GNU Linux-libre 6.8.7-gnu
[releases.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103         ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func)                                             \
139         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
140                                 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211         struct user_return_notifier urn;
212         bool registered;
213         struct kvm_user_return_msr_values {
214                 u64 host;
215                 u64 curr;
216         } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245         KVM_GENERIC_VM_STATS(),
246         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247         STATS_DESC_COUNTER(VM, mmu_pte_write),
248         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249         STATS_DESC_COUNTER(VM, mmu_flooded),
250         STATS_DESC_COUNTER(VM, mmu_recycled),
251         STATS_DESC_COUNTER(VM, mmu_cache_miss),
252         STATS_DESC_ICOUNTER(VM, mmu_unsync),
253         STATS_DESC_ICOUNTER(VM, pages_4k),
254         STATS_DESC_ICOUNTER(VM, pages_2m),
255         STATS_DESC_ICOUNTER(VM, pages_1g),
256         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262         .name_size = KVM_STATS_NAME_SIZE,
263         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264         .id_offset = sizeof(struct kvm_stats_header),
265         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267                        sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271         KVM_GENERIC_VCPU_STATS(),
272         STATS_DESC_COUNTER(VCPU, pf_taken),
273         STATS_DESC_COUNTER(VCPU, pf_fixed),
274         STATS_DESC_COUNTER(VCPU, pf_emulate),
275         STATS_DESC_COUNTER(VCPU, pf_spurious),
276         STATS_DESC_COUNTER(VCPU, pf_fast),
277         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278         STATS_DESC_COUNTER(VCPU, pf_guest),
279         STATS_DESC_COUNTER(VCPU, tlb_flush),
280         STATS_DESC_COUNTER(VCPU, invlpg),
281         STATS_DESC_COUNTER(VCPU, exits),
282         STATS_DESC_COUNTER(VCPU, io_exits),
283         STATS_DESC_COUNTER(VCPU, mmio_exits),
284         STATS_DESC_COUNTER(VCPU, signal_exits),
285         STATS_DESC_COUNTER(VCPU, irq_window_exits),
286         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287         STATS_DESC_COUNTER(VCPU, l1d_flush),
288         STATS_DESC_COUNTER(VCPU, halt_exits),
289         STATS_DESC_COUNTER(VCPU, request_irq_exits),
290         STATS_DESC_COUNTER(VCPU, irq_exits),
291         STATS_DESC_COUNTER(VCPU, host_state_reload),
292         STATS_DESC_COUNTER(VCPU, fpu_reload),
293         STATS_DESC_COUNTER(VCPU, insn_emulation),
294         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295         STATS_DESC_COUNTER(VCPU, hypercalls),
296         STATS_DESC_COUNTER(VCPU, irq_injections),
297         STATS_DESC_COUNTER(VCPU, nmi_injections),
298         STATS_DESC_COUNTER(VCPU, req_event),
299         STATS_DESC_COUNTER(VCPU, nested_run),
300         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302         STATS_DESC_COUNTER(VCPU, preemption_reported),
303         STATS_DESC_COUNTER(VCPU, preemption_other),
304         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305         STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309         .name_size = KVM_STATS_NAME_SIZE,
310         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311         .id_offset = sizeof(struct kvm_stats_header),
312         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314                        sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327         const char *op = write ? "wrmsr" : "rdmsr";
328
329         if (ignore_msrs) {
330                 if (report_ignored_msrs)
331                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332                                       op, msr, data);
333                 /* Mask the error */
334                 return true;
335         } else {
336                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337                                       op, msr, data);
338                 return false;
339         }
340 }
341
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345         unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347         return kmem_cache_create_usercopy("x86_emulator", size,
348                                           __alignof__(struct x86_emulate_ctxt),
349                                           SLAB_ACCOUNT, useroffset,
350                                           size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357         int i;
358         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359                 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364         unsigned slot;
365         struct kvm_user_return_msrs *msrs
366                 = container_of(urn, struct kvm_user_return_msrs, urn);
367         struct kvm_user_return_msr_values *values;
368         unsigned long flags;
369
370         /*
371          * Disabling irqs at this point since the following code could be
372          * interrupted and executed through kvm_arch_hardware_disable()
373          */
374         local_irq_save(flags);
375         if (msrs->registered) {
376                 msrs->registered = false;
377                 user_return_notifier_unregister(urn);
378         }
379         local_irq_restore(flags);
380         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381                 values = &msrs->values[slot];
382                 if (values->host != values->curr) {
383                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
384                         values->curr = values->host;
385                 }
386         }
387 }
388
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391         u64 val;
392         int ret;
393
394         preempt_disable();
395         ret = rdmsrl_safe(msr, &val);
396         if (ret)
397                 goto out;
398         ret = wrmsrl_safe(msr, val);
399 out:
400         preempt_enable();
401         return ret;
402 }
403
404 int kvm_add_user_return_msr(u32 msr)
405 {
406         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408         if (kvm_probe_user_return_msr(msr))
409                 return -1;
410
411         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412         return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416 int kvm_find_user_return_msr(u32 msr)
417 {
418         int i;
419
420         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421                 if (kvm_uret_msrs_list[i] == msr)
422                         return i;
423         }
424         return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430         unsigned int cpu = smp_processor_id();
431         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432         u64 value;
433         int i;
434
435         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437                 msrs->values[i].host = value;
438                 msrs->values[i].curr = value;
439         }
440 }
441
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444         unsigned int cpu = smp_processor_id();
445         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446         int err;
447
448         value = (value & mask) | (msrs->values[slot].host & ~mask);
449         if (value == msrs->values[slot].curr)
450                 return 0;
451         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452         if (err)
453                 return 1;
454
455         msrs->values[slot].curr = value;
456         if (!msrs->registered) {
457                 msrs->urn.on_user_return = kvm_on_user_return;
458                 user_return_notifier_register(&msrs->urn);
459                 msrs->registered = true;
460         }
461         return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465 static void drop_user_return_notifiers(void)
466 {
467         unsigned int cpu = smp_processor_id();
468         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470         if (msrs->registered)
471                 kvm_on_user_return(&msrs->urn);
472 }
473
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476         return vcpu->arch.apic_base;
477 }
478
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481         return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493                 return 1;
494         if (!msr_info->host_initiated) {
495                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496                         return 1;
497                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498                         return 1;
499         }
500
501         kvm_lapic_set_base(vcpu, msr_info->data);
502         kvm_recalculate_apic_map(vcpu->kvm);
503         return 0;
504 }
505
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515         /* Fault while not rebooting.  We want the trace. */
516         BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN            0
521 #define EXCPT_CONTRIBUTORY      1
522 #define EXCPT_PF                2
523
524 static int exception_class(int vector)
525 {
526         switch (vector) {
527         case PF_VECTOR:
528                 return EXCPT_PF;
529         case DE_VECTOR:
530         case TS_VECTOR:
531         case NP_VECTOR:
532         case SS_VECTOR:
533         case GP_VECTOR:
534                 return EXCPT_CONTRIBUTORY;
535         default:
536                 break;
537         }
538         return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT             0
542 #define EXCPT_TRAP              1
543 #define EXCPT_ABORT             2
544 #define EXCPT_INTERRUPT         3
545 #define EXCPT_DB                4
546
547 static int exception_type(int vector)
548 {
549         unsigned int mask;
550
551         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552                 return EXCPT_INTERRUPT;
553
554         mask = 1 << vector;
555
556         /*
557          * #DBs can be trap-like or fault-like, the caller must check other CPU
558          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559          */
560         if (mask & (1 << DB_VECTOR))
561                 return EXCPT_DB;
562
563         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564                 return EXCPT_TRAP;
565
566         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567                 return EXCPT_ABORT;
568
569         /* Reserved exceptions will result in fault */
570         return EXCPT_FAULT;
571 }
572
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574                                    struct kvm_queued_exception *ex)
575 {
576         if (!ex->has_payload)
577                 return;
578
579         switch (ex->vector) {
580         case DB_VECTOR:
581                 /*
582                  * "Certain debug exceptions may clear bit 0-3.  The
583                  * remaining contents of the DR6 register are never
584                  * cleared by the processor".
585                  */
586                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587                 /*
588                  * In order to reflect the #DB exception payload in guest
589                  * dr6, three components need to be considered: active low
590                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591                  * DR6_BS and DR6_BT)
592                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593                  * In the target guest dr6:
594                  * FIXED_1 bits should always be set.
595                  * Active low bits should be cleared if 1-setting in payload.
596                  * Active high bits should be set if 1-setting in payload.
597                  *
598                  * Note, the payload is compatible with the pending debug
599                  * exceptions/exit qualification under VMX, that active_low bits
600                  * are active high in payload.
601                  * So they need to be flipped for DR6.
602                  */
603                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604                 vcpu->arch.dr6 |= ex->payload;
605                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607                 /*
608                  * The #DB payload is defined as compatible with the 'pending
609                  * debug exceptions' field under VMX, not DR6. While bit 12 is
610                  * defined in the 'pending debug exceptions' field (enabled
611                  * breakpoint), it is reserved and must be zero in DR6.
612                  */
613                 vcpu->arch.dr6 &= ~BIT(12);
614                 break;
615         case PF_VECTOR:
616                 vcpu->arch.cr2 = ex->payload;
617                 break;
618         }
619
620         ex->has_payload = false;
621         ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626                                        bool has_error_code, u32 error_code,
627                                        bool has_payload, unsigned long payload)
628 {
629         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631         ex->vector = vector;
632         ex->injected = false;
633         ex->pending = true;
634         ex->has_error_code = has_error_code;
635         ex->error_code = error_code;
636         ex->has_payload = has_payload;
637         ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643         kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647                 unsigned nr, bool has_error, u32 error_code,
648                 bool has_payload, unsigned long payload, bool reinject)
649 {
650         u32 prev_nr;
651         int class1, class2;
652
653         kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655         /*
656          * If the exception is destined for L2 and isn't being reinjected,
657          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658          * previously injected exception is not checked because it was checked
659          * when it was original queued, and re-checking is incorrect if _L1_
660          * injected the exception, in which case it's exempt from interception.
661          */
662         if (!reinject && is_guest_mode(vcpu) &&
663             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665                                            has_payload, payload);
666                 return;
667         }
668
669         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670         queue:
671                 if (reinject) {
672                         /*
673                          * On VM-Entry, an exception can be pending if and only
674                          * if event injection was blocked by nested_run_pending.
675                          * In that case, however, vcpu_enter_guest() requests an
676                          * immediate exit, and the guest shouldn't proceed far
677                          * enough to need reinjection.
678                          */
679                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680                         vcpu->arch.exception.injected = true;
681                         if (WARN_ON_ONCE(has_payload)) {
682                                 /*
683                                  * A reinjected event has already
684                                  * delivered its payload.
685                                  */
686                                 has_payload = false;
687                                 payload = 0;
688                         }
689                 } else {
690                         vcpu->arch.exception.pending = true;
691                         vcpu->arch.exception.injected = false;
692                 }
693                 vcpu->arch.exception.has_error_code = has_error;
694                 vcpu->arch.exception.vector = nr;
695                 vcpu->arch.exception.error_code = error_code;
696                 vcpu->arch.exception.has_payload = has_payload;
697                 vcpu->arch.exception.payload = payload;
698                 if (!is_guest_mode(vcpu))
699                         kvm_deliver_exception_payload(vcpu,
700                                                       &vcpu->arch.exception);
701                 return;
702         }
703
704         /* to check exception */
705         prev_nr = vcpu->arch.exception.vector;
706         if (prev_nr == DF_VECTOR) {
707                 /* triple fault -> shutdown */
708                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709                 return;
710         }
711         class1 = exception_class(prev_nr);
712         class2 = exception_class(nr);
713         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715                 /*
716                  * Synthesize #DF.  Clear the previously injected or pending
717                  * exception so as not to incorrectly trigger shutdown.
718                  */
719                 vcpu->arch.exception.injected = false;
720                 vcpu->arch.exception.pending = false;
721
722                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723         } else {
724                 /* replace previous exception with a new one in a hope
725                    that instruction re-execution will regenerate lost
726                    exception */
727                 goto queue;
728         }
729 }
730
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744                            unsigned long payload)
745 {
746         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751                                     u32 error_code, unsigned long payload)
752 {
753         kvm_multiple_exception(vcpu, nr, true, error_code,
754                                true, payload, false);
755 }
756
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759         if (err)
760                 kvm_inject_gp(vcpu, 0);
761         else
762                 return kvm_skip_emulated_instruction(vcpu);
763
764         return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770         if (err) {
771                 kvm_inject_gp(vcpu, 0);
772                 return 1;
773         }
774
775         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776                                        EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781         ++vcpu->stat.pf_guest;
782
783         /*
784          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785          * whether or not L1 wants to intercept "regular" #PF.
786          */
787         if (is_guest_mode(vcpu) && fault->async_page_fault)
788                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789                                            true, fault->error_code,
790                                            true, fault->address);
791         else
792                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793                                         fault->address);
794 }
795
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797                                     struct x86_exception *fault)
798 {
799         struct kvm_mmu *fault_mmu;
800         WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803                                                vcpu->arch.walk_mmu;
804
805         /*
806          * Invalidate the TLB entry for the faulting address, if it exists,
807          * else the access will fault indefinitely (and to emulate hardware).
808          */
809         if ((fault->error_code & PFERR_PRESENT_MASK) &&
810             !(fault->error_code & PFERR_RSVD_MASK))
811                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812                                         KVM_MMU_ROOT_CURRENT);
813
814         fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820         atomic_inc(&vcpu->arch.nmi_queued);
821         kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843                 return true;
844         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845         return false;
846 }
847
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851                 return true;
852
853         kvm_queue_exception(vcpu, UD_VECTOR);
854         return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870         gpa_t real_gpa;
871         int i;
872         int ret;
873         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875         /*
876          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877          * to an L1 GPA.
878          */
879         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881         if (real_gpa == INVALID_GPA)
882                 return 0;
883
884         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
887         if (ret < 0)
888                 return 0;
889
890         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891                 if ((pdpte[i] & PT_PRESENT_MASK) &&
892                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893                         return 0;
894                 }
895         }
896
897         /*
898          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899          * Shadow page roots need to be reconstructed instead.
900          */
901         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907         vcpu->arch.pdptrs_from_userspace = false;
908
909         return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916         if (cr0 & 0xffffffff00000000UL)
917                 return false;
918 #endif
919
920         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921                 return false;
922
923         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924                 return false;
925
926         return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931         /*
932          * CR0.WP is incorporated into the MMU role, but only for non-nested,
933          * indirect shadow MMUs.  If paging is disabled, no updates are needed
934          * as there are no permission bits to emulate.  If TDP is enabled, the
935          * MMU's metadata needs to be updated, e.g. so that emulating guest
936          * translations does the right thing, but there's no need to unload the
937          * root as CR0.WP doesn't affect SPTEs.
938          */
939         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940                 if (!(cr0 & X86_CR0_PG))
941                         return;
942
943                 if (tdp_enabled) {
944                         kvm_init_mmu(vcpu);
945                         return;
946                 }
947         }
948
949         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950                 kvm_clear_async_pf_completion_queue(vcpu);
951                 kvm_async_pf_hash_reset(vcpu);
952
953                 /*
954                  * Clearing CR0.PG is defined to flush the TLB from the guest's
955                  * perspective.
956                  */
957                 if (!(cr0 & X86_CR0_PG))
958                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959         }
960
961         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962                 kvm_mmu_reset_context(vcpu);
963
964         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965             kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973         unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975         if (!kvm_is_valid_cr0(vcpu, cr0))
976                 return 1;
977
978         cr0 |= X86_CR0_ET;
979
980         /* Write to CR0 reserved bits are ignored, even on Intel. */
981         cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985             (cr0 & X86_CR0_PG)) {
986                 int cs_db, cs_l;
987
988                 if (!is_pae(vcpu))
989                         return 1;
990                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991                 if (cs_l)
992                         return 1;
993         }
994 #endif
995         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998                 return 1;
999
1000         if (!(cr0 & X86_CR0_PG) &&
1001             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002                 return 1;
1003
1004         static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006         kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008         return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020         if (vcpu->arch.guest_state_protected)
1021                 return;
1022
1023         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025                 if (vcpu->arch.xcr0 != host_xcr0)
1026                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029                     vcpu->arch.ia32_xss != host_xss)
1030                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031         }
1032
1033         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037                 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043         if (vcpu->arch.guest_state_protected)
1044                 return;
1045
1046         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049                 vcpu->arch.pkru = rdpkru();
1050                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051                         write_pkru(vcpu->arch.host_pkru);
1052         }
1053
1054         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056                 if (vcpu->arch.xcr0 != host_xcr0)
1057                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060                     vcpu->arch.ia32_xss != host_xss)
1061                         wrmsrl(MSR_IA32_XSS, host_xss);
1062         }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076         u64 xcr0 = xcr;
1077         u64 old_xcr0 = vcpu->arch.xcr0;
1078         u64 valid_bits;
1079
1080         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081         if (index != XCR_XFEATURE_ENABLED_MASK)
1082                 return 1;
1083         if (!(xcr0 & XFEATURE_MASK_FP))
1084                 return 1;
1085         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086                 return 1;
1087
1088         /*
1089          * Do not allow the guest to set bits that we do not support
1090          * saving.  However, xcr0 bit 0 is always set, even if the
1091          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092          */
1093         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094         if (xcr0 & ~valid_bits)
1095                 return 1;
1096
1097         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099                 return 1;
1100
1101         if (xcr0 & XFEATURE_MASK_AVX512) {
1102                 if (!(xcr0 & XFEATURE_MASK_YMM))
1103                         return 1;
1104                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105                         return 1;
1106         }
1107
1108         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110                 return 1;
1111
1112         vcpu->arch.xcr0 = xcr0;
1113
1114         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115                 kvm_update_cpuid_runtime(vcpu);
1116         return 0;
1117 }
1118
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124                 kvm_inject_gp(vcpu, 0);
1125                 return 1;
1126         }
1127
1128         return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134         if (cr4 & cr4_reserved_bits)
1135                 return false;
1136
1137         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138                 return false;
1139
1140         return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146         return __kvm_is_valid_cr4(vcpu, cr4) &&
1147                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153                 kvm_mmu_reset_context(vcpu);
1154
1155         /*
1156          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157          * according to the SDM; however, stale prev_roots could be reused
1158          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161          * so fall through.
1162          */
1163         if (!tdp_enabled &&
1164             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165                 kvm_mmu_unload(vcpu);
1166
1167         /*
1168          * The TLB has to be flushed for all PCIDs if any of the following
1169          * (architecturally required) changes happen:
1170          * - CR4.PCIDE is changed from 1 to 0
1171          * - CR4.PGE is toggled
1172          *
1173          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174          */
1175         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179         /*
1180          * The TLB has to be flushed for the current PCID if any of the
1181          * following (architecturally required) changes happen:
1182          * - CR4.SMEP is changed from 0 to 1
1183          * - CR4.PAE is toggled
1184          */
1185         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196         if (!kvm_is_valid_cr4(vcpu, cr4))
1197                 return 1;
1198
1199         if (is_long_mode(vcpu)) {
1200                 if (!(cr4 & X86_CR4_PAE))
1201                         return 1;
1202                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203                         return 1;
1204         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207                 return 1;
1208
1209         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212                         return 1;
1213         }
1214
1215         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219         return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225         struct kvm_mmu *mmu = vcpu->arch.mmu;
1226         unsigned long roots_to_free = 0;
1227         int i;
1228
1229         /*
1230          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232          * also via the emulator.  KVM's TDP page tables are not in the scope of
1233          * the invalidation, but the guest's TLB entries need to be flushed as
1234          * the CPU may have cached entries in its TLB for the target PCID.
1235          */
1236         if (unlikely(tdp_enabled)) {
1237                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238                 return;
1239         }
1240
1241         /*
1242          * If neither the current CR3 nor any of the prev_roots use the given
1243          * PCID, then nothing needs to be done here because a resync will
1244          * happen anyway before switching to any other CR3.
1245          */
1246         if (kvm_get_active_pcid(vcpu) == pcid) {
1247                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249         }
1250
1251         /*
1252          * If PCID is disabled, there is no need to free prev_roots even if the
1253          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254          * with PCIDE=0.
1255          */
1256         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257                 return;
1258
1259         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268         bool skip_tlb_flush = false;
1269         unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274                 pcid = cr3 & X86_CR3_PCID_MASK;
1275         }
1276 #endif
1277
1278         /* PDPTRs are always reloaded for PAE paging. */
1279         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280                 goto handle_tlb_flush;
1281
1282         /*
1283          * Do not condition the GPA check on long mode, this helper is used to
1284          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285          * the current vCPU mode is accurate.
1286          */
1287         if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288                 return 1;
1289
1290         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291                 return 1;
1292
1293         if (cr3 != kvm_read_cr3(vcpu))
1294                 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296         vcpu->arch.cr3 = cr3;
1297         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299
1300 handle_tlb_flush:
1301         /*
1302          * A load of CR3 that flushes the TLB flushes only the current PCID,
1303          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305          * and it's impossible to use a non-zero PCID when PCID is disabled,
1306          * i.e. only PCID=0 can be relevant.
1307          */
1308         if (!skip_tlb_flush)
1309                 kvm_invalidate_pcid(vcpu, pcid);
1310
1311         return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317         if (cr8 & CR8_RESERVED_BITS)
1318                 return 1;
1319         if (lapic_in_kernel(vcpu))
1320                 kvm_lapic_set_tpr(vcpu, cr8);
1321         else
1322                 vcpu->arch.cr8 = cr8;
1323         return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329         if (lapic_in_kernel(vcpu))
1330                 return kvm_lapic_get_cr8(vcpu);
1331         else
1332                 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338         int i;
1339
1340         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343         }
1344 }
1345
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348         unsigned long dr7;
1349
1350         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351                 dr7 = vcpu->arch.guest_debug_dr7;
1352         else
1353                 dr7 = vcpu->arch.dr7;
1354         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356         if (dr7 & DR7_BP_EN_MASK)
1357                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363         u64 fixed = DR6_FIXED_1;
1364
1365         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366                 fixed |= DR6_RTM;
1367
1368         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369                 fixed |= DR6_BUS_LOCK;
1370         return fixed;
1371 }
1372
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375         size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377         switch (dr) {
1378         case 0 ... 3:
1379                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381                         vcpu->arch.eff_db[dr] = val;
1382                 break;
1383         case 4:
1384         case 6:
1385                 if (!kvm_dr6_valid(val))
1386                         return 1; /* #GP */
1387                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388                 break;
1389         case 5:
1390         default: /* 7 */
1391                 if (!kvm_dr7_valid(val))
1392                         return 1; /* #GP */
1393                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394                 kvm_update_dr7(vcpu);
1395                 break;
1396         }
1397
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404         size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406         switch (dr) {
1407         case 0 ... 3:
1408                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409                 break;
1410         case 4:
1411         case 6:
1412                 *val = vcpu->arch.dr6;
1413                 break;
1414         case 5:
1415         default: /* 7 */
1416                 *val = vcpu->arch.dr7;
1417                 break;
1418         }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424         u32 ecx = kvm_rcx_read(vcpu);
1425         u64 data;
1426
1427         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428                 kvm_inject_gp(vcpu, 0);
1429                 return 1;
1430         }
1431
1432         kvm_rax_write(vcpu, (u32)data);
1433         kvm_rdx_write(vcpu, data >> 32);
1434         return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448
1449 static const u32 msrs_to_save_base[] = {
1450         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451         MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464         MSR_IA32_UMWAIT_CONTROL,
1465
1466         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495         MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501                         ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507
1508 #ifdef CONFIG_KVM_HYPERV
1509         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514         HV_X64_MSR_RESET,
1515         HV_X64_MSR_VP_INDEX,
1516         HV_X64_MSR_VP_RUNTIME,
1517         HV_X64_MSR_SCONTROL,
1518         HV_X64_MSR_STIMER0_CONFIG,
1519         HV_X64_MSR_VP_ASSIST_PAGE,
1520         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522         HV_X64_MSR_SYNDBG_OPTIONS,
1523         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527
1528         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530
1531         MSR_IA32_TSC_ADJUST,
1532         MSR_IA32_TSC_DEADLINE,
1533         MSR_IA32_ARCH_CAPABILITIES,
1534         MSR_IA32_PERF_CAPABILITIES,
1535         MSR_IA32_MISC_ENABLE,
1536         MSR_IA32_MCG_STATUS,
1537         MSR_IA32_MCG_CTL,
1538         MSR_IA32_MCG_EXT_CTL,
1539         MSR_IA32_SMBASE,
1540         MSR_SMI_COUNT,
1541         MSR_PLATFORM_INFO,
1542         MSR_MISC_FEATURES_ENABLES,
1543         MSR_AMD64_VIRT_SPEC_CTRL,
1544         MSR_AMD64_TSC_RATIO,
1545         MSR_IA32_POWER_CTL,
1546         MSR_IA32_UCODE_REV,
1547
1548         /*
1549          * KVM always supports the "true" VMX control MSRs, even if the host
1550          * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1551          * doesn't strictly require them to exist in the host (ignoring that
1552          * KVM would refuse to load in the first place if the core set of MSRs
1553          * aren't supported).
1554          */
1555         MSR_IA32_VMX_BASIC,
1556         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560         MSR_IA32_VMX_MISC,
1561         MSR_IA32_VMX_CR0_FIXED0,
1562         MSR_IA32_VMX_CR4_FIXED0,
1563         MSR_IA32_VMX_VMCS_ENUM,
1564         MSR_IA32_VMX_PROCBASED_CTLS2,
1565         MSR_IA32_VMX_EPT_VPID_CAP,
1566         MSR_IA32_VMX_VMFUNC,
1567
1568         MSR_K7_HWCR,
1569         MSR_KVM_POLL_CONTROL,
1570 };
1571
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574
1575 /*
1576  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1578  * feature MSRs, but are handled separately to allow expedited lookups.
1579  */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581         MSR_AMD64_DE_CFG,
1582         MSR_IA32_UCODE_REV,
1583         MSR_IA32_ARCH_CAPABILITIES,
1584         MSR_IA32_PERF_CAPABILITIES,
1585 };
1586
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590
1591 /*
1592  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593  * patch, are immutable once the vCPU model is defined.
1594  */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597         int i;
1598
1599         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600                 return true;
1601
1602         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603                 if (msr == msr_based_features_all_except_vmx[i])
1604                         return msr != MSR_IA32_UCODE_REV;
1605         }
1606
1607         return false;
1608 }
1609
1610 /*
1611  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612  * does not yet virtualize. These include:
1613  *   10 - MISC_PACKAGE_CTRLS
1614  *   11 - ENERGY_FILTERING_CTL
1615  *   12 - DOITM
1616  *   18 - FB_CLEAR_CTRL
1617  *   21 - XAPIC_DISABLE_STATUS
1618  *   23 - OVERCLOCKING_STATUS
1619  */
1620
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1627          ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1628
1629 static u64 kvm_get_arch_capabilities(void)
1630 {
1631         u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1632
1633         /*
1634          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1635          * the nested hypervisor runs with NX huge pages.  If it is not,
1636          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1637          * L1 guests, so it need not worry about its own (L2) guests.
1638          */
1639         data |= ARCH_CAP_PSCHANGE_MC_NO;
1640
1641         /*
1642          * If we're doing cache flushes (either "always" or "cond")
1643          * we will do one whenever the guest does a vmlaunch/vmresume.
1644          * If an outer hypervisor is doing the cache flush for us
1645          * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1646          * capability to the guest too, and if EPT is disabled we're not
1647          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1648          * require a nested hypervisor to do a flush of its own.
1649          */
1650         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1651                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1652
1653         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1654                 data |= ARCH_CAP_RDCL_NO;
1655         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1656                 data |= ARCH_CAP_SSB_NO;
1657         if (!boot_cpu_has_bug(X86_BUG_MDS))
1658                 data |= ARCH_CAP_MDS_NO;
1659         if (!boot_cpu_has_bug(X86_BUG_RFDS))
1660                 data |= ARCH_CAP_RFDS_NO;
1661
1662         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1663                 /*
1664                  * If RTM=0 because the kernel has disabled TSX, the host might
1665                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1666                  * and therefore knows that there cannot be TAA) but keep
1667                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1668                  * and we want to allow migrating those guests to tsx=off hosts.
1669                  */
1670                 data &= ~ARCH_CAP_TAA_NO;
1671         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1672                 data |= ARCH_CAP_TAA_NO;
1673         } else {
1674                 /*
1675                  * Nothing to do here; we emulate TSX_CTRL if present on the
1676                  * host so the guest can choose between disabling TSX or
1677                  * using VERW to clear CPU buffers.
1678                  */
1679         }
1680
1681         if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1682                 data |= ARCH_CAP_GDS_NO;
1683
1684         return data;
1685 }
1686
1687 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1688 {
1689         switch (msr->index) {
1690         case MSR_IA32_ARCH_CAPABILITIES:
1691                 msr->data = kvm_get_arch_capabilities();
1692                 break;
1693         case MSR_IA32_PERF_CAPABILITIES:
1694                 msr->data = kvm_caps.supported_perf_cap;
1695                 break;
1696         case MSR_IA32_UCODE_REV:
1697                 rdmsrl_safe(msr->index, &msr->data);
1698                 break;
1699         default:
1700                 return static_call(kvm_x86_get_msr_feature)(msr);
1701         }
1702         return 0;
1703 }
1704
1705 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1706 {
1707         struct kvm_msr_entry msr;
1708         int r;
1709
1710         /* Unconditionally clear the output for simplicity */
1711         msr.data = 0;
1712         msr.index = index;
1713         r = kvm_get_msr_feature(&msr);
1714
1715         if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1716                 r = 0;
1717
1718         *data = msr.data;
1719
1720         return r;
1721 }
1722
1723 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1724 {
1725         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1726                 return false;
1727
1728         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1729                 return false;
1730
1731         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1732                 return false;
1733
1734         if (efer & (EFER_LME | EFER_LMA) &&
1735             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1736                 return false;
1737
1738         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1739                 return false;
1740
1741         return true;
1742
1743 }
1744 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1745 {
1746         if (efer & efer_reserved_bits)
1747                 return false;
1748
1749         return __kvm_valid_efer(vcpu, efer);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1752
1753 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1754 {
1755         u64 old_efer = vcpu->arch.efer;
1756         u64 efer = msr_info->data;
1757         int r;
1758
1759         if (efer & efer_reserved_bits)
1760                 return 1;
1761
1762         if (!msr_info->host_initiated) {
1763                 if (!__kvm_valid_efer(vcpu, efer))
1764                         return 1;
1765
1766                 if (is_paging(vcpu) &&
1767                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1768                         return 1;
1769         }
1770
1771         efer &= ~EFER_LMA;
1772         efer |= vcpu->arch.efer & EFER_LMA;
1773
1774         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1775         if (r) {
1776                 WARN_ON(r > 0);
1777                 return r;
1778         }
1779
1780         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1781                 kvm_mmu_reset_context(vcpu);
1782
1783         if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1784             (efer & EFER_SVME))
1785                 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1786
1787         return 0;
1788 }
1789
1790 void kvm_enable_efer_bits(u64 mask)
1791 {
1792        efer_reserved_bits &= ~mask;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1795
1796 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1797 {
1798         struct kvm_x86_msr_filter *msr_filter;
1799         struct msr_bitmap_range *ranges;
1800         struct kvm *kvm = vcpu->kvm;
1801         bool allowed;
1802         int idx;
1803         u32 i;
1804
1805         /* x2APIC MSRs do not support filtering. */
1806         if (index >= 0x800 && index <= 0x8ff)
1807                 return true;
1808
1809         idx = srcu_read_lock(&kvm->srcu);
1810
1811         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1812         if (!msr_filter) {
1813                 allowed = true;
1814                 goto out;
1815         }
1816
1817         allowed = msr_filter->default_allow;
1818         ranges = msr_filter->ranges;
1819
1820         for (i = 0; i < msr_filter->count; i++) {
1821                 u32 start = ranges[i].base;
1822                 u32 end = start + ranges[i].nmsrs;
1823                 u32 flags = ranges[i].flags;
1824                 unsigned long *bitmap = ranges[i].bitmap;
1825
1826                 if ((index >= start) && (index < end) && (flags & type)) {
1827                         allowed = test_bit(index - start, bitmap);
1828                         break;
1829                 }
1830         }
1831
1832 out:
1833         srcu_read_unlock(&kvm->srcu, idx);
1834
1835         return allowed;
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1838
1839 /*
1840  * Write @data into the MSR specified by @index.  Select MSR specific fault
1841  * checks are bypassed if @host_initiated is %true.
1842  * Returns 0 on success, non-0 otherwise.
1843  * Assumes vcpu_load() was already called.
1844  */
1845 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1846                          bool host_initiated)
1847 {
1848         struct msr_data msr;
1849
1850         switch (index) {
1851         case MSR_FS_BASE:
1852         case MSR_GS_BASE:
1853         case MSR_KERNEL_GS_BASE:
1854         case MSR_CSTAR:
1855         case MSR_LSTAR:
1856                 if (is_noncanonical_address(data, vcpu))
1857                         return 1;
1858                 break;
1859         case MSR_IA32_SYSENTER_EIP:
1860         case MSR_IA32_SYSENTER_ESP:
1861                 /*
1862                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1863                  * non-canonical address is written on Intel but not on
1864                  * AMD (which ignores the top 32-bits, because it does
1865                  * not implement 64-bit SYSENTER).
1866                  *
1867                  * 64-bit code should hence be able to write a non-canonical
1868                  * value on AMD.  Making the address canonical ensures that
1869                  * vmentry does not fail on Intel after writing a non-canonical
1870                  * value, and that something deterministic happens if the guest
1871                  * invokes 64-bit SYSENTER.
1872                  */
1873                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1874                 break;
1875         case MSR_TSC_AUX:
1876                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1877                         return 1;
1878
1879                 if (!host_initiated &&
1880                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1881                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1882                         return 1;
1883
1884                 /*
1885                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1886                  * incomplete and conflicting architectural behavior.  Current
1887                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1888                  * reserved and always read as zeros.  Enforce Intel's reserved
1889                  * bits check if and only if the guest CPU is Intel, and clear
1890                  * the bits in all other cases.  This ensures cross-vendor
1891                  * migration will provide consistent behavior for the guest.
1892                  */
1893                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1894                         return 1;
1895
1896                 data = (u32)data;
1897                 break;
1898         }
1899
1900         msr.data = data;
1901         msr.index = index;
1902         msr.host_initiated = host_initiated;
1903
1904         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1905 }
1906
1907 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1908                                      u32 index, u64 data, bool host_initiated)
1909 {
1910         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1911
1912         if (ret == KVM_MSR_RET_INVALID)
1913                 if (kvm_msr_ignored_check(index, data, true))
1914                         ret = 0;
1915
1916         return ret;
1917 }
1918
1919 /*
1920  * Read the MSR specified by @index into @data.  Select MSR specific fault
1921  * checks are bypassed if @host_initiated is %true.
1922  * Returns 0 on success, non-0 otherwise.
1923  * Assumes vcpu_load() was already called.
1924  */
1925 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1926                   bool host_initiated)
1927 {
1928         struct msr_data msr;
1929         int ret;
1930
1931         switch (index) {
1932         case MSR_TSC_AUX:
1933                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1934                         return 1;
1935
1936                 if (!host_initiated &&
1937                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1938                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1939                         return 1;
1940                 break;
1941         }
1942
1943         msr.index = index;
1944         msr.host_initiated = host_initiated;
1945
1946         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1947         if (!ret)
1948                 *data = msr.data;
1949         return ret;
1950 }
1951
1952 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1953                                      u32 index, u64 *data, bool host_initiated)
1954 {
1955         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1956
1957         if (ret == KVM_MSR_RET_INVALID) {
1958                 /* Unconditionally clear *data for simplicity */
1959                 *data = 0;
1960                 if (kvm_msr_ignored_check(index, 0, false))
1961                         ret = 0;
1962         }
1963
1964         return ret;
1965 }
1966
1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1968 {
1969         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1970                 return KVM_MSR_RET_FILTERED;
1971         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1972 }
1973
1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1975 {
1976         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1977                 return KVM_MSR_RET_FILTERED;
1978         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1979 }
1980
1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1982 {
1983         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_get_msr);
1986
1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1988 {
1989         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_set_msr);
1992
1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1994 {
1995         if (!vcpu->run->msr.error) {
1996                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1997                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1998         }
1999 }
2000
2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2002 {
2003         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2004 }
2005
2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2007 {
2008         complete_userspace_rdmsr(vcpu);
2009         return complete_emulated_msr_access(vcpu);
2010 }
2011
2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2013 {
2014         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2015 }
2016
2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2018 {
2019         complete_userspace_rdmsr(vcpu);
2020         return complete_fast_msr_access(vcpu);
2021 }
2022
2023 static u64 kvm_msr_reason(int r)
2024 {
2025         switch (r) {
2026         case KVM_MSR_RET_INVALID:
2027                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2028         case KVM_MSR_RET_FILTERED:
2029                 return KVM_MSR_EXIT_REASON_FILTER;
2030         default:
2031                 return KVM_MSR_EXIT_REASON_INVAL;
2032         }
2033 }
2034
2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2036                               u32 exit_reason, u64 data,
2037                               int (*completion)(struct kvm_vcpu *vcpu),
2038                               int r)
2039 {
2040         u64 msr_reason = kvm_msr_reason(r);
2041
2042         /* Check if the user wanted to know about this MSR fault */
2043         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2044                 return 0;
2045
2046         vcpu->run->exit_reason = exit_reason;
2047         vcpu->run->msr.error = 0;
2048         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2049         vcpu->run->msr.reason = msr_reason;
2050         vcpu->run->msr.index = index;
2051         vcpu->run->msr.data = data;
2052         vcpu->arch.complete_userspace_io = completion;
2053
2054         return 1;
2055 }
2056
2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2058 {
2059         u32 ecx = kvm_rcx_read(vcpu);
2060         u64 data;
2061         int r;
2062
2063         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2064
2065         if (!r) {
2066                 trace_kvm_msr_read(ecx, data);
2067
2068                 kvm_rax_write(vcpu, data & -1u);
2069                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2070         } else {
2071                 /* MSR read failed? See if we should ask user space */
2072                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2073                                        complete_fast_rdmsr, r))
2074                         return 0;
2075                 trace_kvm_msr_read_ex(ecx);
2076         }
2077
2078         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2081
2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2083 {
2084         u32 ecx = kvm_rcx_read(vcpu);
2085         u64 data = kvm_read_edx_eax(vcpu);
2086         int r;
2087
2088         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2089
2090         if (!r) {
2091                 trace_kvm_msr_write(ecx, data);
2092         } else {
2093                 /* MSR write failed? See if we should ask user space */
2094                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2095                                        complete_fast_msr_access, r))
2096                         return 0;
2097                 /* Signal all other negative errors to userspace */
2098                 if (r < 0)
2099                         return r;
2100                 trace_kvm_msr_write_ex(ecx, data);
2101         }
2102
2103         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2106
2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2108 {
2109         return kvm_skip_emulated_instruction(vcpu);
2110 }
2111
2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2113 {
2114         /* Treat an INVD instruction as a NOP and just skip it. */
2115         return kvm_emulate_as_nop(vcpu);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2118
2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2120 {
2121         kvm_queue_exception(vcpu, UD_VECTOR);
2122         return 1;
2123 }
2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2125
2126
2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2128 {
2129         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2130             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2131                 return kvm_handle_invalid_op(vcpu);
2132
2133         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2134         return kvm_emulate_as_nop(vcpu);
2135 }
2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2137 {
2138         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2139 }
2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2141
2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2143 {
2144         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2147
2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2149 {
2150         xfer_to_guest_mode_prepare();
2151         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2152                 xfer_to_guest_mode_work_pending();
2153 }
2154
2155 /*
2156  * The fast path for frequent and performance sensitive wrmsr emulation,
2157  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2158  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2159  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2160  * other cases which must be called after interrupts are enabled on the host.
2161  */
2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2163 {
2164         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2165                 return 1;
2166
2167         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2168             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2169             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2170             ((u32)(data >> 32) != X2APIC_BROADCAST))
2171                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2172
2173         return 1;
2174 }
2175
2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2177 {
2178         if (!kvm_can_use_hv_timer(vcpu))
2179                 return 1;
2180
2181         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2182         return 0;
2183 }
2184
2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2186 {
2187         u32 msr = kvm_rcx_read(vcpu);
2188         u64 data;
2189         fastpath_t ret = EXIT_FASTPATH_NONE;
2190
2191         kvm_vcpu_srcu_read_lock(vcpu);
2192
2193         switch (msr) {
2194         case APIC_BASE_MSR + (APIC_ICR >> 4):
2195                 data = kvm_read_edx_eax(vcpu);
2196                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2197                         kvm_skip_emulated_instruction(vcpu);
2198                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2199                 }
2200                 break;
2201         case MSR_IA32_TSC_DEADLINE:
2202                 data = kvm_read_edx_eax(vcpu);
2203                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2204                         kvm_skip_emulated_instruction(vcpu);
2205                         ret = EXIT_FASTPATH_REENTER_GUEST;
2206                 }
2207                 break;
2208         default:
2209                 break;
2210         }
2211
2212         if (ret != EXIT_FASTPATH_NONE)
2213                 trace_kvm_msr_write(msr, data);
2214
2215         kvm_vcpu_srcu_read_unlock(vcpu);
2216
2217         return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2220
2221 /*
2222  * Adapt set_msr() to msr_io()'s calling convention
2223  */
2224 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2227 }
2228
2229 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2230 {
2231         u64 val;
2232
2233         /*
2234          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2235          * not support modifying the guest vCPU model on the fly, e.g. changing
2236          * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2237          * writes of the same value, e.g. to allow userspace to blindly stuff
2238          * all MSRs when emulating RESET.
2239          */
2240         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2241                 if (do_get_msr(vcpu, index, &val) || *data != val)
2242                         return -EINVAL;
2243
2244                 return 0;
2245         }
2246
2247         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2248 }
2249
2250 #ifdef CONFIG_X86_64
2251 struct pvclock_clock {
2252         int vclock_mode;
2253         u64 cycle_last;
2254         u64 mask;
2255         u32 mult;
2256         u32 shift;
2257         u64 base_cycles;
2258         u64 offset;
2259 };
2260
2261 struct pvclock_gtod_data {
2262         seqcount_t      seq;
2263
2264         struct pvclock_clock clock; /* extract of a clocksource struct */
2265         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2266
2267         ktime_t         offs_boot;
2268         u64             wall_time_sec;
2269 };
2270
2271 static struct pvclock_gtod_data pvclock_gtod_data;
2272
2273 static void update_pvclock_gtod(struct timekeeper *tk)
2274 {
2275         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2276
2277         write_seqcount_begin(&vdata->seq);
2278
2279         /* copy pvclock gtod data */
2280         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2281         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2282         vdata->clock.mask               = tk->tkr_mono.mask;
2283         vdata->clock.mult               = tk->tkr_mono.mult;
2284         vdata->clock.shift              = tk->tkr_mono.shift;
2285         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2286         vdata->clock.offset             = tk->tkr_mono.base;
2287
2288         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2289         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2290         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2291         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2292         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2293         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2294         vdata->raw_clock.offset         = tk->tkr_raw.base;
2295
2296         vdata->wall_time_sec            = tk->xtime_sec;
2297
2298         vdata->offs_boot                = tk->offs_boot;
2299
2300         write_seqcount_end(&vdata->seq);
2301 }
2302
2303 static s64 get_kvmclock_base_ns(void)
2304 {
2305         /* Count up from boot time, but with the frequency of the raw clock.  */
2306         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2307 }
2308 #else
2309 static s64 get_kvmclock_base_ns(void)
2310 {
2311         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2312         return ktime_get_boottime_ns();
2313 }
2314 #endif
2315
2316 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2317 {
2318         int version;
2319         int r;
2320         struct pvclock_wall_clock wc;
2321         u32 wc_sec_hi;
2322         u64 wall_nsec;
2323
2324         if (!wall_clock)
2325                 return;
2326
2327         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2328         if (r)
2329                 return;
2330
2331         if (version & 1)
2332                 ++version;  /* first time write, random junk */
2333
2334         ++version;
2335
2336         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2337                 return;
2338
2339         wall_nsec = kvm_get_wall_clock_epoch(kvm);
2340
2341         wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2342         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2343         wc.version = version;
2344
2345         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2346
2347         if (sec_hi_ofs) {
2348                 wc_sec_hi = wall_nsec >> 32;
2349                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2350                                 &wc_sec_hi, sizeof(wc_sec_hi));
2351         }
2352
2353         version++;
2354         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2355 }
2356
2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2358                                   bool old_msr, bool host_initiated)
2359 {
2360         struct kvm_arch *ka = &vcpu->kvm->arch;
2361
2362         if (vcpu->vcpu_id == 0 && !host_initiated) {
2363                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2364                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2365
2366                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2367         }
2368
2369         vcpu->arch.time = system_time;
2370         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2371
2372         /* we verify if the enable bit is set... */
2373         if (system_time & 1)
2374                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2375                                  sizeof(struct pvclock_vcpu_time_info));
2376         else
2377                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2378
2379         return;
2380 }
2381
2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2383 {
2384         do_shl32_div32(dividend, divisor);
2385         return dividend;
2386 }
2387
2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2389                                s8 *pshift, u32 *pmultiplier)
2390 {
2391         uint64_t scaled64;
2392         int32_t  shift = 0;
2393         uint64_t tps64;
2394         uint32_t tps32;
2395
2396         tps64 = base_hz;
2397         scaled64 = scaled_hz;
2398         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2399                 tps64 >>= 1;
2400                 shift--;
2401         }
2402
2403         tps32 = (uint32_t)tps64;
2404         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2405                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2406                         scaled64 >>= 1;
2407                 else
2408                         tps32 <<= 1;
2409                 shift++;
2410         }
2411
2412         *pshift = shift;
2413         *pmultiplier = div_frac(scaled64, tps32);
2414 }
2415
2416 #ifdef CONFIG_X86_64
2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2418 #endif
2419
2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2421 static unsigned long max_tsc_khz;
2422
2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2424 {
2425         u64 v = (u64)khz * (1000000 + ppm);
2426         do_div(v, 1000000);
2427         return v;
2428 }
2429
2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2431
2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2433 {
2434         u64 ratio;
2435
2436         /* Guest TSC same frequency as host TSC? */
2437         if (!scale) {
2438                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2439                 return 0;
2440         }
2441
2442         /* TSC scaling supported? */
2443         if (!kvm_caps.has_tsc_control) {
2444                 if (user_tsc_khz > tsc_khz) {
2445                         vcpu->arch.tsc_catchup = 1;
2446                         vcpu->arch.tsc_always_catchup = 1;
2447                         return 0;
2448                 } else {
2449                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2450                         return -1;
2451                 }
2452         }
2453
2454         /* TSC scaling required  - calculate ratio */
2455         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2456                                 user_tsc_khz, tsc_khz);
2457
2458         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2459                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2460                                     user_tsc_khz);
2461                 return -1;
2462         }
2463
2464         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2465         return 0;
2466 }
2467
2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2469 {
2470         u32 thresh_lo, thresh_hi;
2471         int use_scaling = 0;
2472
2473         /* tsc_khz can be zero if TSC calibration fails */
2474         if (user_tsc_khz == 0) {
2475                 /* set tsc_scaling_ratio to a safe value */
2476                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2477                 return -1;
2478         }
2479
2480         /* Compute a scale to convert nanoseconds in TSC cycles */
2481         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2482                            &vcpu->arch.virtual_tsc_shift,
2483                            &vcpu->arch.virtual_tsc_mult);
2484         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2485
2486         /*
2487          * Compute the variation in TSC rate which is acceptable
2488          * within the range of tolerance and decide if the
2489          * rate being applied is within that bounds of the hardware
2490          * rate.  If so, no scaling or compensation need be done.
