2 * x86 instruction analysis
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
22 #include <linux/string.h>
29 /* Verify next sizeof(t) bytes can be on the same instruction */
30 #define validate_next(t, insn, n) \
31 ((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
33 #define __get_next(t, insn) \
34 ({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
36 #define __peek_nbyte_next(t, insn, n) \
37 ({ t r = *(t*)((insn)->next_byte + n); r; })
39 #define get_next(t, insn) \
40 ({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
42 #define peek_nbyte_next(t, insn, n) \
43 ({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
45 #define peek_next(t, insn) peek_nbyte_next(t, insn, 0)
48 * insn_init() - initialize struct insn
49 * @insn: &struct insn to be initialized
50 * @kaddr: address (in kernel memory) of instruction (or copy thereof)
51 * @x86_64: !0 for 64-bit kernel or 64-bit app
53 void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
56 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
57 * even if the input buffer is long enough to hold them.
59 if (buf_len > MAX_INSN_SIZE)
60 buf_len = MAX_INSN_SIZE;
62 memset(insn, 0, sizeof(*insn));
64 insn->end_kaddr = kaddr + buf_len;
65 insn->next_byte = kaddr;
66 insn->x86_64 = x86_64 ? 1 : 0;
75 * insn_get_prefixes - scan x86 instruction prefix bytes
76 * @insn: &struct insn containing instruction
78 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
79 * to point to the (first) opcode. No effect if @insn->prefixes.got
82 void insn_get_prefixes(struct insn *insn)
84 struct insn_field *prefixes = &insn->prefixes;
94 b = peek_next(insn_byte_t, insn);
95 attr = inat_get_opcode_attribute(b);
96 while (inat_is_legacy_prefix(attr)) {
97 /* Skip if same prefix */
98 for (i = 0; i < nb; i++)
99 if (prefixes->bytes[i] == b)
102 /* Invalid instruction */
104 prefixes->bytes[nb++] = b;
105 if (inat_is_address_size_prefix(attr)) {
106 /* address size switches 2/4 or 4/8 */
108 insn->addr_bytes ^= 12;
110 insn->addr_bytes ^= 6;
111 } else if (inat_is_operand_size_prefix(attr)) {
112 /* oprand size switches 2/4 */
113 insn->opnd_bytes ^= 6;
119 b = peek_next(insn_byte_t, insn);
120 attr = inat_get_opcode_attribute(b);
122 /* Set the last prefix */
123 if (lb && lb != insn->prefixes.bytes[3]) {
124 if (unlikely(insn->prefixes.bytes[3])) {
125 /* Swap the last prefix */
126 b = insn->prefixes.bytes[3];
127 for (i = 0; i < nb; i++)
128 if (prefixes->bytes[i] == lb)
129 prefixes->bytes[i] = b;
131 insn->prefixes.bytes[3] = lb;
134 /* Decode REX prefix */
136 b = peek_next(insn_byte_t, insn);
137 attr = inat_get_opcode_attribute(b);
138 if (inat_is_rex_prefix(attr)) {
139 insn->rex_prefix.value = b;
140 insn->rex_prefix.nbytes = 1;
143 /* REX.W overrides opnd_size */
144 insn->opnd_bytes = 8;
147 insn->rex_prefix.got = 1;
149 /* Decode VEX prefix */
150 b = peek_next(insn_byte_t, insn);
151 attr = inat_get_opcode_attribute(b);
152 if (inat_is_vex_prefix(attr)) {
153 insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
156 * In 32-bits mode, if the [7:6] bits (mod bits of
157 * ModRM) on the second byte are not 11b, it is
158 * LDS or LES or BOUND.
160 if (X86_MODRM_MOD(b2) != 3)
163 insn->vex_prefix.bytes[0] = b;
164 insn->vex_prefix.bytes[1] = b2;
165 if (inat_is_evex_prefix(attr)) {
166 b2 = peek_nbyte_next(insn_byte_t, insn, 2);
167 insn->vex_prefix.bytes[2] = b2;
168 b2 = peek_nbyte_next(insn_byte_t, insn, 3);
169 insn->vex_prefix.bytes[3] = b2;
170 insn->vex_prefix.nbytes = 4;
171 insn->next_byte += 4;
172 if (insn->x86_64 && X86_VEX_W(b2))
173 /* VEX.W overrides opnd_size */
174 insn->opnd_bytes = 8;
175 } else if (inat_is_vex3_prefix(attr)) {
176 b2 = peek_nbyte_next(insn_byte_t, insn, 2);
177 insn->vex_prefix.bytes[2] = b2;
178 insn->vex_prefix.nbytes = 3;
179 insn->next_byte += 3;
180 if (insn->x86_64 && X86_VEX_W(b2))
181 /* VEX.W overrides opnd_size */
182 insn->opnd_bytes = 8;
185 * For VEX2, fake VEX3-like byte#2.
