GNU Linux-libre 6.1.24-gnu
[releases.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89
90 struct kvm_caps kvm_caps __read_mostly = {
91         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94
95 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
96
97 #define emul_to_vcpu(ctxt) \
98         ((struct kvm_vcpu *)(ctxt)->vcpu)
99
100 /* EFER defaults:
101  * - enable syscall per default because its emulated by KVM
102  * - enable LME and LMA per default on 64 bit KVM
103  */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133
134 #define KVM_X86_OP(func)                                             \
135         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
136                                 *(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159
160 /*
161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
163  * advancement entirely.  Any other value is used as-is and disables adaptive
164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
165  */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175
176 /*
177  * Flags to manipulate forced emulation behavior (any non-zero value will
178  * enable forced emulation).
179  */
180 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
181 static int __read_mostly force_emulation_prefix;
182 module_param(force_emulation_prefix, int, 0644);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /* Enable/disable PMU virtualization */
188 bool __read_mostly enable_pmu = true;
189 EXPORT_SYMBOL_GPL(enable_pmu);
190 module_param(enable_pmu, bool, 0444);
191
192 bool __read_mostly eager_page_split = true;
193 module_param(eager_page_split, bool, 0644);
194
195 /* Enable/disable SMT_RSB bug mitigation */
196 bool __read_mostly mitigate_smt_rsb;
197 module_param(mitigate_smt_rsb, bool, 0444);
198
199 /*
200  * Restoring the host value for MSRs that are only consumed when running in
201  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
202  * returns to userspace, i.e. the kernel can run with the guest's value.
203  */
204 #define KVM_MAX_NR_USER_RETURN_MSRS 16
205
206 struct kvm_user_return_msrs {
207         struct user_return_notifier urn;
208         bool registered;
209         struct kvm_user_return_msr_values {
210                 u64 host;
211                 u64 curr;
212         } values[KVM_MAX_NR_USER_RETURN_MSRS];
213 };
214
215 u32 __read_mostly kvm_nr_uret_msrs;
216 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
217 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
218 static struct kvm_user_return_msrs __percpu *user_return_msrs;
219
220 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
221                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
222                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
223                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
224
225 u64 __read_mostly host_efer;
226 EXPORT_SYMBOL_GPL(host_efer);
227
228 bool __read_mostly allow_smaller_maxphyaddr = 0;
229 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
230
231 bool __read_mostly enable_apicv = true;
232 EXPORT_SYMBOL_GPL(enable_apicv);
233
234 u64 __read_mostly host_xss;
235 EXPORT_SYMBOL_GPL(host_xss);
236
237 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
238         KVM_GENERIC_VM_STATS(),
239         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
240         STATS_DESC_COUNTER(VM, mmu_pte_write),
241         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
242         STATS_DESC_COUNTER(VM, mmu_flooded),
243         STATS_DESC_COUNTER(VM, mmu_recycled),
244         STATS_DESC_COUNTER(VM, mmu_cache_miss),
245         STATS_DESC_ICOUNTER(VM, mmu_unsync),
246         STATS_DESC_ICOUNTER(VM, pages_4k),
247         STATS_DESC_ICOUNTER(VM, pages_2m),
248         STATS_DESC_ICOUNTER(VM, pages_1g),
249         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
250         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
251         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
252 };
253
254 const struct kvm_stats_header kvm_vm_stats_header = {
255         .name_size = KVM_STATS_NAME_SIZE,
256         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
257         .id_offset = sizeof(struct kvm_stats_header),
258         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
259         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
260                        sizeof(kvm_vm_stats_desc),
261 };
262
263 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
264         KVM_GENERIC_VCPU_STATS(),
265         STATS_DESC_COUNTER(VCPU, pf_taken),
266         STATS_DESC_COUNTER(VCPU, pf_fixed),
267         STATS_DESC_COUNTER(VCPU, pf_emulate),
268         STATS_DESC_COUNTER(VCPU, pf_spurious),
269         STATS_DESC_COUNTER(VCPU, pf_fast),
270         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
271         STATS_DESC_COUNTER(VCPU, pf_guest),
272         STATS_DESC_COUNTER(VCPU, tlb_flush),
273         STATS_DESC_COUNTER(VCPU, invlpg),
274         STATS_DESC_COUNTER(VCPU, exits),
275         STATS_DESC_COUNTER(VCPU, io_exits),
276         STATS_DESC_COUNTER(VCPU, mmio_exits),
277         STATS_DESC_COUNTER(VCPU, signal_exits),
278         STATS_DESC_COUNTER(VCPU, irq_window_exits),
279         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
280         STATS_DESC_COUNTER(VCPU, l1d_flush),
281         STATS_DESC_COUNTER(VCPU, halt_exits),
282         STATS_DESC_COUNTER(VCPU, request_irq_exits),
283         STATS_DESC_COUNTER(VCPU, irq_exits),
284         STATS_DESC_COUNTER(VCPU, host_state_reload),
285         STATS_DESC_COUNTER(VCPU, fpu_reload),
286         STATS_DESC_COUNTER(VCPU, insn_emulation),
287         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
288         STATS_DESC_COUNTER(VCPU, hypercalls),
289         STATS_DESC_COUNTER(VCPU, irq_injections),
290         STATS_DESC_COUNTER(VCPU, nmi_injections),
291         STATS_DESC_COUNTER(VCPU, req_event),
292         STATS_DESC_COUNTER(VCPU, nested_run),
293         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
294         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
295         STATS_DESC_COUNTER(VCPU, preemption_reported),
296         STATS_DESC_COUNTER(VCPU, preemption_other),
297         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
298         STATS_DESC_COUNTER(VCPU, notify_window_exits),
299 };
300
301 const struct kvm_stats_header kvm_vcpu_stats_header = {
302         .name_size = KVM_STATS_NAME_SIZE,
303         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
304         .id_offset = sizeof(struct kvm_stats_header),
305         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
306         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
307                        sizeof(kvm_vcpu_stats_desc),
308 };
309
310 u64 __read_mostly host_xcr0;
311
312 static struct kmem_cache *x86_emulator_cache;
313
314 /*
315  * When called, it means the previous get/set msr reached an invalid msr.
316  * Return true if we want to ignore/silent this failed msr access.
317  */
318 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
319 {
320         const char *op = write ? "wrmsr" : "rdmsr";
321
322         if (ignore_msrs) {
323                 if (report_ignored_msrs)
324                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
325                                       op, msr, data);
326                 /* Mask the error */
327                 return true;
328         } else {
329                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
330                                       op, msr, data);
331                 return false;
332         }
333 }
334
335 static struct kmem_cache *kvm_alloc_emulator_cache(void)
336 {
337         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
338         unsigned int size = sizeof(struct x86_emulate_ctxt);
339
340         return kmem_cache_create_usercopy("x86_emulator", size,
341                                           __alignof__(struct x86_emulate_ctxt),
342                                           SLAB_ACCOUNT, useroffset,
343                                           size - useroffset, NULL);
344 }
345
346 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
347
348 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
349 {
350         int i;
351         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
352                 vcpu->arch.apf.gfns[i] = ~0;
353 }
354
355 static void kvm_on_user_return(struct user_return_notifier *urn)
356 {
357         unsigned slot;
358         struct kvm_user_return_msrs *msrs
359                 = container_of(urn, struct kvm_user_return_msrs, urn);
360         struct kvm_user_return_msr_values *values;
361         unsigned long flags;
362
363         /*
364          * Disabling irqs at this point since the following code could be
365          * interrupted and executed through kvm_arch_hardware_disable()
366          */
367         local_irq_save(flags);
368         if (msrs->registered) {
369                 msrs->registered = false;
370                 user_return_notifier_unregister(urn);
371         }
372         local_irq_restore(flags);
373         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
374                 values = &msrs->values[slot];
375                 if (values->host != values->curr) {
376                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
377                         values->curr = values->host;
378                 }
379         }
380 }
381
382 static int kvm_probe_user_return_msr(u32 msr)
383 {
384         u64 val;
385         int ret;
386
387         preempt_disable();
388         ret = rdmsrl_safe(msr, &val);
389         if (ret)
390                 goto out;
391         ret = wrmsrl_safe(msr, val);
392 out:
393         preempt_enable();
394         return ret;
395 }
396
397 int kvm_add_user_return_msr(u32 msr)
398 {
399         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
400
401         if (kvm_probe_user_return_msr(msr))
402                 return -1;
403
404         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
405         return kvm_nr_uret_msrs++;
406 }
407 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
408
409 int kvm_find_user_return_msr(u32 msr)
410 {
411         int i;
412
413         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
414                 if (kvm_uret_msrs_list[i] == msr)
415                         return i;
416         }
417         return -1;
418 }
419 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
420
421 static void kvm_user_return_msr_cpu_online(void)
422 {
423         unsigned int cpu = smp_processor_id();
424         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425         u64 value;
426         int i;
427
428         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
429                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
430                 msrs->values[i].host = value;
431                 msrs->values[i].curr = value;
432         }
433 }
434
435 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
436 {
437         unsigned int cpu = smp_processor_id();
438         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
439         int err;
440
441         value = (value & mask) | (msrs->values[slot].host & ~mask);
442         if (value == msrs->values[slot].curr)
443                 return 0;
444         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
445         if (err)
446                 return 1;
447
448         msrs->values[slot].curr = value;
449         if (!msrs->registered) {
450                 msrs->urn.on_user_return = kvm_on_user_return;
451                 user_return_notifier_register(&msrs->urn);
452                 msrs->registered = true;
453         }
454         return 0;
455 }
456 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
457
458 static void drop_user_return_notifiers(void)
459 {
460         unsigned int cpu = smp_processor_id();
461         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
462
463         if (msrs->registered)
464                 kvm_on_user_return(&msrs->urn);
465 }
466
467 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
468 {
469         return vcpu->arch.apic_base;
470 }
471 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
472
473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
474 {
475         return kvm_apic_mode(kvm_get_apic_base(vcpu));
476 }
477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
478
479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
480 {
481         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
482         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
483         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
484                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
485
486         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
487                 return 1;
488         if (!msr_info->host_initiated) {
489                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
490                         return 1;
491                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
492                         return 1;
493         }
494
495         kvm_lapic_set_base(vcpu, msr_info->data);
496         kvm_recalculate_apic_map(vcpu->kvm);
497         return 0;
498 }
499 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
500
501 /*
502  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
503  *
504  * Hardware virtualization extension instructions may fault if a reboot turns
505  * off virtualization while processes are running.  Usually after catching the
506  * fault we just panic; during reboot instead the instruction is ignored.