2491          */
2492         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2493         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2494         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2495                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2496                          user_tsc_khz, thresh_lo, thresh_hi);
2497                 use_scaling = 1;
2498         }
2499         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2500 }
2501
2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2503 {
2504         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2505                                       vcpu->arch.virtual_tsc_mult,
2506                                       vcpu->arch.virtual_tsc_shift);
2507         tsc += vcpu->arch.this_tsc_write;
2508         return tsc;
2509 }
2510
2511 #ifdef CONFIG_X86_64
2512 static inline bool gtod_is_based_on_tsc(int mode)
2513 {
2514         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2515 }
2516 #endif
2517
2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2519 {
2520 #ifdef CONFIG_X86_64
2521         struct kvm_arch *ka = &vcpu->kvm->arch;
2522         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2523
2524         /*
2525          * To use the masterclock, the host clocksource must be based on TSC
2526          * and all vCPUs must have matching TSCs.  Note, the count for matching
2527          * vCPUs doesn't include the reference vCPU, hence "+1".
2528          */
2529         bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2530                                  atomic_read(&vcpu->kvm->online_vcpus)) &&
2531                                 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2532
2533         /*
2534          * Request a masterclock update if the masterclock needs to be toggled
2535          * on/off, or when starting a new generation and the masterclock is
2536          * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2537          * taken _after_ the new generation is created).
2538          */
2539         if ((ka->use_master_clock && new_generation) ||
2540             (ka->use_master_clock != use_master_clock))
2541                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2542
2543         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2544                             atomic_read(&vcpu->kvm->online_vcpus),
2545                             ka->use_master_clock, gtod->clock.vclock_mode);
2546 #endif
2547 }
2548
2549 /*
2550  * Multiply tsc by a fixed point number represented by ratio.
2551  *
2552  * The most significant 64-N bits (mult) of ratio represent the
2553  * integral part of the fixed point number; the remaining N bits
2554  * (frac) represent the fractional part, ie. ratio represents a fixed
2555  * point number (mult + frac * 2^(-N)).
2556  *
2557  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2558  */
2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2560 {
2561         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562 }
2563
2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2565 {
2566         u64 _tsc = tsc;
2567
2568         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2569                 _tsc = __scale_tsc(ratio, tsc);
2570
2571         return _tsc;
2572 }
2573
2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2575 {
2576         u64 tsc;
2577
2578         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2579
2580         return target_tsc - tsc;
2581 }
2582
2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2584 {
2585         return vcpu->arch.l1_tsc_offset +
2586                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2589
2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2591 {
2592         u64 nested_offset;
2593
2594         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2595                 nested_offset = l1_offset;
2596         else
2597                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2598                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2599
2600         nested_offset += l2_offset;
2601         return nested_offset;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2604
2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2606 {
2607         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2608                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2609                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2610
2611         return l1_multiplier;
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2614
2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2616 {
2617         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2618                                    vcpu->arch.l1_tsc_offset,
2619                                    l1_offset);
2620
2621         vcpu->arch.l1_tsc_offset = l1_offset;
2622
2623         /*
2624          * If we are here because L1 chose not to trap WRMSR to TSC then
2625          * according to the spec this should set L1's TSC (as opposed to
2626          * setting L1's offset for L2).
2627          */
2628         if (is_guest_mode(vcpu))
2629                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2630                         l1_offset,
2631                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2632                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2633         else
2634                 vcpu->arch.tsc_offset = l1_offset;
2635
2636         static_call(kvm_x86_write_tsc_offset)(vcpu);
2637 }
2638
2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2640 {
2641         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2642
2643         /* Userspace is changing the multiplier while L2 is active */
2644         if (is_guest_mode(vcpu))
2645                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2646                         l1_multiplier,
2647                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2648         else
2649                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2650
2651         if (kvm_caps.has_tsc_control)
2652                 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653 }
2654
2655 static inline bool kvm_check_tsc_unstable(void)
2656 {
2657 #ifdef CONFIG_X86_64
2658         /*
2659          * TSC is marked unstable when we're running on Hyper-V,
2660          * 'TSC page' clocksource is good.
2661          */
2662         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663                 return false;
2664 #endif
2665         return check_tsc_unstable();
2666 }
2667
2668 /*
2669  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2670  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671  * participates in.
2672  */
2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2674                                   u64 ns, bool matched)
2675 {
2676         struct kvm *kvm = vcpu->kvm;
2677
2678         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679
2680         /*
2681          * We also track th most recent recorded KHZ, write and time to
2682          * allow the matching interval to be extended at each write.
2683          */
2684         kvm->arch.last_tsc_nsec = ns;
2685         kvm->arch.last_tsc_write = tsc;
2686         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2687         kvm->arch.last_tsc_offset = offset;
2688
2689         vcpu->arch.last_guest_tsc = tsc;
2690
2691         kvm_vcpu_write_tsc_offset(vcpu, offset);
2692
2693         if (!matched) {
2694                 /*
2695                  * We split periods of matched TSC writes into generations.
2696                  * For each generation, we track the original measured
2697                  * nanosecond time, offset, and write, so if TSCs are in
2698                  * sync, we can match exact offset, and if not, we can match
2699                  * exact software computation in compute_guest_tsc()
2700                  *
2701                  * These values are tracked in kvm->arch.cur_xxx variables.
2702                  */
2703                 kvm->arch.cur_tsc_generation++;
2704                 kvm->arch.cur_tsc_nsec = ns;
2705                 kvm->arch.cur_tsc_write = tsc;
2706                 kvm->arch.cur_tsc_offset = offset;
2707                 kvm->arch.nr_vcpus_matched_tsc = 0;
2708         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2709                 kvm->arch.nr_vcpus_matched_tsc++;
2710         }
2711
2712         /* Keep track of which generation this VCPU has synchronized to */
2713         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2714         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2715         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2716
2717         kvm_track_tsc_matching(vcpu, !matched);
2718 }
2719
2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2721 {
2722         u64 data = user_value ? *user_value : 0;
2723         struct kvm *kvm = vcpu->kvm;
2724         u64 offset, ns, elapsed;
2725         unsigned long flags;
2726         bool matched = false;
2727         bool synchronizing = false;
2728
2729         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2730         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2731         ns = get_kvmclock_base_ns();
2732         elapsed = ns - kvm->arch.last_tsc_nsec;
2733
2734         if (vcpu->arch.virtual_tsc_khz) {
2735                 if (data == 0) {
2736                         /*
2737                          * Force synchronization when creating a vCPU, or when
2738                          * userspace explicitly writes a zero value.
2739                          */
2740                         synchronizing = true;
2741                 } else if (kvm->arch.user_set_tsc) {
2742                         u64 tsc_exp = kvm->arch.last_tsc_write +
2743                                                 nsec_to_cycles(vcpu, elapsed);
2744                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2745                         /*
2746                          * Here lies UAPI baggage: when a user-initiated TSC write has
2747                          * a small delta (1 second) of virtual cycle time against the
2748                          * previously set vCPU, we assume that they were intended to be
2749                          * in sync and the delta was only due to the racy nature of the
2750                          * legacy API.
2751                          *
2752                          * This trick falls down when restoring a guest which genuinely
2753                          * has been running for less time than the 1 second of imprecision
2754                          * which we allow for in the legacy API. In this case, the first
2755                          * value written by userspace (on any vCPU) should not be subject
2756                          * to this 'correction' to make it sync up with values that only
2757                          * come from the kernel's default vCPU creation. Make the 1-second
2758                          * slop hack only trigger if the user_set_tsc flag is already set.
2759                          */
2760                         synchronizing = data < tsc_exp + tsc_hz &&
2761                                         data + tsc_hz > tsc_exp;
2762                 }
2763         }
2764
2765         if (user_value)
2766                 kvm->arch.user_set_tsc = true;
2767
2768         /*
2769          * For a reliable TSC, we can match TSC offsets, and for an unstable
2770          * TSC, we add elapsed time in this computation.  We could let the
2771          * compensation code attempt to catch up if we fall behind, but
2772          * it's better to try to match offsets from the beginning.
2773          */
2774         if (synchronizing &&
2775             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2776                 if (!kvm_check_tsc_unstable()) {
2777                         offset = kvm->arch.cur_tsc_offset;
2778                 } else {
2779                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2780                         data += delta;
2781                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2782                 }
2783                 matched = true;
2784         }
2785
2786         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2787         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2788 }
2789
2790 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2791                                            s64 adjustment)
2792 {
2793         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2794         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2795 }
2796
2797 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2798 {
2799         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2800                 WARN_ON(adjustment < 0);
2801         adjustment = kvm_scale_tsc((u64) adjustment,
2802                                    vcpu->arch.l1_tsc_scaling_ratio);
2803         adjust_tsc_offset_guest(vcpu, adjustment);
2804 }
2805
2806 #ifdef CONFIG_X86_64
2807
2808 static u64 read_tsc(void)
2809 {
2810         u64 ret = (u64)rdtsc_ordered();
2811         u64 last = pvclock_gtod_data.clock.cycle_last;
2812
2813         if (likely(ret >= last))
2814                 return ret;
2815
2816         /*
2817          * GCC likes to generate cmov here, but this branch is extremely
2818          * predictable (it's just a function of time and the likely is
2819          * very likely) and there's a data dependence, so force GCC
2820          * to generate a branch instead.  I don't barrier() because
2821          * we don't actually need a barrier, and if this function
2822          * ever gets inlined it will generate worse code.
2823          */
2824         asm volatile ("");
2825         return last;
2826 }
2827
2828 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2829                           int *mode)
2830 {
2831         u64 tsc_pg_val;
2832         long v;
2833
2834         switch (clock->vclock_mode) {
2835         case VDSO_CLOCKMODE_HVCLOCK:
2836                 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2837                                          tsc_timestamp, &tsc_pg_val)) {
2838                         /* TSC page valid */
2839                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2840                         v = (tsc_pg_val - clock->cycle_last) &
2841                                 clock->mask;
2842                 } else {
2843                         /* TSC page invalid */
2844                         *mode = VDSO_CLOCKMODE_NONE;
2845                 }
2846                 break;
2847         case VDSO_CLOCKMODE_TSC:
2848                 *mode = VDSO_CLOCKMODE_TSC;
2849                 *tsc_timestamp = read_tsc();
2850                 v = (*tsc_timestamp - clock->cycle_last) &
2851                         clock->mask;
2852                 break;
2853         default:
2854                 *mode = VDSO_CLOCKMODE_NONE;
2855         }
2856
2857         if (*mode == VDSO_CLOCKMODE_NONE)
2858                 *tsc_timestamp = v = 0;
2859
2860         return v * clock->mult;
2861 }
2862
2863 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2864 {
2865         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2866         unsigned long seq;
2867         int mode;
2868         u64 ns;
2869
2870         do {
2871                 seq = read_seqcount_begin(&gtod->seq);
2872                 ns = gtod->raw_clock.base_cycles;
2873                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2874                 ns >>= gtod->raw_clock.shift;
2875                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2876         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2877         *t = ns;
2878
2879         return mode;
2880 }
2881
2882 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2883 {
2884         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2885         unsigned long seq;
2886         int mode;
2887         u64 ns;
2888
2889         do {
2890                 seq = read_seqcount_begin(&gtod->seq);
2891                 ts->tv_sec = gtod->wall_time_sec;
2892                 ns = gtod->clock.base_cycles;
2893                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2894                 ns >>= gtod->clock.shift;
2895         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2896
2897         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2898         ts->tv_nsec = ns;
2899
2900         return mode;
2901 }
2902
2903 /* returns true if host is using TSC based clocksource */
2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906         /* checked again under seqlock below */
2907         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908                 return false;
2909
2910         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2911                                                       tsc_timestamp));
2912 }
2913
2914 /* returns true if host is using TSC based clocksource */
2915 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2916                                            u64 *tsc_timestamp)
2917 {
2918         /* checked again under seqlock below */
2919         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2920                 return false;
2921
2922         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2923 }
2924 #endif
2925
2926 /*
2927  *
2928  * Assuming a stable TSC across physical CPUS, and a stable TSC
2929  * across virtual CPUs, the following condition is possible.
2930  * Each numbered line represents an event visible to both
2931  * CPUs at the next numbered event.
2932  *
2933  * "timespecX" represents host monotonic time. "tscX" represents
2934  * RDTSC value.
2935  *
2936  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2937  *
2938  * 1.  read timespec0,tsc0
2939  * 2.                                   | timespec1 = timespec0 + N
2940  *                                      | tsc1 = tsc0 + M
2941  * 3. transition to guest               | transition to guest
2942  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2943  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2944  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2945  *
2946  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2947  *
2948  *      - ret0 < ret1
2949  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2950  *              ...
2951  *      - 0 < N - M => M < N
2952  *
2953  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2954  * always the case (the difference between two distinct xtime instances
2955  * might be smaller then the difference between corresponding TSC reads,
2956  * when updating guest vcpus pvclock areas).
2957  *
2958  * To avoid that problem, do not allow visibility of distinct
2959  * system_timestamp/tsc_timestamp values simultaneously: use a master
2960  * copy of host monotonic time values. Update that master copy
2961  * in lockstep.
2962  *
2963  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2964  *
2965  */
2966
2967 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2968 {
2969 #ifdef CONFIG_X86_64
2970         struct kvm_arch *ka = &kvm->arch;
2971         int vclock_mode;
2972         bool host_tsc_clocksource, vcpus_matched;
2973
2974         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2975         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2976                         atomic_read(&kvm->online_vcpus));
2977
2978         /*
2979          * If the host uses TSC clock, then passthrough TSC as stable
2980          * to the guest.
2981          */
2982         host_tsc_clocksource = kvm_get_time_and_clockread(
2983                                         &ka->master_kernel_ns,
2984                                         &ka->master_cycle_now);
2985
2986         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2987                                 && !ka->backwards_tsc_observed
2988                                 && !ka->boot_vcpu_runs_old_kvmclock;
2989
2990         if (ka->use_master_clock)
2991                 atomic_set(&kvm_guest_has_master_clock, 1);
2992
2993         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2994         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2995                                         vcpus_matched);
2996 #endif
2997 }
2998
2999 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3000 {
3001         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3002 }
3003
3004 static void __kvm_start_pvclock_update(struct kvm *kvm)
3005 {
3006         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3007         write_seqcount_begin(&kvm->arch.pvclock_sc);
3008 }
3009
3010 static void kvm_start_pvclock_update(struct kvm *kvm)
3011 {
3012         kvm_make_mclock_inprogress_request(kvm);
3013
3014         /* no guest entries from this point */
3015         __kvm_start_pvclock_update(kvm);
3016 }
3017
3018 static void kvm_end_pvclock_update(struct kvm *kvm)
3019 {
3020         struct kvm_arch *ka = &kvm->arch;
3021         struct kvm_vcpu *vcpu;
3022         unsigned long i;
3023
3024         write_seqcount_end(&ka->pvclock_sc);
3025         raw_spin_unlock_irq(&ka->tsc_write_lock);
3026         kvm_for_each_vcpu(i, vcpu, kvm)
3027                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3028
3029         /* guest entries allowed */
3030         kvm_for_each_vcpu(i, vcpu, kvm)
3031                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3032 }
3033
3034 static void kvm_update_masterclock(struct kvm *kvm)
3035 {
3036         kvm_hv_request_tsc_page_update(kvm);
3037         kvm_start_pvclock_update(kvm);
3038         pvclock_update_vm_gtod_copy(kvm);
3039         kvm_end_pvclock_update(kvm);
3040 }
3041
3042 /*
3043  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3044  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3045  * can change during boot even if the TSC is constant, as it's possible for KVM
3046  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3047  * notification when calibration completes, but practically speaking calibration
3048  * will complete before userspace is alive enough to create VMs.
3049  */
3050 static unsigned long get_cpu_tsc_khz(void)
3051 {
3052         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3053                 return tsc_khz;
3054         else
3055                 return __this_cpu_read(cpu_tsc_khz);
3056 }
3057
3058 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3059 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3060 {
3061         struct kvm_arch *ka = &kvm->arch;
3062         struct pvclock_vcpu_time_info hv_clock;
3063
3064         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3065         get_cpu();
3066
3067         data->flags = 0;
3068         if (ka->use_master_clock &&
3069             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3070 #ifdef CONFIG_X86_64
3071                 struct timespec64 ts;
3072
3073                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3074                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3075                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3076                 } else
3077 #endif
3078                 data->host_tsc = rdtsc();
3079
3080                 data->flags |= KVM_CLOCK_TSC_STABLE;
3081                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3082                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3083                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3084                                    &hv_clock.tsc_shift,
3085                                    &hv_clock.tsc_to_system_mul);
3086                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3087         } else {
3088                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3089         }
3090
3091         put_cpu();
3092 }
3093
3094 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3095 {
3096         struct kvm_arch *ka = &kvm->arch;
3097         unsigned seq;
3098
3099         do {
3100                 seq = read_seqcount_begin(&ka->pvclock_sc);
3101                 __get_kvmclock(kvm, data);
3102         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3103 }
3104
3105 u64 get_kvmclock_ns(struct kvm *kvm)
3106 {
3107         struct kvm_clock_data data;
3108
3109         get_kvmclock(kvm, &data);
3110         return data.clock;
3111 }
3112
3113 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3114                                     struct gfn_to_pfn_cache *gpc,
3115                                     unsigned int offset,
3116                                     bool force_tsc_unstable)
3117 {
3118         struct kvm_vcpu_arch *vcpu = &v->arch;
3119         struct pvclock_vcpu_time_info *guest_hv_clock;
3120         unsigned long flags;
3121
3122         read_lock_irqsave(&gpc->lock, flags);
3123         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3124                 read_unlock_irqrestore(&gpc->lock, flags);
3125
3126                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3127                         return;
3128
3129                 read_lock_irqsave(&gpc->lock, flags);
3130         }
3131
3132         guest_hv_clock = (void *)(gpc->khva + offset);
3133
3134         /*
3135          * This VCPU is paused, but it's legal for a guest to read another
3136          * VCPU's kvmclock, so we really have to follow the specification where
3137          * it says that version is odd if data is being modified, and even after
3138          * it is consistent.
3139          */
3140
3141         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3142         smp_wmb();
3143
3144         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3145         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3146
3147         if (vcpu->pvclock_set_guest_stopped_request) {
3148                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3149                 vcpu->pvclock_set_guest_stopped_request = false;
3150         }
3151
3152         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3153
3154         if (force_tsc_unstable)
3155                 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3156
3157         smp_wmb();
3158
3159         guest_hv_clock->version = ++vcpu->hv_clock.version;
3160
3161         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3162         read_unlock_irqrestore(&gpc->lock, flags);
3163
3164         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3165 }
3166
3167 static int kvm_guest_time_update(struct kvm_vcpu *v)
3168 {
3169         unsigned long flags, tgt_tsc_khz;
3170         unsigned seq;
3171         struct kvm_vcpu_arch *vcpu = &v->arch;
3172         struct kvm_arch *ka = &v->kvm->arch;
3173         s64 kernel_ns;
3174         u64 tsc_timestamp, host_tsc;
3175         u8 pvclock_flags;
3176         bool use_master_clock;
3177 #ifdef CONFIG_KVM_XEN
3178         /*
3179          * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3180          * explicitly told to use TSC as its clocksource Xen will not set this bit.
3181          * This default behaviour led to bugs in some guest kernels which cause
3182          * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3183          */
3184         bool xen_pvclock_tsc_unstable =
3185                 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3186 #endif
3187
3188         kernel_ns = 0;
3189         host_tsc = 0;
3190
3191         /*
3192          * If the host uses TSC clock, then passthrough TSC as stable
3193          * to the guest.
3194          */
3195         do {
3196                 seq = read_seqcount_begin(&ka->pvclock_sc);
3197                 use_master_clock = ka->use_master_clock;
3198                 if (use_master_clock) {
3199                         host_tsc = ka->master_cycle_now;
3200                         kernel_ns = ka->master_kernel_ns;
3201                 }
3202         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3203
3204         /* Keep irq disabled to prevent changes to the clock */
3205         local_irq_save(flags);
3206         tgt_tsc_khz = get_cpu_tsc_khz();
3207         if (unlikely(tgt_tsc_khz == 0)) {
3208                 local_irq_restore(flags);
3209                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3210                 return 1;
3211         }
3212         if (!use_master_clock) {
3213                 host_tsc = rdtsc();
3214                 kernel_ns = get_kvmclock_base_ns();
3215         }
3216
3217         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3218
3219         /*
3220          * We may have to catch up the TSC to match elapsed wall clock
3221          * time for two reasons, even if kvmclock is used.
3222          *   1) CPU could have been running below the maximum TSC rate
3223          *   2) Broken TSC compensation resets the base at each VCPU
3224          *      entry to avoid unknown leaps of TSC even when running
3225          *      again on the same CPU.  This may cause apparent elapsed
3226          *      time to disappear, and the guest to stand still or run
3227          *      very slowly.
3228          */
3229         if (vcpu->tsc_catchup) {
3230                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3231                 if (tsc > tsc_timestamp) {
3232                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3233                         tsc_timestamp = tsc;
3234                 }
3235         }
3236
3237         local_irq_restore(flags);
3238
3239         /* With all the info we got, fill in the values */
3240
3241         if (kvm_caps.has_tsc_control)
3242                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3243                                             v->arch.l1_tsc_scaling_ratio);
3244
3245         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3246                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3247                                    &vcpu->hv_clock.tsc_shift,
3248                                    &vcpu->hv_clock.tsc_to_system_mul);
3249                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3250                 kvm_xen_update_tsc_info(v);
3251         }
3252
3253         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3254         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3255         vcpu->last_guest_tsc = tsc_timestamp;
3256
3257         /* If the host uses TSC clocksource, then it is stable */
3258         pvclock_flags = 0;
3259         if (use_master_clock)
3260                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3261
3262         vcpu->hv_clock.flags = pvclock_flags;
3263
3264         if (vcpu->pv_time.active)
3265                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3266 #ifdef CONFIG_KVM_XEN
3267         if (vcpu->xen.vcpu_info_cache.active)
3268                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3269                                         offsetof(struct compat_vcpu_info, time),
3270                                         xen_pvclock_tsc_unstable);
3271         if (vcpu->xen.vcpu_time_info_cache.active)
3272                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3273                                         xen_pvclock_tsc_unstable);
3274 #endif
3275         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3276         return 0;
3277 }
3278
3279 /*
3280  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3281  * which it started (i.e. its epoch, when its kvmclock was zero).
3282  *
3283  * In fact those clocks are subtly different; wall clock frequency is
3284  * adjusted by NTP and has leap seconds, while the kvmclock is a
3285  * simple function of the TSC without any such adjustment.
3286  *
3287  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3288  * that and kvmclock, but even that would be subject to change over
3289  * time.
3290  *
3291  * Attempt to calculate the epoch at a given moment using the *same*
3292  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3293  * wallclock and kvmclock times, and subtracting one from the other.
3294  *
3295  * Fall back to using their values at slightly different moments by
3296  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3297  */
3298 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3299 {
3300 #ifdef CONFIG_X86_64
3301         struct pvclock_vcpu_time_info hv_clock;
3302         struct kvm_arch *ka = &kvm->arch;
3303         unsigned long seq, local_tsc_khz;
3304         struct timespec64 ts;
3305         uint64_t host_tsc;
3306
3307         do {
3308                 seq = read_seqcount_begin(&ka->pvclock_sc);
3309
3310                 local_tsc_khz = 0;
3311                 if (!ka->use_master_clock)
3312                         break;
3313
3314                 /*
3315                  * The TSC read and the call to get_cpu_tsc_khz() must happen
3316                  * on the same CPU.
3317                  */
3318                 get_cpu();
3319
3320                 local_tsc_khz = get_cpu_tsc_khz();
3321
3322                 if (local_tsc_khz &&
3323                     !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3324                         local_tsc_khz = 0; /* Fall back to old method */
3325
3326                 put_cpu();
3327
3328                 /*
3329                  * These values must be snapshotted within the seqcount loop.
3330                  * After that, it's just mathematics which can happen on any
3331                  * CPU at any time.
3332                  */
3333                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3334                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3335
3336         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3337
3338         /*
3339          * If the conditions were right, and obtaining the wallclock+TSC was
3340          * successful, calculate the KVM clock at the corresponding time and
3341          * subtract one from the other to get the guest's epoch in nanoseconds
3342          * since 1970-01-01.
3343          */
3344         if (local_tsc_khz) {
3345                 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3346                                    &hv_clock.tsc_shift,
3347                                    &hv_clock.tsc_to_system_mul);
3348                 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3349                         __pvclock_read_cycles(&hv_clock, host_tsc);
3350         }
3351 #endif
3352         return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3353 }
3354
3355 /*
3356  * kvmclock updates which are isolated to a given vcpu, such as
3357  * vcpu->cpu migration, should not allow system_timestamp from
3358  * the rest of the vcpus to remain static. Otherwise ntp frequency
3359  * correction applies to one vcpu's system_timestamp but not
3360  * the others.
3361  *
3362  * So in those cases, request a kvmclock update for all vcpus.
3363  * We need to rate-limit these requests though, as they can
3364  * considerably slow guests that have a large number of vcpus.
3365  * The time for a remote vcpu to update its kvmclock is bound
3366  * by the delay we use to rate-limit the updates.
3367  */
3368
3369 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3370
3371 static void kvmclock_update_fn(struct work_struct *work)
3372 {
3373         unsigned long i;
3374         struct delayed_work *dwork = to_delayed_work(work);
3375         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3376                                            kvmclock_update_work);
3377         struct kvm *kvm = container_of(ka, struct kvm, arch);
3378         struct kvm_vcpu *vcpu;
3379
3380         kvm_for_each_vcpu(i, vcpu, kvm) {
3381                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3382                 kvm_vcpu_kick(vcpu);
3383         }
3384 }
3385
3386 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3387 {
3388         struct kvm *kvm = v->kvm;
3389
3390         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3391         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3392                                         KVMCLOCK_UPDATE_DELAY);
3393 }
3394
3395 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3396
3397 static void kvmclock_sync_fn(struct work_struct *work)
3398 {
3399         struct delayed_work *dwork = to_delayed_work(work);
3400         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3401                                            kvmclock_sync_work);
3402         struct kvm *kvm = container_of(ka, struct kvm, arch);
3403
3404         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3405         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3406                                         KVMCLOCK_SYNC_PERIOD);
3407 }
3408
3409 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3410 static bool is_mci_control_msr(u32 msr)
3411 {
3412         return (msr & 3) == 0;
3413 }
3414 static bool is_mci_status_msr(u32 msr)
3415 {
3416         return (msr & 3) == 1;
3417 }
3418
3419 /*
3420  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3421  */
3422 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3423 {
3424         /* McStatusWrEn enabled? */
3425         if (guest_cpuid_is_amd_or_hygon(vcpu))
3426                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3427
3428         return false;
3429 }
3430
3431 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3432 {
3433         u64 mcg_cap = vcpu->arch.mcg_cap;
3434         unsigned bank_num = mcg_cap & 0xff;
3435         u32 msr = msr_info->index;
3436         u64 data = msr_info->data;
3437         u32 offset, last_msr;
3438
3439         switch (msr) {
3440         case MSR_IA32_MCG_STATUS:
3441                 vcpu->arch.mcg_status = data;
3442                 break;
3443         case MSR_IA32_MCG_CTL:
3444                 if (!(mcg_cap & MCG_CTL_P) &&
3445                     (data || !msr_info->host_initiated))
3446                         return 1;
3447                 if (data != 0 && data != ~(u64)0)
3448                         return 1;
3449                 vcpu->arch.mcg_ctl = data;
3450                 break;
3451         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3452                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3453                 if (msr > last_msr)
3454                         return 1;
3455
3456                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3457                         return 1;
3458                 /* An attempt to write a 1 to a reserved bit raises #GP */
3459                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3460                         return 1;
3461                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3462                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3463                 vcpu->arch.mci_ctl2_banks[offset] = data;
3464                 break;
3465         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3466                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3467                 if (msr > last_msr)
3468                         return 1;
3469
3470                 /*
3471                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3472                  * values are architecturally undefined.  But, some Linux
3473                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3474                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3475                  * other bits in order to avoid an uncaught #GP in the guest.
3476                  *
3477                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3478                  * single-bit ECC data errors.
3479                  */
3480                 if (is_mci_control_msr(msr) &&
3481                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3482                         return 1;
3483
3484                 /*
3485                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3486                  * AMD-based CPUs allow non-zero values, but if and only if
3487                  * HWCR[McStatusWrEn] is set.
3488                  */
3489                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3490                     data != 0 && !can_set_mci_status(vcpu))
3491                         return 1;
3492
3493                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3494                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3495                 vcpu->arch.mce_banks[offset] = data;
3496                 break;
3497         default:
3498                 return 1;
3499         }
3500         return 0;
3501 }
3502
3503 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3504 {
3505         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3506
3507         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3508 }
3509
3510 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3511 {
3512         gpa_t gpa = data & ~0x3f;
3513
3514         /* Bits 4:5 are reserved, Should be zero */
3515         if (data & 0x30)
3516                 return 1;
3517
3518         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3519             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3520                 return 1;
3521
3522         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3523             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3524                 return 1;
3525
3526         if (!lapic_in_kernel(vcpu))
3527                 return data ? 1 : 0;
3528
3529         vcpu->arch.apf.msr_en_val = data;
3530
3531         if (!kvm_pv_async_pf_enabled(vcpu)) {
3532                 kvm_clear_async_pf_completion_queue(vcpu);
3533                 kvm_async_pf_hash_reset(vcpu);
3534                 return 0;
3535         }
3536
3537         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3538                                         sizeof(u64)))
3539                 return 1;
3540
3541         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3542         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3543
3544         kvm_async_pf_wakeup_all(vcpu);
3545
3546         return 0;
3547 }
3548
3549 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3550 {
3551         /* Bits 8-63 are reserved */
3552         if (data >> 8)
3553                 return 1;
3554
3555         if (!lapic_in_kernel(vcpu))
3556                 return 1;
3557
3558         vcpu->arch.apf.msr_int_val = data;
3559
3560         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3561
3562         return 0;
3563 }
3564
3565 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3566 {
3567         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3568         vcpu->arch.time = 0;
3569 }
3570
3571 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3572 {
3573         ++vcpu->stat.tlb_flush;
3574         static_call(kvm_x86_flush_tlb_all)(vcpu);
3575
3576         /* Flushing all ASIDs flushes the current ASID... */
3577         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3578 }
3579
3580 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3581 {
3582         ++vcpu->stat.tlb_flush;
3583
3584         if (!tdp_enabled) {
3585                 /*
3586                  * A TLB flush on behalf of the guest is equivalent to
3587                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3588                  * a forced sync of the shadow page tables.  Ensure all the
3589                  * roots are synced and the guest TLB in hardware is clean.
3590                  */
3591                 kvm_mmu_sync_roots(vcpu);
3592                 kvm_mmu_sync_prev_roots(vcpu);
3593         }
3594
3595         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3596
3597         /*
3598          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3599          * grained flushing.
3600          */
3601         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3602 }
3603
3604
3605 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3606 {
3607         ++vcpu->stat.tlb_flush;
3608         static_call(kvm_x86_flush_tlb_current)(vcpu);
3609 }
3610
3611 /*
3612  * Service "local" TLB flush requests, which are specific to the current MMU
3613  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3614  * TLB flushes that are targeted at an MMU context also need to be serviced
3615  * prior before nested VM-Enter/VM-Exit.
3616  */
3617 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3618 {
3619         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3620                 kvm_vcpu_flush_tlb_current(vcpu);
3621
3622         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3623                 kvm_vcpu_flush_tlb_guest(vcpu);
3624 }
3625 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3626
3627 static void record_steal_time(struct kvm_vcpu *vcpu)
3628 {
3629         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3630         struct kvm_steal_time __user *st;
3631         struct kvm_memslots *slots;
3632         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3633         u64 steal;
3634         u32 version;
3635
3636         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3637                 kvm_xen_runstate_set_running(vcpu);
3638                 return;
3639         }
3640
3641         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3642                 return;
3643
3644         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3645                 return;
3646
3647         slots = kvm_memslots(vcpu->kvm);
3648
3649         if (unlikely(slots->generation != ghc->generation ||
3650                      gpa != ghc->gpa ||
3651                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3652                 /* We rely on the fact that it fits in a single page. */
3653                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3654
3655                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3656                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3657                         return;
3658         }
3659
3660         st = (struct kvm_steal_time __user *)ghc->hva;
3661         /*
3662          * Doing a TLB flush here, on the guest's behalf, can avoid
3663          * expensive IPIs.
3664          */
3665         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3666                 u8 st_preempted = 0;
3667                 int err = -EFAULT;
3668
3669                 if (!user_access_begin(st, sizeof(*st)))
3670                         return;
3671
3672                 asm volatile("1: xchgb %0, %2\n"
3673                              "xor %1, %1\n"
3674                              "2:\n"
3675                              _ASM_EXTABLE_UA(1b, 2b)
3676                              : "+q" (st_preempted),
3677                                "+&r" (err),
3678                                "+m" (st->preempted));
3679                 if (err)
3680                         goto out;
3681
3682                 user_access_end();
3683
3684                 vcpu->arch.st.preempted = 0;
3685
3686                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3687                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3688                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3689                         kvm_vcpu_flush_tlb_guest(vcpu);
3690
3691                 if (!user_access_begin(st, sizeof(*st)))
3692                         goto dirty;
3693         } else {
3694                 if (!user_access_begin(st, sizeof(*st)))
3695                         return;
3696
3697                 unsafe_put_user(0, &st->preempted, out);
3698                 vcpu->arch.st.preempted = 0;
3699         }
3700
3701         unsafe_get_user(version, &st->version, out);
3702         if (version & 1)
3703                 version += 1;  /* first time write, random junk */
3704
3705         version += 1;
3706         unsafe_put_user(version, &st->version, out);
3707
3708         smp_wmb();
3709
3710         unsafe_get_user(steal, &st->steal, out);
3711         steal += current->sched_info.run_delay -
3712                 vcpu->arch.st.last_steal;
3713         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3714         unsafe_put_user(steal, &st->steal, out);
3715
3716         version += 1;
3717         unsafe_put_user(version, &st->version, out);
3718
3719  out:
3720         user_access_end();
3721  dirty:
3722         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3723 }
3724
3725 static bool kvm_is_msr_to_save(u32 msr_index)
3726 {
3727         unsigned int i;
3728
3729         for (i = 0; i < num_msrs_to_save; i++) {
3730                 if (msrs_to_save[i] == msr_index)
3731                         return true;
3732         }
3733
3734         return false;
3735 }
3736
3737 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3738 {
3739         u32 msr = msr_info->index;
3740         u64 data = msr_info->data;
3741
3742         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3743                 return kvm_xen_write_hypercall_page(vcpu, data);
3744
3745         switch (msr) {
3746         case MSR_AMD64_NB_CFG:
3747         case MSR_IA32_UCODE_WRITE:
3748         case MSR_VM_HSAVE_PA:
3749         case MSR_AMD64_PATCH_LOADER:
3750         case MSR_AMD64_BU_CFG2:
3751         case MSR_AMD64_DC_CFG:
3752         case MSR_AMD64_TW_CFG:
3753         case MSR_F15H_EX_CFG:
3754                 break;
3755
3756         case MSR_IA32_UCODE_REV:
3757                 if (msr_info->host_initiated)
3758                         vcpu->arch.microcode_version = data;
3759                 break;
3760         case MSR_IA32_ARCH_CAPABILITIES:
3761                 if (!msr_info->host_initiated)
3762                         return 1;
3763                 vcpu->arch.arch_capabilities = data;
3764                 break;
3765         case MSR_IA32_PERF_CAPABILITIES:
3766                 if (!msr_info->host_initiated)
3767                         return 1;
3768                 if (data & ~kvm_caps.supported_perf_cap)
3769                         return 1;
3770
3771                 /*
3772                  * Note, this is not just a performance optimization!  KVM
3773                  * disallows changing feature MSRs after the vCPU has run; PMU
3774                  * refresh will bug the VM if called after the vCPU has run.
3775                  */
3776                 if (vcpu->arch.perf_capabilities == data)
3777                         break;
3778
3779                 vcpu->arch.perf_capabilities = data;
3780                 kvm_pmu_refresh(vcpu);
3781                 break;
3782         case MSR_IA32_PRED_CMD: {
3783                 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3784
3785                 if (!msr_info->host_initiated) {
3786                         if ((!guest_has_pred_cmd_msr(vcpu)))
3787                                 return 1;
3788
3789                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3790                             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3791                                 reserved_bits |= PRED_CMD_IBPB;
3792
3793                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3794                                 reserved_bits |= PRED_CMD_SBPB;
3795                 }
3796
3797                 if (!boot_cpu_has(X86_FEATURE_IBPB))
3798                         reserved_bits |= PRED_CMD_IBPB;
3799
3800                 if (!boot_cpu_has(X86_FEATURE_SBPB))
3801                         reserved_bits |= PRED_CMD_SBPB;
3802
3803                 if (data & reserved_bits)
3804                         return 1;
3805
3806                 if (!data)
3807                         break;
3808
3809                 wrmsrl(MSR_IA32_PRED_CMD, data);
3810                 break;
3811         }
3812         case MSR_IA32_FLUSH_CMD:
3813                 if (!msr_info->host_initiated &&
3814                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3815                         return 1;
3816
3817                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3818                         return 1;
3819                 if (!data)
3820                         break;
3821
3822                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3823                 break;
3824         case MSR_EFER:
3825                 return set_efer(vcpu, msr_info);
3826         case MSR_K7_HWCR:
3827                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3828                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3829                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3830
3831                 /*
3832                  * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3833                  * through at least v6.6 whine if TscFreqSel is clear,
3834                  * depending on F/M/S.
3835                  */
3836                 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3837                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3838                         return 1;
3839                 }
3840                 vcpu->arch.msr_hwcr = data;
3841                 break;
3842         case MSR_FAM10H_MMIO_CONF_BASE:
3843                 if (data != 0) {
3844                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3845                         return 1;
3846                 }
3847                 break;
3848         case MSR_IA32_CR_PAT:
3849                 if (!kvm_pat_valid(data))
3850                         return 1;
3851
3852                 vcpu->arch.pat = data;
3853                 break;
3854         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3855         case MSR_MTRRdefType:
3856                 return kvm_mtrr_set_msr(vcpu, msr, data);
3857         case MSR_IA32_APICBASE:
3858                 return kvm_set_apic_base(vcpu, msr_info);
3859         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3860                 return kvm_x2apic_msr_write(vcpu, msr, data);
3861         case MSR_IA32_TSC_DEADLINE:
3862                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3863                 break;
3864         case MSR_IA32_TSC_ADJUST:
3865                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3866                         if (!msr_info->host_initiated) {
3867                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3868                                 adjust_tsc_offset_guest(vcpu, adj);
3869                                 /* Before back to guest, tsc_timestamp must be adjusted
3870                                  * as well, otherwise guest's percpu pvclock time could jump.
3871                                  */
3872                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3873                         }
3874                         vcpu->arch.ia32_tsc_adjust_msr = data;
3875                 }
3876                 break;
3877         case MSR_IA32_MISC_ENABLE: {
3878                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3879
3880                 if (!msr_info->host_initiated) {
3881                         /* RO bits */
3882                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3883                                 return 1;
3884
3885                         /* R bits, i.e. writes are ignored, but don't fault. */
3886                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3887                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3888                 }
3889
3890                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3891                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3892                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3893                                 return 1;
3894                         vcpu->arch.ia32_misc_enable_msr = data;
3895                         kvm_update_cpuid_runtime(vcpu);
3896                 } else {
3897                         vcpu->arch.ia32_misc_enable_msr = data;
3898                 }
3899                 break;
3900         }
3901         case MSR_IA32_SMBASE:
3902                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3903                         return 1;
3904                 vcpu->arch.smbase = data;
3905                 break;
3906         case MSR_IA32_POWER_CTL:
3907                 vcpu->arch.msr_ia32_power_ctl = data;
3908                 break;
3909         case MSR_IA32_TSC:
3910                 if (msr_info->host_initiated) {
3911                         kvm_synchronize_tsc(vcpu, &data);
3912                 } else {
3913                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3914                         adjust_tsc_offset_guest(vcpu, adj);
3915                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3916                 }
3917                 break;
3918         case MSR_IA32_XSS:
3919                 if (!msr_info->host_initiated &&
3920                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3921                         return 1;
3922                 /*
3923                  * KVM supports exposing PT to the guest, but does not support
3924                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3925                  * XSAVES/XRSTORS to save/restore PT MSRs.
3926                  */
3927                 if (data & ~kvm_caps.supported_xss)
3928                         return 1;
3929                 vcpu->arch.ia32_xss = data;
3930                 kvm_update_cpuid_runtime(vcpu);
3931                 break;
3932         case MSR_SMI_COUNT:
3933                 if (!msr_info->host_initiated)
3934                         return 1;
3935                 vcpu->arch.smi_count = data;
3936                 break;
3937         case MSR_KVM_WALL_CLOCK_NEW:
3938                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3939                         return 1;
3940
3941                 vcpu->kvm->arch.wall_clock = data;
3942                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3943                 break;
3944         case MSR_KVM_WALL_CLOCK:
3945                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3946                         return 1;
3947
3948                 vcpu->kvm->arch.wall_clock = data;
3949                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3950                 break;
3951         case MSR_KVM_SYSTEM_TIME_NEW:
3952                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3953                         return 1;
3954
3955                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3956                 break;
3957         case MSR_KVM_SYSTEM_TIME:
3958                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3959                         return 1;
3960
3961                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3962                 break;
3963         case MSR_KVM_ASYNC_PF_EN:
3964                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3965                         return 1;
3966
3967                 if (kvm_pv_enable_async_pf(vcpu, data))
3968                         return 1;
3969                 break;
3970         case MSR_KVM_ASYNC_PF_INT:
3971                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3972                         return 1;
3973
3974                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3975                         return 1;
3976                 break;
3977         case MSR_KVM_ASYNC_PF_ACK:
3978                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3979                         return 1;
3980                 if (data & 0x1) {
3981                         vcpu->arch.apf.pageready_pending = false;
3982                         kvm_check_async_pf_completion(vcpu);
3983                 }
3984                 break;
3985         case MSR_KVM_STEAL_TIME:
3986                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3987                         return 1;
3988
3989                 if (unlikely(!sched_info_on()))
3990                         return 1;
3991
3992                 if (data & KVM_STEAL_RESERVED_MASK)
3993                         return 1;
3994
3995                 vcpu->arch.st.msr_val = data;
3996
3997                 if (!(data & KVM_MSR_ENABLED))
3998                         break;
3999
4000                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4001
4002                 break;
4003         case MSR_KVM_PV_EOI_EN:
4004                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4005                         return 1;
4006
4007                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4008                         return 1;
4009                 break;
4010
4011         case MSR_KVM_POLL_CONTROL:
4012                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4013                         return 1;
4014
4015                 /* only enable bit supported */
4016                 if (data & (-1ULL << 1))
4017                         return 1;
4018
4019                 vcpu->arch.msr_kvm_poll_control = data;
4020                 break;
4021
4022         case MSR_IA32_MCG_CTL:
4023         case MSR_IA32_MCG_STATUS:
4024         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4025         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4026                 return set_msr_mce(vcpu, msr_info);
4027
4028         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4029         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4030         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4031         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4032                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4033                         return kvm_pmu_set_msr(vcpu, msr_info);
4034
4035                 if (data)
4036                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4037                 break;
4038         case MSR_K7_CLK_CTL:
4039                 /*
4040                  * Ignore all writes to this no longer documented MSR.
4041                  * Writes are only relevant for old K7 processors,
4042                  * all pre-dating SVM, but a recommended workaround from
4043                  * AMD for these chips. It is possible to specify the
4044                  * affected processor models on the command line, hence
4045                  * the need to ignore the workaround.
4046                  */
4047                 break;
4048 #ifdef CONFIG_KVM_HYPERV
4049         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4050         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4051         case HV_X64_MSR_SYNDBG_OPTIONS:
4052         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4053         case HV_X64_MSR_CRASH_CTL:
4054         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4055         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4056         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4057         case HV_X64_MSR_TSC_EMULATION_STATUS:
4058         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4059                 return kvm_hv_set_msr_common(vcpu, msr, data,
4060                                              msr_info->host_initiated);
4061 #endif
4062         case MSR_IA32_BBL_CR_CTL3:
4063                 /* Drop writes to this legacy MSR -- see rdmsr
4064                  * counterpart for further detail.
