*pmd))
1166 return spurious_fault_check(error_code, (pte_t *) pmd);
1168 pte = pte_offset_kernel(pmd, address);
1169 if (!pte_present(*pte))
1172 ret = spurious_fault_check(error_code, pte);
1177 * Make sure we have permissions in PMD.
1178 * If not, then there's a bug in the page tables:
1180 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1181 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1185 NOKPROBE_SYMBOL(spurious_fault);
1187 int show_unhandled_signals = 1;
1190 access_error(unsigned long error_code, struct vm_area_struct *vma)
1192 /* This is only called for the current mm, so: */
1193 bool foreign = false;
1196 * Read or write was blocked by protection keys. This is
1197 * always an unconditional error and can never result in
1198 * a follow-up action to resolve the fault, like a COW.
1200 if (error_code & X86_PF_PK)
1204 * Make sure to check the VMA so that we do not perform
1205 * faults just to hit a X86_PF_PK as soon as we fill in a
1208 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1209 (error_code & X86_PF_INSTR), foreign))
1212 if (error_code & X86_PF_WRITE) {
1213 /* write, present and write, not present: */
1214 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1219 /* read, present: */
1220 if (unlikely(error_code & X86_PF_PROT))
1223 /* read, not present: */
1224 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1230 static int fault_in_kernel_space(unsigned long address)
1232 return address >= TASK_SIZE_MAX;
1235 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1237 if (!IS_ENABLED(CONFIG_X86_SMAP))
1240 if (!static_cpu_has(X86_FEATURE_SMAP))
1243 if (error_code & X86_PF_USER)
1246 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1253 * This routine handles page faults. It determines the address,
1254 * and the problem, and then passes it off to one of the appropriate
1257 static noinline void
1258 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1259 unsigned long address)
1261 struct vm_area_struct *vma;
1262 struct task_struct *tsk;
1263 struct mm_struct *mm;
1264 int fault, major = 0;
1265 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1271 prefetchw(&mm->mmap_sem);
1273 if (unlikely(kmmio_fault(regs, address)))
1277 * We fault-in kernel-space virtual memory on-demand. The
1278 * 'reference' page table is init_mm.pgd.
1280 * NOTE! We MUST NOT take any locks for this case. We may
1281 * be in an interrupt or a critical region, and should
1282 * only copy the information from the master page table,
1285 * This verifies that the fault happens in kernel space
1286 * (error_code & 4) == 0, and that the fault was not a
1287 * protection error (error_code & 9) == 0.
1289 if (unlikely(fault_in_kernel_space(address))) {
1290 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1291 if (vmalloc_fault(address) >= 0)
1295 /* Can handle a stale RO->RW TLB: */
1296 if (spurious_fault(error_code, address))
1299 /* kprobes don't want to hook the spurious faults: */
1300 if (kprobes_fault(regs))
1303 * Don't take the mm semaphore here. If we fixup a prefetch
1304 * fault we could otherwise deadlock:
1306 bad_area_nosemaphore(regs, error_code, address, NULL);
1311 /* kprobes don't want to hook the spurious faults: */
1312 if (unlikely(kprobes_fault(regs)))
1315 if (unlikely(error_code & X86_PF_RSVD))
1316 pgtable_bad(regs, error_code, address);
1318 if (unlikely(smap_violation(error_code, regs))) {
1319 bad_area_nosemaphore(regs, error_code, address, NULL);
1324 * If we're in an interrupt, have no user context or are running
1325 * in a region with pagefaults disabled then we must not take the fault
1327 if (unlikely(faulthandler_disabled() || !mm)) {
1328 bad_area_nosemaphore(regs, error_code, address, NULL);
1333 * It's safe to allow irq's after cr2 has been saved and the
1334 * vmalloc fault has been handled.
1336 * User-mode registers count as a user access even for any
1337 * potential system fault or CPU buglet:
1339 if (user_mode(regs)) {
1341 error_code |= X86_PF_USER;
1342 flags |= FAULT_FLAG_USER;
1344 if (regs->flags & X86_EFLAGS_IF)
1348 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1350 if (error_code & X86_PF_WRITE)
1351 flags |= FAULT_FLAG_WRITE;
1352 if (error_code & X86_PF_INSTR)
1353 flags |= FAULT_FLAG_INSTRUCTION;
1356 * When running in the kernel we expect faults to occur only to
1357 * addresses in user space. All other faults represent errors in
1358 * the kernel and should generate an OOPS. Unfortunately, in the
1359 * case of an erroneous fault occurring in a code path which already
1360 * holds mmap_sem we will deadlock attempting to validate the fault
1361 * against the address space. Luckily the kernel only validly
1362 * references user space from well defined areas of code, which are
1363 * listed in the exceptions table.