507  */
508 noinstr void kvm_spurious_fault(void)
509 {
510         /* Fault while not rebooting.  We want the trace. */
511         BUG_ON(!kvm_rebooting);
512 }
513 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
514
515 #define EXCPT_BENIGN            0
516 #define EXCPT_CONTRIBUTORY      1
517 #define EXCPT_PF                2
518
519 static int exception_class(int vector)
520 {
521         switch (vector) {
522         case PF_VECTOR:
523                 return EXCPT_PF;
524         case DE_VECTOR:
525         case TS_VECTOR:
526         case NP_VECTOR:
527         case SS_VECTOR:
528         case GP_VECTOR:
529                 return EXCPT_CONTRIBUTORY;
530         default:
531                 break;
532         }
533         return EXCPT_BENIGN;
534 }
535
536 #define EXCPT_FAULT             0
537 #define EXCPT_TRAP              1
538 #define EXCPT_ABORT             2
539 #define EXCPT_INTERRUPT         3
540 #define EXCPT_DB                4
541
542 static int exception_type(int vector)
543 {
544         unsigned int mask;
545
546         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
547                 return EXCPT_INTERRUPT;
548
549         mask = 1 << vector;
550
551         /*
552          * #DBs can be trap-like or fault-like, the caller must check other CPU
553          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
554          */
555         if (mask & (1 << DB_VECTOR))
556                 return EXCPT_DB;
557
558         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
559                 return EXCPT_TRAP;
560
561         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
562                 return EXCPT_ABORT;
563
564         /* Reserved exceptions will result in fault */
565         return EXCPT_FAULT;
566 }
567
568 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
569                                    struct kvm_queued_exception *ex)
570 {
571         if (!ex->has_payload)
572                 return;
573
574         switch (ex->vector) {
575         case DB_VECTOR:
576                 /*
577                  * "Certain debug exceptions may clear bit 0-3.  The
578                  * remaining contents of the DR6 register are never
579                  * cleared by the processor".
580                  */
581                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
582                 /*
583                  * In order to reflect the #DB exception payload in guest
584                  * dr6, three components need to be considered: active low
585                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
586                  * DR6_BS and DR6_BT)
587                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
588                  * In the target guest dr6:
589                  * FIXED_1 bits should always be set.
590                  * Active low bits should be cleared if 1-setting in payload.
591                  * Active high bits should be set if 1-setting in payload.
592                  *
593                  * Note, the payload is compatible with the pending debug
594                  * exceptions/exit qualification under VMX, that active_low bits
595                  * are active high in payload.
596                  * So they need to be flipped for DR6.
597                  */
598                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
599                 vcpu->arch.dr6 |= ex->payload;
600                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
601
602                 /*
603                  * The #DB payload is defined as compatible with the 'pending
604                  * debug exceptions' field under VMX, not DR6. While bit 12 is
605                  * defined in the 'pending debug exceptions' field (enabled
606                  * breakpoint), it is reserved and must be zero in DR6.
607                  */
608                 vcpu->arch.dr6 &= ~BIT(12);
609                 break;
610         case PF_VECTOR:
611                 vcpu->arch.cr2 = ex->payload;
612                 break;
613         }
614
615         ex->has_payload = false;
616         ex->payload = 0;
617 }
618 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
619
620 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
621                                        bool has_error_code, u32 error_code,
622                                        bool has_payload, unsigned long payload)
623 {
624         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
625
626         ex->vector = vector;
627         ex->injected = false;
628         ex->pending = true;
629         ex->has_error_code = has_error_code;
630         ex->error_code = error_code;
631         ex->has_payload = has_payload;
632         ex->payload = payload;
633 }
634
635 /* Forcibly leave the nested mode in cases like a vCPU reset */
636 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
637 {
638         kvm_x86_ops.nested_ops->leave_nested(vcpu);
639 }
640
641 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
642                 unsigned nr, bool has_error, u32 error_code,
643                 bool has_payload, unsigned long payload, bool reinject)
644 {
645         u32 prev_nr;
646         int class1, class2;
647
648         kvm_make_request(KVM_REQ_EVENT, vcpu);
649
650         /*
651          * If the exception is destined for L2 and isn't being reinjected,
652          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
653          * previously injected exception is not checked because it was checked
654          * when it was original queued, and re-checking is incorrect if _L1_
655          * injected the exception, in which case it's exempt from interception.
656          */
657         if (!reinject && is_guest_mode(vcpu) &&
658             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
659                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
660                                            has_payload, payload);
661                 return;
662         }
663
664         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
665         queue:
666                 if (reinject) {
667                         /*
668                          * On VM-Entry, an exception can be pending if and only
669                          * if event injection was blocked by nested_run_pending.
670                          * In that case, however, vcpu_enter_guest() requests an
671                          * immediate exit, and the guest shouldn't proceed far
672                          * enough to need reinjection.
673                          */
674                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
675                         vcpu->arch.exception.injected = true;
676                         if (WARN_ON_ONCE(has_payload)) {
677                                 /*
678                                  * A reinjected event has already
679                                  * delivered its payload.
680                                  */
681                                 has_payload = false;
682                                 payload = 0;
683                         }
684                 } else {
685                         vcpu->arch.exception.pending = true;
686                         vcpu->arch.exception.injected = false;
687                 }
688                 vcpu->arch.exception.has_error_code = has_error;
689                 vcpu->arch.exception.vector = nr;
690                 vcpu->arch.exception.error_code = error_code;
691                 vcpu->arch.exception.has_payload = has_payload;
692                 vcpu->arch.exception.payload = payload;
693                 if (!is_guest_mode(vcpu))
694                         kvm_deliver_exception_payload(vcpu,
695                                                       &vcpu->arch.exception);
696                 return;
697         }
698
699         /* to check exception */
700         prev_nr = vcpu->arch.exception.vector;
701         if (prev_nr == DF_VECTOR) {
702                 /* triple fault -> shutdown */
703                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
704                 return;
705         }
706         class1 = exception_class(prev_nr);
707         class2 = exception_class(nr);
708         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
709             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
710                 /*
711                  * Synthesize #DF.  Clear the previously injected or pending
712                  * exception so as not to incorrectly trigger shutdown.
713                  */
714                 vcpu->arch.exception.injected = false;
715                 vcpu->arch.exception.pending = false;
716
717                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
718         } else {
719                 /* replace previous exception with a new one in a hope
720                    that instruction re-execution will regenerate lost
721                    exception */
722                 goto queue;
723         }
724 }
725
726 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
727 {
728         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
729 }
730 EXPORT_SYMBOL_GPL(kvm_queue_exception);
731
732 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
733 {
734         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
735 }
736 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
737
738 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
739                            unsigned long payload)
740 {
741         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
742 }
743 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
744
745 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
746                                     u32 error_code, unsigned long payload)
747 {
748         kvm_multiple_exception(vcpu, nr, true, error_code,
749                                true, payload, false);
750 }
751
752 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
753 {
754         if (err)
755                 kvm_inject_gp(vcpu, 0);
756         else
757                 return kvm_skip_emulated_instruction(vcpu);
758
759         return 1;
760 }
761 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
762
763 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
764 {
765         if (err) {
766                 kvm_inject_gp(vcpu, 0);
767                 return 1;
768         }
769
770         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
771                                        EMULTYPE_COMPLETE_USER_EXIT);
772 }
773
774 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
775 {
776         ++vcpu->stat.pf_guest;
777
778         /*
779          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
780          * whether or not L1 wants to intercept "regular" #PF.
781          */
782         if (is_guest_mode(vcpu) && fault->async_page_fault)
783                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
784                                            true, fault->error_code,
785                                            true, fault->address);
786         else
787                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
788                                         fault->address);
789 }
790 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
791
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793                                     struct x86_exception *fault)
794 {
795         struct kvm_mmu *fault_mmu;
796         WARN_ON_ONCE(fault->vector != PF_VECTOR);
797
798         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
799                                                vcpu->arch.walk_mmu;
800
801         /*
802          * Invalidate the TLB entry for the faulting address, if it exists,
803          * else the access will fault indefinitely (and to emulate hardware).
804          */
805         if ((fault->error_code & PFERR_PRESENT_MASK) &&
806             !(fault->error_code & PFERR_RSVD_MASK))
807                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
808                                        fault_mmu->root.hpa);
809
810         fault_mmu->inject_page_fault(vcpu, fault);
811 }
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
813
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
815 {
816         atomic_inc(&vcpu->arch.nmi_queued);
817         kvm_make_request(KVM_REQ_NMI, vcpu);
818 }
819 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
820
821 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
822 {
823         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
824 }
825 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
826
827 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
828 {
829         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
830 }
831 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
832
833 /*
834  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
835  * a #GP and return false.
836  */
837 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
838 {
839         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
840                 return true;
841         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
842         return false;
843 }
844 EXPORT_SYMBOL_GPL(kvm_require_cpl);
845
846 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
847 {
848         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
849                 return true;
850
851         kvm_queue_exception(vcpu, UD_VECTOR);
852         return false;
853 }
854 EXPORT_SYMBOL_GPL(kvm_require_dr);
855
856 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
857 {
858         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
859 }
860
861 /*
862  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
863  */
864 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
865 {
866         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
867         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
868         gpa_t real_gpa;
869         int i;
870         int ret;
871         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
872
873         /*
874          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
875          * to an L1 GPA.
876          */
877         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
878                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
879         if (real_gpa == INVALID_GPA)
880                 return 0;
881
882         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
883         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
884                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
885         if (ret < 0)
886                 return 0;
887
888         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
889                 if ((pdpte[i] & PT_PRESENT_MASK) &&
890                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
891                         return 0;
892                 }
893         }
894
895         /*
896          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
897          * Shadow page roots need to be reconstructed instead.
898          */
899         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
900                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
901
902         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
903         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
904         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
905         vcpu->arch.pdptrs_from_userspace = false;
906
907         return 1;
908 }
909 EXPORT_SYMBOL_GPL(load_pdptrs);
910
911 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
912 {
913         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
914                 kvm_clear_async_pf_completion_queue(vcpu);
915                 kvm_async_pf_hash_reset(vcpu);
916
917                 /*
918                  * Clearing CR0.PG is defined to flush the TLB from the guest's
919                  * perspective.