4065                  */
4066                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4067                 break;
4068         case MSR_AMD64_OSVW_ID_LENGTH:
4069                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4070                         return 1;
4071                 vcpu->arch.osvw.length = data;
4072                 break;
4073         case MSR_AMD64_OSVW_STATUS:
4074                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4075                         return 1;
4076                 vcpu->arch.osvw.status = data;
4077                 break;
4078         case MSR_PLATFORM_INFO:
4079                 if (!msr_info->host_initiated ||
4080                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4081                      cpuid_fault_enabled(vcpu)))
4082                         return 1;
4083                 vcpu->arch.msr_platform_info = data;
4084                 break;
4085         case MSR_MISC_FEATURES_ENABLES:
4086                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4087                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4088                      !supports_cpuid_fault(vcpu)))
4089                         return 1;
4090                 vcpu->arch.msr_misc_features_enables = data;
4091                 break;
4092 #ifdef CONFIG_X86_64
4093         case MSR_IA32_XFD:
4094                 if (!msr_info->host_initiated &&
4095                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4096                         return 1;
4097
4098                 if (data & ~kvm_guest_supported_xfd(vcpu))
4099                         return 1;
4100
4101                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4102                 break;
4103         case MSR_IA32_XFD_ERR:
4104                 if (!msr_info->host_initiated &&
4105                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4106                         return 1;
4107
4108                 if (data & ~kvm_guest_supported_xfd(vcpu))
4109                         return 1;
4110
4111                 vcpu->arch.guest_fpu.xfd_err = data;
4112                 break;
4113 #endif
4114         default:
4115                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4116                         return kvm_pmu_set_msr(vcpu, msr_info);
4117
4118                 /*
4119                  * Userspace is allowed to write '0' to MSRs that KVM reports
4120                  * as to-be-saved, even if an MSRs isn't fully supported.
4121                  */
4122                 if (msr_info->host_initiated && !data &&
4123                     kvm_is_msr_to_save(msr))
4124                         break;
4125
4126                 return KVM_MSR_RET_INVALID;
4127         }
4128         return 0;
4129 }
4130 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4131
4132 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4133 {
4134         u64 data;
4135         u64 mcg_cap = vcpu->arch.mcg_cap;
4136         unsigned bank_num = mcg_cap & 0xff;
4137         u32 offset, last_msr;
4138
4139         switch (msr) {
4140         case MSR_IA32_P5_MC_ADDR:
4141         case MSR_IA32_P5_MC_TYPE:
4142                 data = 0;
4143                 break;
4144         case MSR_IA32_MCG_CAP:
4145                 data = vcpu->arch.mcg_cap;
4146                 break;
4147         case MSR_IA32_MCG_CTL:
4148                 if (!(mcg_cap & MCG_CTL_P) && !host)
4149                         return 1;
4150                 data = vcpu->arch.mcg_ctl;
4151                 break;
4152         case MSR_IA32_MCG_STATUS:
4153                 data = vcpu->arch.mcg_status;
4154                 break;
4155         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4156                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4157                 if (msr > last_msr)
4158                         return 1;
4159
4160                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4161                         return 1;
4162                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4163                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4164                 data = vcpu->arch.mci_ctl2_banks[offset];
4165                 break;
4166         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4167                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4168                 if (msr > last_msr)
4169                         return 1;
4170
4171                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4172                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4173                 data = vcpu->arch.mce_banks[offset];
4174                 break;
4175         default:
4176                 return 1;
4177         }
4178         *pdata = data;
4179         return 0;
4180 }
4181
4182 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4183 {
4184         switch (msr_info->index) {
4185         case MSR_IA32_PLATFORM_ID:
4186         case MSR_IA32_EBL_CR_POWERON:
4187         case MSR_IA32_LASTBRANCHFROMIP:
4188         case MSR_IA32_LASTBRANCHTOIP:
4189         case MSR_IA32_LASTINTFROMIP:
4190         case MSR_IA32_LASTINTTOIP:
4191         case MSR_AMD64_SYSCFG:
4192         case MSR_K8_TSEG_ADDR:
4193         case MSR_K8_TSEG_MASK:
4194         case MSR_VM_HSAVE_PA:
4195         case MSR_K8_INT_PENDING_MSG:
4196         case MSR_AMD64_NB_CFG:
4197         case MSR_FAM10H_MMIO_CONF_BASE:
4198         case MSR_AMD64_BU_CFG2:
4199         case MSR_IA32_PERF_CTL:
4200         case MSR_AMD64_DC_CFG:
4201         case MSR_AMD64_TW_CFG:
4202         case MSR_F15H_EX_CFG:
4203         /*
4204          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4205          * limit) MSRs. Just return 0, as we do not want to expose the host
4206          * data here. Do not conditionalize this on CPUID, as KVM does not do
4207          * so for existing CPU-specific MSRs.
4208          */
4209         case MSR_RAPL_POWER_UNIT:
4210         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4211         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4212         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4213         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4214                 msr_info->data = 0;
4215                 break;
4216         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4217         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4218         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4219         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4220                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4221                         return kvm_pmu_get_msr(vcpu, msr_info);
4222                 msr_info->data = 0;
4223                 break;
4224         case MSR_IA32_UCODE_REV:
4225                 msr_info->data = vcpu->arch.microcode_version;
4226                 break;
4227         case MSR_IA32_ARCH_CAPABILITIES:
4228                 if (!msr_info->host_initiated &&
4229                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4230                         return 1;
4231                 msr_info->data = vcpu->arch.arch_capabilities;
4232                 break;
4233         case MSR_IA32_PERF_CAPABILITIES:
4234                 if (!msr_info->host_initiated &&
4235                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4236                         return 1;
4237                 msr_info->data = vcpu->arch.perf_capabilities;
4238                 break;
4239         case MSR_IA32_POWER_CTL:
4240                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4241                 break;
4242         case MSR_IA32_TSC: {
4243                 /*
4244                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4245                  * even when not intercepted. AMD manual doesn't explicitly
4246                  * state this but appears to behave the same.
4247                  *
4248                  * On userspace reads and writes, however, we unconditionally
4249                  * return L1's TSC value to ensure backwards-compatible
4250                  * behavior for migration.
4251                  */
4252                 u64 offset, ratio;
4253
4254                 if (msr_info->host_initiated) {
4255                         offset = vcpu->arch.l1_tsc_offset;
4256                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4257                 } else {
4258                         offset = vcpu->arch.tsc_offset;
4259                         ratio = vcpu->arch.tsc_scaling_ratio;
4260                 }
4261
4262                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4263                 break;
4264         }
4265         case MSR_IA32_CR_PAT:
4266                 msr_info->data = vcpu->arch.pat;
4267                 break;
4268         case MSR_MTRRcap:
4269         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4270         case MSR_MTRRdefType:
4271                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4272         case 0xcd: /* fsb frequency */
4273                 msr_info->data = 3;
4274                 break;
4275                 /*
4276                  * MSR_EBC_FREQUENCY_ID
4277                  * Conservative value valid for even the basic CPU models.
4278                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4279                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4280                  * and 266MHz for model 3, or 4. Set Core Clock
4281                  * Frequency to System Bus Frequency Ratio to 1 (bits
4282                  * 31:24) even though these are only valid for CPU
4283                  * models > 2, however guests may end up dividing or
4284                  * multiplying by zero otherwise.
4285                  */
4286         case MSR_EBC_FREQUENCY_ID:
4287                 msr_info->data = 1 << 24;
4288                 break;
4289         case MSR_IA32_APICBASE:
4290                 msr_info->data = kvm_get_apic_base(vcpu);
4291                 break;
4292         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4293                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4294         case MSR_IA32_TSC_DEADLINE:
4295                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4296                 break;
4297         case MSR_IA32_TSC_ADJUST:
4298                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4299                 break;
4300         case MSR_IA32_MISC_ENABLE:
4301                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4302                 break;
4303         case MSR_IA32_SMBASE:
4304                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4305                         return 1;
4306                 msr_info->data = vcpu->arch.smbase;
4307                 break;
4308         case MSR_SMI_COUNT:
4309                 msr_info->data = vcpu->arch.smi_count;
4310                 break;
4311         case MSR_IA32_PERF_STATUS:
4312                 /* TSC increment by tick */
4313                 msr_info->data = 1000ULL;
4314                 /* CPU multiplier */
4315                 msr_info->data |= (((uint64_t)4ULL) << 40);
4316                 break;
4317         case MSR_EFER:
4318                 msr_info->data = vcpu->arch.efer;
4319                 break;
4320         case MSR_KVM_WALL_CLOCK:
4321                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4322                         return 1;
4323
4324                 msr_info->data = vcpu->kvm->arch.wall_clock;
4325                 break;
4326         case MSR_KVM_WALL_CLOCK_NEW:
4327                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4328                         return 1;
4329
4330                 msr_info->data = vcpu->kvm->arch.wall_clock;
4331                 break;
4332         case MSR_KVM_SYSTEM_TIME:
4333                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4334                         return 1;
4335
4336                 msr_info->data = vcpu->arch.time;
4337                 break;
4338         case MSR_KVM_SYSTEM_TIME_NEW:
4339                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4340                         return 1;
4341
4342                 msr_info->data = vcpu->arch.time;
4343                 break;
4344         case MSR_KVM_ASYNC_PF_EN:
4345                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4346                         return 1;
4347
4348                 msr_info->data = vcpu->arch.apf.msr_en_val;
4349                 break;
4350         case MSR_KVM_ASYNC_PF_INT:
4351                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4352                         return 1;
4353
4354                 msr_info->data = vcpu->arch.apf.msr_int_val;
4355                 break;
4356         case MSR_KVM_ASYNC_PF_ACK:
4357                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4358                         return 1;
4359
4360                 msr_info->data = 0;
4361                 break;
4362         case MSR_KVM_STEAL_TIME:
4363                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4364                         return 1;
4365
4366                 msr_info->data = vcpu->arch.st.msr_val;
4367                 break;
4368         case MSR_KVM_PV_EOI_EN:
4369                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4370                         return 1;
4371
4372                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4373                 break;
4374         case MSR_KVM_POLL_CONTROL:
4375                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4376                         return 1;
4377
4378                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4379                 break;
4380         case MSR_IA32_P5_MC_ADDR:
4381         case MSR_IA32_P5_MC_TYPE:
4382         case MSR_IA32_MCG_CAP:
4383         case MSR_IA32_MCG_CTL:
4384         case MSR_IA32_MCG_STATUS:
4385         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4386         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4387                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4388                                    msr_info->host_initiated);
4389         case MSR_IA32_XSS:
4390                 if (!msr_info->host_initiated &&
4391                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4392                         return 1;
4393                 msr_info->data = vcpu->arch.ia32_xss;
4394                 break;
4395         case MSR_K7_CLK_CTL:
4396                 /*
4397                  * Provide expected ramp-up count for K7. All other
4398                  * are set to zero, indicating minimum divisors for
4399                  * every field.
4400                  *
4401                  * This prevents guest kernels on AMD host with CPU
4402                  * type 6, model 8 and higher from exploding due to
4403                  * the rdmsr failing.
4404                  */
4405                 msr_info->data = 0x20000000;
4406                 break;
4407 #ifdef CONFIG_KVM_HYPERV
4408         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4409         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4410         case HV_X64_MSR_SYNDBG_OPTIONS:
4411         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4412         case HV_X64_MSR_CRASH_CTL:
4413         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4414         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4415         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4416         case HV_X64_MSR_TSC_EMULATION_STATUS:
4417         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4418                 return kvm_hv_get_msr_common(vcpu,
4419                                              msr_info->index, &msr_info->data,
4420                                              msr_info->host_initiated);
4421 #endif
4422         case MSR_IA32_BBL_CR_CTL3:
4423                 /* This legacy MSR exists but isn't fully documented in current
4424                  * silicon.  It is however accessed by winxp in very narrow
4425                  * scenarios where it sets bit #19, itself documented as
4426                  * a "reserved" bit.  Best effort attempt to source coherent
4427                  * read data here should the balance of the register be
4428                  * interpreted by the guest:
4429                  *
4430                  * L2 cache control register 3: 64GB range, 256KB size,
4431                  * enabled, latency 0x1, configured
4432                  */
4433                 msr_info->data = 0xbe702111;
4434                 break;
4435         case MSR_AMD64_OSVW_ID_LENGTH:
4436                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4437                         return 1;
4438                 msr_info->data = vcpu->arch.osvw.length;
4439                 break;
4440         case MSR_AMD64_OSVW_STATUS:
4441                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4442                         return 1;
4443                 msr_info->data = vcpu->arch.osvw.status;
4444                 break;
4445         case MSR_PLATFORM_INFO:
4446                 if (!msr_info->host_initiated &&
4447                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4448                         return 1;
4449                 msr_info->data = vcpu->arch.msr_platform_info;
4450                 break;
4451         case MSR_MISC_FEATURES_ENABLES:
4452                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4453                 break;
4454         case MSR_K7_HWCR:
4455                 msr_info->data = vcpu->arch.msr_hwcr;
4456                 break;
4457 #ifdef CONFIG_X86_64
4458         case MSR_IA32_XFD:
4459                 if (!msr_info->host_initiated &&
4460                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4461                         return 1;
4462
4463                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4464                 break;
4465         case MSR_IA32_XFD_ERR:
4466                 if (!msr_info->host_initiated &&
4467                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4468                         return 1;
4469
4470                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4471                 break;
4472 #endif
4473         default:
4474                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4475                         return kvm_pmu_get_msr(vcpu, msr_info);
4476
4477                 /*
4478                  * Userspace is allowed to read MSRs that KVM reports as
4479                  * to-be-saved, even if an MSR isn't fully supported.
4480                  */
4481                 if (msr_info->host_initiated &&
4482                     kvm_is_msr_to_save(msr_info->index)) {
4483                         msr_info->data = 0;
4484                         break;
4485                 }
4486
4487                 return KVM_MSR_RET_INVALID;
4488         }
4489         return 0;
4490 }
4491 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4492
4493 /*
4494  * Read or write a bunch of msrs. All parameters are kernel addresses.
4495  *
4496  * @return number of msrs set successfully.
4497  */
4498 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4499                     struct kvm_msr_entry *entries,
4500                     int (*do_msr)(struct kvm_vcpu *vcpu,
4501                                   unsigned index, u64 *data))
4502 {
4503         int i;
4504
4505         for (i = 0; i < msrs->nmsrs; ++i)
4506                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4507                         break;
4508
4509         return i;
4510 }
4511
4512 /*
4513  * Read or write a bunch of msrs. Parameters are user addresses.
4514  *
4515  * @return number of msrs set successfully.
4516  */
4517 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4518                   int (*do_msr)(struct kvm_vcpu *vcpu,
4519                                 unsigned index, u64 *data),
4520                   int writeback)
4521 {
4522         struct kvm_msrs msrs;
4523         struct kvm_msr_entry *entries;
4524         unsigned size;
4525         int r;
4526
4527         r = -EFAULT;
4528         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4529                 goto out;
4530
4531         r = -E2BIG;
4532         if (msrs.nmsrs >= MAX_IO_MSRS)
4533                 goto out;
4534
4535         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4536         entries = memdup_user(user_msrs->entries, size);
4537         if (IS_ERR(entries)) {
4538                 r = PTR_ERR(entries);
4539                 goto out;
4540         }
4541
4542         r = __msr_io(vcpu, &msrs, entries, do_msr);
4543
4544         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4545                 r = -EFAULT;
4546
4547         kfree(entries);
4548 out:
4549         return r;
4550 }
4551
4552 static inline bool kvm_can_mwait_in_guest(void)
4553 {
4554         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4555                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4556                 boot_cpu_has(X86_FEATURE_ARAT);
4557 }
4558
4559 #ifdef CONFIG_KVM_HYPERV
4560 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4561                                             struct kvm_cpuid2 __user *cpuid_arg)
4562 {
4563         struct kvm_cpuid2 cpuid;
4564         int r;
4565
4566         r = -EFAULT;
4567         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4568                 return r;
4569
4570         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4571         if (r)
4572                 return r;
4573
4574         r = -EFAULT;
4575         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4576                 return r;
4577
4578         return 0;
4579 }
4580 #endif
4581
4582 static bool kvm_is_vm_type_supported(unsigned long type)
4583 {
4584         return type == KVM_X86_DEFAULT_VM ||
4585                (type == KVM_X86_SW_PROTECTED_VM &&
4586                 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled);
4587 }
4588
4589 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4590 {
4591         int r = 0;
4592
4593         switch (ext) {
4594         case KVM_CAP_IRQCHIP:
4595         case KVM_CAP_HLT:
4596         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4597         case KVM_CAP_SET_TSS_ADDR:
4598         case KVM_CAP_EXT_CPUID:
4599         case KVM_CAP_EXT_EMUL_CPUID:
4600         case KVM_CAP_CLOCKSOURCE:
4601         case KVM_CAP_PIT:
4602         case KVM_CAP_NOP_IO_DELAY:
4603         case KVM_CAP_MP_STATE:
4604         case KVM_CAP_SYNC_MMU:
4605         case KVM_CAP_USER_NMI:
4606         case KVM_CAP_REINJECT_CONTROL:
4607         case KVM_CAP_IRQ_INJECT_STATUS:
4608         case KVM_CAP_IOEVENTFD:
4609         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4610         case KVM_CAP_PIT2:
4611         case KVM_CAP_PIT_STATE2:
4612         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4613         case KVM_CAP_VCPU_EVENTS:
4614 #ifdef CONFIG_KVM_HYPERV
4615         case KVM_CAP_HYPERV:
4616         case KVM_CAP_HYPERV_VAPIC:
4617         case KVM_CAP_HYPERV_SPIN:
4618         case KVM_CAP_HYPERV_TIME:
4619         case KVM_CAP_HYPERV_SYNIC:
4620         case KVM_CAP_HYPERV_SYNIC2:
4621         case KVM_CAP_HYPERV_VP_INDEX:
4622         case KVM_CAP_HYPERV_EVENTFD:
4623         case KVM_CAP_HYPERV_TLBFLUSH:
4624         case KVM_CAP_HYPERV_SEND_IPI:
4625         case KVM_CAP_HYPERV_CPUID:
4626         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4627         case KVM_CAP_SYS_HYPERV_CPUID:
4628 #endif
4629         case KVM_CAP_PCI_SEGMENT:
4630         case KVM_CAP_DEBUGREGS:
4631         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4632         case KVM_CAP_XSAVE:
4633         case KVM_CAP_ASYNC_PF:
4634         case KVM_CAP_ASYNC_PF_INT:
4635         case KVM_CAP_GET_TSC_KHZ:
4636         case KVM_CAP_KVMCLOCK_CTRL:
4637         case KVM_CAP_READONLY_MEM:
4638         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4639         case KVM_CAP_TSC_DEADLINE_TIMER:
4640         case KVM_CAP_DISABLE_QUIRKS:
4641         case KVM_CAP_SET_BOOT_CPU_ID:
4642         case KVM_CAP_SPLIT_IRQCHIP:
4643         case KVM_CAP_IMMEDIATE_EXIT:
4644         case KVM_CAP_PMU_EVENT_FILTER:
4645         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4646         case KVM_CAP_GET_MSR_FEATURES:
4647         case KVM_CAP_MSR_PLATFORM_INFO:
4648         case KVM_CAP_EXCEPTION_PAYLOAD:
4649         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4650         case KVM_CAP_SET_GUEST_DEBUG:
4651         case KVM_CAP_LAST_CPU:
4652         case KVM_CAP_X86_USER_SPACE_MSR:
4653         case KVM_CAP_X86_MSR_FILTER:
4654         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4655 #ifdef CONFIG_X86_SGX_KVM
4656         case KVM_CAP_SGX_ATTRIBUTE:
4657 #endif
4658         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4659         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4660         case KVM_CAP_SREGS2:
4661         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4662         case KVM_CAP_VCPU_ATTRIBUTES:
4663         case KVM_CAP_SYS_ATTRIBUTES:
4664         case KVM_CAP_VAPIC:
4665         case KVM_CAP_ENABLE_CAP:
4666         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4667         case KVM_CAP_IRQFD_RESAMPLE:
4668         case KVM_CAP_MEMORY_FAULT_INFO:
4669                 r = 1;
4670                 break;
4671         case KVM_CAP_EXIT_HYPERCALL:
4672                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4673                 break;
4674         case KVM_CAP_SET_GUEST_DEBUG2:
4675                 return KVM_GUESTDBG_VALID_MASK;
4676 #ifdef CONFIG_KVM_XEN
4677         case KVM_CAP_XEN_HVM:
4678                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4679                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4680                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4681                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4682                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4683                     KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
4684                 if (sched_info_on())
4685                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4686                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4687                 break;
4688 #endif
4689         case KVM_CAP_SYNC_REGS:
4690                 r = KVM_SYNC_X86_VALID_FIELDS;
4691                 break;
4692         case KVM_CAP_ADJUST_CLOCK:
4693                 r = KVM_CLOCK_VALID_FLAGS;
4694                 break;
4695         case KVM_CAP_X86_DISABLE_EXITS:
4696                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4697
4698                 if (!mitigate_smt_rsb) {
4699                         r |= KVM_X86_DISABLE_EXITS_HLT |
4700                              KVM_X86_DISABLE_EXITS_CSTATE;
4701
4702                         if (kvm_can_mwait_in_guest())
4703                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4704                 }
4705                 break;
4706         case KVM_CAP_X86_SMM:
4707                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4708                         break;
4709
4710                 /* SMBASE is usually relocated above 1M on modern chipsets,
4711                  * and SMM handlers might indeed rely on 4G segment limits,
4712                  * so do not report SMM to be available if real mode is
4713                  * emulated via vm86 mode.  Still, do not go to great lengths
4714                  * to avoid userspace's usage of the feature, because it is a
4715                  * fringe case that is not enabled except via specific settings
4716                  * of the module parameters.
4717                  */
4718                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4719                 break;
4720         case KVM_CAP_NR_VCPUS:
4721                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4722                 break;
4723         case KVM_CAP_MAX_VCPUS:
4724                 r = KVM_MAX_VCPUS;
4725                 break;
4726         case KVM_CAP_MAX_VCPU_ID:
4727                 r = KVM_MAX_VCPU_IDS;
4728                 break;
4729         case KVM_CAP_PV_MMU:    /* obsolete */
4730                 r = 0;
4731                 break;
4732         case KVM_CAP_MCE:
4733                 r = KVM_MAX_MCE_BANKS;
4734                 break;
4735         case KVM_CAP_XCRS:
4736                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4737                 break;
4738         case KVM_CAP_TSC_CONTROL:
4739         case KVM_CAP_VM_TSC_CONTROL:
4740                 r = kvm_caps.has_tsc_control;
4741                 break;
4742         case KVM_CAP_X2APIC_API:
4743                 r = KVM_X2APIC_API_VALID_FLAGS;
4744                 break;
4745         case KVM_CAP_NESTED_STATE:
4746                 r = kvm_x86_ops.nested_ops->get_state ?
4747                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4748                 break;
4749 #ifdef CONFIG_KVM_HYPERV
4750         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4751                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4752                 break;
4753         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4754                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4755                 break;
4756 #endif
4757         case KVM_CAP_SMALLER_MAXPHYADDR:
4758                 r = (int) allow_smaller_maxphyaddr;
4759                 break;
4760         case KVM_CAP_STEAL_TIME:
4761                 r = sched_info_on();
4762                 break;
4763         case KVM_CAP_X86_BUS_LOCK_EXIT:
4764                 if (kvm_caps.has_bus_lock_exit)
4765                         r = KVM_BUS_LOCK_DETECTION_OFF |
4766                             KVM_BUS_LOCK_DETECTION_EXIT;
4767                 else
4768                         r = 0;
4769                 break;
4770         case KVM_CAP_XSAVE2: {
4771                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4772                 if (r < sizeof(struct kvm_xsave))
4773                         r = sizeof(struct kvm_xsave);
4774                 break;
4775         }
4776         case KVM_CAP_PMU_CAPABILITY:
4777                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4778                 break;
4779         case KVM_CAP_DISABLE_QUIRKS2:
4780                 r = KVM_X86_VALID_QUIRKS;
4781                 break;
4782         case KVM_CAP_X86_NOTIFY_VMEXIT:
4783                 r = kvm_caps.has_notify_vmexit;
4784                 break;
4785         case KVM_CAP_VM_TYPES:
4786                 r = BIT(KVM_X86_DEFAULT_VM);
4787                 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4788                         r |= BIT(KVM_X86_SW_PROTECTED_VM);
4789                 break;
4790         default:
4791                 break;
4792         }
4793         return r;
4794 }
4795
4796 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4797 {
4798         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4799
4800         if ((u64)(unsigned long)uaddr != attr->addr)
4801                 return ERR_PTR_USR(-EFAULT);
4802         return uaddr;
4803 }
4804
4805 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4806 {
4807         u64 __user *uaddr = kvm_get_attr_addr(attr);
4808
4809         if (attr->group)
4810                 return -ENXIO;
4811
4812         if (IS_ERR(uaddr))
4813                 return PTR_ERR(uaddr);
4814
4815         switch (attr->attr) {
4816         case KVM_X86_XCOMP_GUEST_SUPP:
4817                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4818                         return -EFAULT;
4819                 return 0;
4820         default:
4821                 return -ENXIO;
4822         }
4823 }
4824
4825 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4826 {
4827         if (attr->group)
4828                 return -ENXIO;
4829
4830         switch (attr->attr) {
4831         case KVM_X86_XCOMP_GUEST_SUPP:
4832                 return 0;
4833         default:
4834                 return -ENXIO;
4835         }
4836 }
4837
4838 long kvm_arch_dev_ioctl(struct file *filp,
4839                         unsigned int ioctl, unsigned long arg)
4840 {
4841         void __user *argp = (void __user *)arg;
4842         long r;
4843
4844         switch (ioctl) {
4845         case KVM_GET_MSR_INDEX_LIST: {
4846                 struct kvm_msr_list __user *user_msr_list = argp;
4847                 struct kvm_msr_list msr_list;
4848                 unsigned n;
4849
4850                 r = -EFAULT;
4851                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4852                         goto out;
4853                 n = msr_list.nmsrs;
4854                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4855                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4856                         goto out;
4857                 r = -E2BIG;
4858                 if (n < msr_list.nmsrs)
4859                         goto out;
4860                 r = -EFAULT;
4861                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4862                                  num_msrs_to_save * sizeof(u32)))
4863                         goto out;
4864                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4865                                  &emulated_msrs,
4866                                  num_emulated_msrs * sizeof(u32)))
4867                         goto out;
4868                 r = 0;
4869                 break;
4870         }
4871         case KVM_GET_SUPPORTED_CPUID:
4872         case KVM_GET_EMULATED_CPUID: {
4873                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4874                 struct kvm_cpuid2 cpuid;
4875
4876                 r = -EFAULT;
4877                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4878                         goto out;
4879
4880                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4881                                             ioctl);
4882                 if (r)
4883                         goto out;
4884
4885                 r = -EFAULT;
4886                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4887                         goto out;
4888                 r = 0;
4889                 break;
4890         }
4891         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4892                 r = -EFAULT;
4893                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4894                                  sizeof(kvm_caps.supported_mce_cap)))
4895                         goto out;
4896                 r = 0;
4897                 break;
4898         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4899                 struct kvm_msr_list __user *user_msr_list = argp;
4900                 struct kvm_msr_list msr_list;
4901                 unsigned int n;
4902
4903                 r = -EFAULT;
4904                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4905                         goto out;
4906                 n = msr_list.nmsrs;
4907                 msr_list.nmsrs = num_msr_based_features;
4908                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4909                         goto out;
4910                 r = -E2BIG;
4911                 if (n < msr_list.nmsrs)
4912                         goto out;
4913                 r = -EFAULT;
4914                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4915                                  num_msr_based_features * sizeof(u32)))
4916                         goto out;
4917                 r = 0;
4918                 break;
4919         }
4920         case KVM_GET_MSRS:
4921                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4922                 break;
4923 #ifdef CONFIG_KVM_HYPERV
4924         case KVM_GET_SUPPORTED_HV_CPUID:
4925                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4926                 break;
4927 #endif
4928         case KVM_GET_DEVICE_ATTR: {
4929                 struct kvm_device_attr attr;
4930                 r = -EFAULT;
4931                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4932                         break;
4933                 r = kvm_x86_dev_get_attr(&attr);
4934                 break;
4935         }
4936         case KVM_HAS_DEVICE_ATTR: {
4937                 struct kvm_device_attr attr;
4938                 r = -EFAULT;
4939                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4940                         break;
4941                 r = kvm_x86_dev_has_attr(&attr);
4942                 break;
4943         }
4944         default:
4945                 r = -EINVAL;
4946                 break;
4947         }
4948 out:
4949         return r;
4950 }
4951
4952 static void wbinvd_ipi(void *garbage)
4953 {
4954         wbinvd();
4955 }
4956
4957 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4958 {
4959         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4960 }
4961
4962 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4963 {
4964         /* Address WBINVD may be executed by guest */
4965         if (need_emulate_wbinvd(vcpu)) {
4966                 if (static_call(kvm_x86_has_wbinvd_exit)())
4967                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4968                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4969                         smp_call_function_single(vcpu->cpu,
4970                                         wbinvd_ipi, NULL, 1);
4971         }
4972
4973         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4974
4975         /* Save host pkru register if supported */
4976         vcpu->arch.host_pkru = read_pkru();
4977
4978         /* Apply any externally detected TSC adjustments (due to suspend) */
4979         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4980                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4981                 vcpu->arch.tsc_offset_adjustment = 0;
4982                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4983         }
4984
4985         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4986                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4987                                 rdtsc() - vcpu->arch.last_host_tsc;
4988                 if (tsc_delta < 0)
4989                         mark_tsc_unstable("KVM discovered backwards TSC");
4990
4991                 if (kvm_check_tsc_unstable()) {
4992                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4993                                                 vcpu->arch.last_guest_tsc);
4994                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4995                         vcpu->arch.tsc_catchup = 1;
4996                 }
4997
4998                 if (kvm_lapic_hv_timer_in_use(vcpu))
4999                         kvm_lapic_restart_hv_timer(vcpu);
5000
5001                 /*
5002                  * On a host with synchronized TSC, there is no need to update
5003                  * kvmclock on vcpu->cpu migration
5004                  */
5005                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5006                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5007                 if (vcpu->cpu != cpu)
5008                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5009                 vcpu->cpu = cpu;
5010         }
5011
5012         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5013 }
5014
5015 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5016 {
5017         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5018         struct kvm_steal_time __user *st;
5019         struct kvm_memslots *slots;
5020         static const u8 preempted = KVM_VCPU_PREEMPTED;
5021         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5022
5023         /*
5024          * The vCPU can be marked preempted if and only if the VM-Exit was on
5025          * an instruction boundary and will not trigger guest emulation of any
5026          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5027          * when this is true, for example allowing the vCPU to be marked
5028          * preempted if and only if the VM-Exit was due to a host interrupt.
5029          */
5030         if (!vcpu->arch.at_instruction_boundary) {
5031                 vcpu->stat.preemption_other++;
5032                 return;
5033         }
5034
5035         vcpu->stat.preemption_reported++;
5036         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5037                 return;
5038
5039         if (vcpu->arch.st.preempted)
5040                 return;
5041
5042         /* This happens on process exit */
5043         if (unlikely(current->mm != vcpu->kvm->mm))
5044                 return;
5045
5046         slots = kvm_memslots(vcpu->kvm);
5047
5048         if (unlikely(slots->generation != ghc->generation ||
5049                      gpa != ghc->gpa ||
5050                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5051                 return;
5052
5053         st = (struct kvm_steal_time __user *)ghc->hva;
5054         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5055
5056         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5057                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5058
5059         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5060 }
5061
5062 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5063 {
5064         int idx;
5065
5066         if (vcpu->preempted) {
5067                 if (!vcpu->arch.guest_state_protected)
5068                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5069
5070                 /*
5071                  * Take the srcu lock as memslots will be accessed to check the gfn
5072                  * cache generation against the memslots generation.
5073                  */
5074                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5075                 if (kvm_xen_msr_enabled(vcpu->kvm))
5076                         kvm_xen_runstate_set_preempted(vcpu);
5077                 else
5078                         kvm_steal_time_set_preempted(vcpu);
5079                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5080         }
5081
5082         static_call(kvm_x86_vcpu_put)(vcpu);
5083         vcpu->arch.last_host_tsc = rdtsc();
5084 }
5085
5086 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5087                                     struct kvm_lapic_state *s)
5088 {
5089         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5090
5091         return kvm_apic_get_state(vcpu, s);
5092 }
5093
5094 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5095                                     struct kvm_lapic_state *s)
5096 {
5097         int r;
5098
5099         r = kvm_apic_set_state(vcpu, s);
5100         if (r)
5101                 return r;
5102         update_cr8_intercept(vcpu);
5103
5104         return 0;
5105 }
5106
5107 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5108 {
5109         /*
5110          * We can accept userspace's request for interrupt injection
5111          * as long as we have a place to store the interrupt number.
5112          * The actual injection will happen when the CPU is able to
5113          * deliver the interrupt.
5114          */
5115         if (kvm_cpu_has_extint(vcpu))
5116                 return false;
5117
5118         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5119         return (!lapic_in_kernel(vcpu) ||
5120                 kvm_apic_accept_pic_intr(vcpu));
5121 }
5122
5123 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5124 {
5125         /*
5126          * Do not cause an interrupt window exit if an exception
5127          * is pending or an event needs reinjection; userspace
5128          * might want to inject the interrupt manually using KVM_SET_REGS
5129          * or KVM_SET_SREGS.  For that to work, we must be at an
5130          * instruction boundary and with no events half-injected.
5131          */
5132         return (kvm_arch_interrupt_allowed(vcpu) &&
5133                 kvm_cpu_accept_dm_intr(vcpu) &&
5134                 !kvm_event_needs_reinjection(vcpu) &&
5135                 !kvm_is_exception_pending(vcpu));
5136 }
5137
5138 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5139                                     struct kvm_interrupt *irq)
5140 {
5141         if (irq->irq >= KVM_NR_INTERRUPTS)
5142                 return -EINVAL;
5143
5144         if (!irqchip_in_kernel(vcpu->kvm)) {
5145                 kvm_queue_interrupt(vcpu, irq->irq, false);
5146                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5147                 return 0;
5148         }
5149
5150         /*
5151          * With in-kernel LAPIC, we only use this to inject EXTINT, so
5152          * fail for in-kernel 8259.
5153          */
5154         if (pic_in_kernel(vcpu->kvm))
5155                 return -ENXIO;
5156
5157         if (vcpu->arch.pending_external_vector != -1)
5158                 return -EEXIST;
5159
5160         vcpu->arch.pending_external_vector = irq->irq;
5161         kvm_make_request(KVM_REQ_EVENT, vcpu);
5162         return 0;
5163 }
5164
5165 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5166 {
5167         kvm_inject_nmi(vcpu);
5168
5169         return 0;
5170 }
5171
5172 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5173                                            struct kvm_tpr_access_ctl *tac)
5174 {
5175         if (tac->flags)
5176                 return -EINVAL;
5177         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5178         return 0;
5179 }
5180
5181 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5182                                         u64 mcg_cap)
5183 {
5184         int r;
5185         unsigned bank_num = mcg_cap & 0xff, bank;
5186
5187         r = -EINVAL;
5188         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5189                 goto out;
5190         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5191                 goto out;
5192         r = 0;
5193         vcpu->arch.mcg_cap = mcg_cap;
5194         /* Init IA32_MCG_CTL to all 1s */
5195         if (mcg_cap & MCG_CTL_P)
5196                 vcpu->arch.mcg_ctl = ~(u64)0;
5197         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5198         for (bank = 0; bank < bank_num; bank++) {
5199                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5200                 if (mcg_cap & MCG_CMCI_P)
5201                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5202         }
5203
5204         kvm_apic_after_set_mcg_cap(vcpu);
5205
5206         static_call(kvm_x86_setup_mce)(vcpu);
5207 out:
5208         return r;
5209 }
5210
5211 /*
5212  * Validate this is an UCNA (uncorrectable no action) error by checking the
5213  * MCG_STATUS and MCi_STATUS registers:
5214  * - none of the bits for Machine Check Exceptions are set
5215  * - both the VAL (valid) and UC (uncorrectable) bits are set
5216  * MCI_STATUS_PCC - Processor Context Corrupted
5217  * MCI_STATUS_S - Signaled as a Machine Check Exception
5218  * MCI_STATUS_AR - Software recoverable Action Required
5219  */
5220 static bool is_ucna(struct kvm_x86_mce *mce)
5221 {
5222         return  !mce->mcg_status &&
5223                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5224                 (mce->status & MCI_STATUS_VAL) &&
5225                 (mce->status & MCI_STATUS_UC);
5226 }
5227
5228 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5229 {
5230         u64 mcg_cap = vcpu->arch.mcg_cap;
5231
5232         banks[1] = mce->status;
5233         banks[2] = mce->addr;
5234         banks[3] = mce->misc;
5235         vcpu->arch.mcg_status = mce->mcg_status;
5236
5237         if (!(mcg_cap & MCG_CMCI_P) ||
5238             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5239                 return 0;
5240
5241         if (lapic_in_kernel(vcpu))
5242                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5243
5244         return 0;
5245 }
5246
5247 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5248                                       struct kvm_x86_mce *mce)
5249 {
5250         u64 mcg_cap = vcpu->arch.mcg_cap;
5251         unsigned bank_num = mcg_cap & 0xff;
5252         u64 *banks = vcpu->arch.mce_banks;
5253
5254         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5255                 return -EINVAL;
5256
5257         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5258
5259         if (is_ucna(mce))
5260                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5261
5262         /*
5263          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5264          * reporting is disabled
5265          */
5266         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5267             vcpu->arch.mcg_ctl != ~(u64)0)
5268                 return 0;
5269         /*
5270          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5271          * reporting is disabled for the bank
5272          */
5273         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5274                 return 0;
5275         if (mce->status & MCI_STATUS_UC) {
5276                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5277                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5278                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5279                         return 0;
5280                 }
5281                 if (banks[1] & MCI_STATUS_VAL)
5282                         mce->status |= MCI_STATUS_OVER;
5283                 banks[2] = mce->addr;
5284                 banks[3] = mce->misc;
5285                 vcpu->arch.mcg_status = mce->mcg_status;
5286                 banks[1] = mce->status;
5287                 kvm_queue_exception(vcpu, MC_VECTOR);
5288         } else if (!(banks[1] & MCI_STATUS_VAL)
5289                    || !(banks[1] & MCI_STATUS_UC)) {
5290                 if (banks[1] & MCI_STATUS_VAL)
5291                         mce->status |= MCI_STATUS_OVER;
5292                 banks[2] = mce->addr;
5293                 banks[3] = mce->misc;
5294                 banks[1] = mce->status;
5295         } else
5296                 banks[1] |= MCI_STATUS_OVER;
5297         return 0;
5298 }
5299
5300 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5301                                                struct kvm_vcpu_events *events)
5302 {
5303         struct kvm_queued_exception *ex;
5304
5305         process_nmi(vcpu);
5306
5307 #ifdef CONFIG_KVM_SMM
5308         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5309                 process_smi(vcpu);
5310 #endif
5311
5312         /*
5313          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5314          * the only time there can be two queued exceptions is if there's a
5315          * non-exiting _injected_ exception, and a pending exiting exception.
5316          * In that case, ignore the VM-Exiting exception as it's an extension
5317          * of the injected exception.
5318          */
5319         if (vcpu->arch.exception_vmexit.pending &&
5320             !vcpu->arch.exception.pending &&
5321             !vcpu->arch.exception.injected)
5322                 ex = &vcpu->arch.exception_vmexit;
5323         else
5324                 ex = &vcpu->arch.exception;
5325
5326         /*
5327          * In guest mode, payload delivery should be deferred if the exception
5328          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5329          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5330          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5331          * propagate the payload and so it cannot be safely deferred.  Deliver
5332          * the payload if the capability hasn't been requested.
5333          */
5334         if (!vcpu->kvm->arch.exception_payload_enabled &&
5335             ex->pending && ex->has_payload)
5336                 kvm_deliver_exception_payload(vcpu, ex);
5337
5338         memset(events, 0, sizeof(*events));
5339
5340         /*
5341          * The API doesn't provide the instruction length for software
5342          * exceptions, so don't report them. As long as the guest RIP
5343          * isn't advanced, we should expect to encounter the exception
5344          * again.
5345          */
5346         if (!kvm_exception_is_soft(ex->vector)) {
5347                 events->exception.injected = ex->injected;
5348                 events->exception.pending = ex->pending;
5349                 /*
5350                  * For ABI compatibility, deliberately conflate
5351                  * pending and injected exceptions when
5352                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5353                  */
5354                 if (!vcpu->kvm->arch.exception_payload_enabled)
5355                         events->exception.injected |= ex->pending;
5356         }
5357         events->exception.nr = ex->vector;
5358         events->exception.has_error_code = ex->has_error_code;
5359         events->exception.error_code = ex->error_code;
5360         events->exception_has_payload = ex->has_payload;
5361         events->exception_payload = ex->payload;
5362
5363         events->interrupt.injected =
5364                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5365         events->interrupt.nr = vcpu->arch.interrupt.nr;
5366         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5367
5368         events->nmi.injected = vcpu->arch.nmi_injected;
5369         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5370         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5371
5372         /* events->sipi_vector is never valid when reporting to user space */
5373
5374 #ifdef CONFIG_KVM_SMM
5375         events->smi.smm = is_smm(vcpu);
5376         events->smi.pending = vcpu->arch.smi_pending;
5377         events->smi.smm_inside_nmi =
5378                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5379 #endif
5380         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5381
5382         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5383                          | KVM_VCPUEVENT_VALID_SHADOW
5384                          | KVM_VCPUEVENT_VALID_SMM);
5385         if (vcpu->kvm->arch.exception_payload_enabled)
5386                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5387         if (vcpu->kvm->arch.triple_fault_event) {
5388                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5389                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5390         }
5391 }
5392
5393 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5394                                               struct kvm_vcpu_events *events)
5395 {
5396         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5397                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5398                               | KVM_VCPUEVENT_VALID_SHADOW
5399                               | KVM_VCPUEVENT_VALID_SMM
5400                               | KVM_VCPUEVENT_VALID_PAYLOAD
5401                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5402                 return -EINVAL;
5403
5404         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5405                 if (!vcpu->kvm->arch.exception_payload_enabled)
5406                         return -EINVAL;
5407                 if (events->exception.pending)
5408                         events->exception.injected = 0;
5409                 else
5410                         events->exception_has_payload = 0;
5411         } else {
5412                 events->exception.pending = 0;
5413                 events->exception_has_payload = 0;
5414         }
5415
5416         if ((events->exception.injected || events->exception.pending) &&
5417             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5418                 return -EINVAL;
5419
5420         /* INITs are latched while in SMM */
5421         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5422             (events->smi.smm || events->smi.pending) &&
5423             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5424                 return -EINVAL;
5425
5426         process_nmi(vcpu);
5427
5428         /*
5429          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5430          * morph the exception to a VM-Exit if appropriate.  Do this only for
5431          * pending exceptions, already-injected exceptions are not subject to
5432          * intercpetion.  Note, userspace that conflates pending and injected
5433          * is hosed, and will incorrectly convert an injected exception into a
5434          * pending exception, which in turn may cause a spurious VM-Exit.
5435          */
5436         vcpu->arch.exception_from_userspace = events->exception.pending;
5437
5438         vcpu->arch.exception_vmexit.pending = false;
5439
5440         vcpu->arch.exception.injected = events->exception.injected;
5441         vcpu->arch.exception.pending = events->exception.pending;
5442         vcpu->arch.exception.vector = events->exception.nr;
5443         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5444         vcpu->arch.exception.error_code = events->exception.error_code;
5445         vcpu->arch.exception.has_payload = events->exception_has_payload;
5446         vcpu->arch.exception.payload = events->exception_payload;
5447
5448         vcpu->arch.interrupt.injected = events->interrupt.injected;
5449         vcpu->arch.interrupt.nr = events->interrupt.nr;
5450         vcpu->arch.interrupt.soft = events->interrupt.soft;
5451         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5452                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5453                                                 events->interrupt.shadow);
5454
5455         vcpu->arch.nmi_injected = events->nmi.injected;
5456         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5457                 vcpu->arch.nmi_pending = 0;
5458                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5459                 if (events->nmi.pending)
5460                         kvm_make_request(KVM_REQ_NMI, vcpu);
5461         }
5462         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5463
5464         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5465             lapic_in_kernel(vcpu))
5466                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5467
5468         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5469 #ifdef CONFIG_KVM_SMM
5470                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5471                         kvm_leave_nested(vcpu);
5472                         kvm_smm_changed(vcpu, events->smi.smm);
5473                 }
5474
5475                 vcpu->arch.smi_pending = events->smi.pending;
5476
5477                 if (events->smi.smm) {
5478                         if (events->smi.smm_inside_nmi)
5479                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5480                         else
5481                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5482                 }
5483
5484 #else
5485                 if (events->smi.smm || events->smi.pending ||
5486                     events->smi.smm_inside_nmi)
5487                         return -EINVAL;
5488 #endif
5489
5490                 if (lapic_in_kernel(vcpu)) {
5491                         if (events->smi.latched_init)
5492                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5493                         else
5494                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5495                 }
5496         }
5497
5498         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5499                 if (!vcpu->kvm->arch.triple_fault_event)
5500                         return -EINVAL;
5501                 if (events->triple_fault.pending)
5502                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5503                 else
5504                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5505         }
5506
5507         kvm_make_request(KVM_REQ_EVENT, vcpu);
5508
5509         return 0;
5510 }
5511
5512 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5513                                              struct kvm_debugregs *dbgregs)
5514 {
5515         unsigned long val;
5516
5517         memset(dbgregs, 0, sizeof(*dbgregs));
5518         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5519         kvm_get_dr(vcpu, 6, &val);
5520         dbgregs->dr6 = val;
5521         dbgregs->dr7 = vcpu->arch.dr7;
5522 }
5523
5524 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5525                                             struct kvm_debugregs *dbgregs)
5526 {
5527         if (dbgregs->flags)
5528                 return -EINVAL;
5529
5530         if (!kvm_dr6_valid(dbgregs->dr6))
5531                 return -EINVAL;
5532         if (!kvm_dr7_valid(dbgregs->dr7))
5533                 return -EINVAL;
5534
5535         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5536         kvm_update_dr0123(vcpu);
5537         vcpu->arch.dr6 = dbgregs->dr6;
5538         vcpu->arch.dr7 = dbgregs->dr7;
5539         kvm_update_dr7(vcpu);
5540
5541         return 0;
5542 }
5543
5544
5545 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5546                                           u8 *state, unsigned int size)
5547 {
5548         /*
5549          * Only copy state for features that are enabled for the guest.  The
5550          * state itself isn't problematic, but setting bits in the header for
5551          * features that are supported in *this* host but not exposed to the
5552          * guest can result in KVM_SET_XSAVE failing when live migrating to a
5553          * compatible host without the features that are NOT exposed to the
5554          * guest.