186 * Makes it easier to decode vex.W, vex.vvvv,
187 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
189 insn->vex_prefix.bytes[2] = b2 & 0x7f;
190 insn->vex_prefix.nbytes = 2;
191 insn->next_byte += 2;
195 insn->vex_prefix.got = 1;
204 * insn_get_opcode - collect opcode(s)
205 * @insn: &struct insn containing instruction
207 * Populates @insn->opcode, updates @insn->next_byte to point past the
208 * opcode byte(s), and set @insn->attr (except for groups).
209 * If necessary, first collects any preceding (prefix) bytes.
210 * Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
213 void insn_get_opcode(struct insn *insn)
215 struct insn_field *opcode = &insn->opcode;
220 if (!insn->prefixes.got)
221 insn_get_prefixes(insn);
223 /* Get first opcode */
224 op = get_next(insn_byte_t, insn);
225 opcode->bytes[0] = op;
228 /* Check if there is VEX prefix or not */
229 if (insn_is_avx(insn)) {
231 m = insn_vex_m_bits(insn);
232 p = insn_vex_p_bits(insn);
233 insn->attr = inat_get_avx_attribute(op, m, p);
234 if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
235 (!inat_accept_vex(insn->attr) &&
236 !inat_is_group(insn->attr)))
237 insn->attr = 0; /* This instruction is bad */
238 goto end; /* VEX has only 1 byte for opcode */
241 insn->attr = inat_get_opcode_attribute(op);
242 while (inat_is_escape(insn->attr)) {
243 /* Get escaped opcode */
244 op = get_next(insn_byte_t, insn);
245 opcode->bytes[opcode->nbytes++] = op;
246 pfx_id = insn_last_prefix_id(insn);
247 insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
249 if (inat_must_vex(insn->attr))
250 insn->attr = 0; /* This instruction is bad */
259 * insn_get_modrm - collect ModRM byte, if any
260 * @insn: &struct insn containing instruction
262 * Populates @insn->modrm and updates @insn->next_byte to point past the
263 * ModRM byte, if any. If necessary, first collects the preceding bytes
264 * (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
266 void insn_get_modrm(struct insn *insn)
268 struct insn_field *modrm = &insn->modrm;
269 insn_byte_t pfx_id, mod;
272 if (!insn->opcode.got)
273 insn_get_opcode(insn);
275 if (inat_has_modrm(insn->attr)) {
276 mod = get_next(insn_byte_t, insn);
279 if (inat_is_group(insn->attr)) {
280 pfx_id = insn_last_prefix_id(insn);
281 insn->attr = inat_get_group_attribute(mod, pfx_id,
283 if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
284 insn->attr = 0; /* This is bad */
288 if (insn->x86_64 && inat_is_force64(insn->attr))
289 insn->opnd_bytes = 8;
298 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
299 * @insn: &struct insn containing instruction
301 * If necessary, first collects the instruction up to and including the
302 * ModRM byte. No effect if @insn->x86_64 is 0.
304 int insn_rip_relative(struct insn *insn)
306 struct insn_field *modrm = &insn->modrm;
311 insn_get_modrm(insn);
313 * For rip-relative instructions, the mod field (top 2 bits)
314 * is zero and the r/m field (bottom 3 bits) is 0x5.
316 return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
320 * insn_get_sib() - Get the SIB byte of instruction
321 * @insn: &struct insn containing instruction
323 * If necessary, first collects the instruction up to and including the
326 void insn_get_sib(struct insn *insn)
332 if (!insn->modrm.got)
333 insn_get_modrm(insn);
334 if (insn->modrm.nbytes) {
335 modrm = (insn_byte_t)insn->modrm.value;
336 if (insn->addr_bytes != 2 &&
337 X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
338 insn->sib.value = get_next(insn_byte_t, insn);
339 insn->sib.nbytes = 1;
350 * insn_get_displacement() - Get the displacement of instruction
351 * @insn: &struct insn containing instruction
353 * If necessary, first collects the instruction up to and including the
355 * Displacement value is sign-expanded.
357 void insn_get_displacement(struct insn *insn)
359 insn_byte_t mod, rm, base;
361 if (insn->displacement.got)
365 if (insn->modrm.nbytes) {
367 * Interpreting the modrm byte:
368 * mod = 00 - no displacement fields (exceptions below)
369 * mod = 01 - 1-byte displacement field
370 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
371 * address size = 2 (0x67 prefix in 32-bit mode)
372 * mod = 11 - no memory operand
374 * If address size = 2...
375 * mod = 00, r/m = 110 - displacement field is 2 bytes
377 * If address size != 2...