920                  */
921                 if (!(cr0 & X86_CR0_PG))
922                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
923         }
924
925         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
926                 kvm_mmu_reset_context(vcpu);
927
928         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
929             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
930             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
931                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
932 }
933 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
934
935 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
936 {
937         unsigned long old_cr0 = kvm_read_cr0(vcpu);
938
939         cr0 |= X86_CR0_ET;
940
941 #ifdef CONFIG_X86_64
942         if (cr0 & 0xffffffff00000000UL)
943                 return 1;
944 #endif
945
946         cr0 &= ~CR0_RESERVED_BITS;
947
948         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
949                 return 1;
950
951         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
952                 return 1;
953
954 #ifdef CONFIG_X86_64
955         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
956             (cr0 & X86_CR0_PG)) {
957                 int cs_db, cs_l;
958
959                 if (!is_pae(vcpu))
960                         return 1;
961                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
962                 if (cs_l)
963                         return 1;
964         }
965 #endif
966         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
967             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
968             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
969                 return 1;
970
971         if (!(cr0 & X86_CR0_PG) &&
972             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
973                 return 1;
974
975         static_call(kvm_x86_set_cr0)(vcpu, cr0);
976
977         kvm_post_set_cr0(vcpu, old_cr0, cr0);
978
979         return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_set_cr0);
982
983 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
984 {
985         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
986 }
987 EXPORT_SYMBOL_GPL(kvm_lmsw);
988
989 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
990 {
991         if (vcpu->arch.guest_state_protected)
992                 return;
993
994         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
995
996                 if (vcpu->arch.xcr0 != host_xcr0)
997                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
998
999                 if (vcpu->arch.xsaves_enabled &&
1000                     vcpu->arch.ia32_xss != host_xss)
1001                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1002         }
1003
1004 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1005         if (static_cpu_has(X86_FEATURE_PKU) &&
1006             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1007             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1008              kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1009                 write_pkru(vcpu->arch.pkru);
1010 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1013
1014 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1015 {
1016         if (vcpu->arch.guest_state_protected)
1017                 return;
1018
1019 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1020         if (static_cpu_has(X86_FEATURE_PKU) &&
1021             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1022              kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1023                 vcpu->arch.pkru = rdpkru();
1024                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1025                         write_pkru(vcpu->arch.host_pkru);
1026         }
1027 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1028
1029         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1030
1031                 if (vcpu->arch.xcr0 != host_xcr0)
1032                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1033
1034                 if (vcpu->arch.xsaves_enabled &&
1035                     vcpu->arch.ia32_xss != host_xss)
1036                         wrmsrl(MSR_IA32_XSS, host_xss);
1037         }
1038
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1041
1042 #ifdef CONFIG_X86_64
1043 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1044 {
1045         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1046 }
1047 #endif
1048
1049 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1050 {
1051         u64 xcr0 = xcr;
1052         u64 old_xcr0 = vcpu->arch.xcr0;
1053         u64 valid_bits;
1054
1055         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1056         if (index != XCR_XFEATURE_ENABLED_MASK)
1057                 return 1;
1058         if (!(xcr0 & XFEATURE_MASK_FP))
1059                 return 1;
1060         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1061                 return 1;
1062
1063         /*
1064          * Do not allow the guest to set bits that we do not support
1065          * saving.  However, xcr0 bit 0 is always set, even if the
1066          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1067          */
1068         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1069         if (xcr0 & ~valid_bits)
1070                 return 1;
1071
1072         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1073             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1074                 return 1;
1075
1076         if (xcr0 & XFEATURE_MASK_AVX512) {
1077                 if (!(xcr0 & XFEATURE_MASK_YMM))
1078                         return 1;
1079                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1080                         return 1;
1081         }
1082
1083         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1084             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1085                 return 1;
1086
1087         vcpu->arch.xcr0 = xcr0;
1088
1089         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1090                 kvm_update_cpuid_runtime(vcpu);
1091         return 0;
1092 }
1093
1094 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1095 {
1096         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1097         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1098             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1099                 kvm_inject_gp(vcpu, 0);
1100                 return 1;
1101         }
1102
1103         return kvm_skip_emulated_instruction(vcpu);
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1106
1107 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1108 {
1109         if (cr4 & cr4_reserved_bits)
1110                 return false;
1111
1112         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1113                 return false;
1114
1115         return true;
1116 }
1117 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1118
1119 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1120 {
1121         return __kvm_is_valid_cr4(vcpu, cr4) &&
1122                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1123 }
1124
1125 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1126 {
1127         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1128                 kvm_mmu_reset_context(vcpu);
1129
1130         /*
1131          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1132          * according to the SDM; however, stale prev_roots could be reused
1133          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1134          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1135          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1136          * so fall through.
1137          */
1138         if (!tdp_enabled &&
1139             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1140                 kvm_mmu_unload(vcpu);
1141
1142         /*
1143          * The TLB has to be flushed for all PCIDs if any of the following
1144          * (architecturally required) changes happen:
1145          * - CR4.PCIDE is changed from 1 to 0
1146          * - CR4.PGE is toggled
1147          *
1148          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1149          */
1150         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1151             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1152                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1153
1154         /*
1155          * The TLB has to be flushed for the current PCID if any of the
1156          * following (architecturally required) changes happen:
1157          * - CR4.SMEP is changed from 0 to 1
1158          * - CR4.PAE is toggled
1159          */
1160         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1161                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1162                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1163
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1166
1167 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1168 {
1169         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1170
1171         if (!kvm_is_valid_cr4(vcpu, cr4))
1172                 return 1;
1173
1174         if (is_long_mode(vcpu)) {
1175                 if (!(cr4 & X86_CR4_PAE))
1176                         return 1;
1177                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1178                         return 1;
1179         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1180                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1181                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1182                 return 1;
1183
1184         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1185                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1186                         return 1;
1187
1188                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1189                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1190                         return 1;
1191         }
1192
1193         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1194
1195         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1196
1197         return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1200
1201 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1202 {
1203         struct kvm_mmu *mmu = vcpu->arch.mmu;
1204         unsigned long roots_to_free = 0;
1205         int i;
1206
1207         /*
1208          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1209          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1210          * also via the emulator.  KVM's TDP page tables are not in the scope of
1211          * the invalidation, but the guest's TLB entries need to be flushed as
1212          * the CPU may have cached entries in its TLB for the target PCID.
1213          */
1214         if (unlikely(tdp_enabled)) {
1215                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1216                 return;
1217         }
1218
1219         /*
1220          * If neither the current CR3 nor any of the prev_roots use the given
1221          * PCID, then nothing needs to be done here because a resync will
1222          * happen anyway before switching to any other CR3.
1223          */
1224         if (kvm_get_active_pcid(vcpu) == pcid) {
1225                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1226                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1227         }
1228
1229         /*
1230          * If PCID is disabled, there is no need to free prev_roots even if the
1231          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1232          * with PCIDE=0.
1233          */
1234         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1235                 return;
1236
1237         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1238                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1239                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1240
1241         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1242 }
1243
1244 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1245 {
1246         bool skip_tlb_flush = false;
1247         unsigned long pcid = 0;
1248 #ifdef CONFIG_X86_64
1249         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1250
1251         if (pcid_enabled) {
1252                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1253                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1254                 pcid = cr3 & X86_CR3_PCID_MASK;
1255         }
1256 #endif
1257
1258         /* PDPTRs are always reloaded for PAE paging. */
1259         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1260                 goto handle_tlb_flush;
1261
1262         /*
1263          * Do not condition the GPA check on long mode, this helper is used to
1264          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1265          * the current vCPU mode is accurate.
1266          */
1267         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1268                 return 1;
1269
1270         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1271                 return 1;
1272
1273         if (cr3 != kvm_read_cr3(vcpu))
1274                 kvm_mmu_new_pgd(vcpu, cr3);
1275
1276         vcpu->arch.cr3 = cr3;
1277         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1278         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1279
1280 handle_tlb_flush:
1281         /*
1282          * A load of CR3 that flushes the TLB flushes only the current PCID,
1283          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1284          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1285          * and it's impossible to use a non-zero PCID when PCID is disabled,
1286          * i.e. only PCID=0 can be relevant.
1287          */
1288         if (!skip_tlb_flush)
1289                 kvm_invalidate_pcid(vcpu, pcid);
1290
1291         return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1294
1295 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1296 {
1297         if (cr8 & CR8_RESERVED_BITS)
1298                 return 1;
1299         if (lapic_in_kernel(vcpu))
1300                 kvm_lapic_set_tpr(vcpu, cr8);
1301         else
1302                 vcpu->arch.cr8 = cr8;
1303         return 0;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1306
1307 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1308 {
1309         if (lapic_in_kernel(vcpu))
1310                 return kvm_lapic_get_cr8(vcpu);
1311         else
1312                 return vcpu->arch.cr8;
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1315
1316 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1317 {
1318         int i;
1319
1320         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1321                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1322                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1323         }
1324 }
1325
1326 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1327 {
1328         unsigned long dr7;
1329
1330         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1331                 dr7 = vcpu->arch.guest_debug_dr7;
1332         else
1333                 dr7 = vcpu->arch.dr7;
1334         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1335         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1336         if (dr7 & DR7_BP_EN_MASK)
1337                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1340
1341 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1342 {
1343         u64 fixed = DR6_FIXED_1;
1344
1345         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1346                 fixed |= DR6_RTM;
1347
1348         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1349                 fixed |= DR6_BUS_LOCK;
1350         return fixed;
1351 }
1352
1353 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1354 {
1355         size_t size = ARRAY_SIZE(vcpu->arch.db);
1356
1357         switch (dr) {
1358         case 0 ... 3:
1359                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1360                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1361                         vcpu->arch.eff_db[dr] = val;
1362                 break;
1363         case 4:
1364         case 6:
1365                 if (!kvm_dr6_valid(val))
1366                         return 1; /* #GP */
1367                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1368                 break;
1369         case 5:
1370         default: /* 7 */
1371                 if (!kvm_dr7_valid(val))
1372                         return 1; /* #GP */
1373                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1374                 kvm_update_dr7(vcpu);
1375                 break;
1376         }
1377
1378         return 0;
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_set_dr);
1381
1382 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1383 {
1384         size_t size = ARRAY_SIZE(vcpu->arch.db);
1385
1386         switch (dr) {
1387         case 0 ... 3:
1388                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1389                 break;
1390         case 4:
1391         case 6:
1392                 *val = vcpu->arch.dr6;
1393                 break;
1394         case 5:
1395         default: /* 7 */
1396                 *val = vcpu->arch.dr7;
1397                 break;
1398         }
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_get_dr);
1401
1402 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1403 {
1404         u32 ecx = kvm_rcx_read(vcpu);
1405         u64 data;
1406
1407         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1408                 kvm_inject_gp(vcpu, 0);
1409                 return 1;
1410         }
1411
1412         kvm_rax_write(vcpu, (u32)data);
1413         kvm_rdx_write(vcpu, data >> 32);
1414         return kvm_skip_emulated_instruction(vcpu);
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1417
1418 /*
1419  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1420  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1421  *
1422  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1423  * extract the supported MSRs from the related const lists.
1424  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1425  * capabilities of the host cpu. This capabilities test skips MSRs that are
1426  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1427  * may depend on host virtualization features rather than host cpu features.
1428  */
1429
1430 static const u32 msrs_to_save_all[] = {
1431         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1432         MSR_STAR,
1433 #ifdef CONFIG_X86_64
1434         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1435 #endif
1436         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1437         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1438         MSR_IA32_SPEC_CTRL,
1439         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1440         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1441         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1442         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1443         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1444         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1445         MSR_IA32_UMWAIT_CONTROL,
1446
1447         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1448         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1449         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1450         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1451         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1452
1453         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1454         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1455         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1456         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1457         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1458         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1459         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1460         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1461         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1462
1463         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1464         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1465
1466         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1467         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1468         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1469         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1470         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1471
1472         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1473 };
1474
1475 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1476 static unsigned num_msrs_to_save;
1477
1478 static const u32 emulated_msrs_all[] = {
1479         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1480         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1481         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1482         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1483         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1484         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1485         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1486         HV_X64_MSR_RESET,
1487         HV_X64_MSR_VP_INDEX,
1488         HV_X64_MSR_VP_RUNTIME,
1489         HV_X64_MSR_SCONTROL,
1490         HV_X64_MSR_STIMER0_CONFIG,
1491         HV_X64_MSR_VP_ASSIST_PAGE,
1492         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1493         HV_X64_MSR_TSC_EMULATION_STATUS,
1494         HV_X64_MSR_SYNDBG_OPTIONS,
1495         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1496         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1497         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1498
1499         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1500         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1501
1502         MSR_IA32_TSC_ADJUST,
1503         MSR_IA32_TSC_DEADLINE,
1504         MSR_IA32_ARCH_CAPABILITIES,
1505         MSR_IA32_PERF_CAPABILITIES,
1506         MSR_IA32_MISC_ENABLE,
1507         MSR_IA32_MCG_STATUS,
1508         MSR_IA32_MCG_CTL,
1509         MSR_IA32_MCG_EXT_CTL,
1510         MSR_IA32_SMBASE,
1511         MSR_SMI_COUNT,
1512         MSR_PLATFORM_INFO,
1513         MSR_MISC_FEATURES_ENABLES,
1514         MSR_AMD64_VIRT_SPEC_CTRL,
1515         MSR_AMD64_TSC_RATIO,
1516         MSR_IA32_POWER_CTL,
1517         MSR_IA32_UCODE_REV,
1518
1519         /*
1520          * The following list leaves out MSRs whose values are determined
1521          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1522          * We always support the "true" VMX control MSRs, even if the host
1523          * processor does not, so I am putting these registers here rather
1524          * than in msrs_to_save_all.