5555          *
5556          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5557          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5558          * supported by the host.
5559          */
5560         u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5561                              XFEATURE_MASK_FPSSE;
5562
5563         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5564                 return;
5565
5566         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5567                                        supported_xcr0, vcpu->arch.pkru);
5568 }
5569
5570 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5571                                          struct kvm_xsave *guest_xsave)
5572 {
5573         kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5574                                       sizeof(guest_xsave->region));
5575 }
5576
5577 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5578                                         struct kvm_xsave *guest_xsave)
5579 {
5580         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5581                 return 0;
5582
5583         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5584                                               guest_xsave->region,
5585                                               kvm_caps.supported_xcr0,
5586                                               &vcpu->arch.pkru);
5587 }
5588
5589 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5590                                         struct kvm_xcrs *guest_xcrs)
5591 {
5592         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5593                 guest_xcrs->nr_xcrs = 0;
5594                 return;
5595         }
5596
5597         guest_xcrs->nr_xcrs = 1;
5598         guest_xcrs->flags = 0;
5599         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5600         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5601 }
5602
5603 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5604                                        struct kvm_xcrs *guest_xcrs)
5605 {
5606         int i, r = 0;
5607
5608         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5609                 return -EINVAL;
5610
5611         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5612                 return -EINVAL;
5613
5614         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5615                 /* Only support XCR0 currently */
5616                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5617                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5618                                 guest_xcrs->xcrs[i].value);
5619                         break;
5620                 }
5621         if (r)
5622                 r = -EINVAL;
5623         return r;
5624 }
5625
5626 /*
5627  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5628  * stopped by the hypervisor.  This function will be called from the host only.
5629  * EINVAL is returned when the host attempts to set the flag for a guest that
5630  * does not support pv clocks.
5631  */
5632 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5633 {
5634         if (!vcpu->arch.pv_time.active)
5635                 return -EINVAL;
5636         vcpu->arch.pvclock_set_guest_stopped_request = true;
5637         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5638         return 0;
5639 }
5640
5641 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5642                                  struct kvm_device_attr *attr)
5643 {
5644         int r;
5645
5646         switch (attr->attr) {
5647         case KVM_VCPU_TSC_OFFSET:
5648                 r = 0;
5649                 break;
5650         default:
5651                 r = -ENXIO;
5652         }
5653
5654         return r;
5655 }
5656
5657 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5658                                  struct kvm_device_attr *attr)
5659 {
5660         u64 __user *uaddr = kvm_get_attr_addr(attr);
5661         int r;
5662
5663         if (IS_ERR(uaddr))
5664                 return PTR_ERR(uaddr);
5665
5666         switch (attr->attr) {
5667         case KVM_VCPU_TSC_OFFSET:
5668                 r = -EFAULT;
5669                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5670                         break;
5671                 r = 0;
5672                 break;
5673         default:
5674                 r = -ENXIO;
5675         }
5676
5677         return r;
5678 }
5679
5680 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5681                                  struct kvm_device_attr *attr)
5682 {
5683         u64 __user *uaddr = kvm_get_attr_addr(attr);
5684         struct kvm *kvm = vcpu->kvm;
5685         int r;
5686
5687         if (IS_ERR(uaddr))
5688                 return PTR_ERR(uaddr);
5689
5690         switch (attr->attr) {
5691         case KVM_VCPU_TSC_OFFSET: {
5692                 u64 offset, tsc, ns;
5693                 unsigned long flags;
5694                 bool matched;
5695
5696                 r = -EFAULT;
5697                 if (get_user(offset, uaddr))
5698                         break;
5699
5700                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5701
5702                 matched = (vcpu->arch.virtual_tsc_khz &&
5703                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5704                            kvm->arch.last_tsc_offset == offset);
5705
5706                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5707                 ns = get_kvmclock_base_ns();
5708
5709                 kvm->arch.user_set_tsc = true;
5710                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5711                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5712
5713                 r = 0;
5714                 break;
5715         }
5716         default:
5717                 r = -ENXIO;
5718         }
5719
5720         return r;
5721 }
5722
5723 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5724                                       unsigned int ioctl,
5725                                       void __user *argp)
5726 {
5727         struct kvm_device_attr attr;
5728         int r;
5729
5730         if (copy_from_user(&attr, argp, sizeof(attr)))
5731                 return -EFAULT;
5732
5733         if (attr.group != KVM_VCPU_TSC_CTRL)
5734                 return -ENXIO;
5735
5736         switch (ioctl) {
5737         case KVM_HAS_DEVICE_ATTR:
5738                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5739                 break;
5740         case KVM_GET_DEVICE_ATTR:
5741                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5742                 break;
5743         case KVM_SET_DEVICE_ATTR:
5744                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5745                 break;
5746         }
5747
5748         return r;
5749 }
5750
5751 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5752                                      struct kvm_enable_cap *cap)
5753 {
5754         if (cap->flags)
5755                 return -EINVAL;
5756
5757         switch (cap->cap) {
5758 #ifdef CONFIG_KVM_HYPERV
5759         case KVM_CAP_HYPERV_SYNIC2:
5760                 if (cap->args[0])
5761                         return -EINVAL;
5762                 fallthrough;
5763
5764         case KVM_CAP_HYPERV_SYNIC:
5765                 if (!irqchip_in_kernel(vcpu->kvm))
5766                         return -EINVAL;
5767                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5768                                              KVM_CAP_HYPERV_SYNIC2);
5769         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5770                 {
5771                         int r;
5772                         uint16_t vmcs_version;
5773                         void __user *user_ptr;
5774
5775                         if (!kvm_x86_ops.nested_ops->enable_evmcs)
5776                                 return -ENOTTY;
5777                         r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5778                         if (!r) {
5779                                 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5780                                 if (copy_to_user(user_ptr, &vmcs_version,
5781                                                  sizeof(vmcs_version)))
5782                                         r = -EFAULT;
5783                         }
5784                         return r;
5785                 }
5786         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5787                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5788                         return -ENOTTY;
5789
5790                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5791
5792         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5793                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5794 #endif
5795
5796         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5797                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5798                 if (vcpu->arch.pv_cpuid.enforce)
5799                         kvm_update_pv_runtime(vcpu);
5800
5801                 return 0;
5802         default:
5803                 return -EINVAL;
5804         }
5805 }
5806
5807 long kvm_arch_vcpu_ioctl(struct file *filp,
5808                          unsigned int ioctl, unsigned long arg)
5809 {
5810         struct kvm_vcpu *vcpu = filp->private_data;
5811         void __user *argp = (void __user *)arg;
5812         int r;
5813         union {
5814                 struct kvm_sregs2 *sregs2;
5815                 struct kvm_lapic_state *lapic;
5816                 struct kvm_xsave *xsave;
5817                 struct kvm_xcrs *xcrs;
5818                 void *buffer;
5819         } u;
5820
5821         vcpu_load(vcpu);
5822
5823         u.buffer = NULL;
5824         switch (ioctl) {
5825         case KVM_GET_LAPIC: {
5826                 r = -EINVAL;
5827                 if (!lapic_in_kernel(vcpu))
5828                         goto out;
5829                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5830                                 GFP_KERNEL_ACCOUNT);
5831
5832                 r = -ENOMEM;
5833                 if (!u.lapic)
5834                         goto out;
5835                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5836                 if (r)
5837                         goto out;
5838                 r = -EFAULT;
5839                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5840                         goto out;
5841                 r = 0;
5842                 break;
5843         }
5844         case KVM_SET_LAPIC: {
5845                 r = -EINVAL;
5846                 if (!lapic_in_kernel(vcpu))
5847                         goto out;
5848                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5849                 if (IS_ERR(u.lapic)) {
5850                         r = PTR_ERR(u.lapic);
5851                         goto out_nofree;
5852                 }
5853
5854                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5855                 break;
5856         }
5857         case KVM_INTERRUPT: {
5858                 struct kvm_interrupt irq;
5859
5860                 r = -EFAULT;
5861                 if (copy_from_user(&irq, argp, sizeof(irq)))
5862                         goto out;
5863                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5864                 break;
5865         }
5866         case KVM_NMI: {
5867                 r = kvm_vcpu_ioctl_nmi(vcpu);
5868                 break;
5869         }
5870         case KVM_SMI: {
5871                 r = kvm_inject_smi(vcpu);
5872                 break;
5873         }
5874         case KVM_SET_CPUID: {
5875                 struct kvm_cpuid __user *cpuid_arg = argp;
5876                 struct kvm_cpuid cpuid;
5877
5878                 r = -EFAULT;
5879                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5880                         goto out;
5881                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5882                 break;
5883         }
5884         case KVM_SET_CPUID2: {
5885                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5886                 struct kvm_cpuid2 cpuid;
5887
5888                 r = -EFAULT;
5889                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5890                         goto out;
5891                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5892                                               cpuid_arg->entries);
5893                 break;
5894         }
5895         case KVM_GET_CPUID2: {
5896                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5897                 struct kvm_cpuid2 cpuid;
5898
5899                 r = -EFAULT;
5900                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5901                         goto out;
5902                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5903                                               cpuid_arg->entries);
5904                 if (r)
5905                         goto out;
5906                 r = -EFAULT;
5907                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5908                         goto out;
5909                 r = 0;
5910                 break;
5911         }
5912         case KVM_GET_MSRS: {
5913                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5914                 r = msr_io(vcpu, argp, do_get_msr, 1);
5915                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5916                 break;
5917         }
5918         case KVM_SET_MSRS: {
5919                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5920                 r = msr_io(vcpu, argp, do_set_msr, 0);
5921                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5922                 break;
5923         }
5924         case KVM_TPR_ACCESS_REPORTING: {
5925                 struct kvm_tpr_access_ctl tac;
5926
5927                 r = -EFAULT;
5928                 if (copy_from_user(&tac, argp, sizeof(tac)))
5929                         goto out;
5930                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5931                 if (r)
5932                         goto out;
5933                 r = -EFAULT;
5934                 if (copy_to_user(argp, &tac, sizeof(tac)))
5935                         goto out;
5936                 r = 0;
5937                 break;
5938         };
5939         case KVM_SET_VAPIC_ADDR: {
5940                 struct kvm_vapic_addr va;
5941                 int idx;
5942
5943                 r = -EINVAL;
5944                 if (!lapic_in_kernel(vcpu))
5945                         goto out;
5946                 r = -EFAULT;
5947                 if (copy_from_user(&va, argp, sizeof(va)))
5948                         goto out;
5949                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5950                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5951                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5952                 break;
5953         }
5954         case KVM_X86_SETUP_MCE: {
5955                 u64 mcg_cap;
5956
5957                 r = -EFAULT;
5958                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5959                         goto out;
5960                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5961                 break;
5962         }
5963         case KVM_X86_SET_MCE: {
5964                 struct kvm_x86_mce mce;
5965
5966                 r = -EFAULT;
5967                 if (copy_from_user(&mce, argp, sizeof(mce)))
5968                         goto out;
5969                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5970                 break;
5971         }
5972         case KVM_GET_VCPU_EVENTS: {
5973                 struct kvm_vcpu_events events;
5974
5975                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5976
5977                 r = -EFAULT;
5978                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5979                         break;
5980                 r = 0;
5981                 break;
5982         }
5983         case KVM_SET_VCPU_EVENTS: {
5984                 struct kvm_vcpu_events events;
5985
5986                 r = -EFAULT;
5987                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5988                         break;
5989
5990                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5991                 break;
5992         }
5993         case KVM_GET_DEBUGREGS: {
5994                 struct kvm_debugregs dbgregs;
5995
5996                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5997
5998                 r = -EFAULT;
5999                 if (copy_to_user(argp, &dbgregs,
6000                                  sizeof(struct kvm_debugregs)))
6001                         break;
6002                 r = 0;
6003                 break;
6004         }
6005         case KVM_SET_DEBUGREGS: {
6006                 struct kvm_debugregs dbgregs;
6007
6008                 r = -EFAULT;
6009                 if (copy_from_user(&dbgregs, argp,
6010                                    sizeof(struct kvm_debugregs)))
6011                         break;
6012
6013                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6014                 break;
6015         }
6016         case KVM_GET_XSAVE: {
6017                 r = -EINVAL;
6018                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6019                         break;
6020
6021                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6022                 r = -ENOMEM;
6023                 if (!u.xsave)
6024                         break;
6025
6026                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6027
6028                 r = -EFAULT;
6029                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6030                         break;
6031                 r = 0;
6032                 break;
6033         }
6034         case KVM_SET_XSAVE: {
6035                 int size = vcpu->arch.guest_fpu.uabi_size;
6036
6037                 u.xsave = memdup_user(argp, size);
6038                 if (IS_ERR(u.xsave)) {
6039                         r = PTR_ERR(u.xsave);
6040                         goto out_nofree;
6041                 }
6042
6043                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6044                 break;
6045         }
6046
6047         case KVM_GET_XSAVE2: {
6048                 int size = vcpu->arch.guest_fpu.uabi_size;
6049
6050                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6051                 r = -ENOMEM;
6052                 if (!u.xsave)
6053                         break;
6054
6055                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6056
6057                 r = -EFAULT;
6058                 if (copy_to_user(argp, u.xsave, size))
6059                         break;
6060
6061                 r = 0;
6062                 break;
6063         }
6064
6065         case KVM_GET_XCRS: {
6066                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6067                 r = -ENOMEM;
6068                 if (!u.xcrs)
6069                         break;
6070
6071                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6072
6073                 r = -EFAULT;
6074                 if (copy_to_user(argp, u.xcrs,
6075                                  sizeof(struct kvm_xcrs)))
6076                         break;
6077                 r = 0;
6078                 break;
6079         }
6080         case KVM_SET_XCRS: {
6081                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6082                 if (IS_ERR(u.xcrs)) {
6083                         r = PTR_ERR(u.xcrs);
6084                         goto out_nofree;
6085                 }
6086
6087                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6088                 break;
6089         }
6090         case KVM_SET_TSC_KHZ: {
6091                 u32 user_tsc_khz;
6092
6093                 r = -EINVAL;
6094                 user_tsc_khz = (u32)arg;
6095
6096                 if (kvm_caps.has_tsc_control &&
6097                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6098                         goto out;
6099
6100                 if (user_tsc_khz == 0)
6101                         user_tsc_khz = tsc_khz;
6102
6103                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6104                         r = 0;
6105
6106                 goto out;
6107         }
6108         case KVM_GET_TSC_KHZ: {
6109                 r = vcpu->arch.virtual_tsc_khz;
6110                 goto out;
6111         }
6112         case KVM_KVMCLOCK_CTRL: {
6113                 r = kvm_set_guest_paused(vcpu);
6114                 goto out;
6115         }
6116         case KVM_ENABLE_CAP: {
6117                 struct kvm_enable_cap cap;
6118
6119                 r = -EFAULT;
6120                 if (copy_from_user(&cap, argp, sizeof(cap)))
6121                         goto out;
6122                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6123                 break;
6124         }
6125         case KVM_GET_NESTED_STATE: {
6126                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6127                 u32 user_data_size;
6128
6129                 r = -EINVAL;
6130                 if (!kvm_x86_ops.nested_ops->get_state)
6131                         break;
6132
6133                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6134                 r = -EFAULT;
6135                 if (get_user(user_data_size, &user_kvm_nested_state->size))
6136                         break;
6137
6138                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6139                                                      user_data_size);
6140                 if (r < 0)
6141                         break;
6142
6143                 if (r > user_data_size) {
6144                         if (put_user(r, &user_kvm_nested_state->size))
6145                                 r = -EFAULT;
6146                         else
6147                                 r = -E2BIG;
6148                         break;
6149                 }
6150
6151                 r = 0;
6152                 break;
6153         }
6154         case KVM_SET_NESTED_STATE: {
6155                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6156                 struct kvm_nested_state kvm_state;
6157                 int idx;
6158
6159                 r = -EINVAL;
6160                 if (!kvm_x86_ops.nested_ops->set_state)
6161                         break;
6162
6163                 r = -EFAULT;
6164                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6165                         break;
6166
6167                 r = -EINVAL;
6168                 if (kvm_state.size < sizeof(kvm_state))
6169                         break;
6170
6171                 if (kvm_state.flags &
6172                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6173                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6174                       | KVM_STATE_NESTED_GIF_SET))
6175                         break;
6176
6177                 /* nested_run_pending implies guest_mode.  */
6178                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6179                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6180                         break;
6181
6182                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6183                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6184                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6185                 break;
6186         }
6187 #ifdef CONFIG_KVM_HYPERV
6188         case KVM_GET_SUPPORTED_HV_CPUID:
6189                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6190                 break;
6191 #endif
6192 #ifdef CONFIG_KVM_XEN
6193         case KVM_XEN_VCPU_GET_ATTR: {
6194                 struct kvm_xen_vcpu_attr xva;
6195
6196                 r = -EFAULT;
6197                 if (copy_from_user(&xva, argp, sizeof(xva)))
6198                         goto out;
6199                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6200                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6201                         r = -EFAULT;
6202                 break;
6203         }
6204         case KVM_XEN_VCPU_SET_ATTR: {
6205                 struct kvm_xen_vcpu_attr xva;
6206
6207                 r = -EFAULT;
6208                 if (copy_from_user(&xva, argp, sizeof(xva)))
6209                         goto out;
6210                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6211                 break;
6212         }
6213 #endif
6214         case KVM_GET_SREGS2: {
6215                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6216                 r = -ENOMEM;
6217                 if (!u.sregs2)
6218                         goto out;
6219                 __get_sregs2(vcpu, u.sregs2);
6220                 r = -EFAULT;
6221                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6222                         goto out;
6223                 r = 0;
6224                 break;
6225         }
6226         case KVM_SET_SREGS2: {
6227                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6228                 if (IS_ERR(u.sregs2)) {
6229                         r = PTR_ERR(u.sregs2);
6230                         u.sregs2 = NULL;
6231                         goto out;
6232                 }
6233                 r = __set_sregs2(vcpu, u.sregs2);
6234                 break;
6235         }
6236         case KVM_HAS_DEVICE_ATTR:
6237         case KVM_GET_DEVICE_ATTR:
6238         case KVM_SET_DEVICE_ATTR:
6239                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6240                 break;
6241         default:
6242                 r = -EINVAL;
6243         }
6244 out:
6245         kfree(u.buffer);
6246 out_nofree:
6247         vcpu_put(vcpu);
6248         return r;
6249 }
6250
6251 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6252 {
6253         return VM_FAULT_SIGBUS;
6254 }
6255
6256 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6257 {
6258         int ret;
6259
6260         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6261                 return -EINVAL;
6262         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6263         return ret;
6264 }
6265
6266 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6267                                               u64 ident_addr)
6268 {
6269         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6270 }
6271
6272 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6273                                          unsigned long kvm_nr_mmu_pages)
6274 {
6275         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6276                 return -EINVAL;
6277
6278         mutex_lock(&kvm->slots_lock);
6279
6280         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6281         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6282
6283         mutex_unlock(&kvm->slots_lock);
6284         return 0;
6285 }
6286
6287 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6288 {
6289         struct kvm_pic *pic = kvm->arch.vpic;
6290         int r;
6291
6292         r = 0;
6293         switch (chip->chip_id) {
6294         case KVM_IRQCHIP_PIC_MASTER:
6295                 memcpy(&chip->chip.pic, &pic->pics[0],
6296                         sizeof(struct kvm_pic_state));
6297                 break;
6298         case KVM_IRQCHIP_PIC_SLAVE:
6299                 memcpy(&chip->chip.pic, &pic->pics[1],
6300                         sizeof(struct kvm_pic_state));
6301                 break;
6302         case KVM_IRQCHIP_IOAPIC:
6303                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6304                 break;
6305         default:
6306                 r = -EINVAL;
6307                 break;
6308         }
6309         return r;
6310 }
6311
6312 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6313 {
6314         struct kvm_pic *pic = kvm->arch.vpic;
6315         int r;
6316
6317         r = 0;
6318         switch (chip->chip_id) {
6319         case KVM_IRQCHIP_PIC_MASTER:
6320                 spin_lock(&pic->lock);
6321                 memcpy(&pic->pics[0], &chip->chip.pic,
6322                         sizeof(struct kvm_pic_state));
6323                 spin_unlock(&pic->lock);
6324                 break;
6325         case KVM_IRQCHIP_PIC_SLAVE:
6326                 spin_lock(&pic->lock);
6327                 memcpy(&pic->pics[1], &chip->chip.pic,
6328                         sizeof(struct kvm_pic_state));
6329                 spin_unlock(&pic->lock);
6330                 break;
6331         case KVM_IRQCHIP_IOAPIC:
6332                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6333                 break;
6334         default:
6335                 r = -EINVAL;
6336                 break;
6337         }
6338         kvm_pic_update_irq(pic);
6339         return r;
6340 }
6341
6342 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6343 {
6344         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6345
6346         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6347
6348         mutex_lock(&kps->lock);
6349         memcpy(ps, &kps->channels, sizeof(*ps));
6350         mutex_unlock(&kps->lock);
6351         return 0;
6352 }
6353
6354 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6355 {
6356         int i;
6357         struct kvm_pit *pit = kvm->arch.vpit;
6358
6359         mutex_lock(&pit->pit_state.lock);
6360         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6361         for (i = 0; i < 3; i++)
6362                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6363         mutex_unlock(&pit->pit_state.lock);
6364         return 0;
6365 }
6366
6367 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6368 {
6369         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6370         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6371                 sizeof(ps->channels));
6372         ps->flags = kvm->arch.vpit->pit_state.flags;
6373         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6374         memset(&ps->reserved, 0, sizeof(ps->reserved));
6375         return 0;
6376 }
6377
6378 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6379 {
6380         int start = 0;
6381         int i;
6382         u32 prev_legacy, cur_legacy;
6383         struct kvm_pit *pit = kvm->arch.vpit;
6384
6385         mutex_lock(&pit->pit_state.lock);
6386         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6387         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6388         if (!prev_legacy && cur_legacy)
6389                 start = 1;
6390         memcpy(&pit->pit_state.channels, &ps->channels,
6391                sizeof(pit->pit_state.channels));
6392         pit->pit_state.flags = ps->flags;
6393         for (i = 0; i < 3; i++)
6394                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6395                                    start && i == 0);
6396         mutex_unlock(&pit->pit_state.lock);
6397         return 0;
6398 }
6399
6400 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6401                                  struct kvm_reinject_control *control)
6402 {
6403         struct kvm_pit *pit = kvm->arch.vpit;
6404
6405         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6406          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6407          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6408          */
6409         mutex_lock(&pit->pit_state.lock);
6410         kvm_pit_set_reinject(pit, control->pit_reinject);
6411         mutex_unlock(&pit->pit_state.lock);
6412
6413         return 0;
6414 }
6415
6416 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6417 {
6418
6419         /*
6420          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6421          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6422          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6423          * VM-Exit.
6424          */
6425         struct kvm_vcpu *vcpu;
6426         unsigned long i;
6427
6428         if (!kvm_x86_ops.cpu_dirty_log_size)
6429                 return;
6430
6431         kvm_for_each_vcpu(i, vcpu, kvm)
6432                 kvm_vcpu_kick(vcpu);
6433 }
6434
6435 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6436                         bool line_status)
6437 {
6438         if (!irqchip_in_kernel(kvm))
6439                 return -ENXIO;
6440
6441         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6442                                         irq_event->irq, irq_event->level,
6443                                         line_status);
6444         return 0;
6445 }
6446
6447 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6448                             struct kvm_enable_cap *cap)
6449 {
6450         int r;
6451
6452         if (cap->flags)
6453                 return -EINVAL;
6454
6455         switch (cap->cap) {
6456         case KVM_CAP_DISABLE_QUIRKS2:
6457                 r = -EINVAL;
6458                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6459                         break;
6460                 fallthrough;
6461         case KVM_CAP_DISABLE_QUIRKS:
6462                 kvm->arch.disabled_quirks = cap->args[0];
6463                 r = 0;
6464                 break;
6465         case KVM_CAP_SPLIT_IRQCHIP: {
6466                 mutex_lock(&kvm->lock);
6467                 r = -EINVAL;
6468                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6469                         goto split_irqchip_unlock;
6470                 r = -EEXIST;
6471                 if (irqchip_in_kernel(kvm))
6472                         goto split_irqchip_unlock;
6473                 if (kvm->created_vcpus)
6474                         goto split_irqchip_unlock;
6475                 r = kvm_setup_empty_irq_routing(kvm);
6476                 if (r)
6477                         goto split_irqchip_unlock;
6478                 /* Pairs with irqchip_in_kernel. */
6479                 smp_wmb();
6480                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6481                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6482                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6483                 r = 0;
6484 split_irqchip_unlock:
6485                 mutex_unlock(&kvm->lock);
6486                 break;
6487         }
6488         case KVM_CAP_X2APIC_API:
6489                 r = -EINVAL;
6490                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6491                         break;
6492
6493                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6494                         kvm->arch.x2apic_format = true;
6495                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6496                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6497
6498                 r = 0;
6499                 break;
6500         case KVM_CAP_X86_DISABLE_EXITS:
6501                 r = -EINVAL;
6502                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6503                         break;
6504
6505                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6506                         kvm->arch.pause_in_guest = true;
6507
6508 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6509                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6510
6511                 if (!mitigate_smt_rsb) {
6512                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6513                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6514                                 pr_warn_once(SMT_RSB_MSG);
6515
6516                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6517                             kvm_can_mwait_in_guest())
6518                                 kvm->arch.mwait_in_guest = true;
6519                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6520                                 kvm->arch.hlt_in_guest = true;
6521                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6522                                 kvm->arch.cstate_in_guest = true;
6523                 }
6524
6525                 r = 0;
6526                 break;
6527         case KVM_CAP_MSR_PLATFORM_INFO:
6528                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6529                 r = 0;
6530                 break;
6531         case KVM_CAP_EXCEPTION_PAYLOAD:
6532                 kvm->arch.exception_payload_enabled = cap->args[0];
6533                 r = 0;
6534                 break;
6535         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6536                 kvm->arch.triple_fault_event = cap->args[0];
6537                 r = 0;
6538                 break;
6539         case KVM_CAP_X86_USER_SPACE_MSR:
6540                 r = -EINVAL;
6541                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6542                         break;
6543                 kvm->arch.user_space_msr_mask = cap->args[0];
6544                 r = 0;
6545                 break;
6546         case KVM_CAP_X86_BUS_LOCK_EXIT:
6547                 r = -EINVAL;
6548                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6549                         break;
6550
6551                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6552                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6553                         break;
6554
6555                 if (kvm_caps.has_bus_lock_exit &&
6556                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6557                         kvm->arch.bus_lock_detection_enabled = true;
6558                 r = 0;
6559                 break;
6560 #ifdef CONFIG_X86_SGX_KVM
6561         case KVM_CAP_SGX_ATTRIBUTE: {
6562                 unsigned long allowed_attributes = 0;
6563
6564                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6565                 if (r)
6566                         break;
6567
6568                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6569                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6570                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6571                         kvm->arch.sgx_provisioning_allowed = true;
6572                 else
6573                         r = -EINVAL;
6574                 break;
6575         }
6576 #endif
6577         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6578                 r = -EINVAL;
6579                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6580                         break;
6581
6582                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6583                 break;
6584         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6585                 r = -EINVAL;
6586                 if (!kvm_x86_ops.vm_move_enc_context_from)
6587                         break;
6588
6589                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6590                 break;
6591         case KVM_CAP_EXIT_HYPERCALL:
6592                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6593                         r = -EINVAL;
6594                         break;
6595                 }
6596                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6597                 r = 0;
6598                 break;
6599         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6600                 r = -EINVAL;
6601                 if (cap->args[0] & ~1)
6602                         break;
6603                 kvm->arch.exit_on_emulation_error = cap->args[0];
6604                 r = 0;
6605                 break;
6606         case KVM_CAP_PMU_CAPABILITY:
6607                 r = -EINVAL;
6608                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6609                         break;
6610
6611                 mutex_lock(&kvm->lock);
6612                 if (!kvm->created_vcpus) {
6613                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6614                         r = 0;
6615                 }
6616                 mutex_unlock(&kvm->lock);
6617                 break;
6618         case KVM_CAP_MAX_VCPU_ID:
6619                 r = -EINVAL;
6620                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6621                         break;
6622
6623                 mutex_lock(&kvm->lock);
6624                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6625                         r = 0;
6626                 } else if (!kvm->arch.max_vcpu_ids) {
6627                         kvm->arch.max_vcpu_ids = cap->args[0];
6628                         r = 0;
6629                 }
6630                 mutex_unlock(&kvm->lock);
6631                 break;
6632         case KVM_CAP_X86_NOTIFY_VMEXIT:
6633                 r = -EINVAL;
6634                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6635                         break;
6636                 if (!kvm_caps.has_notify_vmexit)
6637                         break;
6638                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6639                         break;
6640                 mutex_lock(&kvm->lock);
6641                 if (!kvm->created_vcpus) {
6642                         kvm->arch.notify_window = cap->args[0] >> 32;
6643                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6644                         r = 0;
6645                 }
6646                 mutex_unlock(&kvm->lock);
6647                 break;
6648         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6649                 r = -EINVAL;
6650
6651                 /*
6652                  * Since the risk of disabling NX hugepages is a guest crashing
6653                  * the system, ensure the userspace process has permission to
6654                  * reboot the system.
6655                  *
6656                  * Note that unlike the reboot() syscall, the process must have
6657                  * this capability in the root namespace because exposing
6658                  * /dev/kvm into a container does not limit the scope of the
6659                  * iTLB multihit bug to that container. In other words,
6660                  * this must use capable(), not ns_capable().
6661                  */
6662                 if (!capable(CAP_SYS_BOOT)) {
6663                         r = -EPERM;
6664                         break;
6665                 }
6666
6667                 if (cap->args[0])
6668                         break;
6669
6670                 mutex_lock(&kvm->lock);
6671                 if (!kvm->created_vcpus) {
6672                         kvm->arch.disable_nx_huge_pages = true;
6673                         r = 0;
6674                 }
6675                 mutex_unlock(&kvm->lock);
6676                 break;
6677         default:
6678                 r = -EINVAL;
6679                 break;
6680         }
6681         return r;
6682 }
6683
6684 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6685 {
6686         struct kvm_x86_msr_filter *msr_filter;
6687
6688         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6689         if (!msr_filter)
6690                 return NULL;
6691
6692         msr_filter->default_allow = default_allow;
6693         return msr_filter;
6694 }
6695
6696 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6697 {
6698         u32 i;
6699
6700         if (!msr_filter)
6701                 return;
6702
6703         for (i = 0; i < msr_filter->count; i++)
6704                 kfree(msr_filter->ranges[i].bitmap);
6705
6706         kfree(msr_filter);
6707 }
6708
6709 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6710                               struct kvm_msr_filter_range *user_range)
6711 {
6712         unsigned long *bitmap;
6713         size_t bitmap_size;
6714
6715         if (!user_range->nmsrs)
6716                 return 0;
6717
6718         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6719                 return -EINVAL;
6720
6721         if (!user_range->flags)
6722                 return -EINVAL;
6723
6724         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6725         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6726                 return -EINVAL;
6727
6728         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6729         if (IS_ERR(bitmap))
6730                 return PTR_ERR(bitmap);
6731
6732         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6733                 .flags = user_range->flags,
6734                 .base = user_range->base,
6735                 .nmsrs = user_range->nmsrs,
6736                 .bitmap = bitmap,
6737         };
6738
6739         msr_filter->count++;
6740         return 0;
6741 }
6742
6743 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6744                                        struct kvm_msr_filter *filter)
6745 {
6746         struct kvm_x86_msr_filter *new_filter, *old_filter;
6747         bool default_allow;
6748         bool empty = true;
6749         int r;
6750         u32 i;
6751
6752         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6753                 return -EINVAL;
6754
6755         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6756                 empty &= !filter->ranges[i].nmsrs;
6757
6758         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6759         if (empty && !default_allow)
6760                 return -EINVAL;
6761
6762         new_filter = kvm_alloc_msr_filter(default_allow);
6763         if (!new_filter)
6764                 return -ENOMEM;
6765
6766         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6767                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6768                 if (r) {
6769                         kvm_free_msr_filter(new_filter);
6770                         return r;
6771                 }
6772         }
6773
6774         mutex_lock(&kvm->lock);
6775         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6776                                          mutex_is_locked(&kvm->lock));
6777         mutex_unlock(&kvm->lock);
6778         synchronize_srcu(&kvm->srcu);
6779
6780         kvm_free_msr_filter(old_filter);
6781
6782         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6783
6784         return 0;
6785 }
6786
6787 #ifdef CONFIG_KVM_COMPAT
6788 /* for KVM_X86_SET_MSR_FILTER */
6789 struct kvm_msr_filter_range_compat {
6790         __u32 flags;
6791         __u32 nmsrs;
6792         __u32 base;
6793         __u32 bitmap;
6794 };
6795
6796 struct kvm_msr_filter_compat {
6797         __u32 flags;
6798         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6799 };
6800
6801 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6802
6803 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6804                               unsigned long arg)
6805 {
6806         void __user *argp = (void __user *)arg;
6807         struct kvm *kvm = filp->private_data;
6808         long r = -ENOTTY;
6809
6810         switch (ioctl) {
6811         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6812                 struct kvm_msr_filter __user *user_msr_filter = argp;
6813                 struct kvm_msr_filter_compat filter_compat;
6814                 struct kvm_msr_filter filter;
6815                 int i;
6816
6817                 if (copy_from_user(&filter_compat, user_msr_filter,
6818                                    sizeof(filter_compat)))
6819                         return -EFAULT;
6820
6821                 filter.flags = filter_compat.flags;
6822                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6823                         struct kvm_msr_filter_range_compat *cr;
6824
6825                         cr = &filter_compat.ranges[i];
6826                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6827                                 .flags = cr->flags,
6828                                 .nmsrs = cr->nmsrs,
6829                                 .base = cr->base,
6830                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6831                         };
6832                 }
6833
6834                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6835                 break;
6836         }
6837         }
6838
6839         return r;
6840 }
6841 #endif
6842
6843 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6844 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6845 {
6846         struct kvm_vcpu *vcpu;
6847         unsigned long i;
6848         int ret = 0;
6849
6850         mutex_lock(&kvm->lock);
6851         kvm_for_each_vcpu(i, vcpu, kvm) {
6852                 if (!vcpu->arch.pv_time.active)
6853                         continue;
6854
6855                 ret = kvm_set_guest_paused(vcpu);
6856                 if (ret) {
6857                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6858                                 vcpu->vcpu_id, ret);
6859                         break;
6860                 }
6861         }
6862         mutex_unlock(&kvm->lock);
6863
6864         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6865 }
6866
6867 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6868 {
6869         switch (state) {
6870         case PM_HIBERNATION_PREPARE:
6871         case PM_SUSPEND_PREPARE:
6872                 return kvm_arch_suspend_notifier(kvm);
6873         }
6874
6875         return NOTIFY_DONE;
6876 }
6877 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6878
6879 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6880 {
6881         struct kvm_clock_data data = { 0 };
6882
6883         get_kvmclock(kvm, &data);
6884         if (copy_to_user(argp, &data, sizeof(data)))
6885                 return -EFAULT;
6886
6887         return 0;
6888 }
6889
6890 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6891 {
6892         struct kvm_arch *ka = &kvm->arch;
6893         struct kvm_clock_data data;
6894         u64 now_raw_ns;
6895
6896         if (copy_from_user(&data, argp, sizeof(data)))
6897                 return -EFAULT;
6898
6899         /*
6900          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6901          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6902          */
6903         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6904                 return -EINVAL;
6905
6906         kvm_hv_request_tsc_page_update(kvm);
6907         kvm_start_pvclock_update(kvm);
6908         pvclock_update_vm_gtod_copy(kvm);
6909
6910         /*
6911          * This pairs with kvm_guest_time_update(): when masterclock is
6912          * in use, we use master_kernel_ns + kvmclock_offset to set
6913          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6914          * is slightly ahead) here we risk going negative on unsigned
6915          * 'system_time' when 'data.clock' is very small.
6916          */
6917         if (data.flags & KVM_CLOCK_REALTIME) {
6918                 u64 now_real_ns = ktime_get_real_ns();
6919
6920                 /*
6921                  * Avoid stepping the kvmclock backwards.
6922                  */
6923                 if (now_real_ns > data.realtime)
6924                         data.clock += now_real_ns - data.realtime;
6925         }
6926
6927         if (ka->use_master_clock)
6928                 now_raw_ns = ka->master_kernel_ns;
6929         else
6930                 now_raw_ns = get_kvmclock_base_ns();
6931         ka->kvmclock_offset = data.clock - now_raw_ns;
6932         kvm_end_pvclock_update(kvm);
6933         return 0;
6934 }
6935
6936 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6937 {
6938         struct kvm *kvm = filp->private_data;
6939         void __user *argp = (void __user *)arg;
6940         int r = -ENOTTY;
6941         /*
6942          * This union makes it completely explicit to gcc-3.x
6943          * that these two variables' stack usage should be
6944          * combined, not added together.
6945          */
6946         union {
6947                 struct kvm_pit_state ps;
6948                 struct kvm_pit_state2 ps2;
6949                 struct kvm_pit_config pit_config;
6950         } u;
6951
6952         switch (ioctl) {
6953         case KVM_SET_TSS_ADDR:
6954                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6955                 break;
6956         case KVM_SET_IDENTITY_MAP_ADDR: {
6957                 u64 ident_addr;
6958
6959                 mutex_lock(&kvm->lock);
6960                 r = -EINVAL;
6961                 if (kvm->created_vcpus)
6962                         goto set_identity_unlock;
6963                 r = -EFAULT;
6964                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6965                         goto set_identity_unlock;
6966                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6967 set_identity_unlock:
6968                 mutex_unlock(&kvm->lock);
6969                 break;
6970         }
6971         case KVM_SET_NR_MMU_PAGES:
6972                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6973                 break;
6974         case KVM_CREATE_IRQCHIP: {
6975                 mutex_lock(&kvm->lock);
6976
6977                 r = -EEXIST;
6978                 if (irqchip_in_kernel(kvm))
6979                         goto create_irqchip_unlock;
6980
6981                 r = -EINVAL;
6982                 if (kvm->created_vcpus)
6983                         goto create_irqchip_unlock;
6984
6985                 r = kvm_pic_init(kvm);
6986                 if (r)
6987                         goto create_irqchip_unlock;
6988
6989                 r = kvm_ioapic_init(kvm);
6990                 if (r) {
6991                         kvm_pic_destroy(kvm);
6992                         goto create_irqchip_unlock;
6993                 }
6994
6995                 r = kvm_setup_default_irq_routing(kvm);
6996                 if (r) {
6997                         kvm_ioapic_destroy(kvm);
6998                         kvm_pic_destroy(kvm);
6999                         goto create_irqchip_unlock;
7000                 }
7001                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7002                 smp_wmb();
7003                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7004                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7005         create_irqchip_unlock:
7006                 mutex_unlock(&kvm->lock);
7007                 break;
7008         }
7009         case KVM_CREATE_PIT:
7010                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7011                 goto create_pit;
7012         case KVM_CREATE_PIT2:
7013                 r = -EFAULT;
7014                 if (copy_from_user(&u.pit_config, argp,
7015                                    sizeof(struct kvm_pit_config)))
7016                         goto out;
7017         create_pit:
7018                 mutex_lock(&kvm->lock);
7019                 r = -EEXIST;
7020                 if (kvm->arch.vpit)
7021                         goto create_pit_unlock;
7022                 r = -ENOENT;
7023                 if (!pic_in_kernel(kvm))
7024                         goto create_pit_unlock;
7025                 r = -ENOMEM;
7026                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7027                 if (kvm->arch.vpit)
7028                         r = 0;
7029         create_pit_unlock:
7030                 mutex_unlock(&kvm->lock);
7031                 break;
7032         case KVM_GET_IRQCHIP: {
7033                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7034                 struct kvm_irqchip *chip;
7035
7036                 chip = memdup_user(argp, sizeof(*chip));
7037                 if (IS_ERR(chip)) {
7038                         r = PTR_ERR(chip);
7039                         goto out;
7040                 }
7041
7042                 r = -ENXIO;
7043                 if (!irqchip_kernel(kvm))
7044                         goto get_irqchip_out;
7045                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7046                 if (r)
7047                         goto get_irqchip_out;
7048                 r = -EFAULT;
7049                 if (copy_to_user(argp, chip, sizeof(*chip)))
7050                         goto get_irqchip_out;
7051                 r = 0;
7052         get_irqchip_out:
7053                 kfree(chip);
7054                 break;
7055         }
7056         case KVM_SET_IRQCHIP: {
7057                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7058                 struct kvm_irqchip *chip;
7059
7060                 chip = memdup_user(argp, sizeof(*chip));
7061                 if (IS_ERR(chip)) {
7062                         r = PTR_ERR(chip);
7063                         goto out;
7064                 }
7065
7066                 r = -ENXIO;
7067                 if (!irqchip_kernel(kvm))
7068                         goto set_irqchip_out;
7069                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7070         set_irqchip_out:
7071                 kfree(chip);
7072                 break;
7073         }
7074         case KVM_GET_PIT: {
7075                 r = -EFAULT;
7076                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7077                         goto out;
7078                 r = -ENXIO;
7079                 if (!kvm->arch.vpit)
7080                         goto out;
7081                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7082                 if (r)
7083                         goto out;
7084                 r = -EFAULT;
7085                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7086                         goto out;
7087                 r = 0;
7088                 break;
7089         }
7090         case KVM_SET_PIT: {
7091                 r = -EFAULT;
7092                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7093                         goto out;
7094                 mutex_lock(&kvm->lock);
7095                 r = -ENXIO;
7096                 if (!kvm->arch.vpit)
7097                         goto set_pit_out;
7098                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7099 set_pit_out:
7100                 mutex_unlock(&kvm->lock);
7101                 break;
7102         }
7103         case KVM_GET_PIT2: {
7104                 r = -ENXIO;
7105                 if (!kvm->arch.vpit)
7106                         goto out;
7107                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7108                 if (r)
7109                         goto out;
7110                 r = -EFAULT;
7111                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7112                         goto out;
7113                 r = 0;
7114                 break;
7115         }
7116         case KVM_SET_PIT2: {
7117                 r = -EFAULT;
7118                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7119                         goto out;
7120                 mutex_lock(&kvm->lock);
7121                 r = -ENXIO;
7122                 if (!kvm->arch.vpit)
7123                         goto set_pit2_out;
7124                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7125 set_pit2_out:
7126                 mutex_unlock(&kvm->lock);
7127                 break;
7128         }
7129         case KVM_REINJECT_CONTROL: {
7130                 struct kvm_reinject_control control;
7131                 r =  -EFAULT;
7132                 if (copy_from_user(&control, argp, sizeof(control)))
7133                         goto out;
7134                 r = -ENXIO;
7135                 if (!kvm->arch.vpit)
7136                         goto out;
7137                 r = kvm_vm_ioctl_reinject(kvm, &control);
7138                 break;
7139         }
7140         case KVM_SET_BOOT_CPU_ID:
7141                 r = 0;
7142                 mutex_lock(&kvm->lock);
7143                 if (kvm->created_vcpus)
7144                         r = -EBUSY;
7145                 else
7146                         kvm->arch.bsp_vcpu_id = arg;
7147                 mutex_unlock(&kvm->lock);
7148                 break;
7149 #ifdef CONFIG_KVM_XEN
7150         case KVM_XEN_HVM_CONFIG: {
7151                 struct kvm_xen_hvm_config xhc;
7152                 r = -EFAULT;
7153                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7154                         goto out;
7155                 r = kvm_xen_hvm_config(kvm, &xhc);
7156                 break;
7157         }
7158         case KVM_XEN_HVM_GET_ATTR: {
7159                 struct kvm_xen_hvm_attr xha;
7160
7161                 r = -EFAULT;
7162                 if (copy_from_user(&xha, argp, sizeof(xha)))
7163                         goto out;
7164                 r = kvm_xen_hvm_get_attr(kvm, &xha);
7165                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7166                         r = -EFAULT;
7167                 break;
7168         }
7169         case KVM_XEN_HVM_SET_ATTR: {
7170                 struct kvm_xen_hvm_attr xha;
7171
7172                 r = -EFAULT;
7173                 if (copy_from_user(&xha, argp, sizeof(xha)))
7174                         goto out;
7175                 r = kvm_xen_hvm_set_attr(kvm, &xha);
7176                 break;
7177         }
7178         case KVM_XEN_HVM_EVTCHN_SEND: {
7179                 struct kvm_irq_routing_xen_evtchn uxe;
7180
7181                 r = -EFAULT;
7182                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7183                         goto out;
7184                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7185                 break;
7186         }
7187 #endif
7188         case KVM_SET_CLOCK:
7189                 r = kvm_vm_ioctl_set_clock(kvm, argp);
7190                 break;
7191         case KVM_GET_CLOCK:
7192                 r = kvm_vm_ioctl_get_clock(kvm, argp);
7193                 break;
7194         case KVM_SET_TSC_KHZ: {
7195                 u32 user_tsc_khz;
7196
7197                 r = -EINVAL;
7198                 user_tsc_khz = (u32)arg;
7199
7200                 if (kvm_caps.has_tsc_control &&
7201                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7202                         goto out;
7203
7204                 if (user_tsc_khz == 0)
7205                         user_tsc_khz = tsc_khz;
7206
7207                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7208                 r = 0;
7209
7210                 goto out;
7211         }
7212         case KVM_GET_TSC_KHZ: {
7213                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7214                 goto out;
7215         }
7216         case KVM_MEMORY_ENCRYPT_OP: {
7217                 r = -ENOTTY;
7218                 if (!kvm_x86_ops.mem_enc_ioctl)
7219                         goto out;
7220
7221                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7222                 break;
7223         }
7224         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7225                 struct kvm_enc_region region;
7226
7227                 r = -EFAULT;
7228                 if (copy_from_user(&region, argp, sizeof(region)))
7229                         goto out;
7230
7231                 r = -ENOTTY;
7232                 if (!kvm_x86_ops.mem_enc_register_region)
7233                         goto out;
7234
7235                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7236                 break;
7237         }
7238         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7239                 struct kvm_enc_region region;
7240
7241                 r = -EFAULT;
7242                 if (copy_from_user(&region, argp, sizeof(region)))
7243                         goto out;
7244
7245                 r = -ENOTTY;
7246                 if (!kvm_x86_ops.mem_enc_unregister_region)
7247                         goto out;
7248
7249                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7250                 break;
7251         }
7252 #ifdef CONFIG_KVM_HYPERV
7253         case KVM_HYPERV_EVENTFD: {
7254                 struct kvm_hyperv_eventfd hvevfd;
7255
7256                 r = -EFAULT;
7257                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7258                         goto out;
7259                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7260                 break;
7261         }
7262 #endif
7263         case KVM_SET_PMU_EVENT_FILTER:
7264                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7265                 break;
7266         case KVM_X86_SET_MSR_FILTER: {
7267                 struct kvm_msr_filter __user *user_msr_filter = argp;
7268                 struct kvm_msr_filter filter;
7269
7270                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7271                         return -EFAULT;
7272
7273                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7274                 break;
7275         }
7276         default:
7277                 r = -ENOTTY;
7278         }
7279 out:
7280         return r;
7281 }
7282
7283 static void kvm_probe_feature_msr(u32 msr_index)
7284 {
7285         struct kvm_msr_entry msr = {
7286                 .index = msr_index,
7287         };
7288
7289         if (kvm_get_msr_feature(&msr))
7290                 return;
7291
7292         msr_based_features[num_msr_based_features++] = msr_index;
7293 }
7294
7295 static void kvm_probe_msr_to_save(u32 msr_index)
7296 {
7297         u32 dummy[2];
7298
7299         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7300                 return;
7301
7302         /*
7303          * Even MSRs that are valid in the host may not be exposed to guests in
7304          * some cases.