378 * mod != 11, r/m = 100 - SIB byte exists
379 * mod = 00, SIB base = 101 - displacement field is 4 bytes
380 * mod = 00, r/m = 101 - rip-relative addressing, displacement
383 mod = X86_MODRM_MOD(insn->modrm.value);
384 rm = X86_MODRM_RM(insn->modrm.value);
385 base = X86_SIB_BASE(insn->sib.value);
389 insn->displacement.value = get_next(signed char, insn);
390 insn->displacement.nbytes = 1;
391 } else if (insn->addr_bytes == 2) {
392 if ((mod == 0 && rm == 6) || mod == 2) {
393 insn->displacement.value =
394 get_next(short, insn);
395 insn->displacement.nbytes = 2;
398 if ((mod == 0 && rm == 5) || mod == 2 ||
399 (mod == 0 && base == 5)) {
400 insn->displacement.value = get_next(int, insn);
401 insn->displacement.nbytes = 4;
406 insn->displacement.got = 1;
412 /* Decode moffset16/32/64. Return 0 if failed */
413 static int __get_moffset(struct insn *insn)
415 switch (insn->addr_bytes) {
417 insn->moffset1.value = get_next(short, insn);
418 insn->moffset1.nbytes = 2;
421 insn->moffset1.value = get_next(int, insn);
422 insn->moffset1.nbytes = 4;
425 insn->moffset1.value = get_next(int, insn);
426 insn->moffset1.nbytes = 4;
427 insn->moffset2.value = get_next(int, insn);
428 insn->moffset2.nbytes = 4;
430 default: /* opnd_bytes must be modified manually */
433 insn->moffset1.got = insn->moffset2.got = 1;
441 /* Decode imm v32(Iz). Return 0 if failed */
442 static int __get_immv32(struct insn *insn)
444 switch (insn->opnd_bytes) {
446 insn->immediate.value = get_next(short, insn);
447 insn->immediate.nbytes = 2;
451 insn->immediate.value = get_next(int, insn);
452 insn->immediate.nbytes = 4;
454 default: /* opnd_bytes must be modified manually */
464 /* Decode imm v64(Iv/Ov), Return 0 if failed */
465 static int __get_immv(struct insn *insn)
467 switch (insn->opnd_bytes) {
469 insn->immediate1.value = get_next(short, insn);
470 insn->immediate1.nbytes = 2;
473 insn->immediate1.value = get_next(int, insn);
474 insn->immediate1.nbytes = 4;
477 insn->immediate1.value = get_next(int, insn);
478 insn->immediate1.nbytes = 4;
479 insn->immediate2.value = get_next(int, insn);
480 insn->immediate2.nbytes = 4;
482 default: /* opnd_bytes must be modified manually */
485 insn->immediate1.got = insn->immediate2.got = 1;
492 /* Decode ptr16:16/32(Ap) */
493 static int __get_immptr(struct insn *insn)
495 switch (insn->opnd_bytes) {
497 insn->immediate1.value = get_next(short, insn);
498 insn->immediate1.nbytes = 2;
501 insn->immediate1.value = get_next(int, insn);
502 insn->immediate1.nbytes = 4;
505 /* ptr16:64 is not exist (no segment) */
507 default: /* opnd_bytes must be modified manually */
510 insn->immediate2.value = get_next(unsigned short, insn);
511 insn->immediate2.nbytes = 2;
512 insn->immediate1.got = insn->immediate2.got = 1;
520 * insn_get_immediate() - Get the immediates of instruction
521 * @insn: &struct insn containing instruction
523 * If necessary, first collects the instruction up to and including the
524 * displacement bytes.
525 * Basically, most of immediates are sign-expanded. Unsigned-value can be
526 * get by bit masking with ((1 << (nbytes * 8)) - 1)
528 void insn_get_immediate(struct insn *insn)
530 if (insn->immediate.got)
532 if (!insn->displacement.got)
533 insn_get_displacement(insn);
535 if (inat_has_moffset(insn->attr)) {
536 if (!__get_moffset(insn))
541 if (!inat_has_immediate(insn->attr))
545 switch (inat_immediate_size(insn->attr)) {
547 insn->immediate.value = get_next(signed char, insn);
548 insn->immediate.nbytes = 1;
551 insn->immediate.value = get_next(short, insn);
552 insn->immediate.nbytes = 2;
555 insn->immediate.value = get_next(int, insn);
556 insn->immediate.nbytes = 4;
559 insn->immediate1.value = get_next(int, insn);
560 insn->immediate1.nbytes = 4;
561 insn->immediate2.value = get_next(int, insn);
562 insn->immediate2.nbytes = 4;
565 if (!__get_immptr(insn))
568 case INAT_IMM_VWORD32:
569 if (!__get_immv32(insn))
573 if (!__get_immv(insn))
577 /* Here, insn must have an immediate, but failed */
580 if (inat_has_second_immediate(insn->attr)) {
581 insn->immediate2.value = get_next(signed char, insn);
582 insn->immediate2.nbytes = 1;
585 insn->immediate.got = 1;
592 * insn_get_length() - Get the length of instruction
593 * @insn: &struct insn containing instruction
595 * If necessary, first collects the instruction up to and including the
598 void insn_get_length(struct insn *insn)
602 if (!insn->immediate.got)
603 insn_get_immediate(insn);
604 insn->length = (unsigned char)((unsigned long)insn->next_byte
605 - (unsigned long)insn->kaddr);