1525          */
1526         MSR_IA32_VMX_BASIC,
1527         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1528         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1529         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1530         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1531         MSR_IA32_VMX_MISC,
1532         MSR_IA32_VMX_CR0_FIXED0,
1533         MSR_IA32_VMX_CR4_FIXED0,
1534         MSR_IA32_VMX_VMCS_ENUM,
1535         MSR_IA32_VMX_PROCBASED_CTLS2,
1536         MSR_IA32_VMX_EPT_VPID_CAP,
1537         MSR_IA32_VMX_VMFUNC,
1538
1539         MSR_K7_HWCR,
1540         MSR_KVM_POLL_CONTROL,
1541 };
1542
1543 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1544 static unsigned num_emulated_msrs;
1545
1546 /*
1547  * List of msr numbers which are used to expose MSR-based features that
1548  * can be used by a hypervisor to validate requested CPU features.
1549  */
1550 static const u32 msr_based_features_all[] = {
1551         MSR_IA32_VMX_BASIC,
1552         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1553         MSR_IA32_VMX_PINBASED_CTLS,
1554         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555         MSR_IA32_VMX_PROCBASED_CTLS,
1556         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1557         MSR_IA32_VMX_EXIT_CTLS,
1558         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1559         MSR_IA32_VMX_ENTRY_CTLS,
1560         MSR_IA32_VMX_MISC,
1561         MSR_IA32_VMX_CR0_FIXED0,
1562         MSR_IA32_VMX_CR0_FIXED1,
1563         MSR_IA32_VMX_CR4_FIXED0,
1564         MSR_IA32_VMX_CR4_FIXED1,
1565         MSR_IA32_VMX_VMCS_ENUM,
1566         MSR_IA32_VMX_PROCBASED_CTLS2,
1567         MSR_IA32_VMX_EPT_VPID_CAP,
1568         MSR_IA32_VMX_VMFUNC,
1569
1570         MSR_AMD64_DE_CFG,
1571         MSR_IA32_UCODE_REV,
1572         MSR_IA32_ARCH_CAPABILITIES,
1573         MSR_IA32_PERF_CAPABILITIES,
1574 };
1575
1576 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1577 static unsigned int num_msr_based_features;
1578
1579 /*
1580  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1581  * does not yet virtualize. These include:
1582  *   10 - MISC_PACKAGE_CTRLS
1583  *   11 - ENERGY_FILTERING_CTL
1584  *   12 - DOITM
1585  *   18 - FB_CLEAR_CTRL
1586  *   21 - XAPIC_DISABLE_STATUS
1587  *   23 - OVERCLOCKING_STATUS
1588  */
1589
1590 #define KVM_SUPPORTED_ARCH_CAP \
1591         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1592          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1593          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1594          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1595          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1596
1597 static u64 kvm_get_arch_capabilities(void)
1598 {
1599         u64 data = 0;
1600
1601         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1602                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1603                 data &= KVM_SUPPORTED_ARCH_CAP;
1604         }
1605
1606         /*
1607          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1608          * the nested hypervisor runs with NX huge pages.  If it is not,
1609          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1610          * L1 guests, so it need not worry about its own (L2) guests.
1611          */
1612         data |= ARCH_CAP_PSCHANGE_MC_NO;
1613
1614         /*
1615          * If we're doing cache flushes (either "always" or "cond")
1616          * we will do one whenever the guest does a vmlaunch/vmresume.
1617          * If an outer hypervisor is doing the cache flush for us
1618          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1619          * capability to the guest too, and if EPT is disabled we're not
1620          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1621          * require a nested hypervisor to do a flush of its own.
1622          */
1623         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1624                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1625
1626         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1627                 data |= ARCH_CAP_RDCL_NO;
1628         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1629                 data |= ARCH_CAP_SSB_NO;
1630         if (!boot_cpu_has_bug(X86_BUG_MDS))
1631                 data |= ARCH_CAP_MDS_NO;
1632
1633         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1634                 /*
1635                  * If RTM=0 because the kernel has disabled TSX, the host might
1636                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1637                  * and therefore knows that there cannot be TAA) but keep
1638                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1639                  * and we want to allow migrating those guests to tsx=off hosts.
1640                  */
1641                 data &= ~ARCH_CAP_TAA_NO;
1642         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1643                 data |= ARCH_CAP_TAA_NO;
1644         } else {
1645                 /*
1646                  * Nothing to do here; we emulate TSX_CTRL if present on the
1647                  * host so the guest can choose between disabling TSX or
1648                  * using VERW to clear CPU buffers.
1649                  */
1650         }
1651
1652         return data;
1653 }
1654
1655 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1656 {
1657         switch (msr->index) {
1658         case MSR_IA32_ARCH_CAPABILITIES:
1659                 msr->data = kvm_get_arch_capabilities();
1660                 break;
1661         case MSR_IA32_UCODE_REV:
1662                 rdmsrl_safe(msr->index, &msr->data);
1663                 break;
1664         default:
1665                 return static_call(kvm_x86_get_msr_feature)(msr);
1666         }
1667         return 0;
1668 }
1669
1670 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1671 {
1672         struct kvm_msr_entry msr;
1673         int r;
1674
1675         msr.index = index;
1676         r = kvm_get_msr_feature(&msr);
1677
1678         if (r == KVM_MSR_RET_INVALID) {
1679                 /* Unconditionally clear the output for simplicity */
1680                 *data = 0;
1681                 if (kvm_msr_ignored_check(index, 0, false))
1682                         r = 0;
1683         }
1684
1685         if (r)
1686                 return r;
1687
1688         *data = msr.data;
1689
1690         return 0;
1691 }
1692
1693 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1694 {
1695         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1696                 return false;
1697
1698         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1699                 return false;
1700
1701         if (efer & (EFER_LME | EFER_LMA) &&
1702             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1703                 return false;
1704
1705         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1706                 return false;
1707
1708         return true;
1709
1710 }
1711 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1712 {
1713         if (efer & efer_reserved_bits)
1714                 return false;
1715
1716         return __kvm_valid_efer(vcpu, efer);
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1719
1720 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1721 {
1722         u64 old_efer = vcpu->arch.efer;
1723         u64 efer = msr_info->data;
1724         int r;
1725
1726         if (efer & efer_reserved_bits)
1727                 return 1;
1728
1729         if (!msr_info->host_initiated) {
1730                 if (!__kvm_valid_efer(vcpu, efer))
1731                         return 1;
1732
1733                 if (is_paging(vcpu) &&
1734                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1735                         return 1;
1736         }
1737
1738         efer &= ~EFER_LMA;
1739         efer |= vcpu->arch.efer & EFER_LMA;
1740
1741         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1742         if (r) {
1743                 WARN_ON(r > 0);
1744                 return r;
1745         }
1746
1747         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1748                 kvm_mmu_reset_context(vcpu);
1749
1750         return 0;
1751 }
1752
1753 void kvm_enable_efer_bits(u64 mask)
1754 {
1755        efer_reserved_bits &= ~mask;
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1758
1759 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1760 {
1761         struct kvm_x86_msr_filter *msr_filter;
1762         struct msr_bitmap_range *ranges;
1763         struct kvm *kvm = vcpu->kvm;
1764         bool allowed;
1765         int idx;
1766         u32 i;
1767
1768         /* x2APIC MSRs do not support filtering. */
1769         if (index >= 0x800 && index <= 0x8ff)
1770                 return true;
1771
1772         idx = srcu_read_lock(&kvm->srcu);
1773
1774         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1775         if (!msr_filter) {
1776                 allowed = true;
1777                 goto out;
1778         }
1779
1780         allowed = msr_filter->default_allow;
1781         ranges = msr_filter->ranges;
1782
1783         for (i = 0; i < msr_filter->count; i++) {
1784                 u32 start = ranges[i].base;
1785                 u32 end = start + ranges[i].nmsrs;
1786                 u32 flags = ranges[i].flags;
1787                 unsigned long *bitmap = ranges[i].bitmap;
1788
1789                 if ((index >= start) && (index < end) && (flags & type)) {
1790                         allowed = !!test_bit(index - start, bitmap);
1791                         break;
1792                 }
1793         }
1794
1795 out:
1796         srcu_read_unlock(&kvm->srcu, idx);
1797
1798         return allowed;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1801
1802 /*
1803  * Write @data into the MSR specified by @index.  Select MSR specific fault
1804  * checks are bypassed if @host_initiated is %true.
1805  * Returns 0 on success, non-0 otherwise.
1806  * Assumes vcpu_load() was already called.
1807  */
1808 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1809                          bool host_initiated)
1810 {
1811         struct msr_data msr;
1812
1813         switch (index) {
1814         case MSR_FS_BASE:
1815         case MSR_GS_BASE:
1816         case MSR_KERNEL_GS_BASE:
1817         case MSR_CSTAR:
1818         case MSR_LSTAR:
1819                 if (is_noncanonical_address(data, vcpu))
1820                         return 1;
1821                 break;
1822         case MSR_IA32_SYSENTER_EIP:
1823         case MSR_IA32_SYSENTER_ESP:
1824                 /*
1825                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1826                  * non-canonical address is written on Intel but not on
1827                  * AMD (which ignores the top 32-bits, because it does
1828                  * not implement 64-bit SYSENTER).
1829                  *
1830                  * 64-bit code should hence be able to write a non-canonical
1831                  * value on AMD.  Making the address canonical ensures that
1832                  * vmentry does not fail on Intel after writing a non-canonical
1833                  * value, and that something deterministic happens if the guest
1834                  * invokes 64-bit SYSENTER.
1835                  */
1836                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1837                 break;
1838         case MSR_TSC_AUX:
1839                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1840                         return 1;
1841
1842                 if (!host_initiated &&
1843                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1844                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1845                         return 1;
1846
1847                 /*
1848                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1849                  * incomplete and conflicting architectural behavior.  Current
1850                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1851                  * reserved and always read as zeros.  Enforce Intel's reserved
1852                  * bits check if and only if the guest CPU is Intel, and clear
1853                  * the bits in all other cases.  This ensures cross-vendor
1854                  * migration will provide consistent behavior for the guest.
1855                  */
1856                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1857                         return 1;
1858
1859                 data = (u32)data;
1860                 break;
1861         }
1862
1863         msr.data = data;
1864         msr.index = index;
1865         msr.host_initiated = host_initiated;
1866
1867         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1868 }
1869
1870 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1871                                      u32 index, u64 data, bool host_initiated)
1872 {
1873         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1874
1875         if (ret == KVM_MSR_RET_INVALID)
1876                 if (kvm_msr_ignored_check(index, data, true))
1877                         ret = 0;
1878
1879         return ret;
1880 }
1881
1882 /*
1883  * Read the MSR specified by @index into @data.  Select MSR specific fault
1884  * checks are bypassed if @host_initiated is %true.
1885  * Returns 0 on success, non-0 otherwise.
1886  * Assumes vcpu_load() was already called.