7305          */
7306         switch (msr_index) {
7307         case MSR_IA32_BNDCFGS:
7308                 if (!kvm_mpx_supported())
7309                         return;
7310                 break;
7311         case MSR_TSC_AUX:
7312                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7313                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7314                         return;
7315                 break;
7316         case MSR_IA32_UMWAIT_CONTROL:
7317                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7318                         return;
7319                 break;
7320         case MSR_IA32_RTIT_CTL:
7321         case MSR_IA32_RTIT_STATUS:
7322                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7323                         return;
7324                 break;
7325         case MSR_IA32_RTIT_CR3_MATCH:
7326                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7327                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7328                         return;
7329                 break;
7330         case MSR_IA32_RTIT_OUTPUT_BASE:
7331         case MSR_IA32_RTIT_OUTPUT_MASK:
7332                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7333                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7334                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7335                         return;
7336                 break;
7337         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7338                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7339                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7340                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7341                         return;
7342                 break;
7343         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7344                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7345                     kvm_pmu_cap.num_counters_gp)
7346                         return;
7347                 break;
7348         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7349                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7350                     kvm_pmu_cap.num_counters_gp)
7351                         return;
7352                 break;
7353         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7354                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7355                     kvm_pmu_cap.num_counters_fixed)
7356                         return;
7357                 break;
7358         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7359         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7360         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7361                 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7362                         return;
7363                 break;
7364         case MSR_IA32_XFD:
7365         case MSR_IA32_XFD_ERR:
7366                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7367                         return;
7368                 break;
7369         case MSR_IA32_TSX_CTRL:
7370                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7371                         return;
7372                 break;
7373         default:
7374                 break;
7375         }
7376
7377         msrs_to_save[num_msrs_to_save++] = msr_index;
7378 }
7379
7380 static void kvm_init_msr_lists(void)
7381 {
7382         unsigned i;
7383
7384         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7385                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7386
7387         num_msrs_to_save = 0;
7388         num_emulated_msrs = 0;
7389         num_msr_based_features = 0;
7390
7391         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7392                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7393
7394         if (enable_pmu) {
7395                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7396                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7397         }
7398
7399         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7400                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7401                         continue;
7402
7403                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7404         }
7405
7406         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7407                 kvm_probe_feature_msr(i);
7408
7409         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7410                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7411 }
7412
7413 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7414                            const void *v)
7415 {
7416         int handled = 0;
7417         int n;
7418
7419         do {
7420                 n = min(len, 8);
7421                 if (!(lapic_in_kernel(vcpu) &&
7422                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7423                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7424                         break;
7425                 handled += n;
7426                 addr += n;
7427                 len -= n;
7428                 v += n;
7429         } while (len);
7430
7431         return handled;
7432 }
7433
7434 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7435 {
7436         int handled = 0;
7437         int n;
7438
7439         do {
7440                 n = min(len, 8);
7441                 if (!(lapic_in_kernel(vcpu) &&
7442                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7443                                          addr, n, v))
7444                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7445                         break;
7446                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7447                 handled += n;
7448                 addr += n;
7449                 len -= n;
7450                 v += n;
7451         } while (len);
7452
7453         return handled;
7454 }
7455
7456 void kvm_set_segment(struct kvm_vcpu *vcpu,
7457                      struct kvm_segment *var, int seg)
7458 {
7459         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7460 }
7461
7462 void kvm_get_segment(struct kvm_vcpu *vcpu,
7463                      struct kvm_segment *var, int seg)
7464 {
7465         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7466 }
7467
7468 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7469                            struct x86_exception *exception)
7470 {
7471         struct kvm_mmu *mmu = vcpu->arch.mmu;
7472         gpa_t t_gpa;
7473
7474         BUG_ON(!mmu_is_nested(vcpu));
7475
7476         /* NPT walks are always user-walks */
7477         access |= PFERR_USER_MASK;
7478         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7479
7480         return t_gpa;
7481 }
7482
7483 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7484                               struct x86_exception *exception)
7485 {
7486         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7487
7488         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7489         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7490 }
7491 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7492
7493 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7494                                struct x86_exception *exception)
7495 {
7496         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7497
7498         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7499         access |= PFERR_WRITE_MASK;
7500         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7501 }
7502 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7503
7504 /* uses this to access any guest's mapped memory without checking CPL */
7505 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7506                                 struct x86_exception *exception)
7507 {
7508         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7509
7510         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7511 }
7512
7513 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7514                                       struct kvm_vcpu *vcpu, u64 access,
7515                                       struct x86_exception *exception)
7516 {
7517         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7518         void *data = val;
7519         int r = X86EMUL_CONTINUE;
7520
7521         while (bytes) {
7522                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7523                 unsigned offset = addr & (PAGE_SIZE-1);
7524                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7525                 int ret;
7526
7527                 if (gpa == INVALID_GPA)
7528                         return X86EMUL_PROPAGATE_FAULT;
7529                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7530                                                offset, toread);
7531                 if (ret < 0) {
7532                         r = X86EMUL_IO_NEEDED;
7533                         goto out;
7534                 }
7535
7536                 bytes -= toread;
7537                 data += toread;
7538                 addr += toread;
7539         }
7540 out:
7541         return r;
7542 }
7543
7544 /* used for instruction fetching */
7545 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7546                                 gva_t addr, void *val, unsigned int bytes,
7547                                 struct x86_exception *exception)
7548 {
7549         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7550         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7551         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7552         unsigned offset;
7553         int ret;
7554
7555         /* Inline kvm_read_guest_virt_helper for speed.  */
7556         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7557                                     exception);
7558         if (unlikely(gpa == INVALID_GPA))
7559                 return X86EMUL_PROPAGATE_FAULT;
7560
7561         offset = addr & (PAGE_SIZE-1);
7562         if (WARN_ON(offset + bytes > PAGE_SIZE))
7563                 bytes = (unsigned)PAGE_SIZE - offset;
7564         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7565                                        offset, bytes);
7566         if (unlikely(ret < 0))
7567                 return X86EMUL_IO_NEEDED;
7568
7569         return X86EMUL_CONTINUE;
7570 }
7571
7572 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7573                                gva_t addr, void *val, unsigned int bytes,
7574                                struct x86_exception *exception)
7575 {
7576         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7577
7578         /*
7579          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7580          * is returned, but our callers are not ready for that and they blindly
7581          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7582          * uninitialized kernel stack memory into cr2 and error code.
7583          */
7584         memset(exception, 0, sizeof(*exception));
7585         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7586                                           exception);
7587 }
7588 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7589
7590 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7591                              gva_t addr, void *val, unsigned int bytes,
7592                              struct x86_exception *exception, bool system)
7593 {
7594         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7595         u64 access = 0;
7596
7597         if (system)
7598                 access |= PFERR_IMPLICIT_ACCESS;
7599         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7600                 access |= PFERR_USER_MASK;
7601
7602         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7603 }
7604
7605 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7606                                       struct kvm_vcpu *vcpu, u64 access,
7607                                       struct x86_exception *exception)
7608 {
7609         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7610         void *data = val;
7611         int r = X86EMUL_CONTINUE;
7612
7613         while (bytes) {
7614                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7615                 unsigned offset = addr & (PAGE_SIZE-1);
7616                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7617                 int ret;
7618
7619                 if (gpa == INVALID_GPA)
7620                         return X86EMUL_PROPAGATE_FAULT;
7621                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7622                 if (ret < 0) {
7623                         r = X86EMUL_IO_NEEDED;
7624                         goto out;
7625                 }
7626
7627                 bytes -= towrite;
7628                 data += towrite;
7629                 addr += towrite;
7630         }
7631 out:
7632         return r;
7633 }
7634
7635 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7636                               unsigned int bytes, struct x86_exception *exception,
7637                               bool system)
7638 {
7639         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7640         u64 access = PFERR_WRITE_MASK;
7641
7642         if (system)
7643                 access |= PFERR_IMPLICIT_ACCESS;
7644         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7645                 access |= PFERR_USER_MASK;
7646
7647         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7648                                            access, exception);
7649 }
7650
7651 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7652                                 unsigned int bytes, struct x86_exception *exception)
7653 {
7654         /* kvm_write_guest_virt_system can pull in tons of pages. */
7655         vcpu->arch.l1tf_flush_l1d = true;
7656
7657         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7658                                            PFERR_WRITE_MASK, exception);
7659 }
7660 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7661
7662 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7663                                   void *insn, int insn_len)
7664 {
7665         return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7666                                                               insn, insn_len);
7667 }
7668
7669 int handle_ud(struct kvm_vcpu *vcpu)
7670 {
7671         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7672         int fep_flags = READ_ONCE(force_emulation_prefix);
7673         int emul_type = EMULTYPE_TRAP_UD;
7674         char sig[5]; /* ud2; .ascii "kvm" */
7675         struct x86_exception e;
7676         int r;
7677
7678         r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7679         if (r != X86EMUL_CONTINUE)
7680                 return 1;
7681
7682         if (fep_flags &&
7683             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7684                                 sig, sizeof(sig), &e) == 0 &&
7685             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7686                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7687                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7688                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7689                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7690         }
7691
7692         return kvm_emulate_instruction(vcpu, emul_type);
7693 }
7694 EXPORT_SYMBOL_GPL(handle_ud);
7695
7696 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7697                             gpa_t gpa, bool write)
7698 {
7699         /* For APIC access vmexit */
7700         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7701                 return 1;
7702
7703         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7704                 trace_vcpu_match_mmio(gva, gpa, write, true);
7705                 return 1;
7706         }
7707
7708         return 0;
7709 }
7710
7711 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7712                                 gpa_t *gpa, struct x86_exception *exception,
7713                                 bool write)
7714 {
7715         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7716         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7717                 | (write ? PFERR_WRITE_MASK : 0);
7718
7719         /*
7720          * currently PKRU is only applied to ept enabled guest so
7721          * there is no pkey in EPT page table for L1 guest or EPT
7722          * shadow page table for L2 guest.
7723          */
7724         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7725             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7726                               vcpu->arch.mmio_access, 0, access))) {
7727                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7728                                         (gva & (PAGE_SIZE - 1));
7729                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7730                 return 1;
7731         }
7732
7733         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7734
7735         if (*gpa == INVALID_GPA)
7736                 return -1;
7737
7738         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7739 }
7740
7741 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7742                         const void *val, int bytes)
7743 {
7744         int ret;
7745
7746         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7747         if (ret < 0)
7748                 return 0;
7749         kvm_page_track_write(vcpu, gpa, val, bytes);
7750         return 1;
7751 }
7752
7753 struct read_write_emulator_ops {
7754         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7755                                   int bytes);
7756         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7757                                   void *val, int bytes);
7758         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7759                                int bytes, void *val);
7760         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7761                                     void *val, int bytes);
7762         bool write;
7763 };
7764
7765 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7766 {
7767         if (vcpu->mmio_read_completed) {
7768                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7769                                vcpu->mmio_fragments[0].gpa, val);
7770                 vcpu->mmio_read_completed = 0;
7771                 return 1;
7772         }
7773
7774         return 0;
7775 }
7776
7777 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7778                         void *val, int bytes)
7779 {
7780         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7781 }
7782
7783 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7784                          void *val, int bytes)
7785 {
7786         return emulator_write_phys(vcpu, gpa, val, bytes);
7787 }
7788
7789 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7790 {
7791         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7792         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7793 }
7794
7795 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7796                           void *val, int bytes)
7797 {
7798         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7799         return X86EMUL_IO_NEEDED;
7800 }
7801
7802 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7803                            void *val, int bytes)
7804 {
7805         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7806
7807         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7808         return X86EMUL_CONTINUE;
7809 }
7810
7811 static const struct read_write_emulator_ops read_emultor = {
7812         .read_write_prepare = read_prepare,
7813         .read_write_emulate = read_emulate,
7814         .read_write_mmio = vcpu_mmio_read,
7815         .read_write_exit_mmio = read_exit_mmio,
7816 };
7817
7818 static const struct read_write_emulator_ops write_emultor = {
7819         .read_write_emulate = write_emulate,
7820         .read_write_mmio = write_mmio,
7821         .read_write_exit_mmio = write_exit_mmio,
7822         .write = true,
7823 };
7824
7825 static int emulator_read_write_onepage(unsigned long addr, void *val,
7826                                        unsigned int bytes,
7827                                        struct x86_exception *exception,
7828                                        struct kvm_vcpu *vcpu,
7829                                        const struct read_write_emulator_ops *ops)
7830 {
7831         gpa_t gpa;
7832         int handled, ret;
7833         bool write = ops->write;
7834         struct kvm_mmio_fragment *frag;
7835         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7836
7837         /*
7838          * If the exit was due to a NPF we may already have a GPA.
7839          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7840          * Note, this cannot be used on string operations since string
7841          * operation using rep will only have the initial GPA from the NPF
7842          * occurred.
7843          */
7844         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7845             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7846                 gpa = ctxt->gpa_val;
7847                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7848         } else {
7849                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7850                 if (ret < 0)
7851                         return X86EMUL_PROPAGATE_FAULT;
7852         }
7853
7854         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7855                 return X86EMUL_CONTINUE;
7856
7857         /*
7858          * Is this MMIO handled locally?
7859          */
7860         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7861         if (handled == bytes)
7862                 return X86EMUL_CONTINUE;
7863
7864         gpa += handled;
7865         bytes -= handled;
7866         val += handled;
7867
7868         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7869         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7870         frag->gpa = gpa;
7871         frag->data = val;
7872         frag->len = bytes;
7873         return X86EMUL_CONTINUE;
7874 }
7875
7876 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7877                         unsigned long addr,
7878                         void *val, unsigned int bytes,
7879                         struct x86_exception *exception,
7880                         const struct read_write_emulator_ops *ops)
7881 {
7882         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7883         gpa_t gpa;
7884         int rc;
7885
7886         if (ops->read_write_prepare &&
7887                   ops->read_write_prepare(vcpu, val, bytes))
7888                 return X86EMUL_CONTINUE;
7889
7890         vcpu->mmio_nr_fragments = 0;
7891
7892         /* Crossing a page boundary? */
7893         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7894                 int now;
7895
7896                 now = -addr & ~PAGE_MASK;
7897                 rc = emulator_read_write_onepage(addr, val, now, exception,
7898                                                  vcpu, ops);
7899
7900                 if (rc != X86EMUL_CONTINUE)
7901                         return rc;
7902                 addr += now;
7903                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7904                         addr = (u32)addr;
7905                 val += now;
7906                 bytes -= now;
7907         }
7908
7909         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7910                                          vcpu, ops);
7911         if (rc != X86EMUL_CONTINUE)
7912                 return rc;
7913
7914         if (!vcpu->mmio_nr_fragments)
7915                 return rc;
7916
7917         gpa = vcpu->mmio_fragments[0].gpa;
7918
7919         vcpu->mmio_needed = 1;
7920         vcpu->mmio_cur_fragment = 0;
7921
7922         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7923         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7924         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7925         vcpu->run->mmio.phys_addr = gpa;
7926
7927         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7928 }
7929
7930 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7931                                   unsigned long addr,
7932                                   void *val,
7933                                   unsigned int bytes,
7934                                   struct x86_exception *exception)
7935 {
7936         return emulator_read_write(ctxt, addr, val, bytes,
7937                                    exception, &read_emultor);
7938 }
7939
7940 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7941                             unsigned long addr,
7942                             const void *val,
7943                             unsigned int bytes,
7944                             struct x86_exception *exception)
7945 {
7946         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7947                                    exception, &write_emultor);
7948 }
7949
7950 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7951         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7952
7953 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7954                                      unsigned long addr,
7955                                      const void *old,
7956                                      const void *new,
7957                                      unsigned int bytes,
7958                                      struct x86_exception *exception)
7959 {
7960         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7961         u64 page_line_mask;
7962         unsigned long hva;
7963         gpa_t gpa;
7964         int r;
7965
7966         /* guests cmpxchg8b have to be emulated atomically */
7967         if (bytes > 8 || (bytes & (bytes - 1)))
7968                 goto emul_write;
7969
7970         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7971
7972         if (gpa == INVALID_GPA ||
7973             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7974                 goto emul_write;
7975
7976         /*
7977          * Emulate the atomic as a straight write to avoid #AC if SLD is
7978          * enabled in the host and the access splits a cache line.
7979          */
7980         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7981                 page_line_mask = ~(cache_line_size() - 1);
7982         else
7983                 page_line_mask = PAGE_MASK;
7984
7985         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7986                 goto emul_write;
7987
7988         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7989         if (kvm_is_error_hva(hva))
7990                 goto emul_write;
7991
7992         hva += offset_in_page(gpa);
7993
7994         switch (bytes) {
7995         case 1:
7996                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7997                 break;
7998         case 2:
7999                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8000                 break;
8001         case 4:
8002                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8003                 break;
8004         case 8:
8005                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8006                 break;
8007         default:
8008                 BUG();
8009         }
8010
8011         if (r < 0)
8012                 return X86EMUL_UNHANDLEABLE;
8013
8014         /*
8015          * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8016          * successful, as the old value is written back on failure.  Note, for
8017          * live migration, this is unnecessarily conservative as CMPXCHG writes
8018          * back the original value and the access is atomic, but KVM's ABI is
8019          * that all writes are dirty logged, regardless of the value written.
8020          */
8021         kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8022
8023         if (r)
8024                 return X86EMUL_CMPXCHG_FAILED;
8025
8026         kvm_page_track_write(vcpu, gpa, new, bytes);
8027
8028         return X86EMUL_CONTINUE;
8029
8030 emul_write:
8031         pr_warn_once("emulating exchange as write\n");
8032
8033         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8034 }
8035
8036 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8037                                unsigned short port, void *data,
8038                                unsigned int count, bool in)
8039 {
8040         unsigned i;
8041         int r;
8042
8043         WARN_ON_ONCE(vcpu->arch.pio.count);
8044         for (i = 0; i < count; i++) {
8045                 if (in)
8046                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8047                 else
8048                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8049
8050                 if (r) {
8051                         if (i == 0)
8052                                 goto userspace_io;
8053
8054                         /*
8055                          * Userspace must have unregistered the device while PIO
8056                          * was running.  Drop writes / read as 0.
8057                          */
8058                         if (in)
8059                                 memset(data, 0, size * (count - i));
8060                         break;
8061                 }
8062
8063                 data += size;
8064         }
8065         return 1;
8066
8067 userspace_io:
8068         vcpu->arch.pio.port = port;
8069         vcpu->arch.pio.in = in;
8070         vcpu->arch.pio.count = count;
8071         vcpu->arch.pio.size = size;
8072
8073         if (in)
8074                 memset(vcpu->arch.pio_data, 0, size * count);
8075         else
8076                 memcpy(vcpu->arch.pio_data, data, size * count);
8077
8078         vcpu->run->exit_reason = KVM_EXIT_IO;
8079         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8080         vcpu->run->io.size = size;
8081         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8082         vcpu->run->io.count = count;
8083         vcpu->run->io.port = port;
8084         return 0;
8085 }
8086
8087 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8088                            unsigned short port, void *val, unsigned int count)
8089 {
8090         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8091         if (r)
8092                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8093
8094         return r;
8095 }
8096
8097 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8098 {
8099         int size = vcpu->arch.pio.size;
8100         unsigned int count = vcpu->arch.pio.count;
8101         memcpy(val, vcpu->arch.pio_data, size * count);
8102         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8103         vcpu->arch.pio.count = 0;
8104 }
8105
8106 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8107                                     int size, unsigned short port, void *val,
8108                                     unsigned int count)
8109 {
8110         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8111         if (vcpu->arch.pio.count) {
8112                 /*
8113                  * Complete a previous iteration that required userspace I/O.
8114                  * Note, @count isn't guaranteed to match pio.count as userspace
8115                  * can modify ECX before rerunning the vCPU.  Ignore any such
8116                  * shenanigans as KVM doesn't support modifying the rep count,
8117                  * and the emulator ensures @count doesn't overflow the buffer.
8118                  */
8119                 complete_emulator_pio_in(vcpu, val);
8120                 return 1;
8121         }
8122
8123         return emulator_pio_in(vcpu, size, port, val, count);
8124 }
8125
8126 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8127                             unsigned short port, const void *val,
8128                             unsigned int count)
8129 {
8130         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8131         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8132 }
8133
8134 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8135                                      int size, unsigned short port,
8136                                      const void *val, unsigned int count)
8137 {
8138         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8139 }
8140
8141 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8142 {
8143         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8144 }
8145
8146 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8147 {
8148         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8149 }
8150
8151 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8152 {
8153         if (!need_emulate_wbinvd(vcpu))
8154                 return X86EMUL_CONTINUE;
8155
8156         if (static_call(kvm_x86_has_wbinvd_exit)()) {
8157                 int cpu = get_cpu();
8158
8159                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8160                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8161                                 wbinvd_ipi, NULL, 1);
8162                 put_cpu();
8163                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8164         } else
8165                 wbinvd();
8166         return X86EMUL_CONTINUE;
8167 }
8168
8169 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8170 {
8171         kvm_emulate_wbinvd_noskip(vcpu);
8172         return kvm_skip_emulated_instruction(vcpu);
8173 }
8174 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8175
8176
8177
8178 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8179 {
8180         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8181 }
8182
8183 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8184                             unsigned long *dest)
8185 {
8186         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8187 }
8188
8189 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8190                            unsigned long value)
8191 {
8192
8193         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8194 }
8195
8196 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8197 {
8198         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8199 }
8200
8201 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8202 {
8203         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8204         unsigned long value;
8205
8206         switch (cr) {
8207         case 0:
8208                 value = kvm_read_cr0(vcpu);
8209                 break;
8210         case 2:
8211                 value = vcpu->arch.cr2;
8212                 break;
8213         case 3:
8214                 value = kvm_read_cr3(vcpu);
8215                 break;
8216         case 4:
8217                 value = kvm_read_cr4(vcpu);
8218                 break;
8219         case 8:
8220                 value = kvm_get_cr8(vcpu);
8221                 break;
8222         default:
8223                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8224                 return 0;
8225         }
8226
8227         return value;
8228 }
8229
8230 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8231 {
8232         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8233         int res = 0;
8234
8235         switch (cr) {
8236         case 0:
8237                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8238                 break;
8239         case 2:
8240                 vcpu->arch.cr2 = val;
8241                 break;
8242         case 3:
8243                 res = kvm_set_cr3(vcpu, val);
8244                 break;
8245         case 4:
8246                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8247                 break;
8248         case 8:
8249                 res = kvm_set_cr8(vcpu, val);
8250                 break;
8251         default:
8252                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8253                 res = -1;
8254         }
8255
8256         return res;
8257 }
8258
8259 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8260 {
8261         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8262 }
8263
8264 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8265 {
8266         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8267 }
8268
8269 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8270 {
8271         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8272 }
8273
8274 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8275 {
8276         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8277 }
8278
8279 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8280 {
8281         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8282 }
8283
8284 static unsigned long emulator_get_cached_segment_base(
8285         struct x86_emulate_ctxt *ctxt, int seg)
8286 {
8287         return get_segment_base(emul_to_vcpu(ctxt), seg);
8288 }
8289
8290 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8291                                  struct desc_struct *desc, u32 *base3,
8292                                  int seg)
8293 {
8294         struct kvm_segment var;
8295
8296         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8297         *selector = var.selector;
8298
8299         if (var.unusable) {
8300                 memset(desc, 0, sizeof(*desc));
8301                 if (base3)
8302                         *base3 = 0;
8303                 return false;
8304         }
8305
8306         if (var.g)
8307                 var.limit >>= 12;
8308         set_desc_limit(desc, var.limit);
8309         set_desc_base(desc, (unsigned long)var.base);
8310 #ifdef CONFIG_X86_64
8311         if (base3)
8312                 *base3 = var.base >> 32;
8313 #endif
8314         desc->type = var.type;
8315         desc->s = var.s;
8316         desc->dpl = var.dpl;
8317         desc->p = var.present;
8318         desc->avl = var.avl;
8319         desc->l = var.l;
8320         desc->d = var.db;
8321         desc->g = var.g;
8322
8323         return true;
8324 }
8325
8326 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8327                                  struct desc_struct *desc, u32 base3,
8328                                  int seg)
8329 {
8330         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8331         struct kvm_segment var;
8332
8333         var.selector = selector;
8334         var.base = get_desc_base(desc);
8335 #ifdef CONFIG_X86_64
8336         var.base |= ((u64)base3) << 32;
8337 #endif
8338         var.limit = get_desc_limit(desc);
8339         if (desc->g)
8340                 var.limit = (var.limit << 12) | 0xfff;
8341         var.type = desc->type;
8342         var.dpl = desc->dpl;
8343         var.db = desc->d;
8344         var.s = desc->s;
8345         var.l = desc->l;
8346         var.g = desc->g;
8347         var.avl = desc->avl;
8348         var.present = desc->p;
8349         var.unusable = !var.present;
8350         var.padding = 0;
8351
8352         kvm_set_segment(vcpu, &var, seg);
8353         return;
8354 }
8355
8356 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8357                                         u32 msr_index, u64 *pdata)
8358 {
8359         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8360         int r;
8361
8362         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8363         if (r < 0)
8364                 return X86EMUL_UNHANDLEABLE;
8365
8366         if (r) {
8367                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8368                                        complete_emulated_rdmsr, r))
8369                         return X86EMUL_IO_NEEDED;
8370
8371                 trace_kvm_msr_read_ex(msr_index);
8372                 return X86EMUL_PROPAGATE_FAULT;
8373         }
8374
8375         trace_kvm_msr_read(msr_index, *pdata);
8376         return X86EMUL_CONTINUE;
8377 }
8378
8379 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8380                                         u32 msr_index, u64 data)
8381 {
8382         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8383         int r;
8384
8385         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8386         if (r < 0)
8387                 return X86EMUL_UNHANDLEABLE;
8388
8389         if (r) {
8390                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8391                                        complete_emulated_msr_access, r))
8392                         return X86EMUL_IO_NEEDED;
8393
8394                 trace_kvm_msr_write_ex(msr_index, data);
8395                 return X86EMUL_PROPAGATE_FAULT;
8396         }
8397
8398         trace_kvm_msr_write(msr_index, data);
8399         return X86EMUL_CONTINUE;
8400 }
8401
8402 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8403                             u32 msr_index, u64 *pdata)
8404 {
8405         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8406 }
8407
8408 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8409                               u32 pmc)
8410 {
8411         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8412                 return 0;
8413         return -EINVAL;
8414 }
8415
8416 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8417                              u32 pmc, u64 *pdata)
8418 {
8419         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8420 }
8421
8422 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8423 {
8424         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8425 }
8426
8427 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8428                               struct x86_instruction_info *info,
8429                               enum x86_intercept_stage stage)
8430 {
8431         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8432                                             &ctxt->exception);
8433 }
8434
8435 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8436                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8437                               bool exact_only)
8438 {
8439         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8440 }
8441
8442 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8443 {
8444         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8445 }
8446
8447 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8448 {
8449         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8450 }
8451
8452 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8453 {
8454         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8455 }
8456
8457 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8458 {
8459         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8460 }
8461
8462 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8463 {
8464         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8465 }
8466
8467 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8468 {
8469         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8470 }
8471
8472 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8473 {
8474         return is_smm(emul_to_vcpu(ctxt));
8475 }
8476
8477 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8478 {
8479         return is_guest_mode(emul_to_vcpu(ctxt));
8480 }
8481
8482 #ifndef CONFIG_KVM_SMM
8483 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8484 {
8485         WARN_ON_ONCE(1);
8486         return X86EMUL_UNHANDLEABLE;
8487 }
8488 #endif
8489
8490 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8491 {
8492         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8493 }
8494
8495 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8496 {
8497         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8498 }
8499
8500 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8501 {
8502         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8503
8504         if (!kvm->vm_bugged)
8505                 kvm_vm_bugged(kvm);
8506 }
8507
8508 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8509                                         gva_t addr, unsigned int flags)
8510 {
8511         if (!kvm_x86_ops.get_untagged_addr)
8512                 return addr;
8513
8514         return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8515 }
8516
8517 static const struct x86_emulate_ops emulate_ops = {
8518         .vm_bugged           = emulator_vm_bugged,
8519         .read_gpr            = emulator_read_gpr,
8520         .write_gpr           = emulator_write_gpr,
8521         .read_std            = emulator_read_std,
8522         .write_std           = emulator_write_std,
8523         .fetch               = kvm_fetch_guest_virt,
8524         .read_emulated       = emulator_read_emulated,
8525         .write_emulated      = emulator_write_emulated,
8526         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8527         .invlpg              = emulator_invlpg,
8528         .pio_in_emulated     = emulator_pio_in_emulated,
8529         .pio_out_emulated    = emulator_pio_out_emulated,
8530         .get_segment         = emulator_get_segment,
8531         .set_segment         = emulator_set_segment,
8532         .get_cached_segment_base = emulator_get_cached_segment_base,
8533         .get_gdt             = emulator_get_gdt,
8534         .get_idt             = emulator_get_idt,
8535         .set_gdt             = emulator_set_gdt,
8536         .set_idt             = emulator_set_idt,
8537         .get_cr              = emulator_get_cr,
8538         .set_cr              = emulator_set_cr,
8539         .cpl                 = emulator_get_cpl,
8540         .get_dr              = emulator_get_dr,
8541         .set_dr              = emulator_set_dr,
8542         .set_msr_with_filter = emulator_set_msr_with_filter,
8543         .get_msr_with_filter = emulator_get_msr_with_filter,
8544         .get_msr             = emulator_get_msr,
8545         .check_pmc           = emulator_check_pmc,
8546         .read_pmc            = emulator_read_pmc,
8547         .halt                = emulator_halt,
8548         .wbinvd              = emulator_wbinvd,
8549         .fix_hypercall       = emulator_fix_hypercall,
8550         .intercept           = emulator_intercept,
8551         .get_cpuid           = emulator_get_cpuid,
8552         .guest_has_movbe     = emulator_guest_has_movbe,
8553         .guest_has_fxsr      = emulator_guest_has_fxsr,
8554         .guest_has_rdpid     = emulator_guest_has_rdpid,
8555         .set_nmi_mask        = emulator_set_nmi_mask,
8556         .is_smm              = emulator_is_smm,
8557         .is_guest_mode       = emulator_is_guest_mode,
8558         .leave_smm           = emulator_leave_smm,
8559         .triple_fault        = emulator_triple_fault,
8560         .set_xcr             = emulator_set_xcr,
8561         .get_untagged_addr   = emulator_get_untagged_addr,
8562 };
8563
8564 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8565 {
8566         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8567         /*
8568          * an sti; sti; sequence only disable interrupts for the first
8569          * instruction. So, if the last instruction, be it emulated or
8570          * not, left the system with the INT_STI flag enabled, it
8571          * means that the last instruction is an sti. We should not
8572          * leave the flag on in this case. The same goes for mov ss
8573          */
8574         if (int_shadow & mask)
8575                 mask = 0;
8576         if (unlikely(int_shadow || mask)) {
8577                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8578                 if (!mask)
8579                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8580         }
8581 }
8582
8583 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8584 {
8585         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8586
8587         if (ctxt->exception.vector == PF_VECTOR)
8588                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8589         else if (ctxt->exception.error_code_valid)
8590                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8591                                       ctxt->exception.error_code);
8592         else
8593                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8594 }
8595
8596 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8597 {
8598         struct x86_emulate_ctxt *ctxt;
8599
8600         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8601         if (!ctxt) {
8602                 pr_err("failed to allocate vcpu's emulator\n");
8603                 return NULL;
8604         }
8605
8606         ctxt->vcpu = vcpu;
8607         ctxt->ops = &emulate_ops;
8608         vcpu->arch.emulate_ctxt = ctxt;
8609
8610         return ctxt;
8611 }
8612
8613 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8614 {
8615         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8616         int cs_db, cs_l;
8617
8618         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8619
8620         ctxt->gpa_available = false;
8621         ctxt->eflags = kvm_get_rflags(vcpu);
8622         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8623
8624         ctxt->eip = kvm_rip_read(vcpu);
8625         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8626                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8627                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8628                      cs_db                              ? X86EMUL_MODE_PROT32 :
8629                                                           X86EMUL_MODE_PROT16;
8630         ctxt->interruptibility = 0;
8631         ctxt->have_exception = false;
8632         ctxt->exception.vector = -1;
8633         ctxt->perm_ok = false;
8634
8635         init_decode_cache(ctxt);
8636         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8637 }
8638
8639 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8640 {
8641         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8642         int ret;
8643
8644         init_emulate_ctxt(vcpu);
8645
8646         ctxt->op_bytes = 2;
8647         ctxt->ad_bytes = 2;
8648         ctxt->_eip = ctxt->eip + inc_eip;
8649         ret = emulate_int_real(ctxt, irq);
8650
8651         if (ret != X86EMUL_CONTINUE) {
8652                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8653         } else {
8654                 ctxt->eip = ctxt->_eip;
8655                 kvm_rip_write(vcpu, ctxt->eip);
8656                 kvm_set_rflags(vcpu, ctxt->eflags);
8657         }
8658 }
8659 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8660
8661 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8662                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8663 {
8664         struct kvm_run *run = vcpu->run;
8665         u64 info[5];
8666         u8 info_start;
8667
8668         /*
8669          * Zero the whole array used to retrieve the exit info, as casting to
8670          * u32 for select entries will leave some chunks uninitialized.
8671          */
8672         memset(&info, 0, sizeof(info));
8673
8674         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8675                                            &info[2], (u32 *)&info[3],
8676                                            (u32 *)&info[4]);
8677
8678         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8679         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8680
8681         /*
8682          * There's currently space for 13 entries, but 5 are used for the exit
8683          * reason and info.  Restrict to 4 to reduce the maintenance burden
8684          * when expanding kvm_run.emulation_failure in the future.
8685          */
8686         if (WARN_ON_ONCE(ndata > 4))
8687                 ndata = 4;
8688
8689         /* Always include the flags as a 'data' entry. */
8690         info_start = 1;
8691         run->emulation_failure.flags = 0;
8692
8693         if (insn_size) {
8694                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8695                               sizeof(run->emulation_failure.insn_bytes) != 16));
8696                 info_start += 2;
8697                 run->emulation_failure.flags |=
8698                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8699                 run->emulation_failure.insn_size = insn_size;
8700                 memset(run->emulation_failure.insn_bytes, 0x90,
8701                        sizeof(run->emulation_failure.insn_bytes));
8702                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8703         }
8704
8705         memcpy(&run->internal.data[info_start], info, sizeof(info));
8706         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8707                ndata * sizeof(data[0]));
8708
8709         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8710 }
8711
8712 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8713 {
8714         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8715
8716         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8717                                        ctxt->fetch.end - ctxt->fetch.data);
8718 }
8719
8720 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8721                                           u8 ndata)
8722 {
8723         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8724 }
8725 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8726
8727 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8728 {
8729         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8730 }
8731 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8732
8733 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8734 {
8735         struct kvm *kvm = vcpu->kvm;
8736
8737         ++vcpu->stat.insn_emulation_fail;
8738         trace_kvm_emulate_insn_failed(vcpu);
8739
8740         if (emulation_type & EMULTYPE_VMWARE_GP) {
8741                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8742                 return 1;
8743         }
8744
8745         if (kvm->arch.exit_on_emulation_error ||
8746             (emulation_type & EMULTYPE_SKIP)) {
8747                 prepare_emulation_ctxt_failure_exit(vcpu);
8748                 return 0;
8749         }
8750
8751         kvm_queue_exception(vcpu, UD_VECTOR);
8752
8753         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8754                 prepare_emulation_ctxt_failure_exit(vcpu);
8755                 return 0;
8756         }
8757
8758         return 1;
8759 }
8760
8761 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8762                                   int emulation_type)
8763 {
8764         gpa_t gpa = cr2_or_gpa;
8765         kvm_pfn_t pfn;
8766
8767         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8768                 return false;
8769
8770         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8771             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8772                 return false;
8773
8774         if (!vcpu->arch.mmu->root_role.direct) {
8775                 /*
8776                  * Write permission should be allowed since only
8777                  * write access need to be emulated.
8778                  */
8779                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8780
8781                 /*
8782                  * If the mapping is invalid in guest, let cpu retry
8783                  * it to generate fault.
8784                  */
8785                 if (gpa == INVALID_GPA)
8786                         return true;
8787         }
8788
8789         /*
8790          * Do not retry the unhandleable instruction if it faults on the
8791          * readonly host memory, otherwise it will goto a infinite loop:
8792          * retry instruction -> write #PF -> emulation fail -> retry
8793          * instruction -> ...
8794          */
8795         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8796
8797         /*
8798          * If the instruction failed on the error pfn, it can not be fixed,
8799          * report the error to userspace.
8800          */
8801         if (is_error_noslot_pfn(pfn))
8802                 return false;
8803
8804         kvm_release_pfn_clean(pfn);
8805
8806         /* The instructions are well-emulated on direct mmu. */
8807         if (vcpu->arch.mmu->root_role.direct) {
8808                 unsigned int indirect_shadow_pages;
8809
8810                 write_lock(&vcpu->kvm->mmu_lock);
8811                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8812                 write_unlock(&vcpu->kvm->mmu_lock);
8813
8814                 if (indirect_shadow_pages)
8815                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8816
8817                 return true;
8818         }
8819
8820         /*
8821          * if emulation was due to access to shadowed page table
8822          * and it failed try to unshadow page and re-enter the
8823          * guest to let CPU execute the instruction.
8824          */
8825         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8826
8827         /*
8828          * If the access faults on its page table, it can not
8829          * be fixed by unprotecting shadow page and it should
8830          * be reported to userspace.
8831          */
8832         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8833 }
8834
8835 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8836                               gpa_t cr2_or_gpa,  int emulation_type)
8837 {
8838         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8839         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8840
8841         last_retry_eip = vcpu->arch.last_retry_eip;
8842         last_retry_addr = vcpu->arch.last_retry_addr;
8843
8844         /*
8845          * If the emulation is caused by #PF and it is non-page_table
8846          * writing instruction, it means the VM-EXIT is caused by shadow
8847          * page protected, we can zap the shadow page and retry this
8848          * instruction directly.
8849          *
8850          * Note: if the guest uses a non-page-table modifying instruction
8851          * on the PDE that points to the instruction, then we will unmap
8852          * the instruction and go to an infinite loop. So, we cache the
8853          * last retried eip and the last fault address, if we meet the eip
8854          * and the address again, we can break out of the potential infinite
8855          * loop.
8856          */
8857         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8858
8859         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8860                 return false;
8861
8862         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8863             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8864                 return false;
8865
8866         if (x86_page_table_writing_insn(ctxt))
8867                 return false;
8868
8869         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8870                 return false;
8871
8872         vcpu->arch.last_retry_eip = ctxt->eip;
8873         vcpu->arch.last_retry_addr = cr2_or_gpa;
8874
8875         if (!vcpu->arch.mmu->root_role.direct)
8876                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8877
8878         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8879
8880         return true;
8881 }
8882
8883 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8884 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8885
8886 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8887                                 unsigned long *db)
8888 {
8889         u32 dr6 = 0;
8890         int i;
8891         u32 enable, rwlen;
8892
8893         enable = dr7;
8894         rwlen = dr7 >> 16;
8895         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8896                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8897                         dr6 |= (1 << i);
8898         return dr6;
8899 }
8900
8901 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8902 {
8903         struct kvm_run *kvm_run = vcpu->run;
8904
8905         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8906                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8907                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8908                 kvm_run->debug.arch.exception = DB_VECTOR;
8909                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8910                 return 0;
8911         }
8912         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8913         return 1;
8914 }
8915
8916 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8917 {
8918         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8919         int r;
8920
8921         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8922         if (unlikely(!r))
8923                 return 0;
8924
8925         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8926
8927         /*
8928          * rflags is the old, "raw" value of the flags.  The new value has
8929          * not been saved yet.
8930          *
8931          * This is correct even for TF set by the guest, because "the
8932          * processor will not generate this exception after the instruction
8933          * that sets the TF flag".
8934          */
8935         if (unlikely(rflags & X86_EFLAGS_TF))
8936                 r = kvm_vcpu_do_singlestep(vcpu);
8937         return r;
8938 }
8939 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8940
8941 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8942 {
8943         u32 shadow;
8944
8945         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8946                 return true;
8947
8948         /*
8949          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8950          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8951          * to avoid the relatively expensive CPUID lookup.
8952          */
8953         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8954         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8955                guest_cpuid_is_intel(vcpu);
8956 }
8957
8958 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8959                                            int emulation_type, int *r)
8960 {
8961         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8962
8963         /*
8964          * Do not check for code breakpoints if hardware has already done the
8965          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8966          * the instruction has passed all exception checks, and all intercepted
8967          * exceptions that trigger emulation have lower priority than code
8968          * breakpoints, i.e. the fact that the intercepted exception occurred
8969          * means any code breakpoints have already been serviced.
8970          *
8971          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8972          * hardware has checked the RIP of the magic prefix, but not the RIP of
8973          * the instruction being emulated.  The intent of forced emulation is
8974          * to behave as if KVM intercepted the instruction without an exception
8975          * and without a prefix.
8976          */
8977         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8978                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8979                 return false;
8980
8981         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8982             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8983                 struct kvm_run *kvm_run = vcpu->run;
8984                 unsigned long eip = kvm_get_linear_rip(vcpu);
8985                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8986                                            vcpu->arch.guest_debug_dr7,
8987                                            vcpu->arch.eff_db);
8988
8989                 if (dr6 != 0) {
8990                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8991                         kvm_run->debug.arch.pc = eip;
8992                         kvm_run->debug.arch.exception = DB_VECTOR;
8993                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8994                         *r = 0;
8995                         return true;
8996                 }
8997         }
8998
8999         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9000             !kvm_is_code_breakpoint_inhibited(vcpu)) {
9001                 unsigned long eip = kvm_get_linear_rip(vcpu);
9002                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9003                                            vcpu->arch.dr7,
9004                                            vcpu->arch.db);
9005
9006                 if (dr6 != 0) {
9007                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9008                         *r = 1;
9009                         return true;
9010                 }
9011         }
9012
9013         return false;
9014 }
9015
9016 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9017 {
9018         switch (ctxt->opcode_len) {
9019         case 1:
9020                 switch (ctxt->b) {
9021                 case 0xe4:      /* IN */
9022                 case 0xe5:
9023                 case 0xec:
9024                 case 0xed:
9025                 case 0xe6:      /* OUT */
9026                 case 0xe7:
9027                 case 0xee:
9028                 case 0xef:
9029                 case 0x6c:      /* INS */
9030                 case 0x6d:
9031                 case 0x6e:      /* OUTS */
9032                 case 0x6f:
9033                         return true;
9034                 }
9035                 break;
9036         case 2:
9037                 switch (ctxt->b) {
9038                 case 0x33:      /* RDPMC */
9039                         return true;
9040                 }
9041                 break;
9042         }
9043
9044         return false;
9045 }
9046
9047 /*
9048  * Decode an instruction for emulation.  The caller is responsible for handling
9049  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9050  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9051  * code breakpoints have higher priority and thus have already been done by
9052  * hardware.
9053  *
9054  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9055  *     response to a machine check.