1365 * As the vast majority of faults will be valid we will only perform
1366 * the source reference check when there is a possibility of a
1367 * deadlock. Attempt to lock the address space, if we cannot we then
1368 * validate the source. If this is invalid we can skip the address
1369 * space check, thus avoiding the deadlock:
1371 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1372 if (!(error_code & X86_PF_USER) &&
1373 !search_exception_tables(regs->ip)) {
1374 bad_area_nosemaphore(regs, error_code, address, NULL);
1378 down_read(&mm->mmap_sem);
1381 * The above down_read_trylock() might have succeeded in
1382 * which case we'll have missed the might_sleep() from
1388 vma = find_vma(mm, address);
1389 if (unlikely(!vma)) {
1390 bad_area(regs, error_code, address);
1393 if (likely(vma->vm_start <= address))
1395 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1396 bad_area(regs, error_code, address);
1399 if (error_code & X86_PF_USER) {
1401 * Accessing the stack below %sp is always a bug.
1402 * The large cushion allows instructions like enter
1403 * and pusha to work. ("enter $65535, $31" pushes
1404 * 32 pointers and then decrements %sp by 65535.)
1406 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1407 bad_area(regs, error_code, address);
1411 if (unlikely(expand_stack(vma, address))) {
1412 bad_area(regs, error_code, address);
1417 * Ok, we have a good vm_area for this memory access, so
1418 * we can handle it..
1421 if (unlikely(access_error(error_code, vma))) {
1422 bad_area_access_error(regs, error_code, address, vma);
1427 * If for any reason at all we couldn't handle the fault,
1428 * make sure we exit gracefully rather than endlessly redo
1429 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1430 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1432 * Note that handle_userfault() may also release and reacquire mmap_sem
1433 * (and not return with VM_FAULT_RETRY), when returning to userland to
1434 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1435 * (potentially after handling any pending signal during the return to
1436 * userland). The return to userland is identified whenever
1437 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1438 * Thus we have to be careful about not touching vma after handling the
1439 * fault, so we read the pkey beforehand.
1441 pkey = vma_pkey(vma);
1442 fault = handle_mm_fault(vma, address, flags);
1443 major |= fault & VM_FAULT_MAJOR;
1446 * If we need to retry the mmap_sem has already been released,
1447 * and if there is a fatal signal pending there is no guarantee
1448 * that we made any progress. Handle this case first.
1450 if (unlikely(fault & VM_FAULT_RETRY)) {
1451 /* Retry at most once */
1452 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1453 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1454 flags |= FAULT_FLAG_TRIED;
1455 if (!fatal_signal_pending(tsk))
1459 /* User mode? Just return to handle the fatal exception */
1460 if (flags & FAULT_FLAG_USER)
1463 /* Not returning to user mode? Handle exceptions or die: */
1464 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1468 up_read(&mm->mmap_sem);
1469 if (unlikely(fault & VM_FAULT_ERROR)) {
1470 mm_fault_error(regs, error_code, address, &pkey, fault);
1475 * Major/minor page fault accounting. If any of the events
1476 * returned VM_FAULT_MAJOR, we account it as a major fault.
1480 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1483 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1486 check_v8086_mode(regs, address, tsk);
1488 NOKPROBE_SYMBOL(__do_page_fault);
1490 static nokprobe_inline void
1491 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1492 unsigned long error_code)
1494 if (user_mode(regs))
1495 trace_page_fault_user(address, regs, error_code);
1497 trace_page_fault_kernel(address, regs, error_code);
1501 * We must have this function blacklisted from kprobes, tagged with notrace
1502 * and call read_cr2() before calling anything else. To avoid calling any
1503 * kind of tracing machinery before we've observed the CR2 value.
1505 * exception_{enter,exit}() contains all sorts of tracepoints.
1507 dotraplinkage void notrace
1508 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1510 unsigned long address = read_cr2(); /* Get the faulting address */
1511 enum ctx_state prev_state;
1513 prev_state = exception_enter();
1514 if (trace_pagefault_enabled())
1515 trace_page_fault_entries(address, regs, error_code);
1517 __do_page_fault(regs, error_code, address);
1518 exception_exit(prev_state);
1520 NOKPROBE_SYMBOL(do_page_fault);