1887  */
1888 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1889                   bool host_initiated)
1890 {
1891         struct msr_data msr;
1892         int ret;
1893
1894         switch (index) {
1895         case MSR_TSC_AUX:
1896                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1897                         return 1;
1898
1899                 if (!host_initiated &&
1900                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1901                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1902                         return 1;
1903                 break;
1904         }
1905
1906         msr.index = index;
1907         msr.host_initiated = host_initiated;
1908
1909         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1910         if (!ret)
1911                 *data = msr.data;
1912         return ret;
1913 }
1914
1915 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1916                                      u32 index, u64 *data, bool host_initiated)
1917 {
1918         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1919
1920         if (ret == KVM_MSR_RET_INVALID) {
1921                 /* Unconditionally clear *data for simplicity */
1922                 *data = 0;
1923                 if (kvm_msr_ignored_check(index, 0, false))
1924                         ret = 0;
1925         }
1926
1927         return ret;
1928 }
1929
1930 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1931 {
1932         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1933                 return KVM_MSR_RET_FILTERED;
1934         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1935 }
1936
1937 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1938 {
1939         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1940                 return KVM_MSR_RET_FILTERED;
1941         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1942 }
1943
1944 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1945 {
1946         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_get_msr);
1949
1950 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1951 {
1952         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_set_msr);
1955
1956 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1957 {
1958         if (!vcpu->run->msr.error) {
1959                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1960                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1961         }
1962 }
1963
1964 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1965 {
1966         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1967 }
1968
1969 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1970 {
1971         complete_userspace_rdmsr(vcpu);
1972         return complete_emulated_msr_access(vcpu);
1973 }
1974
1975 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1976 {
1977         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1978 }
1979
1980 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1981 {
1982         complete_userspace_rdmsr(vcpu);
1983         return complete_fast_msr_access(vcpu);
1984 }
1985
1986 static u64 kvm_msr_reason(int r)
1987 {
1988         switch (r) {
1989         case KVM_MSR_RET_INVALID:
1990                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1991         case KVM_MSR_RET_FILTERED:
1992                 return KVM_MSR_EXIT_REASON_FILTER;
1993         default:
1994                 return KVM_MSR_EXIT_REASON_INVAL;
1995         }
1996 }
1997
1998 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1999                               u32 exit_reason, u64 data,
2000                               int (*completion)(struct kvm_vcpu *vcpu),
2001                               int r)
2002 {
2003         u64 msr_reason = kvm_msr_reason(r);
2004
2005         /* Check if the user wanted to know about this MSR fault */
2006         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2007                 return 0;
2008
2009         vcpu->run->exit_reason = exit_reason;
2010         vcpu->run->msr.error = 0;
2011         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2012         vcpu->run->msr.reason = msr_reason;
2013         vcpu->run->msr.index = index;
2014         vcpu->run->msr.data = data;
2015         vcpu->arch.complete_userspace_io = completion;
2016
2017         return 1;
2018 }
2019
2020 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2021 {
2022         u32 ecx = kvm_rcx_read(vcpu);
2023         u64 data;
2024         int r;
2025
2026         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2027
2028         if (!r) {
2029                 trace_kvm_msr_read(ecx, data);
2030
2031                 kvm_rax_write(vcpu, data & -1u);
2032                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2033         } else {
2034                 /* MSR read failed? See if we should ask user space */
2035                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2036                                        complete_fast_rdmsr, r))
2037                         return 0;
2038                 trace_kvm_msr_read_ex(ecx);
2039         }
2040
2041         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2044
2045 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2046 {
2047         u32 ecx = kvm_rcx_read(vcpu);
2048         u64 data = kvm_read_edx_eax(vcpu);
2049         int r;
2050
2051         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2052
2053         if (!r) {
2054                 trace_kvm_msr_write(ecx, data);
2055         } else {
2056                 /* MSR write failed? See if we should ask user space */
2057                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2058                                        complete_fast_msr_access, r))
2059                         return 0;
2060                 /* Signal all other negative errors to userspace */
2061                 if (r < 0)
2062                         return r;
2063                 trace_kvm_msr_write_ex(ecx, data);
2064         }
2065
2066         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2069
2070 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2071 {
2072         return kvm_skip_emulated_instruction(vcpu);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2075
2076 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2077 {
2078         /* Treat an INVD instruction as a NOP and just skip it. */
2079         return kvm_emulate_as_nop(vcpu);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2082
2083 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2084 {
2085         kvm_queue_exception(vcpu, UD_VECTOR);
2086         return 1;
2087 }
2088 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2089
2090
2091 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2092 {
2093         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2094             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2095                 return kvm_handle_invalid_op(vcpu);
2096
2097         pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2098         return kvm_emulate_as_nop(vcpu);
2099 }
2100 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2101 {
2102         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2103 }
2104 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2105
2106 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2107 {
2108         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2111
2112 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2113 {
2114         xfer_to_guest_mode_prepare();
2115         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2116                 xfer_to_guest_mode_work_pending();
2117 }
2118
2119 /*
2120  * The fast path for frequent and performance sensitive wrmsr emulation,
2121  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2122  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2123  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2124  * other cases which must be called after interrupts are enabled on the host.
2125  */
2126 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2127 {
2128         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2129                 return 1;
2130
2131         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2132             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2133             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2134             ((u32)(data >> 32) != X2APIC_BROADCAST))
2135                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2136
2137         return 1;
2138 }
2139
2140 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2141 {
2142         if (!kvm_can_use_hv_timer(vcpu))
2143                 return 1;
2144
2145         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2146         return 0;
2147 }
2148
2149 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2150 {
2151         u32 msr = kvm_rcx_read(vcpu);
2152         u64 data;
2153         fastpath_t ret = EXIT_FASTPATH_NONE;
2154
2155         switch (msr) {
2156         case APIC_BASE_MSR + (APIC_ICR >> 4):
2157                 data = kvm_read_edx_eax(vcpu);
2158                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2159                         kvm_skip_emulated_instruction(vcpu);
2160                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2161                 }
2162                 break;
2163         case MSR_IA32_TSC_DEADLINE:
2164                 data = kvm_read_edx_eax(vcpu);
2165                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2166                         kvm_skip_emulated_instruction(vcpu);
2167                         ret = EXIT_FASTPATH_REENTER_GUEST;
2168                 }
2169                 break;
2170         default:
2171                 break;
2172         }
2173
2174         if (ret != EXIT_FASTPATH_NONE)
2175                 trace_kvm_msr_write(msr, data);
2176
2177         return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2180
2181 /*
2182  * Adapt set_msr() to msr_io()'s calling convention
2183  */
2184 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2185 {
2186         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2187 }
2188
2189 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2190 {
2191         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2192 }
2193
2194 #ifdef CONFIG_X86_64
2195 struct pvclock_clock {
2196         int vclock_mode;
2197         u64 cycle_last;
2198         u64 mask;
2199         u32 mult;
2200         u32 shift;
2201         u64 base_cycles;
2202         u64 offset;
2203 };
2204
2205 struct pvclock_gtod_data {
2206         seqcount_t      seq;
2207
2208         struct pvclock_clock clock; /* extract of a clocksource struct */
2209         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2210
2211         ktime_t         offs_boot;
2212         u64             wall_time_sec;
2213 };
2214
2215 static struct pvclock_gtod_data pvclock_gtod_data;
2216
2217 static void update_pvclock_gtod(struct timekeeper *tk)
2218 {
2219         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2220
2221         write_seqcount_begin(&vdata->seq);
2222
2223         /* copy pvclock gtod data */
2224         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2225         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2226         vdata->clock.mask               = tk->tkr_mono.mask;
2227         vdata->clock.mult               = tk->tkr_mono.mult;
2228         vdata->clock.shift              = tk->tkr_mono.shift;
2229         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2230         vdata->clock.offset             = tk->tkr_mono.base;
2231
2232         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2233         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2234         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2235         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2236         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2237         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2238         vdata->raw_clock.offset         = tk->tkr_raw.base;
2239
2240         vdata->wall_time_sec            = tk->xtime_sec;
2241
2242         vdata->offs_boot                = tk->offs_boot;
2243
2244         write_seqcount_end(&vdata->seq);
2245 }
2246
2247 static s64 get_kvmclock_base_ns(void)
2248 {
2249         /* Count up from boot time, but with the frequency of the raw clock.  */
2250         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2251 }
2252 #else
2253 static s64 get_kvmclock_base_ns(void)
2254 {
2255         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2256         return ktime_get_boottime_ns();
2257 }
2258 #endif
2259
2260 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2261 {
2262         int version;
2263         int r;
2264         struct pvclock_wall_clock wc;
2265         u32 wc_sec_hi;
2266         u64 wall_nsec;
2267
2268         if (!wall_clock)
2269                 return;
2270
2271         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2272         if (r)
2273                 return;
2274
2275         if (version & 1)
2276                 ++version;  /* first time write, random junk */
2277
2278         ++version;
2279
2280         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2281                 return;
2282
2283         /*
2284          * The guest calculates current wall clock time by adding
2285          * system time (updated by kvm_guest_time_update below) to the
2286          * wall clock specified here.  We do the reverse here.
2287          */
2288         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2289
2290         wc.nsec = do_div(wall_nsec, 1000000000);
2291         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2292         wc.version = version;
2293
2294         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2295
2296         if (sec_hi_ofs) {
2297                 wc_sec_hi = wall_nsec >> 32;
2298                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2299                                 &wc_sec_hi, sizeof(wc_sec_hi));
2300         }
2301
2302         version++;
2303         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2304 }
2305
2306 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2307                                   bool old_msr, bool host_initiated)
2308 {
2309         struct kvm_arch *ka = &vcpu->kvm->arch;
2310
2311         if (vcpu->vcpu_id == 0 && !host_initiated) {
2312                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2313                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2314
2315                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2316         }
2317
2318         vcpu->arch.time = system_time;
2319         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2320
2321         /* we verify if the enable bit is set... */
2322         if (system_time & 1) {
2323                 kvm_gpc_activate(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2324                                  KVM_HOST_USES_PFN, system_time & ~1ULL,
2325                                  sizeof(struct pvclock_vcpu_time_info));
2326         } else {
2327                 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time);
2328         }
2329
2330         return;
2331 }
2332
2333 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2334 {
2335         do_shl32_div32(dividend, divisor);
2336         return dividend;
2337 }
2338
2339 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2340                                s8 *pshift, u32 *pmultiplier)
2341 {
2342         uint64_t scaled64;
2343         int32_t  shift = 0;
2344         uint64_t tps64;
2345         uint32_t tps32;
2346
2347         tps64 = base_hz;
2348         scaled64 = scaled_hz;
2349         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2350                 tps64 >>= 1;
2351                 shift--;
2352         }
2353
2354         tps32 = (uint32_t)tps64;
2355         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2356                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2357                         scaled64 >>= 1;
2358                 else
2359                         tps32 <<= 1;
2360                 shift++;
2361         }
2362
2363         *pshift = shift;
2364         *pmultiplier = div_frac(scaled64, tps32);
2365 }
2366
2367 #ifdef CONFIG_X86_64
2368 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2369 #endif
2370
2371 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2372 static unsigned long max_tsc_khz;
2373
2374 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2375 {
2376         u64 v = (u64)khz * (1000000 + ppm);
2377         do_div(v, 1000000);
2378         return v;
2379 }
2380
2381 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2382
2383 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2384 {
2385         u64 ratio;
2386
2387         /* Guest TSC same frequency as host TSC? */
2388         if (!scale) {
2389                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2390                 return 0;
2391         }
2392
2393         /* TSC scaling supported? */
2394         if (!kvm_caps.has_tsc_control) {
2395                 if (user_tsc_khz > tsc_khz) {
2396                         vcpu->arch.tsc_catchup = 1;
2397                         vcpu->arch.tsc_always_catchup = 1;
2398                         return 0;
2399                 } else {
2400                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2401                         return -1;
2402                 }
2403         }
2404
2405         /* TSC scaling required  - calculate ratio */
2406         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2407                                 user_tsc_khz, tsc_khz);
2408
2409         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2410                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2411                                     user_tsc_khz);
2412                 return -1;
2413         }
2414
2415         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2416         return 0;
2417 }
2418
2419 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2420 {
2421         u32 thresh_lo, thresh_hi;
2422         int use_scaling = 0;
2423
2424         /* tsc_khz can be zero if TSC calibration fails */
2425         if (user_tsc_khz == 0) {
2426                 /* set tsc_scaling_ratio to a safe value */
2427                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2428                 return -1;
2429         }
2430
2431         /* Compute a scale to convert nanoseconds in TSC cycles */
2432         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2433                            &vcpu->arch.virtual_tsc_shift,
2434                            &vcpu->arch.virtual_tsc_mult);
2435         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2436
2437         /*
2438          * Compute the variation in TSC rate which is acceptable
2439          * within the range of tolerance and decide if the
2440          * rate being applied is within that bounds of the hardware
2441          * rate.  If so, no scaling or compensation need be done.