9056  */
9057 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9058                                     void *insn, int insn_len)
9059 {
9060         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9061         int r;
9062
9063         init_emulate_ctxt(vcpu);
9064
9065         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9066
9067         trace_kvm_emulate_insn_start(vcpu);
9068         ++vcpu->stat.insn_emulation;
9069
9070         return r;
9071 }
9072 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9073
9074 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9075                             int emulation_type, void *insn, int insn_len)
9076 {
9077         int r;
9078         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9079         bool writeback = true;
9080
9081         r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9082         if (r != X86EMUL_CONTINUE) {
9083                 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9084                         return 1;
9085
9086                 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9087                 return handle_emulation_failure(vcpu, emulation_type);
9088         }
9089
9090         vcpu->arch.l1tf_flush_l1d = true;
9091
9092         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9093                 kvm_clear_exception_queue(vcpu);
9094
9095                 /*
9096                  * Return immediately if RIP hits a code breakpoint, such #DBs
9097                  * are fault-like and are higher priority than any faults on
9098                  * the code fetch itself.
9099                  */
9100                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9101                         return r;
9102
9103                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9104                                                     insn, insn_len);
9105                 if (r != EMULATION_OK)  {
9106                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
9107                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9108                                 kvm_queue_exception(vcpu, UD_VECTOR);
9109                                 return 1;
9110                         }
9111                         if (reexecute_instruction(vcpu, cr2_or_gpa,
9112                                                   emulation_type))
9113                                 return 1;
9114
9115                         if (ctxt->have_exception &&
9116                             !(emulation_type & EMULTYPE_SKIP)) {
9117                                 /*
9118                                  * #UD should result in just EMULATION_FAILED, and trap-like
9119                                  * exception should not be encountered during decode.
9120                                  */
9121                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9122                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9123                                 inject_emulated_exception(vcpu);
9124                                 return 1;
9125                         }
9126                         return handle_emulation_failure(vcpu, emulation_type);
9127                 }
9128         }
9129
9130         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9131             !is_vmware_backdoor_opcode(ctxt)) {
9132                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9133                 return 1;
9134         }
9135
9136         /*
9137          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9138          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9139          * The caller is responsible for updating interruptibility state and
9140          * injecting single-step #DBs.
9141          */
9142         if (emulation_type & EMULTYPE_SKIP) {
9143                 if (ctxt->mode != X86EMUL_MODE_PROT64)
9144                         ctxt->eip = (u32)ctxt->_eip;
9145                 else
9146                         ctxt->eip = ctxt->_eip;
9147
9148                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9149                         r = 1;
9150                         goto writeback;
9151                 }
9152
9153                 kvm_rip_write(vcpu, ctxt->eip);
9154                 if (ctxt->eflags & X86_EFLAGS_RF)
9155                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9156                 return 1;
9157         }
9158
9159         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9160                 return 1;
9161
9162         /* this is needed for vmware backdoor interface to work since it
9163            changes registers values  during IO operation */
9164         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9165                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9166                 emulator_invalidate_register_cache(ctxt);
9167         }
9168
9169 restart:
9170         if (emulation_type & EMULTYPE_PF) {
9171                 /* Save the faulting GPA (cr2) in the address field */
9172                 ctxt->exception.address = cr2_or_gpa;
9173
9174                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9175                 if (vcpu->arch.mmu->root_role.direct) {
9176                         ctxt->gpa_available = true;
9177                         ctxt->gpa_val = cr2_or_gpa;
9178                 }
9179         } else {
9180                 /* Sanitize the address out of an abundance of paranoia. */
9181                 ctxt->exception.address = 0;
9182         }
9183
9184         r = x86_emulate_insn(ctxt);
9185
9186         if (r == EMULATION_INTERCEPTED)
9187                 return 1;
9188
9189         if (r == EMULATION_FAILED) {
9190                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9191                         return 1;
9192
9193                 return handle_emulation_failure(vcpu, emulation_type);
9194         }
9195
9196         if (ctxt->have_exception) {
9197                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9198                 vcpu->mmio_needed = false;
9199                 r = 1;
9200                 inject_emulated_exception(vcpu);
9201         } else if (vcpu->arch.pio.count) {
9202                 if (!vcpu->arch.pio.in) {
9203                         /* FIXME: return into emulator if single-stepping.  */
9204                         vcpu->arch.pio.count = 0;
9205                 } else {
9206                         writeback = false;
9207                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
9208                 }
9209                 r = 0;
9210         } else if (vcpu->mmio_needed) {
9211                 ++vcpu->stat.mmio_exits;
9212
9213                 if (!vcpu->mmio_is_write)
9214                         writeback = false;
9215                 r = 0;
9216                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9217         } else if (vcpu->arch.complete_userspace_io) {
9218                 writeback = false;
9219                 r = 0;
9220         } else if (r == EMULATION_RESTART)
9221                 goto restart;
9222         else
9223                 r = 1;
9224
9225 writeback:
9226         if (writeback) {
9227                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9228                 toggle_interruptibility(vcpu, ctxt->interruptibility);
9229                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9230
9231                 /*
9232                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9233                  * only supports code breakpoints and general detect #DB, both
9234                  * of which are fault-like.
9235                  */
9236                 if (!ctxt->have_exception ||
9237                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9238                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9239                         if (ctxt->is_branch)
9240                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9241                         kvm_rip_write(vcpu, ctxt->eip);
9242                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9243                                 r = kvm_vcpu_do_singlestep(vcpu);
9244                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9245                         __kvm_set_rflags(vcpu, ctxt->eflags);
9246                 }
9247
9248                 /*
9249                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9250                  * do nothing, and it will be requested again as soon as
9251                  * the shadow expires.  But we still need to check here,
9252                  * because POPF has no interrupt shadow.
9253                  */
9254                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9255                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9256         } else
9257                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9258
9259         return r;
9260 }
9261
9262 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9263 {
9264         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9265 }
9266 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9267
9268 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9269                                         void *insn, int insn_len)
9270 {
9271         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9272 }
9273 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9274
9275 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9276 {
9277         vcpu->arch.pio.count = 0;
9278         return 1;
9279 }
9280
9281 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9282 {
9283         vcpu->arch.pio.count = 0;
9284
9285         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9286                 return 1;
9287
9288         return kvm_skip_emulated_instruction(vcpu);
9289 }
9290
9291 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9292                             unsigned short port)
9293 {
9294         unsigned long val = kvm_rax_read(vcpu);
9295         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9296
9297         if (ret)
9298                 return ret;
9299
9300         /*
9301          * Workaround userspace that relies on old KVM behavior of %rip being
9302          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9303          */
9304         if (port == 0x7e &&
9305             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9306                 vcpu->arch.complete_userspace_io =
9307                         complete_fast_pio_out_port_0x7e;
9308                 kvm_skip_emulated_instruction(vcpu);
9309         } else {
9310                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9311                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9312         }
9313         return 0;
9314 }
9315
9316 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9317 {
9318         unsigned long val;
9319
9320         /* We should only ever be called with arch.pio.count equal to 1 */
9321         BUG_ON(vcpu->arch.pio.count != 1);
9322
9323         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9324                 vcpu->arch.pio.count = 0;
9325                 return 1;
9326         }
9327
9328         /* For size less than 4 we merge, else we zero extend */
9329         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9330
9331         complete_emulator_pio_in(vcpu, &val);
9332         kvm_rax_write(vcpu, val);
9333
9334         return kvm_skip_emulated_instruction(vcpu);
9335 }
9336
9337 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9338                            unsigned short port)
9339 {
9340         unsigned long val;
9341         int ret;
9342
9343         /* For size less than 4 we merge, else we zero extend */
9344         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9345
9346         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9347         if (ret) {
9348                 kvm_rax_write(vcpu, val);
9349                 return ret;
9350         }
9351
9352         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9353         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9354
9355         return 0;
9356 }
9357
9358 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9359 {
9360         int ret;
9361
9362         if (in)
9363                 ret = kvm_fast_pio_in(vcpu, size, port);
9364         else
9365                 ret = kvm_fast_pio_out(vcpu, size, port);
9366         return ret && kvm_skip_emulated_instruction(vcpu);
9367 }
9368 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9369
9370 static int kvmclock_cpu_down_prep(unsigned int cpu)
9371 {
9372         __this_cpu_write(cpu_tsc_khz, 0);
9373         return 0;
9374 }
9375
9376 static void tsc_khz_changed(void *data)
9377 {
9378         struct cpufreq_freqs *freq = data;
9379         unsigned long khz;
9380
9381         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9382
9383         if (data)
9384                 khz = freq->new;
9385         else
9386                 khz = cpufreq_quick_get(raw_smp_processor_id());
9387         if (!khz)
9388                 khz = tsc_khz;
9389         __this_cpu_write(cpu_tsc_khz, khz);
9390 }
9391
9392 #ifdef CONFIG_X86_64
9393 static void kvm_hyperv_tsc_notifier(void)
9394 {
9395         struct kvm *kvm;
9396         int cpu;
9397
9398         mutex_lock(&kvm_lock);
9399         list_for_each_entry(kvm, &vm_list, vm_list)
9400                 kvm_make_mclock_inprogress_request(kvm);
9401
9402         /* no guest entries from this point */
9403         hyperv_stop_tsc_emulation();
9404
9405         /* TSC frequency always matches when on Hyper-V */
9406         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9407                 for_each_present_cpu(cpu)
9408                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9409         }
9410         kvm_caps.max_guest_tsc_khz = tsc_khz;
9411
9412         list_for_each_entry(kvm, &vm_list, vm_list) {
9413                 __kvm_start_pvclock_update(kvm);
9414                 pvclock_update_vm_gtod_copy(kvm);
9415                 kvm_end_pvclock_update(kvm);
9416         }
9417
9418         mutex_unlock(&kvm_lock);
9419 }
9420 #endif
9421
9422 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9423 {
9424         struct kvm *kvm;
9425         struct kvm_vcpu *vcpu;
9426         int send_ipi = 0;
9427         unsigned long i;
9428
9429         /*
9430          * We allow guests to temporarily run on slowing clocks,
9431          * provided we notify them after, or to run on accelerating
9432          * clocks, provided we notify them before.  Thus time never
9433          * goes backwards.
9434          *
9435          * However, we have a problem.  We can't atomically update
9436          * the frequency of a given CPU from this function; it is
9437          * merely a notifier, which can be called from any CPU.
9438          * Changing the TSC frequency at arbitrary points in time
9439          * requires a recomputation of local variables related to
9440          * the TSC for each VCPU.  We must flag these local variables
9441          * to be updated and be sure the update takes place with the
9442          * new frequency before any guests proceed.
9443          *
9444          * Unfortunately, the combination of hotplug CPU and frequency
9445          * change creates an intractable locking scenario; the order
9446          * of when these callouts happen is undefined with respect to
9447          * CPU hotplug, and they can race with each other.  As such,
9448          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9449          * undefined; you can actually have a CPU frequency change take
9450          * place in between the computation of X and the setting of the
9451          * variable.  To protect against this problem, all updates of
9452          * the per_cpu tsc_khz variable are done in an interrupt
9453          * protected IPI, and all callers wishing to update the value
9454          * must wait for a synchronous IPI to complete (which is trivial
9455          * if the caller is on the CPU already).  This establishes the
9456          * necessary total order on variable updates.
9457          *
9458          * Note that because a guest time update may take place
9459          * anytime after the setting of the VCPU's request bit, the
9460          * correct TSC value must be set before the request.  However,
9461          * to ensure the update actually makes it to any guest which
9462          * starts running in hardware virtualization between the set
9463          * and the acquisition of the spinlock, we must also ping the
9464          * CPU after setting the request bit.
9465          *
9466          */
9467
9468         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9469
9470         mutex_lock(&kvm_lock);
9471         list_for_each_entry(kvm, &vm_list, vm_list) {
9472                 kvm_for_each_vcpu(i, vcpu, kvm) {
9473                         if (vcpu->cpu != cpu)
9474                                 continue;
9475                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9476                         if (vcpu->cpu != raw_smp_processor_id())
9477                                 send_ipi = 1;
9478                 }
9479         }
9480         mutex_unlock(&kvm_lock);
9481
9482         if (freq->old < freq->new && send_ipi) {
9483                 /*
9484                  * We upscale the frequency.  Must make the guest
9485                  * doesn't see old kvmclock values while running with
9486                  * the new frequency, otherwise we risk the guest sees
9487                  * time go backwards.
9488                  *
9489                  * In case we update the frequency for another cpu
9490                  * (which might be in guest context) send an interrupt
9491                  * to kick the cpu out of guest context.  Next time
9492                  * guest context is entered kvmclock will be updated,
9493                  * so the guest will not see stale values.
9494                  */
9495                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9496         }
9497 }
9498
9499 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9500                                      void *data)
9501 {
9502         struct cpufreq_freqs *freq = data;
9503         int cpu;
9504
9505         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9506                 return 0;
9507         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9508                 return 0;
9509
9510         for_each_cpu(cpu, freq->policy->cpus)
9511                 __kvmclock_cpufreq_notifier(freq, cpu);
9512
9513         return 0;
9514 }
9515
9516 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9517         .notifier_call  = kvmclock_cpufreq_notifier
9518 };
9519
9520 static int kvmclock_cpu_online(unsigned int cpu)
9521 {
9522         tsc_khz_changed(NULL);
9523         return 0;
9524 }
9525
9526 static void kvm_timer_init(void)
9527 {
9528         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9529                 max_tsc_khz = tsc_khz;
9530
9531                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9532                         struct cpufreq_policy *policy;
9533                         int cpu;
9534
9535                         cpu = get_cpu();
9536                         policy = cpufreq_cpu_get(cpu);
9537                         if (policy) {
9538                                 if (policy->cpuinfo.max_freq)
9539                                         max_tsc_khz = policy->cpuinfo.max_freq;
9540                                 cpufreq_cpu_put(policy);
9541                         }
9542                         put_cpu();
9543                 }
9544                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9545                                           CPUFREQ_TRANSITION_NOTIFIER);
9546
9547                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9548                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9549         }
9550 }
9551
9552 #ifdef CONFIG_X86_64
9553 static void pvclock_gtod_update_fn(struct work_struct *work)
9554 {
9555         struct kvm *kvm;
9556         struct kvm_vcpu *vcpu;
9557         unsigned long i;
9558
9559         mutex_lock(&kvm_lock);
9560         list_for_each_entry(kvm, &vm_list, vm_list)
9561                 kvm_for_each_vcpu(i, vcpu, kvm)
9562                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9563         atomic_set(&kvm_guest_has_master_clock, 0);
9564         mutex_unlock(&kvm_lock);
9565 }
9566
9567 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9568
9569 /*
9570  * Indirection to move queue_work() out of the tk_core.seq write held
9571  * region to prevent possible deadlocks against time accessors which
9572  * are invoked with work related locks held.
9573  */
9574 static void pvclock_irq_work_fn(struct irq_work *w)
9575 {
9576         queue_work(system_long_wq, &pvclock_gtod_work);
9577 }
9578
9579 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9580
9581 /*
9582  * Notification about pvclock gtod data update.
9583  */
9584 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9585                                void *priv)
9586 {
9587         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9588         struct timekeeper *tk = priv;
9589
9590         update_pvclock_gtod(tk);
9591
9592         /*
9593          * Disable master clock if host does not trust, or does not use,
9594          * TSC based clocksource. Delegate queue_work() to irq_work as
9595          * this is invoked with tk_core.seq write held.
9596          */
9597         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9598             atomic_read(&kvm_guest_has_master_clock) != 0)
9599                 irq_work_queue(&pvclock_irq_work);
9600         return 0;
9601 }
9602
9603 static struct notifier_block pvclock_gtod_notifier = {
9604         .notifier_call = pvclock_gtod_notify,
9605 };
9606 #endif
9607
9608 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9609 {
9610         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9611
9612 #define __KVM_X86_OP(func) \
9613         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9614 #define KVM_X86_OP(func) \
9615         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9616 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9617 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9618         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9619                                            (void *)__static_call_return0);
9620 #include <asm/kvm-x86-ops.h>
9621 #undef __KVM_X86_OP
9622
9623         kvm_pmu_ops_update(ops->pmu_ops);
9624 }
9625
9626 static int kvm_x86_check_processor_compatibility(void)
9627 {
9628         int cpu = smp_processor_id();
9629         struct cpuinfo_x86 *c = &cpu_data(cpu);
9630
9631         /*
9632          * Compatibility checks are done when loading KVM and when enabling
9633          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9634          * compatible, i.e. KVM should never perform a compatibility check on
9635          * an offline CPU.
9636          */
9637         WARN_ON(!cpu_online(cpu));
9638
9639         if (__cr4_reserved_bits(cpu_has, c) !=
9640             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9641                 return -EIO;
9642
9643         return static_call(kvm_x86_check_processor_compatibility)();
9644 }
9645
9646 static void kvm_x86_check_cpu_compat(void *ret)
9647 {
9648         *(int *)ret = kvm_x86_check_processor_compatibility();
9649 }
9650
9651 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9652 {
9653         u64 host_pat;
9654         int r, cpu;
9655
9656         if (kvm_x86_ops.hardware_enable) {
9657                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9658                 return -EEXIST;
9659         }
9660
9661         /*
9662          * KVM explicitly assumes that the guest has an FPU and
9663          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9664          * vCPU's FPU state as a fxregs_state struct.
9665          */
9666         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9667                 pr_err("inadequate fpu\n");
9668                 return -EOPNOTSUPP;
9669         }
9670
9671         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9672                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9673                 return -EOPNOTSUPP;
9674         }
9675
9676         /*
9677          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9678          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9679          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9680          * with an exception.  PAT[0] is set to WB on RESET and also by the
9681          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9682          */
9683         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9684             (host_pat & GENMASK(2, 0)) != 6) {
9685                 pr_err("host PAT[0] is not WB\n");
9686                 return -EIO;
9687         }
9688
9689         x86_emulator_cache = kvm_alloc_emulator_cache();
9690         if (!x86_emulator_cache) {
9691                 pr_err("failed to allocate cache for x86 emulator\n");
9692                 return -ENOMEM;
9693         }
9694
9695         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9696         if (!user_return_msrs) {
9697                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9698                 r = -ENOMEM;
9699                 goto out_free_x86_emulator_cache;
9700         }
9701         kvm_nr_uret_msrs = 0;
9702
9703         r = kvm_mmu_vendor_module_init();
9704         if (r)
9705                 goto out_free_percpu;
9706
9707         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9708                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9709                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9710         }
9711
9712         rdmsrl_safe(MSR_EFER, &host_efer);
9713
9714         if (boot_cpu_has(X86_FEATURE_XSAVES))
9715                 rdmsrl(MSR_IA32_XSS, host_xss);
9716
9717         kvm_init_pmu_capability(ops->pmu_ops);
9718
9719         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9720                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9721
9722         r = ops->hardware_setup();
9723         if (r != 0)
9724                 goto out_mmu_exit;
9725
9726         kvm_ops_update(ops);
9727
9728         for_each_online_cpu(cpu) {
9729                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9730                 if (r < 0)
9731                         goto out_unwind_ops;
9732         }
9733
9734         /*
9735          * Point of no return!  DO NOT add error paths below this point unless
9736          * absolutely necessary, as most operations from this point forward
9737          * require unwinding.
9738          */
9739         kvm_timer_init();
9740
9741         if (pi_inject_timer == -1)
9742                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9743 #ifdef CONFIG_X86_64
9744         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9745
9746         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9747                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9748 #endif
9749
9750         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9751
9752         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9753                 kvm_caps.supported_xss = 0;
9754
9755 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9756         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9757 #undef __kvm_cpu_cap_has
9758
9759         if (kvm_caps.has_tsc_control) {
9760                 /*
9761                  * Make sure the user can only configure tsc_khz values that
9762                  * fit into a signed integer.
9763                  * A min value is not calculated because it will always
9764                  * be 1 on all machines.
9765                  */
9766                 u64 max = min(0x7fffffffULL,
9767                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9768                 kvm_caps.max_guest_tsc_khz = max;
9769         }
9770         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9771         kvm_init_msr_lists();
9772         return 0;
9773
9774 out_unwind_ops:
9775         kvm_x86_ops.hardware_enable = NULL;
9776         static_call(kvm_x86_hardware_unsetup)();
9777 out_mmu_exit:
9778         kvm_mmu_vendor_module_exit();
9779 out_free_percpu:
9780         free_percpu(user_return_msrs);
9781 out_free_x86_emulator_cache:
9782         kmem_cache_destroy(x86_emulator_cache);
9783         return r;
9784 }
9785
9786 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9787 {
9788         int r;
9789
9790         mutex_lock(&vendor_module_lock);
9791         r = __kvm_x86_vendor_init(ops);
9792         mutex_unlock(&vendor_module_lock);
9793
9794         return r;
9795 }
9796 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9797
9798 void kvm_x86_vendor_exit(void)
9799 {
9800         kvm_unregister_perf_callbacks();
9801
9802 #ifdef CONFIG_X86_64
9803         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9804                 clear_hv_tscchange_cb();
9805 #endif
9806         kvm_lapic_exit();
9807
9808         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9809                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9810                                             CPUFREQ_TRANSITION_NOTIFIER);
9811                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9812         }
9813 #ifdef CONFIG_X86_64
9814         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9815         irq_work_sync(&pvclock_irq_work);
9816         cancel_work_sync(&pvclock_gtod_work);
9817 #endif
9818         static_call(kvm_x86_hardware_unsetup)();
9819         kvm_mmu_vendor_module_exit();
9820         free_percpu(user_return_msrs);
9821         kmem_cache_destroy(x86_emulator_cache);
9822 #ifdef CONFIG_KVM_XEN
9823         static_key_deferred_flush(&kvm_xen_enabled);
9824         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9825 #endif
9826         mutex_lock(&vendor_module_lock);
9827         kvm_x86_ops.hardware_enable = NULL;
9828         mutex_unlock(&vendor_module_lock);
9829 }
9830 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9831
9832 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9833 {
9834         /*
9835          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9836          * local APIC is in-kernel, the run loop will detect the non-runnable
9837          * state and halt the vCPU.  Exit to userspace if the local APIC is
9838          * managed by userspace, in which case userspace is responsible for
9839          * handling wake events.
9840          */
9841         ++vcpu->stat.halt_exits;
9842         if (lapic_in_kernel(vcpu)) {
9843                 vcpu->arch.mp_state = state;
9844                 return 1;
9845         } else {
9846                 vcpu->run->exit_reason = reason;
9847                 return 0;
9848         }
9849 }
9850
9851 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9852 {
9853         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9854 }
9855 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9856
9857 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9858 {
9859         int ret = kvm_skip_emulated_instruction(vcpu);
9860         /*
9861          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9862          * KVM_EXIT_DEBUG here.
9863          */
9864         return kvm_emulate_halt_noskip(vcpu) && ret;
9865 }
9866 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9867
9868 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9869 {
9870         int ret = kvm_skip_emulated_instruction(vcpu);
9871
9872         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9873                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9874 }
9875 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9876
9877 #ifdef CONFIG_X86_64
9878 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9879                                 unsigned long clock_type)
9880 {
9881         struct kvm_clock_pairing clock_pairing;
9882         struct timespec64 ts;
9883         u64 cycle;
9884         int ret;
9885
9886         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9887                 return -KVM_EOPNOTSUPP;
9888
9889         /*
9890          * When tsc is in permanent catchup mode guests won't be able to use
9891          * pvclock_read_retry loop to get consistent view of pvclock
9892          */
9893         if (vcpu->arch.tsc_always_catchup)
9894                 return -KVM_EOPNOTSUPP;
9895
9896         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9897                 return -KVM_EOPNOTSUPP;
9898
9899         clock_pairing.sec = ts.tv_sec;
9900         clock_pairing.nsec = ts.tv_nsec;
9901         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9902         clock_pairing.flags = 0;
9903         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9904
9905         ret = 0;
9906         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9907                             sizeof(struct kvm_clock_pairing)))
9908                 ret = -KVM_EFAULT;
9909
9910         return ret;
9911 }
9912 #endif
9913
9914 /*
9915  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9916  *
9917  * @apicid - apicid of vcpu to be kicked.
9918  */
9919 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9920 {
9921         /*
9922          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9923          * common code, e.g. for tracing. Defer initialization to the compiler.
9924          */
9925         struct kvm_lapic_irq lapic_irq = {
9926                 .delivery_mode = APIC_DM_REMRD,
9927                 .dest_mode = APIC_DEST_PHYSICAL,
9928                 .shorthand = APIC_DEST_NOSHORT,
9929                 .dest_id = apicid,
9930         };
9931
9932         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9933 }
9934
9935 bool kvm_apicv_activated(struct kvm *kvm)
9936 {
9937         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9938 }
9939 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9940
9941 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9942 {
9943         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9944         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9945
9946         return (vm_reasons | vcpu_reasons) == 0;
9947 }
9948 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9949
9950 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9951                                        enum kvm_apicv_inhibit reason, bool set)
9952 {
9953         if (set)
9954                 __set_bit(reason, inhibits);
9955         else
9956                 __clear_bit(reason, inhibits);
9957
9958         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9959 }
9960
9961 static void kvm_apicv_init(struct kvm *kvm)
9962 {
9963         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9964
9965         init_rwsem(&kvm->arch.apicv_update_lock);
9966
9967         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9968
9969         if (!enable_apicv)
9970                 set_or_clear_apicv_inhibit(inhibits,
9971                                            APICV_INHIBIT_REASON_DISABLE, true);
9972 }
9973
9974 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9975 {
9976         struct kvm_vcpu *target = NULL;
9977         struct kvm_apic_map *map;
9978
9979         vcpu->stat.directed_yield_attempted++;
9980
9981         if (single_task_running())
9982                 goto no_yield;
9983
9984         rcu_read_lock();
9985         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9986
9987         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9988                 target = map->phys_map[dest_id]->vcpu;
9989
9990         rcu_read_unlock();
9991
9992         if (!target || !READ_ONCE(target->ready))
9993                 goto no_yield;
9994
9995         /* Ignore requests to yield to self */
9996         if (vcpu == target)
9997                 goto no_yield;
9998
9999         if (kvm_vcpu_yield_to(target) <= 0)
10000                 goto no_yield;
10001
10002         vcpu->stat.directed_yield_successful++;
10003
10004 no_yield:
10005         return;
10006 }
10007
10008 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10009 {
10010         u64 ret = vcpu->run->hypercall.ret;
10011
10012         if (!is_64_bit_mode(vcpu))
10013                 ret = (u32)ret;
10014         kvm_rax_write(vcpu, ret);
10015         ++vcpu->stat.hypercalls;
10016         return kvm_skip_emulated_instruction(vcpu);
10017 }
10018
10019 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10020 {
10021         unsigned long nr, a0, a1, a2, a3, ret;
10022         int op_64_bit;
10023
10024         if (kvm_xen_hypercall_enabled(vcpu->kvm))
10025                 return kvm_xen_hypercall(vcpu);
10026
10027         if (kvm_hv_hypercall_enabled(vcpu))
10028                 return kvm_hv_hypercall(vcpu);
10029
10030         nr = kvm_rax_read(vcpu);
10031         a0 = kvm_rbx_read(vcpu);
10032         a1 = kvm_rcx_read(vcpu);
10033         a2 = kvm_rdx_read(vcpu);
10034         a3 = kvm_rsi_read(vcpu);
10035
10036         trace_kvm_hypercall(nr, a0, a1, a2, a3);
10037
10038         op_64_bit = is_64_bit_hypercall(vcpu);
10039         if (!op_64_bit) {
10040                 nr &= 0xFFFFFFFF;
10041                 a0 &= 0xFFFFFFFF;
10042                 a1 &= 0xFFFFFFFF;
10043                 a2 &= 0xFFFFFFFF;
10044                 a3 &= 0xFFFFFFFF;
10045         }
10046
10047         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10048                 ret = -KVM_EPERM;
10049                 goto out;
10050         }
10051
10052         ret = -KVM_ENOSYS;
10053
10054         switch (nr) {
10055         case KVM_HC_VAPIC_POLL_IRQ:
10056                 ret = 0;
10057                 break;
10058         case KVM_HC_KICK_CPU:
10059                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10060                         break;
10061
10062                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10063                 kvm_sched_yield(vcpu, a1);
10064                 ret = 0;
10065                 break;
10066 #ifdef CONFIG_X86_64
10067         case KVM_HC_CLOCK_PAIRING:
10068                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10069                 break;
10070 #endif
10071         case KVM_HC_SEND_IPI:
10072                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10073                         break;
10074
10075                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10076                 break;
10077         case KVM_HC_SCHED_YIELD:
10078                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10079                         break;
10080
10081                 kvm_sched_yield(vcpu, a0);
10082                 ret = 0;
10083                 break;
10084         case KVM_HC_MAP_GPA_RANGE: {
10085                 u64 gpa = a0, npages = a1, attrs = a2;
10086
10087                 ret = -KVM_ENOSYS;
10088                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10089                         break;
10090
10091                 if (!PAGE_ALIGNED(gpa) || !npages ||
10092                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10093                         ret = -KVM_EINVAL;
10094                         break;
10095                 }
10096
10097                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10098                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10099                 vcpu->run->hypercall.args[0]  = gpa;
10100                 vcpu->run->hypercall.args[1]  = npages;
10101                 vcpu->run->hypercall.args[2]  = attrs;
10102                 vcpu->run->hypercall.flags    = 0;
10103                 if (op_64_bit)
10104                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10105
10106                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10107                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10108                 return 0;
10109         }
10110         default:
10111                 ret = -KVM_ENOSYS;
10112                 break;
10113         }
10114 out:
10115         if (!op_64_bit)
10116                 ret = (u32)ret;
10117         kvm_rax_write(vcpu, ret);
10118
10119         ++vcpu->stat.hypercalls;
10120         return kvm_skip_emulated_instruction(vcpu);
10121 }
10122 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10123
10124 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10125 {
10126         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10127         char instruction[3];
10128         unsigned long rip = kvm_rip_read(vcpu);
10129
10130         /*
10131          * If the quirk is disabled, synthesize a #UD and let the guest pick up
10132          * the pieces.
10133          */
10134         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10135                 ctxt->exception.error_code_valid = false;
10136                 ctxt->exception.vector = UD_VECTOR;
10137                 ctxt->have_exception = true;
10138                 return X86EMUL_PROPAGATE_FAULT;
10139         }
10140
10141         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10142
10143         return emulator_write_emulated(ctxt, rip, instruction, 3,
10144                 &ctxt->exception);
10145 }
10146
10147 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10148 {
10149         return vcpu->run->request_interrupt_window &&
10150                 likely(!pic_in_kernel(vcpu->kvm));
10151 }
10152
10153 /* Called within kvm->srcu read side.  */
10154 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10155 {
10156         struct kvm_run *kvm_run = vcpu->run;
10157
10158         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10159         kvm_run->cr8 = kvm_get_cr8(vcpu);
10160         kvm_run->apic_base = kvm_get_apic_base(vcpu);
10161
10162         kvm_run->ready_for_interrupt_injection =
10163                 pic_in_kernel(vcpu->kvm) ||
10164                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10165
10166         if (is_smm(vcpu))
10167                 kvm_run->flags |= KVM_RUN_X86_SMM;
10168 }
10169
10170 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10171 {
10172         int max_irr, tpr;
10173
10174         if (!kvm_x86_ops.update_cr8_intercept)
10175                 return;
10176
10177         if (!lapic_in_kernel(vcpu))
10178                 return;
10179
10180         if (vcpu->arch.apic->apicv_active)
10181                 return;
10182
10183         if (!vcpu->arch.apic->vapic_addr)
10184                 max_irr = kvm_lapic_find_highest_irr(vcpu);
10185         else
10186                 max_irr = -1;
10187
10188         if (max_irr != -1)
10189                 max_irr >>= 4;
10190
10191         tpr = kvm_lapic_get_cr8(vcpu);
10192
10193         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10194 }
10195
10196
10197 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10198 {
10199         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10200                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10201                 return 1;
10202         }
10203
10204         return kvm_x86_ops.nested_ops->check_events(vcpu);
10205 }
10206
10207 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10208 {
10209         /*
10210          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10211          * exceptions don't report error codes.  The presence of an error code
10212          * is carried with the exception and only stripped when the exception
10213          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10214          * report an error code despite the CPU being in Real Mode.
10215          */
10216         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10217
10218         trace_kvm_inj_exception(vcpu->arch.exception.vector,
10219                                 vcpu->arch.exception.has_error_code,
10220                                 vcpu->arch.exception.error_code,
10221                                 vcpu->arch.exception.injected);
10222
10223         static_call(kvm_x86_inject_exception)(vcpu);
10224 }
10225
10226 /*
10227  * Check for any event (interrupt or exception) that is ready to be injected,
10228  * and if there is at least one event, inject the event with the highest
10229  * priority.  This handles both "pending" events, i.e. events that have never
10230  * been injected into the guest, and "injected" events, i.e. events that were
10231  * injected as part of a previous VM-Enter, but weren't successfully delivered
10232  * and need to be re-injected.
10233  *
10234  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10235  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10236  * be able to inject exceptions in the "middle" of an instruction, and so must
10237  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10238  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10239  * boundaries is necessary and correct.
10240  *
10241  * For simplicity, KVM uses a single path to inject all events (except events
10242  * that are injected directly from L1 to L2) and doesn't explicitly track
10243  * instruction boundaries for asynchronous events.  However, because VM-Exits
10244  * that can occur during instruction execution typically result in KVM skipping
10245  * the instruction or injecting an exception, e.g. instruction and exception
10246  * intercepts, and because pending exceptions have higher priority than pending
10247  * interrupts, KVM still honors instruction boundaries in most scenarios.
10248  *
10249  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10250  * the instruction or inject an exception, then KVM can incorrecty inject a new
10251  * asynchronous event if the event became pending after the CPU fetched the
10252  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10253  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10254  * injected on the restarted instruction instead of being deferred until the
10255  * instruction completes.
10256  *
10257  * In practice, this virtualization hole is unlikely to be observed by the
10258  * guest, and even less likely to cause functional problems.  To detect the
10259  * hole, the guest would have to trigger an event on a side effect of an early
10260  * phase of instruction execution, e.g. on the instruction fetch from memory.
10261  * And for it to be a functional problem, the guest would need to depend on the
10262  * ordering between that side effect, the instruction completing, _and_ the
10263  * delivery of the asynchronous event.
10264  */
10265 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10266                                        bool *req_immediate_exit)
10267 {
10268         bool can_inject;
10269         int r;
10270
10271         /*
10272          * Process nested events first, as nested VM-Exit supersedes event
10273          * re-injection.  If there's an event queued for re-injection, it will
10274          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10275          */
10276         if (is_guest_mode(vcpu))
10277                 r = kvm_check_nested_events(vcpu);
10278         else
10279                 r = 0;
10280
10281         /*
10282          * Re-inject exceptions and events *especially* if immediate entry+exit
10283          * to/from L2 is needed, as any event that has already been injected
10284          * into L2 needs to complete its lifecycle before injecting a new event.
10285          *
10286          * Don't re-inject an NMI or interrupt if there is a pending exception.
10287          * This collision arises if an exception occurred while vectoring the
10288          * injected event, KVM intercepted said exception, and KVM ultimately
10289          * determined the fault belongs to the guest and queues the exception
10290          * for injection back into the guest.
10291          *
10292          * "Injected" interrupts can also collide with pending exceptions if
10293          * userspace ignores the "ready for injection" flag and blindly queues
10294          * an interrupt.  In that case, prioritizing the exception is correct,
10295          * as the exception "occurred" before the exit to userspace.  Trap-like
10296          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10297          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10298          * priority, they're only generated (pended) during instruction
10299          * execution, and interrupts are recognized at instruction boundaries.
10300          * Thus a pending fault-like exception means the fault occurred on the
10301          * *previous* instruction and must be serviced prior to recognizing any
10302          * new events in order to fully complete the previous instruction.
10303          */
10304         if (vcpu->arch.exception.injected)
10305                 kvm_inject_exception(vcpu);
10306         else if (kvm_is_exception_pending(vcpu))
10307                 ; /* see above */
10308         else if (vcpu->arch.nmi_injected)
10309                 static_call(kvm_x86_inject_nmi)(vcpu);
10310         else if (vcpu->arch.interrupt.injected)
10311                 static_call(kvm_x86_inject_irq)(vcpu, true);
10312
10313         /*
10314          * Exceptions that morph to VM-Exits are handled above, and pending
10315          * exceptions on top of injected exceptions that do not VM-Exit should
10316          * either morph to #DF or, sadly, override the injected exception.
10317          */
10318         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10319                      vcpu->arch.exception.pending);
10320
10321         /*
10322          * Bail if immediate entry+exit to/from the guest is needed to complete
10323          * nested VM-Enter or event re-injection so that a different pending
10324          * event can be serviced (or if KVM needs to exit to userspace).
10325          *
10326          * Otherwise, continue processing events even if VM-Exit occurred.  The
10327          * VM-Exit will have cleared exceptions that were meant for L2, but
10328          * there may now be events that can be injected into L1.
10329          */
10330         if (r < 0)
10331                 goto out;
10332
10333         /*
10334          * A pending exception VM-Exit should either result in nested VM-Exit
10335          * or force an immediate re-entry and exit to/from L2, and exception
10336          * VM-Exits cannot be injected (flag should _never_ be set).
10337          */
10338         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10339                      vcpu->arch.exception_vmexit.pending);
10340
10341         /*
10342          * New events, other than exceptions, cannot be injected if KVM needs
10343          * to re-inject a previous event.  See above comments on re-injecting
10344          * for why pending exceptions get priority.
10345          */
10346         can_inject = !kvm_event_needs_reinjection(vcpu);
10347
10348         if (vcpu->arch.exception.pending) {
10349                 /*
10350                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10351                  * value pushed on the stack.  Trap-like exception and all #DBs
10352                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10353                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10354                  *
10355                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10356                  * describe the behavior of General Detect #DBs, which are
10357                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10358                  */
10359                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10360                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10361                                              X86_EFLAGS_RF);
10362
10363                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10364                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10365                         if (vcpu->arch.dr7 & DR7_GD) {
10366                                 vcpu->arch.dr7 &= ~DR7_GD;
10367                                 kvm_update_dr7(vcpu);
10368                         }
10369                 }
10370
10371                 kvm_inject_exception(vcpu);
10372
10373                 vcpu->arch.exception.pending = false;
10374                 vcpu->arch.exception.injected = true;
10375
10376                 can_inject = false;
10377         }
10378
10379         /* Don't inject interrupts if the user asked to avoid doing so */
10380         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10381                 return 0;
10382
10383         /*
10384          * Finally, inject interrupt events.  If an event cannot be injected
10385          * due to architectural conditions (e.g. IF=0) a window-open exit
10386          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10387          * and can architecturally be injected, but we cannot do it right now:
10388          * an interrupt could have arrived just now and we have to inject it
10389          * as a vmexit, or there could already an event in the queue, which is
10390          * indicated by can_inject.  In that case we request an immediate exit
10391          * in order to make progress and get back here for another iteration.
10392          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10393          */
10394 #ifdef CONFIG_KVM_SMM
10395         if (vcpu->arch.smi_pending) {
10396                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10397                 if (r < 0)
10398                         goto out;
10399                 if (r) {
10400                         vcpu->arch.smi_pending = false;
10401                         ++vcpu->arch.smi_count;
10402                         enter_smm(vcpu);
10403                         can_inject = false;
10404                 } else
10405                         static_call(kvm_x86_enable_smi_window)(vcpu);
10406         }
10407 #endif
10408
10409         if (vcpu->arch.nmi_pending) {
10410                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10411                 if (r < 0)
10412                         goto out;
10413                 if (r) {
10414                         --vcpu->arch.nmi_pending;
10415                         vcpu->arch.nmi_injected = true;
10416                         static_call(kvm_x86_inject_nmi)(vcpu);
10417                         can_inject = false;
10418                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10419                 }
10420                 if (vcpu->arch.nmi_pending)
10421                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10422         }
10423
10424         if (kvm_cpu_has_injectable_intr(vcpu)) {
10425                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10426                 if (r < 0)
10427                         goto out;
10428                 if (r) {
10429                         int irq = kvm_cpu_get_interrupt(vcpu);
10430
10431                         if (!WARN_ON_ONCE(irq == -1)) {
10432                                 kvm_queue_interrupt(vcpu, irq, false);
10433                                 static_call(kvm_x86_inject_irq)(vcpu, false);
10434                                 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10435                         }
10436                 }
10437                 if (kvm_cpu_has_injectable_intr(vcpu))
10438                         static_call(kvm_x86_enable_irq_window)(vcpu);
10439         }
10440
10441         if (is_guest_mode(vcpu) &&
10442             kvm_x86_ops.nested_ops->has_events &&
10443             kvm_x86_ops.nested_ops->has_events(vcpu))
10444                 *req_immediate_exit = true;
10445
10446         /*
10447          * KVM must never queue a new exception while injecting an event; KVM
10448          * is done emulating and should only propagate the to-be-injected event
10449          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10450          * infinite loop as KVM will bail from VM-Enter to inject the pending
10451          * exception and start the cycle all over.
10452          *
10453          * Exempt triple faults as they have special handling and won't put the
10454          * vCPU into an infinite loop.  Triple fault can be queued when running
10455          * VMX without unrestricted guest, as that requires KVM to emulate Real
10456          * Mode events (see kvm_inject_realmode_interrupt()).
10457          */
10458         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10459                      vcpu->arch.exception_vmexit.pending);
10460         return 0;
10461
10462 out:
10463         if (r == -EBUSY) {
10464                 *req_immediate_exit = true;
10465                 r = 0;
10466         }
10467         return r;
10468 }
10469
10470 static void process_nmi(struct kvm_vcpu *vcpu)
10471 {
10472         unsigned int limit;
10473
10474         /*
10475          * x86 is limited to one NMI pending, but because KVM can't react to
10476          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10477          * scheduled out, KVM needs to play nice with two queued NMIs showing
10478          * up at the same time.  To handle this scenario, allow two NMIs to be
10479          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10480          * waiting for a previous NMI injection to complete (which effectively
10481          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10482          * will request an NMI window to handle the second NMI.
10483          */
10484         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10485                 limit = 1;
10486         else
10487                 limit = 2;
10488
10489         /*
10490          * Adjust the limit to account for pending virtual NMIs, which aren't
10491          * tracked in vcpu->arch.nmi_pending.
10492          */
10493         if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10494                 limit--;
10495
10496         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10497         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10498
10499         if (vcpu->arch.nmi_pending &&
10500             (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10501                 vcpu->arch.nmi_pending--;
10502
10503         if (vcpu->arch.nmi_pending)
10504                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10505 }
10506
10507 /* Return total number of NMIs pending injection to the VM */
10508 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10509 {
10510         return vcpu->arch.nmi_pending +
10511                static_call(kvm_x86_is_vnmi_pending)(vcpu);
10512 }
10513
10514 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10515                                        unsigned long *vcpu_bitmap)
10516 {
10517         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10518 }
10519
10520 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10521 {
10522         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10523 }
10524
10525 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10526 {
10527         struct kvm_lapic *apic = vcpu->arch.apic;
10528         bool activate;
10529
10530         if (!lapic_in_kernel(vcpu))
10531                 return;
10532
10533         down_read(&vcpu->kvm->arch.apicv_update_lock);
10534         preempt_disable();
10535
10536         /* Do not activate APICV when APIC is disabled */
10537         activate = kvm_vcpu_apicv_activated(vcpu) &&
10538                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10539
10540         if (apic->apicv_active == activate)
10541                 goto out;
10542
10543         apic->apicv_active = activate;
10544         kvm_apic_update_apicv(vcpu);
10545         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10546
10547         /*
10548          * When APICv gets disabled, we may still have injected interrupts
10549          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10550          * still active when the interrupt got accepted. Make sure
10551          * kvm_check_and_inject_events() is called to check for that.
10552          */
10553         if (!apic->apicv_active)
10554                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10555
10556 out:
10557         preempt_enable();
10558         up_read(&vcpu->kvm->arch.apicv_update_lock);
10559 }
10560 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10561
10562 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10563 {
10564         if (!lapic_in_kernel(vcpu))
10565                 return;
10566
10567         /*
10568          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10569          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10570          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10571          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10572          * this case so that KVM can the AVIC doorbell to inject interrupts to
10573          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10574          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10575          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10576          * access page is sticky.
10577          */
10578         if (apic_x2apic_mode(vcpu->arch.apic) &&
10579             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10580                 kvm_inhibit_apic_access_page(vcpu);
10581
10582         __kvm_vcpu_update_apicv(vcpu);
10583 }
10584
10585 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10586                                       enum kvm_apicv_inhibit reason, bool set)
10587 {
10588         unsigned long old, new;
10589
10590         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10591
10592         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10593                 return;
10594
10595         old = new = kvm->arch.apicv_inhibit_reasons;
10596
10597         set_or_clear_apicv_inhibit(&new, reason, set);
10598
10599         if (!!old != !!new) {
10600                 /*
10601                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10602                  * false positives in the sanity check WARN in svm_vcpu_run().
10603                  * This task will wait for all vCPUs to ack the kick IRQ before
10604                  * updating apicv_inhibit_reasons, and all other vCPUs will
10605                  * block on acquiring apicv_update_lock so that vCPUs can't
10606                  * redo svm_vcpu_run() without seeing the new inhibit state.
10607                  *
10608                  * Note, holding apicv_update_lock and taking it in the read
10609                  * side (handling the request) also prevents other vCPUs from
10610                  * servicing the request with a stale apicv_inhibit_reasons.