2442          */
2443         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2444         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2445         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2446                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2447                 use_scaling = 1;
2448         }
2449         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2450 }
2451
2452 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2453 {
2454         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2455                                       vcpu->arch.virtual_tsc_mult,
2456                                       vcpu->arch.virtual_tsc_shift);
2457         tsc += vcpu->arch.this_tsc_write;
2458         return tsc;
2459 }
2460
2461 #ifdef CONFIG_X86_64
2462 static inline int gtod_is_based_on_tsc(int mode)
2463 {
2464         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2465 }
2466 #endif
2467
2468 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2469 {
2470 #ifdef CONFIG_X86_64
2471         bool vcpus_matched;
2472         struct kvm_arch *ka = &vcpu->kvm->arch;
2473         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2474
2475         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2476                          atomic_read(&vcpu->kvm->online_vcpus));
2477
2478         /*
2479          * Once the masterclock is enabled, always perform request in
2480          * order to update it.
2481          *
2482          * In order to enable masterclock, the host clocksource must be TSC
2483          * and the vcpus need to have matched TSCs.  When that happens,
2484          * perform request to enable masterclock.
2485          */
2486         if (ka->use_master_clock ||
2487             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2488                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2489
2490         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2491                             atomic_read(&vcpu->kvm->online_vcpus),
2492                             ka->use_master_clock, gtod->clock.vclock_mode);
2493 #endif
2494 }
2495
2496 /*
2497  * Multiply tsc by a fixed point number represented by ratio.
2498  *
2499  * The most significant 64-N bits (mult) of ratio represent the
2500  * integral part of the fixed point number; the remaining N bits
2501  * (frac) represent the fractional part, ie. ratio represents a fixed
2502  * point number (mult + frac * 2^(-N)).
2503  *
2504  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2505  */
2506 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2507 {
2508         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2509 }
2510
2511 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2512 {
2513         u64 _tsc = tsc;
2514
2515         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2516                 _tsc = __scale_tsc(ratio, tsc);
2517
2518         return _tsc;
2519 }
2520 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2521
2522 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2523 {
2524         u64 tsc;
2525
2526         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2527
2528         return target_tsc - tsc;
2529 }
2530
2531 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2532 {
2533         return vcpu->arch.l1_tsc_offset +
2534                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2535 }
2536 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2537
2538 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2539 {
2540         u64 nested_offset;
2541
2542         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2543                 nested_offset = l1_offset;
2544         else
2545                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2546                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2547
2548         nested_offset += l2_offset;
2549         return nested_offset;
2550 }
2551 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2552
2553 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2554 {
2555         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2556                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2557                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2558
2559         return l1_multiplier;
2560 }
2561 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2562
2563 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2564 {
2565         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2566                                    vcpu->arch.l1_tsc_offset,
2567                                    l1_offset);
2568
2569         vcpu->arch.l1_tsc_offset = l1_offset;
2570
2571         /*
2572          * If we are here because L1 chose not to trap WRMSR to TSC then
2573          * according to the spec this should set L1's TSC (as opposed to
2574          * setting L1's offset for L2).
2575          */
2576         if (is_guest_mode(vcpu))
2577                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2578                         l1_offset,
2579                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2580                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2581         else
2582                 vcpu->arch.tsc_offset = l1_offset;
2583
2584         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2585 }
2586
2587 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2588 {
2589         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2590
2591         /* Userspace is changing the multiplier while L2 is active */
2592         if (is_guest_mode(vcpu))
2593                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2594                         l1_multiplier,
2595                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2596         else
2597                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2598
2599         if (kvm_caps.has_tsc_control)
2600                 static_call(kvm_x86_write_tsc_multiplier)(
2601                         vcpu, vcpu->arch.tsc_scaling_ratio);
2602 }
2603
2604 static inline bool kvm_check_tsc_unstable(void)
2605 {
2606 #ifdef CONFIG_X86_64
2607         /*
2608          * TSC is marked unstable when we're running on Hyper-V,
2609          * 'TSC page' clocksource is good.
2610          */
2611         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2612                 return false;
2613 #endif
2614         return check_tsc_unstable();
2615 }
2616
2617 /*
2618  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2619  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2620  * participates in.
2621  */
2622 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2623                                   u64 ns, bool matched)
2624 {
2625         struct kvm *kvm = vcpu->kvm;
2626
2627         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2628
2629         /*
2630          * We also track th most recent recorded KHZ, write and time to
2631          * allow the matching interval to be extended at each write.
2632          */
2633         kvm->arch.last_tsc_nsec = ns;
2634         kvm->arch.last_tsc_write = tsc;
2635         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2636         kvm->arch.last_tsc_offset = offset;
2637
2638         vcpu->arch.last_guest_tsc = tsc;
2639
2640         kvm_vcpu_write_tsc_offset(vcpu, offset);
2641
2642         if (!matched) {
2643                 /*
2644                  * We split periods of matched TSC writes into generations.
2645                  * For each generation, we track the original measured
2646                  * nanosecond time, offset, and write, so if TSCs are in
2647                  * sync, we can match exact offset, and if not, we can match
2648                  * exact software computation in compute_guest_tsc()
2649                  *
2650                  * These values are tracked in kvm->arch.cur_xxx variables.
2651                  */
2652                 kvm->arch.cur_tsc_generation++;
2653                 kvm->arch.cur_tsc_nsec = ns;
2654                 kvm->arch.cur_tsc_write = tsc;
2655                 kvm->arch.cur_tsc_offset = offset;
2656                 kvm->arch.nr_vcpus_matched_tsc = 0;
2657         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2658                 kvm->arch.nr_vcpus_matched_tsc++;
2659         }
2660
2661         /* Keep track of which generation this VCPU has synchronized to */
2662         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2663         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2664         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2665
2666         kvm_track_tsc_matching(vcpu);
2667 }
2668
2669 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2670 {
2671         struct kvm *kvm = vcpu->kvm;
2672         u64 offset, ns, elapsed;
2673         unsigned long flags;
2674         bool matched = false;
2675         bool synchronizing = false;
2676
2677         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2678         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2679         ns = get_kvmclock_base_ns();
2680         elapsed = ns - kvm->arch.last_tsc_nsec;
2681
2682         if (vcpu->arch.virtual_tsc_khz) {
2683                 if (data == 0) {
2684                         /*
2685                          * detection of vcpu initialization -- need to sync
2686                          * with other vCPUs. This particularly helps to keep
2687                          * kvm_clock stable after CPU hotplug
2688                          */
2689                         synchronizing = true;
2690                 } else {
2691                         u64 tsc_exp = kvm->arch.last_tsc_write +
2692                                                 nsec_to_cycles(vcpu, elapsed);
2693                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2694                         /*
2695                          * Special case: TSC write with a small delta (1 second)
2696                          * of virtual cycle time against real time is
2697                          * interpreted as an attempt to synchronize the CPU.
2698                          */
2699                         synchronizing = data < tsc_exp + tsc_hz &&
2700                                         data + tsc_hz > tsc_exp;
2701                 }
2702         }
2703
2704         /*
2705          * For a reliable TSC, we can match TSC offsets, and for an unstable
2706          * TSC, we add elapsed time in this computation.  We could let the
2707          * compensation code attempt to catch up if we fall behind, but
2708          * it's better to try to match offsets from the beginning.
2709          */
2710         if (synchronizing &&
2711             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2712                 if (!kvm_check_tsc_unstable()) {
2713                         offset = kvm->arch.cur_tsc_offset;
2714                 } else {
2715                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2716                         data += delta;
2717                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2718                 }
2719                 matched = true;
2720         }
2721
2722         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2723         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2724 }
2725
2726 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2727                                            s64 adjustment)
2728 {
2729         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2730         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2731 }
2732
2733 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2734 {
2735         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2736                 WARN_ON(adjustment < 0);
2737         adjustment = kvm_scale_tsc((u64) adjustment,
2738                                    vcpu->arch.l1_tsc_scaling_ratio);
2739         adjust_tsc_offset_guest(vcpu, adjustment);
2740 }
2741
2742 #ifdef CONFIG_X86_64
2743
2744 static u64 read_tsc(void)
2745 {
2746         u64 ret = (u64)rdtsc_ordered();
2747         u64 last = pvclock_gtod_data.clock.cycle_last;
2748
2749         if (likely(ret >= last))
2750                 return ret;
2751
2752         /*
2753          * GCC likes to generate cmov here, but this branch is extremely
2754          * predictable (it's just a function of time and the likely is
2755          * very likely) and there's a data dependence, so force GCC
2756          * to generate a branch instead.  I don't barrier() because
2757          * we don't actually need a barrier, and if this function
2758          * ever gets inlined it will generate worse code.
2759          */
2760         asm volatile ("");
2761         return last;
2762 }
2763
2764 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2765                           int *mode)
2766 {
2767         long v;
2768         u64 tsc_pg_val;
2769
2770         switch (clock->vclock_mode) {
2771         case VDSO_CLOCKMODE_HVCLOCK:
2772                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2773                                                   tsc_timestamp);
2774                 if (tsc_pg_val != U64_MAX) {
2775                         /* TSC page valid */
2776                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2777                         v = (tsc_pg_val - clock->cycle_last) &
2778                                 clock->mask;
2779                 } else {
2780                         /* TSC page invalid */
2781                         *mode = VDSO_CLOCKMODE_NONE;
2782                 }
2783                 break;
2784         case VDSO_CLOCKMODE_TSC:
2785                 *mode = VDSO_CLOCKMODE_TSC;
2786                 *tsc_timestamp = read_tsc();
2787                 v = (*tsc_timestamp - clock->cycle_last) &
2788                         clock->mask;
2789                 break;
2790         default:
2791                 *mode = VDSO_CLOCKMODE_NONE;
2792         }
2793
2794         if (*mode == VDSO_CLOCKMODE_NONE)
2795                 *tsc_timestamp = v = 0;
2796
2797         return v * clock->mult;
2798 }
2799
2800 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2801 {
2802         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2803         unsigned long seq;
2804         int mode;
2805         u64 ns;
2806
2807         do {
2808                 seq = read_seqcount_begin(&gtod->seq);
2809                 ns = gtod->raw_clock.base_cycles;
2810                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2811                 ns >>= gtod->raw_clock.shift;
2812                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2813         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2814         *t = ns;
2815
2816         return mode;
2817 }
2818
2819 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2820 {
2821         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2822         unsigned long seq;
2823         int mode;
2824         u64 ns;
2825
2826         do {
2827                 seq = read_seqcount_begin(&gtod->seq);
2828                 ts->tv_sec = gtod->wall_time_sec;
2829                 ns = gtod->clock.base_cycles;
2830                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2831                 ns >>= gtod->clock.shift;
2832         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2833
2834         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2835         ts->tv_nsec = ns;
2836
2837         return mode;
2838 }
2839
2840 /* returns true if host is using TSC based clocksource */
2841 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2842 {
2843         /* checked again under seqlock below */
2844         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2845                 return false;
2846
2847         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2848                                                       tsc_timestamp));
2849 }
2850
2851 /* returns true if host is using TSC based clocksource */
2852 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2853                                            u64 *tsc_timestamp)
2854 {
2855         /* checked again under seqlock below */
2856         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2857                 return false;
2858
2859         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2860 }
2861 #endif
2862
2863 /*
2864  *
2865  * Assuming a stable TSC across physical CPUS, and a stable TSC
2866  * across virtual CPUs, the following condition is possible.