10611                  */
10612                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10613                 kvm->arch.apicv_inhibit_reasons = new;
10614                 if (new) {
10615                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10616                         int idx = srcu_read_lock(&kvm->srcu);
10617
10618                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10619                         srcu_read_unlock(&kvm->srcu, idx);
10620                 }
10621         } else {
10622                 kvm->arch.apicv_inhibit_reasons = new;
10623         }
10624 }
10625
10626 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10627                                     enum kvm_apicv_inhibit reason, bool set)
10628 {
10629         if (!enable_apicv)
10630                 return;
10631
10632         down_write(&kvm->arch.apicv_update_lock);
10633         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10634         up_write(&kvm->arch.apicv_update_lock);
10635 }
10636 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10637
10638 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10639 {
10640         if (!kvm_apic_present(vcpu))
10641                 return;
10642
10643         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10644
10645         if (irqchip_split(vcpu->kvm))
10646                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10647         else {
10648                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10649                 if (ioapic_in_kernel(vcpu->kvm))
10650                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10651         }
10652
10653         if (is_guest_mode(vcpu))
10654                 vcpu->arch.load_eoi_exitmap_pending = true;
10655         else
10656                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10657 }
10658
10659 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10660 {
10661         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10662                 return;
10663
10664 #ifdef CONFIG_KVM_HYPERV
10665         if (to_hv_vcpu(vcpu)) {
10666                 u64 eoi_exit_bitmap[4];
10667
10668                 bitmap_or((ulong *)eoi_exit_bitmap,
10669                           vcpu->arch.ioapic_handled_vectors,
10670                           to_hv_synic(vcpu)->vec_bitmap, 256);
10671                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10672                 return;
10673         }
10674 #endif
10675         static_call_cond(kvm_x86_load_eoi_exitmap)(
10676                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10677 }
10678
10679 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10680 {
10681         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10682 }
10683
10684 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10685 {
10686         if (!lapic_in_kernel(vcpu))
10687                 return;
10688
10689         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10690 }
10691
10692 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10693 {
10694         smp_send_reschedule(vcpu->cpu);
10695 }
10696 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10697
10698 /*
10699  * Called within kvm->srcu read side.
10700  * Returns 1 to let vcpu_run() continue the guest execution loop without
10701  * exiting to the userspace.  Otherwise, the value will be returned to the
10702  * userspace.
10703  */
10704 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10705 {
10706         int r;
10707         bool req_int_win =
10708                 dm_request_for_irq_injection(vcpu) &&
10709                 kvm_cpu_accept_dm_intr(vcpu);
10710         fastpath_t exit_fastpath;
10711
10712         bool req_immediate_exit = false;
10713
10714         if (kvm_request_pending(vcpu)) {
10715                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10716                         r = -EIO;
10717                         goto out;
10718                 }
10719
10720                 if (kvm_dirty_ring_check_request(vcpu)) {
10721                         r = 0;
10722                         goto out;
10723                 }
10724
10725                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10726                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10727                                 r = 0;
10728                                 goto out;
10729                         }
10730                 }
10731                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10732                         kvm_mmu_free_obsolete_roots(vcpu);
10733                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10734                         __kvm_migrate_timers(vcpu);
10735                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10736                         kvm_update_masterclock(vcpu->kvm);
10737                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10738                         kvm_gen_kvmclock_update(vcpu);
10739                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10740                         r = kvm_guest_time_update(vcpu);
10741                         if (unlikely(r))
10742                                 goto out;
10743                 }
10744                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10745                         kvm_mmu_sync_roots(vcpu);
10746                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10747                         kvm_mmu_load_pgd(vcpu);
10748
10749                 /*
10750                  * Note, the order matters here, as flushing "all" TLB entries
10751                  * also flushes the "current" TLB entries, i.e. servicing the
10752                  * flush "all" will clear any request to flush "current".
10753                  */
10754                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10755                         kvm_vcpu_flush_tlb_all(vcpu);
10756
10757                 kvm_service_local_tlb_flush_requests(vcpu);
10758
10759                 /*
10760                  * Fall back to a "full" guest flush if Hyper-V's precise
10761                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10762                  * the flushes are considered "remote" and not "local" because
10763                  * the requests can be initiated from other vCPUs.
10764                  */
10765 #ifdef CONFIG_KVM_HYPERV
10766                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10767                     kvm_hv_vcpu_flush_tlb(vcpu))
10768                         kvm_vcpu_flush_tlb_guest(vcpu);
10769 #endif
10770
10771                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10772                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10773                         r = 0;
10774                         goto out;
10775                 }
10776                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10777                         if (is_guest_mode(vcpu))
10778                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10779
10780                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10781                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10782                                 vcpu->mmio_needed = 0;
10783                                 r = 0;
10784                                 goto out;
10785                         }
10786                 }
10787                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10788                         /* Page is swapped out. Do synthetic halt */
10789                         vcpu->arch.apf.halted = true;
10790                         r = 1;
10791                         goto out;
10792                 }
10793                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10794                         record_steal_time(vcpu);
10795                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10796                         kvm_pmu_handle_event(vcpu);
10797                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10798                         kvm_pmu_deliver_pmi(vcpu);
10799 #ifdef CONFIG_KVM_SMM
10800                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10801                         process_smi(vcpu);
10802 #endif
10803                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10804                         process_nmi(vcpu);
10805                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10806                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10807                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10808                                      vcpu->arch.ioapic_handled_vectors)) {
10809                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10810                                 vcpu->run->eoi.vector =
10811                                                 vcpu->arch.pending_ioapic_eoi;
10812                                 r = 0;
10813                                 goto out;
10814                         }
10815                 }
10816                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10817                         vcpu_scan_ioapic(vcpu);
10818                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10819                         vcpu_load_eoi_exitmap(vcpu);
10820                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10821                         kvm_vcpu_reload_apic_access_page(vcpu);
10822 #ifdef CONFIG_KVM_HYPERV
10823                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10824                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10825                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10826                         vcpu->run->system_event.ndata = 0;
10827                         r = 0;
10828                         goto out;
10829                 }
10830                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10831                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10832                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10833                         vcpu->run->system_event.ndata = 0;
10834                         r = 0;
10835                         goto out;
10836                 }
10837                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10838                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10839
10840                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10841                         vcpu->run->hyperv = hv_vcpu->exit;
10842                         r = 0;
10843                         goto out;
10844                 }
10845
10846                 /*
10847                  * KVM_REQ_HV_STIMER has to be processed after
10848                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10849                  * depend on the guest clock being up-to-date
10850                  */
10851                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10852                         kvm_hv_process_stimers(vcpu);
10853 #endif
10854                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10855                         kvm_vcpu_update_apicv(vcpu);
10856                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10857                         kvm_check_async_pf_completion(vcpu);
10858                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10859                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10860
10861                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10862                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10863         }
10864
10865         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10866             kvm_xen_has_interrupt(vcpu)) {
10867                 ++vcpu->stat.req_event;
10868                 r = kvm_apic_accept_events(vcpu);
10869                 if (r < 0) {
10870                         r = 0;
10871                         goto out;
10872                 }
10873                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10874                         r = 1;
10875                         goto out;
10876                 }
10877
10878                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10879                 if (r < 0) {
10880                         r = 0;
10881                         goto out;
10882                 }
10883                 if (req_int_win)
10884                         static_call(kvm_x86_enable_irq_window)(vcpu);
10885
10886                 if (kvm_lapic_enabled(vcpu)) {
10887                         update_cr8_intercept(vcpu);
10888                         kvm_lapic_sync_to_vapic(vcpu);
10889                 }
10890         }
10891
10892         r = kvm_mmu_reload(vcpu);
10893         if (unlikely(r)) {
10894                 goto cancel_injection;
10895         }
10896
10897         preempt_disable();
10898
10899         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10900
10901         /*
10902          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10903          * IPI are then delayed after guest entry, which ensures that they
10904          * result in virtual interrupt delivery.
10905          */
10906         local_irq_disable();
10907
10908         /* Store vcpu->apicv_active before vcpu->mode.  */
10909         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10910
10911         kvm_vcpu_srcu_read_unlock(vcpu);
10912
10913         /*
10914          * 1) We should set ->mode before checking ->requests.  Please see
10915          * the comment in kvm_vcpu_exiting_guest_mode().
10916          *
10917          * 2) For APICv, we should set ->mode before checking PID.ON. This
10918          * pairs with the memory barrier implicit in pi_test_and_set_on
10919          * (see vmx_deliver_posted_interrupt).
10920          *
10921          * 3) This also orders the write to mode from any reads to the page
10922          * tables done while the VCPU is running.  Please see the comment
10923          * in kvm_flush_remote_tlbs.
10924          */
10925         smp_mb__after_srcu_read_unlock();
10926
10927         /*
10928          * Process pending posted interrupts to handle the case where the
10929          * notification IRQ arrived in the host, or was never sent (because the
10930          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10931          * status, KVM doesn't update assigned devices when APICv is inhibited,
10932          * i.e. they can post interrupts even if APICv is temporarily disabled.
10933          */
10934         if (kvm_lapic_enabled(vcpu))
10935                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10936
10937         if (kvm_vcpu_exit_request(vcpu)) {
10938                 vcpu->mode = OUTSIDE_GUEST_MODE;
10939                 smp_wmb();
10940                 local_irq_enable();
10941                 preempt_enable();
10942                 kvm_vcpu_srcu_read_lock(vcpu);
10943                 r = 1;
10944                 goto cancel_injection;
10945         }
10946
10947         if (req_immediate_exit) {
10948                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10949                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10950         }
10951
10952         fpregs_assert_state_consistent();
10953         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10954                 switch_fpu_return();
10955
10956         if (vcpu->arch.guest_fpu.xfd_err)
10957                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10958
10959         if (unlikely(vcpu->arch.switch_db_regs)) {
10960                 set_debugreg(0, 7);
10961                 set_debugreg(vcpu->arch.eff_db[0], 0);
10962                 set_debugreg(vcpu->arch.eff_db[1], 1);
10963                 set_debugreg(vcpu->arch.eff_db[2], 2);
10964                 set_debugreg(vcpu->arch.eff_db[3], 3);
10965         } else if (unlikely(hw_breakpoint_active())) {
10966                 set_debugreg(0, 7);
10967         }
10968
10969         guest_timing_enter_irqoff();
10970
10971         for (;;) {
10972                 /*
10973                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10974                  * update must kick and wait for all vCPUs before toggling the
10975                  * per-VM state, and responding vCPUs must wait for the update
10976                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10977                  */
10978                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10979                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10980
10981                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10982                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10983                         break;
10984
10985                 if (kvm_lapic_enabled(vcpu))
10986                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10987
10988                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10989                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10990                         break;
10991                 }
10992
10993                 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10994                 ++vcpu->stat.exits;
10995         }
10996
10997         /*
10998          * Do this here before restoring debug registers on the host.  And
10999          * since we do this before handling the vmexit, a DR access vmexit
11000          * can (a) read the correct value of the debug registers, (b) set
11001          * KVM_DEBUGREG_WONT_EXIT again.
11002          */
11003         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11004                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11005                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11006                 kvm_update_dr0123(vcpu);
11007                 kvm_update_dr7(vcpu);
11008         }
11009
11010         /*
11011          * If the guest has used debug registers, at least dr7
11012          * will be disabled while returning to the host.
11013          * If we don't have active breakpoints in the host, we don't
11014          * care about the messed up debug address registers. But if
11015          * we have some of them active, restore the old state.
11016          */
11017         if (hw_breakpoint_active())
11018                 hw_breakpoint_restore();
11019
11020         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11021         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11022
11023         vcpu->mode = OUTSIDE_GUEST_MODE;
11024         smp_wmb();
11025
11026         /*
11027          * Sync xfd before calling handle_exit_irqoff() which may
11028          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11029          * in #NM irqoff handler).
11030          */
11031         if (vcpu->arch.xfd_no_write_intercept)
11032                 fpu_sync_guest_vmexit_xfd_state();
11033
11034         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11035
11036         if (vcpu->arch.guest_fpu.xfd_err)
11037                 wrmsrl(MSR_IA32_XFD_ERR, 0);
11038
11039         /*
11040          * Consume any pending interrupts, including the possible source of
11041          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11042          * An instruction is required after local_irq_enable() to fully unblock
11043          * interrupts on processors that implement an interrupt shadow, the
11044          * stat.exits increment will do nicely.
11045          */
11046         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11047         local_irq_enable();
11048         ++vcpu->stat.exits;
11049         local_irq_disable();
11050         kvm_after_interrupt(vcpu);
11051
11052         /*
11053          * Wait until after servicing IRQs to account guest time so that any
11054          * ticks that occurred while running the guest are properly accounted
11055          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11056          * of accounting via context tracking, but the loss of accuracy is
11057          * acceptable for all known use cases.
11058          */
11059         guest_timing_exit_irqoff();
11060
11061         local_irq_enable();
11062         preempt_enable();
11063
11064         kvm_vcpu_srcu_read_lock(vcpu);
11065
11066         /*
11067          * Profile KVM exit RIPs:
11068          */
11069         if (unlikely(prof_on == KVM_PROFILING)) {
11070                 unsigned long rip = kvm_rip_read(vcpu);
11071                 profile_hit(KVM_PROFILING, (void *)rip);
11072         }
11073
11074         if (unlikely(vcpu->arch.tsc_always_catchup))
11075                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11076
11077         if (vcpu->arch.apic_attention)
11078                 kvm_lapic_sync_from_vapic(vcpu);
11079
11080         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11081         return r;
11082
11083 cancel_injection:
11084         if (req_immediate_exit)
11085                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11086         static_call(kvm_x86_cancel_injection)(vcpu);
11087         if (unlikely(vcpu->arch.apic_attention))
11088                 kvm_lapic_sync_from_vapic(vcpu);
11089 out:
11090         return r;
11091 }
11092
11093 /* Called within kvm->srcu read side.  */
11094 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11095 {
11096         bool hv_timer;
11097
11098         if (!kvm_arch_vcpu_runnable(vcpu)) {
11099                 /*
11100                  * Switch to the software timer before halt-polling/blocking as
11101                  * the guest's timer may be a break event for the vCPU, and the
11102                  * hypervisor timer runs only when the CPU is in guest mode.
11103                  * Switch before halt-polling so that KVM recognizes an expired
11104                  * timer before blocking.
11105                  */
11106                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11107                 if (hv_timer)
11108                         kvm_lapic_switch_to_sw_timer(vcpu);
11109
11110                 kvm_vcpu_srcu_read_unlock(vcpu);
11111                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11112                         kvm_vcpu_halt(vcpu);
11113                 else
11114                         kvm_vcpu_block(vcpu);
11115                 kvm_vcpu_srcu_read_lock(vcpu);
11116
11117                 if (hv_timer)
11118                         kvm_lapic_switch_to_hv_timer(vcpu);
11119
11120                 /*
11121                  * If the vCPU is not runnable, a signal or another host event
11122                  * of some kind is pending; service it without changing the
11123                  * vCPU's activity state.
11124                  */
11125                 if (!kvm_arch_vcpu_runnable(vcpu))
11126                         return 1;
11127         }
11128
11129         /*
11130          * Evaluate nested events before exiting the halted state.  This allows
11131          * the halt state to be recorded properly in the VMCS12's activity
11132          * state field (AMD does not have a similar field and a VM-Exit always
11133          * causes a spurious wakeup from HLT).
11134          */
11135         if (is_guest_mode(vcpu)) {
11136                 if (kvm_check_nested_events(vcpu) < 0)
11137                         return 0;
11138         }
11139
11140         if (kvm_apic_accept_events(vcpu) < 0)
11141                 return 0;
11142         switch(vcpu->arch.mp_state) {
11143         case KVM_MP_STATE_HALTED:
11144         case KVM_MP_STATE_AP_RESET_HOLD:
11145                 vcpu->arch.pv.pv_unhalted = false;
11146                 vcpu->arch.mp_state =
11147                         KVM_MP_STATE_RUNNABLE;
11148                 fallthrough;
11149         case KVM_MP_STATE_RUNNABLE:
11150                 vcpu->arch.apf.halted = false;
11151                 break;
11152         case KVM_MP_STATE_INIT_RECEIVED:
11153                 break;
11154         default:
11155                 WARN_ON_ONCE(1);
11156                 break;
11157         }
11158         return 1;
11159 }
11160
11161 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11162 {
11163         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11164                 !vcpu->arch.apf.halted);
11165 }
11166
11167 /* Called within kvm->srcu read side.  */
11168 static int vcpu_run(struct kvm_vcpu *vcpu)
11169 {
11170         int r;
11171
11172         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11173         vcpu->arch.l1tf_flush_l1d = true;
11174
11175         for (;;) {
11176                 /*
11177                  * If another guest vCPU requests a PV TLB flush in the middle
11178                  * of instruction emulation, the rest of the emulation could
11179                  * use a stale page translation. Assume that any code after
11180                  * this point can start executing an instruction.
11181                  */
11182                 vcpu->arch.at_instruction_boundary = false;
11183                 if (kvm_vcpu_running(vcpu)) {
11184                         r = vcpu_enter_guest(vcpu);
11185                 } else {
11186                         r = vcpu_block(vcpu);
11187                 }
11188
11189                 if (r <= 0)
11190                         break;
11191
11192                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11193                 if (kvm_xen_has_pending_events(vcpu))
11194                         kvm_xen_inject_pending_events(vcpu);
11195
11196                 if (kvm_cpu_has_pending_timer(vcpu))
11197                         kvm_inject_pending_timer_irqs(vcpu);
11198
11199                 if (dm_request_for_irq_injection(vcpu) &&
11200                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11201                         r = 0;
11202                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11203                         ++vcpu->stat.request_irq_exits;
11204                         break;
11205                 }
11206
11207                 if (__xfer_to_guest_mode_work_pending()) {
11208                         kvm_vcpu_srcu_read_unlock(vcpu);
11209                         r = xfer_to_guest_mode_handle_work(vcpu);
11210                         kvm_vcpu_srcu_read_lock(vcpu);
11211                         if (r)
11212                                 return r;
11213                 }
11214         }
11215
11216         return r;
11217 }
11218
11219 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11220 {
11221         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11222 }
11223
11224 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11225 {
11226         BUG_ON(!vcpu->arch.pio.count);
11227
11228         return complete_emulated_io(vcpu);
11229 }
11230
11231 /*
11232  * Implements the following, as a state machine:
11233  *
11234  * read:
11235  *   for each fragment
11236  *     for each mmio piece in the fragment
11237  *       write gpa, len
11238  *       exit
11239  *       copy data
11240  *   execute insn
11241  *
11242  * write:
11243  *   for each fragment
11244  *     for each mmio piece in the fragment
11245  *       write gpa, len
11246  *       copy data
11247  *       exit
11248  */
11249 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11250 {
11251         struct kvm_run *run = vcpu->run;
11252         struct kvm_mmio_fragment *frag;
11253         unsigned len;
11254
11255         BUG_ON(!vcpu->mmio_needed);
11256
11257         /* Complete previous fragment */
11258         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11259         len = min(8u, frag->len);
11260         if (!vcpu->mmio_is_write)
11261                 memcpy(frag->data, run->mmio.data, len);
11262
11263         if (frag->len <= 8) {
11264                 /* Switch to the next fragment. */
11265                 frag++;
11266                 vcpu->mmio_cur_fragment++;
11267         } else {
11268                 /* Go forward to the next mmio piece. */
11269                 frag->data += len;
11270                 frag->gpa += len;
11271                 frag->len -= len;
11272         }
11273
11274         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11275                 vcpu->mmio_needed = 0;
11276
11277                 /* FIXME: return into emulator if single-stepping.  */
11278                 if (vcpu->mmio_is_write)
11279                         return 1;
11280                 vcpu->mmio_read_completed = 1;
11281                 return complete_emulated_io(vcpu);
11282         }
11283
11284         run->exit_reason = KVM_EXIT_MMIO;
11285         run->mmio.phys_addr = frag->gpa;
11286         if (vcpu->mmio_is_write)
11287                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11288         run->mmio.len = min(8u, frag->len);
11289         run->mmio.is_write = vcpu->mmio_is_write;
11290         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11291         return 0;
11292 }
11293
11294 /* Swap (qemu) user FPU context for the guest FPU context. */
11295 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11296 {
11297         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11298         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11299         trace_kvm_fpu(1);
11300 }
11301
11302 /* When vcpu_run ends, restore user space FPU context. */
11303 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11304 {
11305         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11306         ++vcpu->stat.fpu_reload;
11307         trace_kvm_fpu(0);
11308 }
11309
11310 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11311 {
11312         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11313         struct kvm_run *kvm_run = vcpu->run;
11314         int r;
11315
11316         vcpu_load(vcpu);
11317         kvm_sigset_activate(vcpu);
11318         kvm_run->flags = 0;
11319         kvm_load_guest_fpu(vcpu);
11320
11321         kvm_vcpu_srcu_read_lock(vcpu);
11322         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11323                 if (kvm_run->immediate_exit) {
11324                         r = -EINTR;
11325                         goto out;
11326                 }
11327
11328                 /*
11329                  * Don't bother switching APIC timer emulation from the
11330                  * hypervisor timer to the software timer, the only way for the
11331                  * APIC timer to be active is if userspace stuffed vCPU state,
11332                  * i.e. put the vCPU into a nonsensical state.  Only an INIT
11333                  * will transition the vCPU out of UNINITIALIZED (without more
11334                  * state stuffing from userspace), which will reset the local
11335                  * APIC and thus cancel the timer or drop the IRQ (if the timer
11336                  * already expired).
11337                  */
11338                 kvm_vcpu_srcu_read_unlock(vcpu);
11339                 kvm_vcpu_block(vcpu);
11340                 kvm_vcpu_srcu_read_lock(vcpu);
11341
11342                 if (kvm_apic_accept_events(vcpu) < 0) {
11343                         r = 0;
11344                         goto out;
11345                 }
11346                 r = -EAGAIN;
11347                 if (signal_pending(current)) {
11348                         r = -EINTR;
11349                         kvm_run->exit_reason = KVM_EXIT_INTR;
11350                         ++vcpu->stat.signal_exits;
11351                 }
11352                 goto out;
11353         }
11354
11355         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11356             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11357                 r = -EINVAL;
11358                 goto out;
11359         }
11360
11361         if (kvm_run->kvm_dirty_regs) {
11362                 r = sync_regs(vcpu);
11363                 if (r != 0)
11364                         goto out;
11365         }
11366
11367         /* re-sync apic's tpr */
11368         if (!lapic_in_kernel(vcpu)) {
11369                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11370                         r = -EINVAL;
11371                         goto out;
11372                 }
11373         }
11374
11375         /*
11376          * If userspace set a pending exception and L2 is active, convert it to
11377          * a pending VM-Exit if L1 wants to intercept the exception.
11378          */
11379         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11380             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11381                                                         ex->error_code)) {
11382                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11383                                            ex->has_error_code, ex->error_code,
11384                                            ex->has_payload, ex->payload);
11385                 ex->injected = false;
11386                 ex->pending = false;
11387         }
11388         vcpu->arch.exception_from_userspace = false;
11389
11390         if (unlikely(vcpu->arch.complete_userspace_io)) {
11391                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11392                 vcpu->arch.complete_userspace_io = NULL;
11393                 r = cui(vcpu);
11394                 if (r <= 0)
11395                         goto out;
11396         } else {
11397                 WARN_ON_ONCE(vcpu->arch.pio.count);
11398                 WARN_ON_ONCE(vcpu->mmio_needed);
11399         }
11400
11401         if (kvm_run->immediate_exit) {
11402                 r = -EINTR;
11403                 goto out;
11404         }
11405
11406         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11407         if (r <= 0)
11408                 goto out;
11409
11410         r = vcpu_run(vcpu);
11411
11412 out:
11413         kvm_put_guest_fpu(vcpu);
11414         if (kvm_run->kvm_valid_regs)
11415                 store_regs(vcpu);
11416         post_kvm_run_save(vcpu);
11417         kvm_vcpu_srcu_read_unlock(vcpu);
11418
11419         kvm_sigset_deactivate(vcpu);
11420         vcpu_put(vcpu);
11421         return r;
11422 }
11423
11424 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11425 {
11426         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11427                 /*
11428                  * We are here if userspace calls get_regs() in the middle of
11429                  * instruction emulation. Registers state needs to be copied
11430                  * back from emulation context to vcpu. Userspace shouldn't do
11431                  * that usually, but some bad designed PV devices (vmware
11432                  * backdoor interface) need this to work
11433                  */
11434                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11435                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11436         }
11437         regs->rax = kvm_rax_read(vcpu);
11438         regs->rbx = kvm_rbx_read(vcpu);
11439         regs->rcx = kvm_rcx_read(vcpu);
11440         regs->rdx = kvm_rdx_read(vcpu);
11441         regs->rsi = kvm_rsi_read(vcpu);
11442         regs->rdi = kvm_rdi_read(vcpu);
11443         regs->rsp = kvm_rsp_read(vcpu);
11444         regs->rbp = kvm_rbp_read(vcpu);
11445 #ifdef CONFIG_X86_64
11446         regs->r8 = kvm_r8_read(vcpu);
11447         regs->r9 = kvm_r9_read(vcpu);
11448         regs->r10 = kvm_r10_read(vcpu);
11449         regs->r11 = kvm_r11_read(vcpu);
11450         regs->r12 = kvm_r12_read(vcpu);
11451         regs->r13 = kvm_r13_read(vcpu);
11452         regs->r14 = kvm_r14_read(vcpu);
11453         regs->r15 = kvm_r15_read(vcpu);
11454 #endif
11455
11456         regs->rip = kvm_rip_read(vcpu);
11457         regs->rflags = kvm_get_rflags(vcpu);
11458 }
11459
11460 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11461 {
11462         vcpu_load(vcpu);
11463         __get_regs(vcpu, regs);
11464         vcpu_put(vcpu);
11465         return 0;
11466 }
11467
11468 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11469 {
11470         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11471         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11472
11473         kvm_rax_write(vcpu, regs->rax);
11474         kvm_rbx_write(vcpu, regs->rbx);
11475         kvm_rcx_write(vcpu, regs->rcx);
11476         kvm_rdx_write(vcpu, regs->rdx);
11477         kvm_rsi_write(vcpu, regs->rsi);
11478         kvm_rdi_write(vcpu, regs->rdi);
11479         kvm_rsp_write(vcpu, regs->rsp);
11480         kvm_rbp_write(vcpu, regs->rbp);
11481 #ifdef CONFIG_X86_64
11482         kvm_r8_write(vcpu, regs->r8);
11483         kvm_r9_write(vcpu, regs->r9);
11484         kvm_r10_write(vcpu, regs->r10);
11485         kvm_r11_write(vcpu, regs->r11);
11486         kvm_r12_write(vcpu, regs->r12);
11487         kvm_r13_write(vcpu, regs->r13);
11488         kvm_r14_write(vcpu, regs->r14);
11489         kvm_r15_write(vcpu, regs->r15);
11490 #endif
11491
11492         kvm_rip_write(vcpu, regs->rip);
11493         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11494
11495         vcpu->arch.exception.pending = false;
11496         vcpu->arch.exception_vmexit.pending = false;
11497
11498         kvm_make_request(KVM_REQ_EVENT, vcpu);
11499 }
11500
11501 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11502 {
11503         vcpu_load(vcpu);
11504         __set_regs(vcpu, regs);
11505         vcpu_put(vcpu);
11506         return 0;
11507 }
11508
11509 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11510 {
11511         struct desc_ptr dt;
11512
11513         if (vcpu->arch.guest_state_protected)
11514                 goto skip_protected_regs;
11515
11516         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11517         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11518         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11519         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11520         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11521         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11522
11523         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11524         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11525
11526         static_call(kvm_x86_get_idt)(vcpu, &dt);
11527         sregs->idt.limit = dt.size;
11528         sregs->idt.base = dt.address;
11529         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11530         sregs->gdt.limit = dt.size;
11531         sregs->gdt.base = dt.address;
11532
11533         sregs->cr2 = vcpu->arch.cr2;
11534         sregs->cr3 = kvm_read_cr3(vcpu);
11535
11536 skip_protected_regs:
11537         sregs->cr0 = kvm_read_cr0(vcpu);
11538         sregs->cr4 = kvm_read_cr4(vcpu);
11539         sregs->cr8 = kvm_get_cr8(vcpu);
11540         sregs->efer = vcpu->arch.efer;
11541         sregs->apic_base = kvm_get_apic_base(vcpu);
11542 }
11543
11544 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11545 {
11546         __get_sregs_common(vcpu, sregs);
11547
11548         if (vcpu->arch.guest_state_protected)
11549                 return;
11550
11551         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11552                 set_bit(vcpu->arch.interrupt.nr,
11553                         (unsigned long *)sregs->interrupt_bitmap);
11554 }
11555
11556 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11557 {
11558         int i;
11559
11560         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11561
11562         if (vcpu->arch.guest_state_protected)
11563                 return;
11564
11565         if (is_pae_paging(vcpu)) {
11566                 for (i = 0 ; i < 4 ; i++)
11567                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11568                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11569         }
11570 }
11571
11572 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11573                                   struct kvm_sregs *sregs)
11574 {
11575         vcpu_load(vcpu);
11576         __get_sregs(vcpu, sregs);
11577         vcpu_put(vcpu);
11578         return 0;
11579 }
11580
11581 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11582                                     struct kvm_mp_state *mp_state)
11583 {
11584         int r;
11585
11586         vcpu_load(vcpu);
11587         if (kvm_mpx_supported())
11588                 kvm_load_guest_fpu(vcpu);
11589
11590         r = kvm_apic_accept_events(vcpu);
11591         if (r < 0)
11592                 goto out;
11593         r = 0;
11594
11595         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11596              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11597             vcpu->arch.pv.pv_unhalted)
11598                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11599         else
11600                 mp_state->mp_state = vcpu->arch.mp_state;
11601
11602 out:
11603         if (kvm_mpx_supported())
11604                 kvm_put_guest_fpu(vcpu);
11605         vcpu_put(vcpu);
11606         return r;
11607 }
11608
11609 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11610                                     struct kvm_mp_state *mp_state)
11611 {
11612         int ret = -EINVAL;
11613
11614         vcpu_load(vcpu);
11615
11616         switch (mp_state->mp_state) {
11617         case KVM_MP_STATE_UNINITIALIZED:
11618         case KVM_MP_STATE_HALTED:
11619         case KVM_MP_STATE_AP_RESET_HOLD:
11620         case KVM_MP_STATE_INIT_RECEIVED:
11621         case KVM_MP_STATE_SIPI_RECEIVED:
11622                 if (!lapic_in_kernel(vcpu))
11623                         goto out;
11624                 break;
11625
11626         case KVM_MP_STATE_RUNNABLE:
11627                 break;
11628
11629         default:
11630                 goto out;
11631         }
11632
11633         /*
11634          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11635          * forcing the guest into INIT/SIPI if those events are supposed to be
11636          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11637          * if an SMI is pending as well.
11638          */
11639         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11640             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11641              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11642                 goto out;
11643
11644         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11645                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11646                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11647         } else
11648                 vcpu->arch.mp_state = mp_state->mp_state;
11649         kvm_make_request(KVM_REQ_EVENT, vcpu);
11650
11651         ret = 0;
11652 out:
11653         vcpu_put(vcpu);
11654         return ret;
11655 }
11656
11657 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11658                     int reason, bool has_error_code, u32 error_code)
11659 {
11660         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11661         int ret;
11662
11663         init_emulate_ctxt(vcpu);
11664
11665         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11666                                    has_error_code, error_code);
11667         if (ret) {
11668                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11669                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11670                 vcpu->run->internal.ndata = 0;
11671                 return 0;
11672         }
11673
11674         kvm_rip_write(vcpu, ctxt->eip);
11675         kvm_set_rflags(vcpu, ctxt->eflags);
11676         return 1;
11677 }
11678 EXPORT_SYMBOL_GPL(kvm_task_switch);
11679
11680 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11681 {
11682         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11683                 /*
11684                  * When EFER.LME and CR0.PG are set, the processor is in
11685                  * 64-bit mode (though maybe in a 32-bit code segment).
11686                  * CR4.PAE and EFER.LMA must be set.
11687                  */
11688                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11689                         return false;
11690                 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11691                         return false;
11692         } else {
11693                 /*
11694                  * Not in 64-bit mode: EFER.LMA is clear and the code
11695                  * segment cannot be 64-bit.
11696                  */
11697                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11698                         return false;
11699         }
11700
11701         return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11702                kvm_is_valid_cr0(vcpu, sregs->cr0);
11703 }
11704
11705 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11706                 int *mmu_reset_needed, bool update_pdptrs)
11707 {
11708         struct msr_data apic_base_msr;
11709         int idx;
11710         struct desc_ptr dt;
11711
11712         if (!kvm_is_valid_sregs(vcpu, sregs))
11713                 return -EINVAL;
11714
11715         apic_base_msr.data = sregs->apic_base;
11716         apic_base_msr.host_initiated = true;
11717         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11718                 return -EINVAL;
11719
11720         if (vcpu->arch.guest_state_protected)
11721                 return 0;
11722
11723         dt.size = sregs->idt.limit;
11724         dt.address = sregs->idt.base;
11725         static_call(kvm_x86_set_idt)(vcpu, &dt);
11726         dt.size = sregs->gdt.limit;
11727         dt.address = sregs->gdt.base;
11728         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11729
11730         vcpu->arch.cr2 = sregs->cr2;
11731         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11732         vcpu->arch.cr3 = sregs->cr3;
11733         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11734         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11735
11736         kvm_set_cr8(vcpu, sregs->cr8);
11737
11738         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11739         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11740
11741         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11742         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11743
11744         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11745         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11746
11747         if (update_pdptrs) {
11748                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11749                 if (is_pae_paging(vcpu)) {
11750                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11751                         *mmu_reset_needed = 1;
11752                 }
11753                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11754         }
11755
11756         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11757         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11758         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11759         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11760         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11761         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11762
11763         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11764         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11765
11766         update_cr8_intercept(vcpu);
11767
11768         /* Older userspace won't unhalt the vcpu on reset. */
11769         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11770             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11771             !is_protmode(vcpu))
11772                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11773
11774         return 0;
11775 }
11776
11777 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11778 {
11779         int pending_vec, max_bits;
11780         int mmu_reset_needed = 0;
11781         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11782
11783         if (ret)
11784                 return ret;
11785
11786         if (mmu_reset_needed) {
11787                 kvm_mmu_reset_context(vcpu);
11788                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11789         }
11790
11791         max_bits = KVM_NR_INTERRUPTS;
11792         pending_vec = find_first_bit(
11793                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11794
11795         if (pending_vec < max_bits) {
11796                 kvm_queue_interrupt(vcpu, pending_vec, false);
11797                 pr_debug("Set back pending irq %d\n", pending_vec);
11798                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11799         }
11800         return 0;
11801 }
11802
11803 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11804 {
11805         int mmu_reset_needed = 0;
11806         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11807         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11808                 !(sregs2->efer & EFER_LMA);
11809         int i, ret;
11810
11811         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11812                 return -EINVAL;
11813
11814         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11815                 return -EINVAL;
11816
11817         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11818                                  &mmu_reset_needed, !valid_pdptrs);
11819         if (ret)
11820                 return ret;
11821
11822         if (valid_pdptrs) {
11823                 for (i = 0; i < 4 ; i++)
11824                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11825
11826                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11827                 mmu_reset_needed = 1;
11828                 vcpu->arch.pdptrs_from_userspace = true;
11829         }
11830         if (mmu_reset_needed) {
11831                 kvm_mmu_reset_context(vcpu);
11832                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11833         }
11834         return 0;
11835 }
11836
11837 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11838                                   struct kvm_sregs *sregs)
11839 {
11840         int ret;
11841
11842         vcpu_load(vcpu);
11843         ret = __set_sregs(vcpu, sregs);
11844         vcpu_put(vcpu);
11845         return ret;
11846 }
11847
11848 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11849 {
11850         bool set = false;
11851         struct kvm_vcpu *vcpu;
11852         unsigned long i;
11853
11854         if (!enable_apicv)
11855                 return;
11856
11857         down_write(&kvm->arch.apicv_update_lock);
11858
11859         kvm_for_each_vcpu(i, vcpu, kvm) {
11860                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11861                         set = true;
11862                         break;
11863                 }
11864         }
11865         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11866         up_write(&kvm->arch.apicv_update_lock);
11867 }
11868
11869 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11870                                         struct kvm_guest_debug *dbg)
11871 {
11872         unsigned long rflags;
11873         int i, r;
11874
11875         if (vcpu->arch.guest_state_protected)
11876                 return -EINVAL;
11877
11878         vcpu_load(vcpu);
11879
11880         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11881                 r = -EBUSY;
11882                 if (kvm_is_exception_pending(vcpu))
11883                         goto out;
11884                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11885                         kvm_queue_exception(vcpu, DB_VECTOR);
11886                 else
11887                         kvm_queue_exception(vcpu, BP_VECTOR);
11888         }
11889
11890         /*
11891          * Read rflags as long as potentially injected trace flags are still
11892          * filtered out.
11893          */
11894         rflags = kvm_get_rflags(vcpu);
11895
11896         vcpu->guest_debug = dbg->control;
11897         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11898                 vcpu->guest_debug = 0;
11899
11900         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11901                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11902                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11903                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11904         } else {
11905                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11906                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11907         }
11908         kvm_update_dr7(vcpu);
11909
11910         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11911                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11912
11913         /*
11914          * Trigger an rflags update that will inject or remove the trace
11915          * flags.
11916          */
11917         kvm_set_rflags(vcpu, rflags);
11918
11919         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11920
11921         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11922
11923         r = 0;
11924
11925 out:
11926         vcpu_put(vcpu);
11927         return r;
11928 }
11929
11930 /*
11931  * Translate a guest virtual address to a guest physical address.
11932  */
11933 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11934                                     struct kvm_translation *tr)
11935 {
11936         unsigned long vaddr = tr->linear_address;
11937         gpa_t gpa;
11938         int idx;
11939
11940         vcpu_load(vcpu);
11941
11942         idx = srcu_read_lock(&vcpu->kvm->srcu);
11943         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11944         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11945         tr->physical_address = gpa;
11946         tr->valid = gpa != INVALID_GPA;
11947         tr->writeable = 1;
11948         tr->usermode = 0;
11949
11950         vcpu_put(vcpu);
11951         return 0;
11952 }
11953
11954 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11955 {
11956         struct fxregs_state *fxsave;
11957
11958         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11959                 return 0;
11960
11961         vcpu_load(vcpu);
11962
11963         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11964         memcpy(fpu->fpr, fxsave->st_space, 128);
11965         fpu->fcw = fxsave->cwd;
11966         fpu->fsw = fxsave->swd;
11967         fpu->ftwx = fxsave->twd;
11968         fpu->last_opcode = fxsave->fop;
11969         fpu->last_ip = fxsave->rip;
11970         fpu->last_dp = fxsave->rdp;
11971         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11972
11973         vcpu_put(vcpu);
11974         return 0;
11975 }
11976
11977 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11978 {
11979         struct fxregs_state *fxsave;
11980
11981         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11982                 return 0;
11983
11984         vcpu_load(vcpu);
11985
11986         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11987
11988         memcpy(fxsave->st_space, fpu->fpr, 128);
11989         fxsave->cwd = fpu->fcw;
11990         fxsave->swd = fpu->fsw;
11991         fxsave->twd = fpu->ftwx;
11992         fxsave->fop = fpu->last_opcode;
11993         fxsave->rip = fpu->last_ip;
11994         fxsave->rdp = fpu->last_dp;
11995         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11996
11997         vcpu_put(vcpu);
11998         return 0;
11999 }
12000
12001 static void store_regs(struct kvm_vcpu *vcpu)
12002 {
12003         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12004
12005         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12006                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12007
12008         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12009                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12010
12011         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12012                 kvm_vcpu_ioctl_x86_get_vcpu_events(
12013                                 vcpu, &vcpu->run->s.regs.events);
12014 }
12015
12016 static int sync_regs(struct kvm_vcpu *vcpu)
12017 {
12018         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12019                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12020                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12021         }
12022
12023         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12024                 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12025
12026                 if (__set_sregs(vcpu, &sregs))
12027                         return -EINVAL;
12028
12029                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12030         }
12031
12032         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12033                 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12034
12035                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12036                         return -EINVAL;
12037
12038                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12039         }
12040
12041         return 0;
12042 }
12043
12044 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12045 {
12046         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12047                 pr_warn_once("SMP vm created on host with unstable TSC; "
12048                              "guest TSC will not be reliable\n");
12049
12050         if (!kvm->arch.max_vcpu_ids)
12051                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12052
12053         if (id >= kvm->arch.max_vcpu_ids)
12054                 return -EINVAL;
12055
12056         return static_call(kvm_x86_vcpu_precreate)(kvm);
12057 }
12058
12059 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12060 {
12061         struct page *page;
12062         int r;
12063
12064         vcpu->arch.last_vmentry_cpu = -1;
12065         vcpu->arch.regs_avail = ~0;
12066         vcpu->arch.regs_dirty = ~0;
12067
12068         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12069
12070         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12071                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12072         else
12073                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12074
12075         r = kvm_mmu_create(vcpu);
12076         if (r < 0)
12077                 return r;
12078
12079         if (irqchip_in_kernel(vcpu->kvm)) {
12080                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12081                 if (r < 0)
12082                         goto fail_mmu_destroy;
12083
12084                 /*
12085                  * Defer evaluating inhibits until the vCPU is first run, as
12086                  * this vCPU will not get notified of any changes until this
12087                  * vCPU is visible to other vCPUs (marked online and added to
12088                  * the set of vCPUs).  Opportunistically mark APICv active as
12089                  * VMX in particularly is highly unlikely to have inhibits.
12090                  * Ignore the current per-VM APICv state so that vCPU creation
12091                  * is guaranteed to run with a deterministic value, the request
12092                  * will ensure the vCPU gets the correct state before VM-Entry.
12093                  */
12094                 if (enable_apicv) {
12095                         vcpu->arch.apic->apicv_active = true;
12096                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12097                 }
12098         } else
12099                 static_branch_inc(&kvm_has_noapic_vcpu);
12100
12101         r = -ENOMEM;
12102
12103         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12104         if (!page)
12105                 goto fail_free_lapic;
12106         vcpu->arch.pio_data = page_address(page);
12107
12108         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12109                                        GFP_KERNEL_ACCOUNT);
12110         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12111                                             GFP_KERNEL_ACCOUNT);
12112         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12113                 goto fail_free_mce_banks;
12114         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12115
12116         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12117                                 GFP_KERNEL_ACCOUNT))
12118                 goto fail_free_mce_banks;
12119
12120         if (!alloc_emulate_ctxt(vcpu))
12121                 goto free_wbinvd_dirty_mask;
12122
12123         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12124                 pr_err("failed to allocate vcpu's fpu\n");
12125                 goto free_emulate_ctxt;
12126         }
12127
12128         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12129         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12130
12131         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12132
12133         kvm_async_pf_hash_reset(vcpu);
12134
12135         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12136         kvm_pmu_init(vcpu);
12137
12138         vcpu->arch.pending_external_vector = -1;
12139         vcpu->arch.preempted_in_kernel = false;
12140
12141 #if IS_ENABLED(CONFIG_HYPERV)
12142         vcpu->arch.hv_root_tdp = INVALID_PAGE;
12143 #endif
12144
12145         r = static_call(kvm_x86_vcpu_create)(vcpu);
12146         if (r)
12147                 goto free_guest_fpu;
12148
12149         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12150         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12151         kvm_xen_init_vcpu(vcpu);
12152         kvm_vcpu_mtrr_init(vcpu);
12153         vcpu_load(vcpu);
12154         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12155         kvm_vcpu_reset(vcpu, false);
12156         kvm_init_mmu(vcpu);
12157         vcpu_put(vcpu);
12158         return 0;
12159
12160 free_guest_fpu:
12161         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12162 free_emulate_ctxt:
12163         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12164 free_wbinvd_dirty_mask:
12165         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12166 fail_free_mce_banks:
12167         kfree(vcpu->arch.mce_banks);
12168         kfree(vcpu->arch.mci_ctl2_banks);
12169         free_page((unsigned long)vcpu->arch.pio_data);
12170 fail_free_lapic:
12171         kvm_free_lapic(vcpu);
12172 fail_mmu_destroy:
12173         kvm_mmu_destroy(vcpu);
12174         return r;
12175 }
12176
12177 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12178 {
12179         struct kvm *kvm = vcpu->kvm;
12180
12181         if (mutex_lock_killable(&vcpu->mutex))
12182                 return;
12183         vcpu_load(vcpu);
12184         kvm_synchronize_tsc(vcpu, NULL);
12185         vcpu_put(vcpu);
12186
12187         /* poll control enabled by default */
12188         vcpu->arch.msr_kvm_poll_control = 1;
12189
12190         mutex_unlock(&vcpu->mutex);
12191
12192         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12193                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12194                                                 KVMCLOCK_SYNC_PERIOD);
12195 }
12196
12197 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12198 {
12199         int idx;
12200
12201         kvmclock_reset(vcpu);
12202
12203         static_call(kvm_x86_vcpu_free)(vcpu);
12204
12205         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12206         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12207         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12208
12209         kvm_xen_destroy_vcpu(vcpu);
12210         kvm_hv_vcpu_uninit(vcpu);
12211         kvm_pmu_destroy(vcpu);
12212         kfree(vcpu->arch.mce_banks);
12213         kfree(vcpu->arch.mci_ctl2_banks);
12214         kvm_free_lapic(vcpu);
12215         idx = srcu_read_lock(&vcpu->kvm->srcu);
12216         kvm_mmu_destroy(vcpu);
12217         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12218         free_page((unsigned long)vcpu->arch.pio_data);
12219         kvfree(vcpu->arch.cpuid_entries);
12220         if (!lapic_in_kernel(vcpu))
12221                 static_branch_dec(&kvm_has_noapic_vcpu);
12222 }
12223
12224 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12225 {
12226         struct kvm_cpuid_entry2 *cpuid_0x1;
12227         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12228         unsigned long new_cr0;
12229
12230         /*
12231          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12232          * to handle side effects.  RESET emulation hits those flows and relies
12233          * on emulated/virtualized registers, including those that are loaded
12234          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12235          * to detect improper or missing initialization.
12236          */
12237         WARN_ON_ONCE(!init_event &&
12238                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12239
12240         /*
12241          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12242          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12243          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12244          * bits), i.e. virtualization is disabled.