2867  * Each numbered line represents an event visible to both
2868  * CPUs at the next numbered event.
2869  *
2870  * "timespecX" represents host monotonic time. "tscX" represents
2871  * RDTSC value.
2872  *
2873  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2874  *
2875  * 1.  read timespec0,tsc0
2876  * 2.                                   | timespec1 = timespec0 + N
2877  *                                      | tsc1 = tsc0 + M
2878  * 3. transition to guest               | transition to guest
2879  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2880  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2881  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2882  *
2883  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2884  *
2885  *      - ret0 < ret1
2886  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2887  *              ...
2888  *      - 0 < N - M => M < N
2889  *
2890  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2891  * always the case (the difference between two distinct xtime instances
2892  * might be smaller then the difference between corresponding TSC reads,
2893  * when updating guest vcpus pvclock areas).
2894  *
2895  * To avoid that problem, do not allow visibility of distinct
2896  * system_timestamp/tsc_timestamp values simultaneously: use a master
2897  * copy of host monotonic time values. Update that master copy
2898  * in lockstep.
2899  *
2900  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2901  *
2902  */
2903
2904 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2905 {
2906 #ifdef CONFIG_X86_64
2907         struct kvm_arch *ka = &kvm->arch;
2908         int vclock_mode;
2909         bool host_tsc_clocksource, vcpus_matched;
2910
2911         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2912         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2913                         atomic_read(&kvm->online_vcpus));
2914
2915         /*
2916          * If the host uses TSC clock, then passthrough TSC as stable
2917          * to the guest.
2918          */
2919         host_tsc_clocksource = kvm_get_time_and_clockread(
2920                                         &ka->master_kernel_ns,
2921                                         &ka->master_cycle_now);
2922
2923         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2924                                 && !ka->backwards_tsc_observed
2925                                 && !ka->boot_vcpu_runs_old_kvmclock;
2926
2927         if (ka->use_master_clock)
2928                 atomic_set(&kvm_guest_has_master_clock, 1);
2929
2930         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2931         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2932                                         vcpus_matched);
2933 #endif
2934 }
2935
2936 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2937 {
2938         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2939 }
2940
2941 static void __kvm_start_pvclock_update(struct kvm *kvm)
2942 {
2943         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2944         write_seqcount_begin(&kvm->arch.pvclock_sc);
2945 }
2946
2947 static void kvm_start_pvclock_update(struct kvm *kvm)
2948 {
2949         kvm_make_mclock_inprogress_request(kvm);
2950
2951         /* no guest entries from this point */
2952         __kvm_start_pvclock_update(kvm);
2953 }
2954
2955 static void kvm_end_pvclock_update(struct kvm *kvm)
2956 {
2957         struct kvm_arch *ka = &kvm->arch;
2958         struct kvm_vcpu *vcpu;
2959         unsigned long i;
2960
2961         write_seqcount_end(&ka->pvclock_sc);
2962         raw_spin_unlock_irq(&ka->tsc_write_lock);
2963         kvm_for_each_vcpu(i, vcpu, kvm)
2964                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2965
2966         /* guest entries allowed */
2967         kvm_for_each_vcpu(i, vcpu, kvm)
2968                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2969 }
2970
2971 static void kvm_update_masterclock(struct kvm *kvm)
2972 {
2973         kvm_hv_request_tsc_page_update(kvm);
2974         kvm_start_pvclock_update(kvm);
2975         pvclock_update_vm_gtod_copy(kvm);
2976         kvm_end_pvclock_update(kvm);
2977 }
2978
2979 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2980 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2981 {
2982         struct kvm_arch *ka = &kvm->arch;
2983         struct pvclock_vcpu_time_info hv_clock;
2984
2985         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2986         get_cpu();
2987
2988         data->flags = 0;
2989         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2990 #ifdef CONFIG_X86_64
2991                 struct timespec64 ts;
2992
2993                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2994                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2995                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2996                 } else
2997 #endif
2998                 data->host_tsc = rdtsc();
2999
3000                 data->flags |= KVM_CLOCK_TSC_STABLE;
3001                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3002                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3003                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
3004                                    &hv_clock.tsc_shift,
3005                                    &hv_clock.tsc_to_system_mul);
3006                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3007         } else {
3008                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3009         }
3010
3011         put_cpu();
3012 }
3013
3014 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3015 {
3016         struct kvm_arch *ka = &kvm->arch;
3017         unsigned seq;
3018
3019         do {
3020                 seq = read_seqcount_begin(&ka->pvclock_sc);
3021                 __get_kvmclock(kvm, data);
3022         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3023 }
3024
3025 u64 get_kvmclock_ns(struct kvm *kvm)
3026 {
3027         struct kvm_clock_data data;
3028
3029         get_kvmclock(kvm, &data);
3030         return data.clock;
3031 }
3032
3033 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3034                                     struct gfn_to_pfn_cache *gpc,
3035                                     unsigned int offset)
3036 {
3037         struct kvm_vcpu_arch *vcpu = &v->arch;
3038         struct pvclock_vcpu_time_info *guest_hv_clock;
3039         unsigned long flags;
3040
3041         read_lock_irqsave(&gpc->lock, flags);
3042         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3043                                            offset + sizeof(*guest_hv_clock))) {
3044                 read_unlock_irqrestore(&gpc->lock, flags);
3045
3046                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3047                                                  offset + sizeof(*guest_hv_clock)))
3048                         return;
3049
3050                 read_lock_irqsave(&gpc->lock, flags);
3051         }
3052
3053         guest_hv_clock = (void *)(gpc->khva + offset);
3054
3055         /*
3056          * This VCPU is paused, but it's legal for a guest to read another
3057          * VCPU's kvmclock, so we really have to follow the specification where
3058          * it says that version is odd if data is being modified, and even after
3059          * it is consistent.
3060          */
3061
3062         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3063         smp_wmb();
3064
3065         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3066         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3067
3068         if (vcpu->pvclock_set_guest_stopped_request) {
3069                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3070                 vcpu->pvclock_set_guest_stopped_request = false;
3071         }
3072
3073         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3074         smp_wmb();
3075
3076         guest_hv_clock->version = ++vcpu->hv_clock.version;
3077
3078         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3079         read_unlock_irqrestore(&gpc->lock, flags);
3080
3081         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3082 }
3083
3084 static int kvm_guest_time_update(struct kvm_vcpu *v)
3085 {
3086         unsigned long flags, tgt_tsc_khz;
3087         unsigned seq;
3088         struct kvm_vcpu_arch *vcpu = &v->arch;
3089         struct kvm_arch *ka = &v->kvm->arch;
3090         s64 kernel_ns;
3091         u64 tsc_timestamp, host_tsc;
3092         u8 pvclock_flags;
3093         bool use_master_clock;
3094
3095         kernel_ns = 0;
3096         host_tsc = 0;
3097
3098         /*
3099          * If the host uses TSC clock, then passthrough TSC as stable
3100          * to the guest.
3101          */
3102         do {
3103                 seq = read_seqcount_begin(&ka->pvclock_sc);
3104                 use_master_clock = ka->use_master_clock;
3105                 if (use_master_clock) {
3106                         host_tsc = ka->master_cycle_now;
3107                         kernel_ns = ka->master_kernel_ns;
3108                 }
3109         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3110
3111         /* Keep irq disabled to prevent changes to the clock */
3112         local_irq_save(flags);
3113         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3114         if (unlikely(tgt_tsc_khz == 0)) {
3115                 local_irq_restore(flags);
3116                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3117                 return 1;
3118         }
3119         if (!use_master_clock) {
3120                 host_tsc = rdtsc();
3121                 kernel_ns = get_kvmclock_base_ns();
3122         }
3123
3124         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3125
3126         /*
3127          * We may have to catch up the TSC to match elapsed wall clock
3128          * time for two reasons, even if kvmclock is used.
3129          *   1) CPU could have been running below the maximum TSC rate
3130          *   2) Broken TSC compensation resets the base at each VCPU
3131          *      entry to avoid unknown leaps of TSC even when running
3132          *      again on the same CPU.  This may cause apparent elapsed
3133          *      time to disappear, and the guest to stand still or run
3134          *      very slowly.
3135          */
3136         if (vcpu->tsc_catchup) {
3137                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3138                 if (tsc > tsc_timestamp) {
3139                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3140                         tsc_timestamp = tsc;
3141                 }
3142         }
3143
3144         local_irq_restore(flags);
3145
3146         /* With all the info we got, fill in the values */
3147
3148         if (kvm_caps.has_tsc_control)
3149                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3150                                             v->arch.l1_tsc_scaling_ratio);
3151
3152         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3153                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3154                                    &vcpu->hv_clock.tsc_shift,
3155                                    &vcpu->hv_clock.tsc_to_system_mul);
3156                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3157         }
3158
3159         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3160         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3161         vcpu->last_guest_tsc = tsc_timestamp;
3162
3163         /* If the host uses TSC clocksource, then it is stable */
3164         pvclock_flags = 0;
3165         if (use_master_clock)
3166                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3167
3168         vcpu->hv_clock.flags = pvclock_flags;
3169
3170         if (vcpu->pv_time.active)
3171                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3172         if (vcpu->xen.vcpu_info_cache.active)
3173                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3174                                         offsetof(struct compat_vcpu_info, time));
3175         if (vcpu->xen.vcpu_time_info_cache.active)
3176                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3177         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3178         return 0;
3179 }
3180
3181 /*
3182  * kvmclock updates which are isolated to a given vcpu, such as
3183  * vcpu->cpu migration, should not allow system_timestamp from
3184  * the rest of the vcpus to remain static. Otherwise ntp frequency
3185  * correction applies to one vcpu's system_timestamp but not
3186  * the others.
3187  *
3188  * So in those cases, request a kvmclock update for all vcpus.
3189  * We need to rate-limit these requests though, as they can
3190  * considerably slow guests that have a large number of vcpus.
3191  * The time for a remote vcpu to update its kvmclock is bound
3192  * by the delay we use to rate-limit the updates.