12245          */
12246         if (is_guest_mode(vcpu))
12247                 kvm_leave_nested(vcpu);
12248
12249         kvm_lapic_reset(vcpu, init_event);
12250
12251         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12252         vcpu->arch.hflags = 0;
12253
12254         vcpu->arch.smi_pending = 0;
12255         vcpu->arch.smi_count = 0;
12256         atomic_set(&vcpu->arch.nmi_queued, 0);
12257         vcpu->arch.nmi_pending = 0;
12258         vcpu->arch.nmi_injected = false;
12259         kvm_clear_interrupt_queue(vcpu);
12260         kvm_clear_exception_queue(vcpu);
12261
12262         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12263         kvm_update_dr0123(vcpu);
12264         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12265         vcpu->arch.dr7 = DR7_FIXED_1;
12266         kvm_update_dr7(vcpu);
12267
12268         vcpu->arch.cr2 = 0;
12269
12270         kvm_make_request(KVM_REQ_EVENT, vcpu);
12271         vcpu->arch.apf.msr_en_val = 0;
12272         vcpu->arch.apf.msr_int_val = 0;
12273         vcpu->arch.st.msr_val = 0;
12274
12275         kvmclock_reset(vcpu);
12276
12277         kvm_clear_async_pf_completion_queue(vcpu);
12278         kvm_async_pf_hash_reset(vcpu);
12279         vcpu->arch.apf.halted = false;
12280
12281         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12282                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12283
12284                 /*
12285                  * All paths that lead to INIT are required to load the guest's
12286                  * FPU state (because most paths are buried in KVM_RUN).
12287                  */
12288                 if (init_event)
12289                         kvm_put_guest_fpu(vcpu);
12290
12291                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12292                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12293
12294                 if (init_event)
12295                         kvm_load_guest_fpu(vcpu);
12296         }
12297
12298         if (!init_event) {
12299                 vcpu->arch.smbase = 0x30000;
12300
12301                 vcpu->arch.msr_misc_features_enables = 0;
12302                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12303                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12304
12305                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12306                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12307         }
12308
12309         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12310         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12311         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12312
12313         /*
12314          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12315          * if no CPUID match is found.  Note, it's impossible to get a match at
12316          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12317          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12318          * on RESET.  But, go through the motions in case that's ever remedied.
12319          */
12320         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12321         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12322
12323         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12324
12325         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12326         kvm_rip_write(vcpu, 0xfff0);
12327
12328         vcpu->arch.cr3 = 0;
12329         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12330
12331         /*
12332          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12333          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12334          * (or qualify) that with a footnote stating that CD/NW are preserved.
12335          */
12336         new_cr0 = X86_CR0_ET;
12337         if (init_event)
12338                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12339         else
12340                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12341
12342         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12343         static_call(kvm_x86_set_cr4)(vcpu, 0);
12344         static_call(kvm_x86_set_efer)(vcpu, 0);
12345         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12346
12347         /*
12348          * On the standard CR0/CR4/EFER modification paths, there are several
12349          * complex conditions determining whether the MMU has to be reset and/or
12350          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12351          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12352          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12353          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12354          */
12355         if (old_cr0 & X86_CR0_PG) {
12356                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12357                 kvm_mmu_reset_context(vcpu);
12358         }
12359
12360         /*
12361          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12362          * APM states the TLBs are untouched by INIT, but it also states that
12363          * the TLBs are flushed on "External initialization of the processor."
12364          * Flush the guest TLB regardless of vendor, there is no meaningful
12365          * benefit in relying on the guest to flush the TLB immediately after
12366          * INIT.  A spurious TLB flush is benign and likely negligible from a
12367          * performance perspective.
12368          */
12369         if (init_event)
12370                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12371 }
12372 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12373
12374 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12375 {
12376         struct kvm_segment cs;
12377
12378         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12379         cs.selector = vector << 8;
12380         cs.base = vector << 12;
12381         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12382         kvm_rip_write(vcpu, 0);
12383 }
12384 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12385
12386 int kvm_arch_hardware_enable(void)
12387 {
12388         struct kvm *kvm;
12389         struct kvm_vcpu *vcpu;
12390         unsigned long i;
12391         int ret;
12392         u64 local_tsc;
12393         u64 max_tsc = 0;
12394         bool stable, backwards_tsc = false;
12395
12396         kvm_user_return_msr_cpu_online();
12397
12398         ret = kvm_x86_check_processor_compatibility();
12399         if (ret)
12400                 return ret;
12401
12402         ret = static_call(kvm_x86_hardware_enable)();
12403         if (ret != 0)
12404                 return ret;
12405
12406         local_tsc = rdtsc();
12407         stable = !kvm_check_tsc_unstable();
12408         list_for_each_entry(kvm, &vm_list, vm_list) {
12409                 kvm_for_each_vcpu(i, vcpu, kvm) {
12410                         if (!stable && vcpu->cpu == smp_processor_id())
12411                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12412                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12413                                 backwards_tsc = true;
12414                                 if (vcpu->arch.last_host_tsc > max_tsc)
12415                                         max_tsc = vcpu->arch.last_host_tsc;
12416                         }
12417                 }
12418         }
12419
12420         /*
12421          * Sometimes, even reliable TSCs go backwards.  This happens on
12422          * platforms that reset TSC during suspend or hibernate actions, but
12423          * maintain synchronization.  We must compensate.  Fortunately, we can
12424          * detect that condition here, which happens early in CPU bringup,
12425          * before any KVM threads can be running.  Unfortunately, we can't
12426          * bring the TSCs fully up to date with real time, as we aren't yet far
12427          * enough into CPU bringup that we know how much real time has actually
12428          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12429          * variables that haven't been updated yet.
12430          *
12431          * So we simply find the maximum observed TSC above, then record the
12432          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12433          * the adjustment will be applied.  Note that we accumulate
12434          * adjustments, in case multiple suspend cycles happen before some VCPU
12435          * gets a chance to run again.  In the event that no KVM threads get a
12436          * chance to run, we will miss the entire elapsed period, as we'll have
12437          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12438          * loose cycle time.  This isn't too big a deal, since the loss will be
12439          * uniform across all VCPUs (not to mention the scenario is extremely
12440          * unlikely). It is possible that a second hibernate recovery happens
12441          * much faster than a first, causing the observed TSC here to be
12442          * smaller; this would require additional padding adjustment, which is
12443          * why we set last_host_tsc to the local tsc observed here.
12444          *
12445          * N.B. - this code below runs only on platforms with reliable TSC,
12446          * as that is the only way backwards_tsc is set above.  Also note
12447          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12448          * have the same delta_cyc adjustment applied if backwards_tsc
12449          * is detected.  Note further, this adjustment is only done once,
12450          * as we reset last_host_tsc on all VCPUs to stop this from being
12451          * called multiple times (one for each physical CPU bringup).
12452          *
12453          * Platforms with unreliable TSCs don't have to deal with this, they
12454          * will be compensated by the logic in vcpu_load, which sets the TSC to
12455          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12456          * guarantee that they stay in perfect synchronization.
12457          */
12458         if (backwards_tsc) {
12459                 u64 delta_cyc = max_tsc - local_tsc;
12460                 list_for_each_entry(kvm, &vm_list, vm_list) {
12461                         kvm->arch.backwards_tsc_observed = true;
12462                         kvm_for_each_vcpu(i, vcpu, kvm) {
12463                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12464                                 vcpu->arch.last_host_tsc = local_tsc;
12465                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12466                         }
12467
12468                         /*
12469                          * We have to disable TSC offset matching.. if you were
12470                          * booting a VM while issuing an S4 host suspend....
12471                          * you may have some problem.  Solving this issue is
12472                          * left as an exercise to the reader.
12473                          */
12474                         kvm->arch.last_tsc_nsec = 0;
12475                         kvm->arch.last_tsc_write = 0;
12476                 }
12477
12478         }
12479         return 0;
12480 }
12481
12482 void kvm_arch_hardware_disable(void)
12483 {
12484         static_call(kvm_x86_hardware_disable)();
12485         drop_user_return_notifiers();
12486 }
12487
12488 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12489 {
12490         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12491 }
12492
12493 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12494 {
12495         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12496 }
12497
12498 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12499 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12500
12501 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12502 {
12503         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12504
12505         vcpu->arch.l1tf_flush_l1d = true;
12506         if (pmu->version && unlikely(pmu->event_count)) {
12507                 pmu->need_cleanup = true;
12508                 kvm_make_request(KVM_REQ_PMU, vcpu);
12509         }
12510         static_call(kvm_x86_sched_in)(vcpu, cpu);
12511 }
12512
12513 void kvm_arch_free_vm(struct kvm *kvm)
12514 {
12515 #if IS_ENABLED(CONFIG_HYPERV)
12516         kfree(kvm->arch.hv_pa_pg);
12517 #endif
12518         __kvm_arch_free_vm(kvm);
12519 }
12520
12521
12522 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12523 {
12524         int ret;
12525         unsigned long flags;
12526
12527         if (!kvm_is_vm_type_supported(type))
12528                 return -EINVAL;
12529
12530         kvm->arch.vm_type = type;
12531
12532         ret = kvm_page_track_init(kvm);
12533         if (ret)
12534                 goto out;
12535
12536         kvm_mmu_init_vm(kvm);
12537
12538         ret = static_call(kvm_x86_vm_init)(kvm);
12539         if (ret)
12540                 goto out_uninit_mmu;
12541
12542         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12543         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12544
12545         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12546         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12547         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12548         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12549                 &kvm->arch.irq_sources_bitmap);
12550
12551         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12552         mutex_init(&kvm->arch.apic_map_lock);
12553         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12554         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12555
12556         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12557         pvclock_update_vm_gtod_copy(kvm);
12558         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12559
12560         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12561         kvm->arch.guest_can_read_msr_platform_info = true;
12562         kvm->arch.enable_pmu = enable_pmu;
12563
12564 #if IS_ENABLED(CONFIG_HYPERV)
12565         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12566         kvm->arch.hv_root_tdp = INVALID_PAGE;
12567 #endif
12568
12569         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12570         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12571
12572         kvm_apicv_init(kvm);
12573         kvm_hv_init_vm(kvm);
12574         kvm_xen_init_vm(kvm);
12575
12576         return 0;
12577
12578 out_uninit_mmu:
12579         kvm_mmu_uninit_vm(kvm);
12580         kvm_page_track_cleanup(kvm);
12581 out:
12582         return ret;
12583 }
12584
12585 int kvm_arch_post_init_vm(struct kvm *kvm)
12586 {
12587         return kvm_mmu_post_init_vm(kvm);
12588 }
12589
12590 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12591 {
12592         vcpu_load(vcpu);
12593         kvm_mmu_unload(vcpu);
12594         vcpu_put(vcpu);
12595 }
12596
12597 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12598 {
12599         unsigned long i;
12600         struct kvm_vcpu *vcpu;
12601
12602         kvm_for_each_vcpu(i, vcpu, kvm) {
12603                 kvm_clear_async_pf_completion_queue(vcpu);
12604                 kvm_unload_vcpu_mmu(vcpu);
12605         }
12606 }
12607
12608 void kvm_arch_sync_events(struct kvm *kvm)
12609 {
12610         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12611         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12612         kvm_free_pit(kvm);
12613 }
12614
12615 /**
12616  * __x86_set_memory_region: Setup KVM internal memory slot
12617  *
12618  * @kvm: the kvm pointer to the VM.
12619  * @id: the slot ID to setup.
12620  * @gpa: the GPA to install the slot (unused when @size == 0).
12621  * @size: the size of the slot. Set to zero to uninstall a slot.
12622  *
12623  * This function helps to setup a KVM internal memory slot.  Specify
12624  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12625  * slot.  The return code can be one of the following:
12626  *
12627  *   HVA:           on success (uninstall will return a bogus HVA)
12628  *   -errno:        on error
12629  *
12630  * The caller should always use IS_ERR() to check the return value
12631  * before use.  Note, the KVM internal memory slots are guaranteed to
12632  * remain valid and unchanged until the VM is destroyed, i.e., the
12633  * GPA->HVA translation will not change.  However, the HVA is a user
12634  * address, i.e. its accessibility is not guaranteed, and must be
12635  * accessed via __copy_{to,from}_user().
12636  */
12637 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12638                                       u32 size)
12639 {
12640         int i, r;
12641         unsigned long hva, old_npages;
12642         struct kvm_memslots *slots = kvm_memslots(kvm);
12643         struct kvm_memory_slot *slot;
12644
12645         /* Called with kvm->slots_lock held.  */
12646         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12647                 return ERR_PTR_USR(-EINVAL);
12648
12649         slot = id_to_memslot(slots, id);
12650         if (size) {
12651                 if (slot && slot->npages)
12652                         return ERR_PTR_USR(-EEXIST);
12653
12654                 /*
12655                  * MAP_SHARED to prevent internal slot pages from being moved
12656                  * by fork()/COW.
12657                  */
12658                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12659                               MAP_SHARED | MAP_ANONYMOUS, 0);
12660                 if (IS_ERR_VALUE(hva))
12661                         return (void __user *)hva;
12662         } else {
12663                 if (!slot || !slot->npages)
12664                         return NULL;
12665
12666                 old_npages = slot->npages;
12667                 hva = slot->userspace_addr;
12668         }
12669
12670         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12671                 struct kvm_userspace_memory_region2 m;
12672
12673                 m.slot = id | (i << 16);
12674                 m.flags = 0;
12675                 m.guest_phys_addr = gpa;
12676                 m.userspace_addr = hva;
12677                 m.memory_size = size;
12678                 r = __kvm_set_memory_region(kvm, &m);
12679                 if (r < 0)
12680                         return ERR_PTR_USR(r);
12681         }
12682
12683         if (!size)
12684                 vm_munmap(hva, old_npages * PAGE_SIZE);
12685
12686         return (void __user *)hva;
12687 }
12688 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12689
12690 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12691 {
12692         kvm_mmu_pre_destroy_vm(kvm);
12693 }
12694
12695 void kvm_arch_destroy_vm(struct kvm *kvm)
12696 {
12697         if (current->mm == kvm->mm) {
12698                 /*
12699                  * Free memory regions allocated on behalf of userspace,
12700                  * unless the memory map has changed due to process exit
12701                  * or fd copying.
12702                  */
12703                 mutex_lock(&kvm->slots_lock);
12704                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12705                                         0, 0);
12706                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12707                                         0, 0);
12708                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12709                 mutex_unlock(&kvm->slots_lock);
12710         }
12711         kvm_unload_vcpu_mmus(kvm);
12712         static_call_cond(kvm_x86_vm_destroy)(kvm);
12713         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12714         kvm_pic_destroy(kvm);
12715         kvm_ioapic_destroy(kvm);
12716         kvm_destroy_vcpus(kvm);
12717         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12718         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12719         kvm_mmu_uninit_vm(kvm);
12720         kvm_page_track_cleanup(kvm);
12721         kvm_xen_destroy_vm(kvm);
12722         kvm_hv_destroy_vm(kvm);
12723 }
12724
12725 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12726 {
12727         int i;
12728
12729         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12730                 kvfree(slot->arch.rmap[i]);
12731                 slot->arch.rmap[i] = NULL;
12732         }
12733 }
12734
12735 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12736 {
12737         int i;
12738
12739         memslot_rmap_free(slot);
12740
12741         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12742                 kvfree(slot->arch.lpage_info[i - 1]);
12743                 slot->arch.lpage_info[i - 1] = NULL;
12744         }
12745
12746         kvm_page_track_free_memslot(slot);
12747 }
12748
12749 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12750 {
12751         const int sz = sizeof(*slot->arch.rmap[0]);
12752         int i;
12753
12754         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12755                 int level = i + 1;
12756                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12757
12758                 if (slot->arch.rmap[i])
12759                         continue;
12760
12761                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12762                 if (!slot->arch.rmap[i]) {
12763                         memslot_rmap_free(slot);
12764                         return -ENOMEM;
12765                 }
12766         }
12767
12768         return 0;
12769 }
12770
12771 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12772                                       struct kvm_memory_slot *slot)
12773 {
12774         unsigned long npages = slot->npages;
12775         int i, r;
12776
12777         /*
12778          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12779          * old arrays will be freed by __kvm_set_memory_region() if installing
12780          * the new memslot is successful.
12781          */
12782         memset(&slot->arch, 0, sizeof(slot->arch));
12783
12784         if (kvm_memslots_have_rmaps(kvm)) {
12785                 r = memslot_rmap_alloc(slot, npages);
12786                 if (r)
12787                         return r;
12788         }
12789
12790         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12791                 struct kvm_lpage_info *linfo;
12792                 unsigned long ugfn;
12793                 int lpages;
12794                 int level = i + 1;
12795
12796                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12797
12798                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12799                 if (!linfo)
12800                         goto out_free;
12801
12802                 slot->arch.lpage_info[i - 1] = linfo;
12803
12804                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12805                         linfo[0].disallow_lpage = 1;
12806                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12807                         linfo[lpages - 1].disallow_lpage = 1;
12808                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12809                 /*
12810                  * If the gfn and userspace address are not aligned wrt each
12811                  * other, disable large page support for this slot.
12812                  */
12813                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12814                         unsigned long j;
12815
12816                         for (j = 0; j < lpages; ++j)
12817                                 linfo[j].disallow_lpage = 1;
12818                 }
12819         }
12820
12821 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12822         kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12823 #endif
12824
12825         if (kvm_page_track_create_memslot(kvm, slot, npages))
12826                 goto out_free;
12827
12828         return 0;
12829
12830 out_free:
12831         memslot_rmap_free(slot);
12832
12833         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12834                 kvfree(slot->arch.lpage_info[i - 1]);
12835                 slot->arch.lpage_info[i - 1] = NULL;
12836         }
12837         return -ENOMEM;
12838 }
12839
12840 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12841 {
12842         struct kvm_vcpu *vcpu;
12843         unsigned long i;
12844
12845         /*
12846          * memslots->generation has been incremented.
12847          * mmio generation may have reached its maximum value.
12848          */
12849         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12850
12851         /* Force re-initialization of steal_time cache */
12852         kvm_for_each_vcpu(i, vcpu, kvm)
12853                 kvm_vcpu_kick(vcpu);
12854 }
12855
12856 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12857                                    const struct kvm_memory_slot *old,
12858                                    struct kvm_memory_slot *new,
12859                                    enum kvm_mr_change change)
12860 {
12861         /*
12862          * KVM doesn't support moving memslots when there are external page
12863          * trackers attached to the VM, i.e. if KVMGT is in use.
12864          */
12865         if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12866                 return -EINVAL;
12867
12868         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12869                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12870                         return -EINVAL;
12871
12872                 return kvm_alloc_memslot_metadata(kvm, new);
12873         }
12874
12875         if (change == KVM_MR_FLAGS_ONLY)
12876                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12877         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12878                 return -EIO;
12879
12880         return 0;
12881 }
12882
12883
12884 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12885 {
12886         int nr_slots;
12887
12888         if (!kvm_x86_ops.cpu_dirty_log_size)
12889                 return;
12890
12891         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12892         if ((enable && nr_slots == 1) || !nr_slots)
12893                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12894 }
12895
12896 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12897                                      struct kvm_memory_slot *old,
12898                                      const struct kvm_memory_slot *new,
12899                                      enum kvm_mr_change change)
12900 {
12901         u32 old_flags = old ? old->flags : 0;
12902         u32 new_flags = new ? new->flags : 0;
12903         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12904
12905         /*
12906          * Update CPU dirty logging if dirty logging is being toggled.  This
12907          * applies to all operations.
12908          */
12909         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12910                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12911
12912         /*
12913          * Nothing more to do for RO slots (which can't be dirtied and can't be
12914          * made writable) or CREATE/MOVE/DELETE of a slot.
12915          *
12916          * For a memslot with dirty logging disabled:
12917          * CREATE:      No dirty mappings will already exist.
12918          * MOVE/DELETE: The old mappings will already have been cleaned up by
12919          *              kvm_arch_flush_shadow_memslot()
12920          *
12921          * For a memslot with dirty logging enabled:
12922          * CREATE:      No shadow pages exist, thus nothing to write-protect
12923          *              and no dirty bits to clear.
12924          * MOVE/DELETE: The old mappings will already have been cleaned up by
12925          *              kvm_arch_flush_shadow_memslot().
12926          */
12927         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12928                 return;
12929
12930         /*
12931          * READONLY and non-flags changes were filtered out above, and the only
12932          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12933          * logging isn't being toggled on or off.
12934          */
12935         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12936                 return;
12937
12938         if (!log_dirty_pages) {
12939                 /*
12940                  * Dirty logging tracks sptes in 4k granularity, meaning that
12941                  * large sptes have to be split.  If live migration succeeds,
12942                  * the guest in the source machine will be destroyed and large
12943                  * sptes will be created in the destination.  However, if the
12944                  * guest continues to run in the source machine (for example if
12945                  * live migration fails), small sptes will remain around and
12946                  * cause bad performance.
12947                  *
12948                  * Scan sptes if dirty logging has been stopped, dropping those
12949                  * which can be collapsed into a single large-page spte.  Later
12950                  * page faults will create the large-page sptes.
12951                  */
12952                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12953         } else {
12954                 /*
12955                  * Initially-all-set does not require write protecting any page,
12956                  * because they're all assumed to be dirty.
12957                  */
12958                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12959                         return;
12960
12961                 if (READ_ONCE(eager_page_split))
12962                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12963
12964                 if (kvm_x86_ops.cpu_dirty_log_size) {
12965                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12966                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12967                 } else {
12968                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12969                 }
12970
12971                 /*
12972                  * Unconditionally flush the TLBs after enabling dirty logging.
12973                  * A flush is almost always going to be necessary (see below),
12974                  * and unconditionally flushing allows the helpers to omit
12975                  * the subtly complex checks when removing write access.
12976                  *
12977                  * Do the flush outside of mmu_lock to reduce the amount of
12978                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12979                  * safe as KVM only needs to guarantee the slot is fully
12980                  * write-protected before returning to userspace, i.e. before
12981                  * userspace can consume the dirty status.
12982                  *
12983                  * Flushing outside of mmu_lock requires KVM to be careful when
12984                  * making decisions based on writable status of an SPTE, e.g. a
12985                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12986                  *
12987                  * Specifically, KVM also write-protects guest page tables to
12988                  * monitor changes when using shadow paging, and must guarantee
12989                  * no CPUs can write to those page before mmu_lock is dropped.
12990                  * Because CPUs may have stale TLB entries at this point, a
12991                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12992                  *
12993                  * KVM also allows making SPTES writable outside of mmu_lock,
12994                  * e.g. to allow dirty logging without taking mmu_lock.
12995                  *
12996                  * To handle these scenarios, KVM uses a separate software-only
12997                  * bit (MMU-writable) to track if a SPTE is !writable due to
12998                  * a guest page table being write-protected (KVM clears the
12999                  * MMU-writable flag when write-protecting for shadow paging).
13000                  *
13001                  * The use of MMU-writable is also the primary motivation for
13002                  * the unconditional flush.  Because KVM must guarantee that a
13003                  * CPU doesn't contain stale, writable TLB entries for a
13004                  * !MMU-writable SPTE, KVM must flush if it encounters any
13005                  * MMU-writable SPTE regardless of whether the actual hardware
13006                  * writable bit was set.  I.e. KVM is almost guaranteed to need
13007                  * to flush, while unconditionally flushing allows the "remove
13008                  * write access" helpers to ignore MMU-writable entirely.
13009                  *
13010                  * See is_writable_pte() for more details (the case involving
13011                  * access-tracked SPTEs is particularly relevant).
13012                  */
13013                 kvm_flush_remote_tlbs_memslot(kvm, new);
13014         }
13015 }
13016
13017 void kvm_arch_commit_memory_region(struct kvm *kvm,
13018                                 struct kvm_memory_slot *old,
13019                                 const struct kvm_memory_slot *new,
13020                                 enum kvm_mr_change change)
13021 {
13022         if (change == KVM_MR_DELETE)
13023                 kvm_page_track_delete_slot(kvm, old);
13024
13025         if (!kvm->arch.n_requested_mmu_pages &&
13026             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13027                 unsigned long nr_mmu_pages;
13028
13029                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13030                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13031                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13032         }
13033
13034         kvm_mmu_slot_apply_flags(kvm, old, new, change);
13035
13036         /* Free the arrays associated with the old memslot. */
13037         if (change == KVM_MR_MOVE)
13038                 kvm_arch_free_memslot(kvm, old);
13039 }
13040
13041 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13042 {
13043         return (is_guest_mode(vcpu) &&
13044                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13045 }
13046
13047 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13048 {
13049         if (!list_empty_careful(&vcpu->async_pf.done))
13050                 return true;
13051
13052         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13053             kvm_apic_init_sipi_allowed(vcpu))
13054                 return true;
13055
13056         if (vcpu->arch.pv.pv_unhalted)
13057                 return true;
13058
13059         if (kvm_is_exception_pending(vcpu))
13060                 return true;
13061
13062         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13063             (vcpu->arch.nmi_pending &&
13064              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13065                 return true;
13066
13067 #ifdef CONFIG_KVM_SMM
13068         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13069             (vcpu->arch.smi_pending &&
13070              static_call(kvm_x86_smi_allowed)(vcpu, false)))
13071                 return true;
13072 #endif
13073
13074         if (kvm_test_request(KVM_REQ_PMI, vcpu))
13075                 return true;
13076
13077         if (kvm_arch_interrupt_allowed(vcpu) &&
13078             (kvm_cpu_has_interrupt(vcpu) ||
13079             kvm_guest_apic_has_interrupt(vcpu)))
13080                 return true;
13081
13082         if (kvm_hv_has_stimer_pending(vcpu))
13083                 return true;
13084
13085         if (is_guest_mode(vcpu) &&
13086             kvm_x86_ops.nested_ops->has_events &&
13087             kvm_x86_ops.nested_ops->has_events(vcpu))
13088                 return true;
13089
13090         if (kvm_xen_has_pending_events(vcpu))
13091                 return true;
13092
13093         return false;
13094 }
13095
13096 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13097 {
13098         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13099 }
13100
13101 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13102 {
13103         if (kvm_vcpu_apicv_active(vcpu) &&
13104             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13105                 return true;
13106
13107         return false;
13108 }
13109
13110 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13111 {
13112         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13113                 return true;
13114
13115         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13116 #ifdef CONFIG_KVM_SMM
13117                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13118 #endif
13119                  kvm_test_request(KVM_REQ_EVENT, vcpu))
13120                 return true;
13121
13122         return kvm_arch_dy_has_pending_interrupt(vcpu);
13123 }
13124
13125 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13126 {
13127         if (vcpu->arch.guest_state_protected)
13128                 return true;
13129
13130         if (vcpu != kvm_get_running_vcpu())
13131                 return vcpu->arch.preempted_in_kernel;
13132
13133         return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13134 }
13135
13136 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13137 {
13138         return kvm_rip_read(vcpu);
13139 }
13140
13141 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13142 {
13143         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13144 }
13145
13146 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13147 {
13148         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13149 }
13150
13151 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13152 {
13153         /* Can't read the RIP when guest state is protected, just return 0 */
13154         if (vcpu->arch.guest_state_protected)
13155                 return 0;
13156
13157         if (is_64_bit_mode(vcpu))
13158                 return kvm_rip_read(vcpu);
13159         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13160                      kvm_rip_read(vcpu));
13161 }
13162 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13163
13164 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13165 {
13166         return kvm_get_linear_rip(vcpu) == linear_rip;
13167 }
13168 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13169
13170 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13171 {
13172         unsigned long rflags;
13173
13174         rflags = static_call(kvm_x86_get_rflags)(vcpu);
13175         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13176                 rflags &= ~X86_EFLAGS_TF;
13177         return rflags;
13178 }
13179 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13180
13181 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13182 {
13183         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13184             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13185                 rflags |= X86_EFLAGS_TF;
13186         static_call(kvm_x86_set_rflags)(vcpu, rflags);
13187 }
13188
13189 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13190 {
13191         __kvm_set_rflags(vcpu, rflags);
13192         kvm_make_request(KVM_REQ_EVENT, vcpu);
13193 }
13194 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13195
13196 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13197 {
13198         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13199
13200         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13201 }
13202
13203 static inline u32 kvm_async_pf_next_probe(u32 key)
13204 {
13205         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13206 }
13207
13208 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13209 {
13210         u32 key = kvm_async_pf_hash_fn(gfn);
13211
13212         while (vcpu->arch.apf.gfns[key] != ~0)
13213                 key = kvm_async_pf_next_probe(key);
13214
13215         vcpu->arch.apf.gfns[key] = gfn;
13216 }
13217
13218 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13219 {
13220         int i;
13221         u32 key = kvm_async_pf_hash_fn(gfn);
13222
13223         for (i = 0; i < ASYNC_PF_PER_VCPU &&
13224                      (vcpu->arch.apf.gfns[key] != gfn &&
13225                       vcpu->arch.apf.gfns[key] != ~0); i++)
13226                 key = kvm_async_pf_next_probe(key);
13227
13228         return key;
13229 }
13230
13231 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13232 {
13233         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13234 }
13235
13236 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13237 {
13238         u32 i, j, k;
13239
13240         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13241
13242         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13243                 return;
13244
13245         while (true) {
13246                 vcpu->arch.apf.gfns[i] = ~0;
13247                 do {
13248                         j = kvm_async_pf_next_probe(j);
13249                         if (vcpu->arch.apf.gfns[j] == ~0)
13250                                 return;
13251                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13252                         /*
13253                          * k lies cyclically in ]i,j]
13254                          * |    i.k.j |
13255                          * |....j i.k.| or  |.k..j i...|
13256                          */
13257                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13258                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13259                 i = j;
13260         }
13261 }
13262
13263 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13264 {
13265         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13266
13267         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13268                                       sizeof(reason));
13269 }
13270
13271 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13272 {
13273         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13274
13275         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13276                                              &token, offset, sizeof(token));
13277 }
13278
13279 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13280 {
13281         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13282         u32 val;
13283
13284         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13285                                          &val, offset, sizeof(val)))
13286                 return false;
13287
13288         return !val;
13289 }
13290
13291 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13292 {
13293
13294         if (!kvm_pv_async_pf_enabled(vcpu))
13295                 return false;
13296
13297         if (vcpu->arch.apf.send_user_only &&
13298             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13299                 return false;
13300
13301         if (is_guest_mode(vcpu)) {
13302                 /*
13303                  * L1 needs to opt into the special #PF vmexits that are
13304                  * used to deliver async page faults.
13305                  */
13306                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13307         } else {
13308                 /*
13309                  * Play it safe in case the guest temporarily disables paging.
13310                  * The real mode IDT in particular is unlikely to have a #PF
13311                  * exception setup.
13312                  */
13313                 return is_paging(vcpu);
13314         }
13315 }
13316
13317 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13318 {
13319         if (unlikely(!lapic_in_kernel(vcpu) ||
13320                      kvm_event_needs_reinjection(vcpu) ||
13321                      kvm_is_exception_pending(vcpu)))
13322                 return false;
13323
13324         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13325                 return false;
13326
13327         /*
13328          * If interrupts are off we cannot even use an artificial
13329          * halt state.
13330          */
13331         return kvm_arch_interrupt_allowed(vcpu);
13332 }
13333
13334 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13335                                      struct kvm_async_pf *work)
13336 {
13337         struct x86_exception fault;
13338
13339         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13340         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13341
13342         if (kvm_can_deliver_async_pf(vcpu) &&
13343             !apf_put_user_notpresent(vcpu)) {
13344                 fault.vector = PF_VECTOR;
13345                 fault.error_code_valid = true;
13346                 fault.error_code = 0;
13347                 fault.nested_page_fault = false;
13348                 fault.address = work->arch.token;
13349                 fault.async_page_fault = true;
13350                 kvm_inject_page_fault(vcpu, &fault);
13351                 return true;
13352         } else {
13353                 /*
13354                  * It is not possible to deliver a paravirtualized asynchronous
13355                  * page fault, but putting the guest in an artificial halt state
13356                  * can be beneficial nevertheless: if an interrupt arrives, we
13357                  * can deliver it timely and perhaps the guest will schedule
13358                  * another process.  When the instruction that triggered a page
13359                  * fault is retried, hopefully the page will be ready in the host.
13360                  */
13361                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13362                 return false;
13363         }
13364 }
13365
13366 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13367                                  struct kvm_async_pf *work)
13368 {
13369         struct kvm_lapic_irq irq = {
13370                 .delivery_mode = APIC_DM_FIXED,
13371                 .vector = vcpu->arch.apf.vec
13372         };
13373
13374         if (work->wakeup_all)
13375                 work->arch.token = ~0; /* broadcast wakeup */
13376         else
13377                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13378         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13379
13380         if ((work->wakeup_all || work->notpresent_injected) &&
13381             kvm_pv_async_pf_enabled(vcpu) &&
13382             !apf_put_user_ready(vcpu, work->arch.token)) {
13383                 vcpu->arch.apf.pageready_pending = true;
13384                 kvm_apic_set_irq(vcpu, &irq, NULL);
13385         }
13386
13387         vcpu->arch.apf.halted = false;
13388         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13389 }
13390
13391 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13392 {
13393         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13394         if (!vcpu->arch.apf.pageready_pending)
13395                 kvm_vcpu_kick(vcpu);
13396 }
13397
13398 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13399 {
13400         if (!kvm_pv_async_pf_enabled(vcpu))
13401                 return true;
13402         else
13403                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13404 }
13405
13406 void kvm_arch_start_assignment(struct kvm *kvm)
13407 {
13408         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13409                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13410 }
13411 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13412
13413 void kvm_arch_end_assignment(struct kvm *kvm)
13414 {
13415         atomic_dec(&kvm->arch.assigned_device_count);
13416 }
13417 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13418
13419 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13420 {
13421         return raw_atomic_read(&kvm->arch.assigned_device_count);
13422 }
13423 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13424
13425 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13426 {
13427         /*
13428          * Non-coherent DMA assignment and de-assignment will affect
13429          * whether KVM honors guest MTRRs and cause changes in memtypes
13430          * in TDP.
13431          * So, pass %true unconditionally to indicate non-coherent DMA was,
13432          * or will be involved, and that zapping SPTEs might be necessary.
13433          */
13434         if (__kvm_mmu_honors_guest_mtrrs(true))
13435                 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13436 }
13437
13438 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13439 {
13440         if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13441                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13442 }
13443 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13444
13445 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13446 {
13447         if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13448                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13449 }
13450 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13451
13452 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13453 {
13454         return atomic_read(&kvm->arch.noncoherent_dma_count);
13455 }
13456 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13457
13458 bool kvm_arch_has_irq_bypass(void)
13459 {
13460         return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13461 }
13462
13463 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13464                                       struct irq_bypass_producer *prod)
13465 {
13466         struct kvm_kernel_irqfd *irqfd =
13467                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13468         int ret;
13469
13470         irqfd->producer = prod;
13471         kvm_arch_start_assignment(irqfd->kvm);
13472         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13473                                          prod->irq, irqfd->gsi, 1);
13474
13475         if (ret)
13476                 kvm_arch_end_assignment(irqfd->kvm);
13477
13478         return ret;
13479 }
13480
13481 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13482                                       struct irq_bypass_producer *prod)
13483 {
13484         int ret;
13485         struct kvm_kernel_irqfd *irqfd =
13486                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13487
13488         WARN_ON(irqfd->producer != prod);
13489         irqfd->producer = NULL;
13490
13491         /*
13492          * When producer of consumer is unregistered, we change back to
13493          * remapped mode, so we can re-use the current implementation
13494          * when the irq is masked/disabled or the consumer side (KVM
13495          * int this case doesn't want to receive the interrupts.
13496         */
13497         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13498         if (ret)
13499                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13500                        " fails: %d\n", irqfd->consumer.token, ret);
13501
13502         kvm_arch_end_assignment(irqfd->kvm);
13503 }
13504
13505 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13506                                    uint32_t guest_irq, bool set)
13507 {
13508         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13509 }
13510
13511 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13512                                   struct kvm_kernel_irq_routing_entry *new)
13513 {
13514         if (new->type != KVM_IRQ_ROUTING_MSI)
13515                 return true;
13516
13517         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13518 }
13519
13520 bool kvm_vector_hashing_enabled(void)
13521 {
13522         return vector_hashing;
13523 }
13524
13525 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13526 {
13527         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13528 }
13529 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13530
13531
13532 int kvm_spec_ctrl_test_value(u64 value)
13533 {
13534         /*
13535          * test that setting IA32_SPEC_CTRL to given value
13536          * is allowed by the host processor
13537          */
13538
13539         u64 saved_value;
13540         unsigned long flags;
13541         int ret = 0;
13542
13543         local_irq_save(flags);
13544
13545         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13546                 ret = 1;
13547         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13548                 ret = 1;
13549         else
13550                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13551
13552         local_irq_restore(flags);
13553
13554         return ret;
13555 }
13556 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13557
13558 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13559 {
13560         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13561         struct x86_exception fault;
13562         u64 access = error_code &
13563                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13564
13565         if (!(error_code & PFERR_PRESENT_MASK) ||
13566             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13567                 /*
13568                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13569                  * tables probably do not match the TLB.  Just proceed
13570                  * with the error code that the processor gave.
13571                  */
13572                 fault.vector = PF_VECTOR;
13573                 fault.error_code_valid = true;
13574                 fault.error_code = error_code;
13575                 fault.nested_page_fault = false;
13576                 fault.address = gva;
13577                 fault.async_page_fault = false;
13578         }
13579         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13580 }
13581 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13582
13583 /*
13584  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13585  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13586  * indicates whether exit to userspace is needed.
13587  */
13588 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13589                               struct x86_exception *e)
13590 {
13591         if (r == X86EMUL_PROPAGATE_FAULT) {
13592                 if (KVM_BUG_ON(!e, vcpu->kvm))
13593                         return -EIO;
13594
13595                 kvm_inject_emulated_page_fault(vcpu, e);
13596                 return 1;
13597         }
13598
13599         /*
13600          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13601          * while handling a VMX instruction KVM could've handled the request
13602          * correctly by exiting to userspace and performing I/O but there
13603          * doesn't seem to be a real use-case behind such requests, just return
13604          * KVM_EXIT_INTERNAL_ERROR for now.
13605          */
13606         kvm_prepare_emulation_failure_exit(vcpu);
13607
13608         return 0;
13609 }
13610 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13611
13612 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13613 {
13614         bool pcid_enabled;
13615         struct x86_exception e;
13616         struct {
13617                 u64 pcid;
13618                 u64 gla;
13619         } operand;
13620         int r;
13621
13622         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13623         if (r != X86EMUL_CONTINUE)
13624                 return kvm_handle_memory_failure(vcpu, r, &e);
13625
13626         if (operand.pcid >> 12 != 0) {
13627                 kvm_inject_gp(vcpu, 0);
13628                 return 1;
13629         }
13630
13631         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13632
13633         switch (type) {
13634         case INVPCID_TYPE_INDIV_ADDR:
13635                 /*
13636                  * LAM doesn't apply to addresses that are inputs to TLB
13637                  * invalidation.
13638                  */
13639                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13640                     is_noncanonical_address(operand.gla, vcpu)) {
13641                         kvm_inject_gp(vcpu, 0);
13642                         return 1;
13643                 }
13644                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13645                 return kvm_skip_emulated_instruction(vcpu);
13646
13647         case INVPCID_TYPE_SINGLE_CTXT:
13648                 if (!pcid_enabled && (operand.pcid != 0)) {
13649                         kvm_inject_gp(vcpu, 0);
13650                         return 1;
13651                 }
13652
13653                 kvm_invalidate_pcid(vcpu, operand.pcid);
13654                 return kvm_skip_emulated_instruction(vcpu);
13655
13656         case INVPCID_TYPE_ALL_NON_GLOBAL:
13657                 /*
13658                  * Currently, KVM doesn't mark global entries in the shadow
13659                  * page tables, so a non-global flush just degenerates to a
13660                  * global flush. If needed, we could optimize this later by
13661                  * keeping track of global entries in shadow page tables.
13662                  */
13663
13664                 fallthrough;
13665         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13666                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13667                 return kvm_skip_emulated_instruction(vcpu);
13668
13669         default:
13670                 kvm_inject_gp(vcpu, 0);
13671                 return 1;
13672         }
13673 }
13674 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13675
13676 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13677 {
13678         struct kvm_run *run = vcpu->run;
13679         struct kvm_mmio_fragment *frag;
13680         unsigned int len;
13681
13682         BUG_ON(!vcpu->mmio_needed);
13683
13684         /* Complete previous fragment */
13685         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13686         len = min(8u, frag->len);
13687         if (!vcpu->mmio_is_write)
13688                 memcpy(frag->data, run->mmio.data, len);
13689
13690         if (frag->len <= 8) {
13691                 /* Switch to the next fragment. */
13692                 frag++;
13693                 vcpu->mmio_cur_fragment++;
13694         } else {
13695                 /* Go forward to the next mmio piece. */
13696                 frag->data += len;
13697                 frag->gpa += len;
13698                 frag->len -= len;
13699         }
13700
13701         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13702                 vcpu->mmio_needed = 0;
13703
13704                 // VMG change, at this point, we're always done
13705                 // RIP has already been advanced
13706                 return 1;
13707         }
13708
13709         // More MMIO is needed
13710         run->mmio.phys_addr = frag->gpa;
13711         run->mmio.len = min(8u, frag->len);
13712         run->mmio.is_write = vcpu->mmio_is_write;
13713         if (run->mmio.is_write)
13714                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13715         run->exit_reason = KVM_EXIT_MMIO;
13716
13717         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13718
13719         return 0;
13720 }
13721
13722 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13723                           void *data)
13724 {
13725         int handled;
13726         struct kvm_mmio_fragment *frag;
13727
13728         if (!data)
13729                 return -EINVAL;
13730
13731         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13732         if (handled == bytes)
13733                 return 1;
13734
13735         bytes -= handled;
13736         gpa += handled;
13737         data += handled;
13738
13739         /*TODO: Check if need to increment number of frags */
13740         frag = vcpu->mmio_fragments;
13741         vcpu->mmio_nr_fragments = 1;
13742         frag->len = bytes;
13743         frag->gpa = gpa;
13744         frag->data = data;
13745
13746         vcpu->mmio_needed = 1;
13747         vcpu->mmio_cur_fragment = 0;
13748
13749         vcpu->run->mmio.phys_addr = gpa;
13750         vcpu->run->mmio.len = min(8u, frag->len);
13751         vcpu->run->mmio.is_write = 1;
13752         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13753         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13754
13755         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13756
13757         return 0;
13758 }
13759 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13760
13761 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13762                          void *data)
13763 {
13764         int handled;
13765         struct kvm_mmio_fragment *frag;
13766
13767         if (!data)
13768                 return -EINVAL;
13769
13770         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13771         if (handled == bytes)
13772                 return 1;
13773
13774         bytes -= handled;
13775         gpa += handled;
13776         data += handled;
13777
13778         /*TODO: Check if need to increment number of frags */
13779         frag = vcpu->mmio_fragments;
13780         vcpu->mmio_nr_fragments = 1;
13781         frag->len = bytes;
13782         frag->gpa = gpa;
13783         frag->data = data;
13784
13785         vcpu->mmio_needed = 1;
13786         vcpu->mmio_cur_fragment = 0;
13787
13788         vcpu->run->mmio.phys_addr = gpa;
13789         vcpu->run->mmio.len = min(8u, frag->len);
13790         vcpu->run->mmio.is_write = 0;
13791         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13792
13793         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13794
13795         return 0;
13796 }
13797 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13798
13799 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13800 {
13801         vcpu->arch.sev_pio_count -= count;
13802         vcpu->arch.sev_pio_data += count * size;
13803 }
13804
13805 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13806                            unsigned int port);
13807
13808 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13809 {
13810         int size = vcpu->arch.pio.size;
13811         int port = vcpu->arch.pio.port;
13812
13813         vcpu->arch.pio.count = 0;
13814         if (vcpu->arch.sev_pio_count)
13815                 return kvm_sev_es_outs(vcpu, size, port);
13816         return 1;
13817 }
13818
13819 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13820                            unsigned int port)
13821 {
13822         for (;;) {
13823                 unsigned int count =
13824                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13825                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13826
13827                 /* memcpy done already by emulator_pio_out.  */
13828                 advance_sev_es_emulated_pio(vcpu, count, size);
13829                 if (!ret)
13830                         break;
13831
13832                 /* Emulation done by the kernel.  */
13833                 if (!vcpu->arch.sev_pio_count)
13834                         return 1;
13835         }
13836
13837         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13838         return 0;
13839 }
13840
13841 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13842                           unsigned int port);
13843
13844 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13845 {
13846         unsigned count = vcpu->arch.pio.count;
13847         int size = vcpu->arch.pio.size;
13848         int port = vcpu->arch.pio.port;
13849
13850         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13851         advance_sev_es_emulated_pio(vcpu, count, size);
13852         if (vcpu->arch.sev_pio_count)
13853                 return kvm_sev_es_ins(vcpu, size, port);
13854         return 1;
13855 }
13856
13857 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13858                           unsigned int port)
13859 {
13860         for (;;) {
13861                 unsigned int count =
13862                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13863                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13864                         break;
13865
13866                 /* Emulation done by the kernel.  */
13867                 advance_sev_es_emulated_pio(vcpu, count, size);
13868                 if (!vcpu->arch.sev_pio_count)
13869                         return 1;
13870         }
13871
13872         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13873         return 0;
13874 }
13875
13876 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13877                          unsigned int port, void *data,  unsigned int count,
13878                          int in)
13879 {
13880         vcpu->arch.sev_pio_data = data;
13881         vcpu->arch.sev_pio_count = count;
13882         return in ? kvm_sev_es_ins(vcpu, size, port)
13883                   : kvm_sev_es_outs(vcpu, size, port);
13884 }
13885 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13886
13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13916
13917 static int __init kvm_x86_init(void)
13918 {
13919         kvm_mmu_x86_module_init();
13920         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13921         return 0;
13922 }
13923 module_init(kvm_x86_init);
13924
13925 static void __exit kvm_x86_exit(void)
13926 {
13927         /*
13928          * If module_init() is implemented, module_exit() must also be
13929          * implemented to allow module unload.
13930          */
13931 }
13932 module_exit(kvm_x86_exit);