3193  */
3194
3195 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3196
3197 static void kvmclock_update_fn(struct work_struct *work)
3198 {
3199         unsigned long i;
3200         struct delayed_work *dwork = to_delayed_work(work);
3201         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3202                                            kvmclock_update_work);
3203         struct kvm *kvm = container_of(ka, struct kvm, arch);
3204         struct kvm_vcpu *vcpu;
3205
3206         kvm_for_each_vcpu(i, vcpu, kvm) {
3207                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3208                 kvm_vcpu_kick(vcpu);
3209         }
3210 }
3211
3212 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3213 {
3214         struct kvm *kvm = v->kvm;
3215
3216         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3217         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3218                                         KVMCLOCK_UPDATE_DELAY);
3219 }
3220
3221 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3222
3223 static void kvmclock_sync_fn(struct work_struct *work)
3224 {
3225         struct delayed_work *dwork = to_delayed_work(work);
3226         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3227                                            kvmclock_sync_work);
3228         struct kvm *kvm = container_of(ka, struct kvm, arch);
3229
3230         if (!kvmclock_periodic_sync)
3231                 return;
3232
3233         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3234         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3235                                         KVMCLOCK_SYNC_PERIOD);
3236 }
3237
3238 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3239 static bool is_mci_control_msr(u32 msr)
3240 {
3241         return (msr & 3) == 0;
3242 }
3243 static bool is_mci_status_msr(u32 msr)
3244 {
3245         return (msr & 3) == 1;
3246 }
3247
3248 /*
3249  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3250  */
3251 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3252 {
3253         /* McStatusWrEn enabled? */
3254         if (guest_cpuid_is_amd_or_hygon(vcpu))
3255                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3256
3257         return false;
3258 }
3259
3260 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3261 {
3262         u64 mcg_cap = vcpu->arch.mcg_cap;
3263         unsigned bank_num = mcg_cap & 0xff;
3264         u32 msr = msr_info->index;
3265         u64 data = msr_info->data;
3266         u32 offset, last_msr;
3267
3268         switch (msr) {
3269         case MSR_IA32_MCG_STATUS:
3270                 vcpu->arch.mcg_status = data;
3271                 break;
3272         case MSR_IA32_MCG_CTL:
3273                 if (!(mcg_cap & MCG_CTL_P) &&
3274                     (data || !msr_info->host_initiated))
3275                         return 1;
3276                 if (data != 0 && data != ~(u64)0)
3277                         return 1;
3278                 vcpu->arch.mcg_ctl = data;
3279                 break;
3280         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3281                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3282                 if (msr > last_msr)
3283                         return 1;
3284
3285                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3286                         return 1;
3287                 /* An attempt to write a 1 to a reserved bit raises #GP */
3288                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3289                         return 1;
3290                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3291                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3292                 vcpu->arch.mci_ctl2_banks[offset] = data;
3293                 break;
3294         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3295                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3296                 if (msr > last_msr)
3297                         return 1;
3298
3299                 /*
3300                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3301                  * values are architecturally undefined.  But, some Linux
3302                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3303                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3304                  * other bits in order to avoid an uncaught #GP in the guest.
3305                  *
3306                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3307                  * single-bit ECC data errors.
3308                  */
3309                 if (is_mci_control_msr(msr) &&
3310                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3311                         return 1;
3312
3313                 /*
3314                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3315                  * AMD-based CPUs allow non-zero values, but if and only if
3316                  * HWCR[McStatusWrEn] is set.
3317                  */
3318                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3319                     data != 0 && !can_set_mci_status(vcpu))
3320                         return 1;
3321
3322                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3323                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3324                 vcpu->arch.mce_banks[offset] = data;
3325                 break;
3326         default:
3327                 return 1;
3328         }
3329         return 0;
3330 }
3331
3332 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3333 {
3334         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3335
3336         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3337 }
3338
3339 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3340 {
3341         gpa_t gpa = data & ~0x3f;
3342
3343         /* Bits 4:5 are reserved, Should be zero */
3344         if (data & 0x30)
3345                 return 1;
3346
3347         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3348             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3349                 return 1;
3350
3351         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3352             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3353                 return 1;
3354
3355         if (!lapic_in_kernel(vcpu))
3356                 return data ? 1 : 0;
3357
3358         vcpu->arch.apf.msr_en_val = data;
3359
3360         if (!kvm_pv_async_pf_enabled(vcpu)) {
3361                 kvm_clear_async_pf_completion_queue(vcpu);
3362                 kvm_async_pf_hash_reset(vcpu);
3363                 return 0;
3364         }
3365
3366         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3367                                         sizeof(u64)))
3368                 return 1;
3369
3370         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3371         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3372
3373         kvm_async_pf_wakeup_all(vcpu);
3374
3375         return 0;
3376 }
3377
3378 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3379 {
3380         /* Bits 8-63 are reserved */
3381         if (data >> 8)
3382                 return 1;
3383
3384         if (!lapic_in_kernel(vcpu))
3385                 return 1;
3386
3387         vcpu->arch.apf.msr_int_val = data;
3388
3389         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3390
3391         return 0;
3392 }
3393
3394 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3395 {
3396         kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time);
3397         vcpu->arch.time = 0;
3398 }
3399
3400 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3401 {
3402         ++vcpu->stat.tlb_flush;
3403         static_call(kvm_x86_flush_tlb_all)(vcpu);
3404 }
3405
3406 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3407 {
3408         ++vcpu->stat.tlb_flush;
3409
3410         if (!tdp_enabled) {
3411                 /*
3412                  * A TLB flush on behalf of the guest is equivalent to
3413                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3414                  * a forced sync of the shadow page tables.  Ensure all the
3415                  * roots are synced and the guest TLB in hardware is clean.
3416                  */
3417                 kvm_mmu_sync_roots(vcpu);
3418                 kvm_mmu_sync_prev_roots(vcpu);
3419         }
3420
3421         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3422 }
3423
3424
3425 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3426 {
3427         ++vcpu->stat.tlb_flush;
3428         static_call(kvm_x86_flush_tlb_current)(vcpu);
3429 }
3430
3431 /*
3432  * Service "local" TLB flush requests, which are specific to the current MMU
3433  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3434  * TLB flushes that are targeted at an MMU context also need to be serviced
3435  * prior before nested VM-Enter/VM-Exit.
3436  */
3437 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3438 {
3439         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3440                 kvm_vcpu_flush_tlb_current(vcpu);
3441
3442         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3443                 kvm_vcpu_flush_tlb_guest(vcpu);
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3446
3447 static void record_steal_time(struct kvm_vcpu *vcpu)
3448 {
3449         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3450         struct kvm_steal_time __user *st;
3451         struct kvm_memslots *slots;
3452         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3453         u64 steal;
3454         u32 version;
3455
3456         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3457                 kvm_xen_runstate_set_running(vcpu);
3458                 return;
3459         }
3460
3461         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3462                 return;
3463
3464         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3465                 return;
3466
3467         slots = kvm_memslots(vcpu->kvm);
3468
3469         if (unlikely(slots->generation != ghc->generation ||
3470                      gpa != ghc->gpa ||
3471                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3472                 /* We rely on the fact that it fits in a single page. */
3473                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3474
3475                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3476                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3477                         return;
3478         }
3479
3480         st = (struct kvm_steal_time __user *)ghc->hva;
3481         /*
3482          * Doing a TLB flush here, on the guest's behalf, can avoid
3483          * expensive IPIs.
3484          */
3485         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3486                 u8 st_preempted = 0;
3487                 int err = -EFAULT;
3488
3489                 if (!user_access_begin(st, sizeof(*st)))
3490                         return;
3491
3492                 asm volatile("1: xchgb %0, %2\n"
3493                              "xor %1, %1\n"
3494                              "2:\n"
3495                              _ASM_EXTABLE_UA(1b, 2b)
3496                              : "+q" (st_preempted),
3497                                "+&r" (err),
3498                                "+m" (st->preempted));
3499                 if (err)
3500                         goto out;
3501
3502                 user_access_end();
3503
3504                 vcpu->arch.st.preempted = 0;
3505
3506                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3507                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3508                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3509                         kvm_vcpu_flush_tlb_guest(vcpu);
3510
3511                 if (!user_access_begin(st, sizeof(*st)))
3512                         goto dirty;
3513         } else {
3514                 if (!user_access_begin(st, sizeof(*st)))
3515                         return;
3516
3517                 unsafe_put_user(0, &st->preempted, out);
3518                 vcpu->arch.st.preempted = 0;
3519         }
3520
3521         unsafe_get_user(version, &st->version, out);
3522         if (version & 1)
3523                 version += 1;  /* first time write, random junk */
3524
3525         version += 1;
3526         unsafe_put_user(version, &st->version, out);
3527
3528         smp_wmb();
3529
3530         unsafe_get_user(steal, &st->steal, out);
3531         steal += current->sched_info.run_delay -
3532                 vcpu->arch.st.last_steal;
3533         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3534         unsafe_put_user(steal, &st->steal, out);
3535
3536         version += 1;
3537         unsafe_put_user(version, &st->version, out);
3538
3539  out:
3540         user_access_end();
3541  dirty:
3542         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3543 }
3544
3545 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3546 {
3547         bool pr = false;
3548         u32 msr = msr_info->index;
3549         u64 data = msr_info->data;
3550
3551         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3552                 return kvm_xen_write_hypercall_page(vcpu, data);
3553
3554         switch (msr) {
3555         case MSR_AMD64_NB_CFG:
3556         case MSR_IA32_UCODE_WRITE:
3557         case MSR_VM_HSAVE_PA:
3558         case MSR_AMD64_PATCH_LOADER:
3559         case MSR_AMD64_BU_CFG2:
3560         case MSR_AMD64_DC_CFG:
3561         case MSR_F15H_EX_CFG:
3562                 break;
3563
3564         case MSR_IA32_UCODE_REV:
3565                 if (msr_info->host_initiated)
3566                         vcpu->arch.microcode_version = data;
3567                 break;
3568         case MSR_IA32_ARCH_CAPABILITIES:
3569                 if (!msr_info->host_initiated)
3570                         return 1;
3571                 vcpu->arch.arch_capabilities = data;
3572                 break;
3573         case MSR_IA32_PERF_CAPABILITIES: {
3574                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3575
3576                 if (!msr_info->host_initiated)
3577                         return 1;
3578                 if (kvm_get_msr_feature(&msr_ent))
3579                         return 1;
3580                 if (data & ~msr_ent.data)
3581                         return 1;
3582
3583                 vcpu->arch.perf_capabilities = data;
3584                 kvm_pmu_refresh(vcpu);
3585                 return 0;
3586         }
3587         case MSR_EFER:
3588                 return set_efer(vcpu, msr_info);
3589         case MSR_K7_HWCR:
3590                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3591                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3592                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3593
3594                 /* Handle McStatusWrEn */
3595                 if (data == BIT_ULL(18)) {
3596                         vcpu->arch.msr_hwcr = data;
3597                 } else if (data != 0) {
3598                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3599                                     data);
3600                         return 1;
3601                 }
3602                 break;
3603         case MSR_FAM10H_MMIO_CONF_BASE:
3604                 if (data != 0) {
3605                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3606                                     "0x%llx\n", data);
3607                         return 1;
3608                 }
3609                 break;
3610         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3611         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3612                 return kvm_mtrr_set_msr(vcpu, msr, data);
3613         case MSR_IA32_APICBASE:
3614                 return kvm_set_apic_base(vcpu, msr_info);
3615         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3616                 return kvm_x2apic_msr_write(vcpu, msr, data);
3617         case MSR_IA32_TSC_DEADLINE:
3618                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3619                 break;
3620         case MSR_IA32_TSC_ADJUST:
3621                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3622                         if (!msr_info->host_initiated) {
3623                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3624                                 adjust_tsc_offset_guest(vcpu, adj);
3625                                 /* Before back to guest, tsc_timestamp must be adjusted
3626                                  * as well, otherwise guest's percpu pvclock time could jump.
3627                                  */
3628                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3629                         }
3630                         vcpu->arch.ia32_tsc_adjust_msr = data;
3631                 }
3632                 break;
3633         case MSR_IA32_MISC_ENABLE: {
3634                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3635
3636                 if (!msr_info->host_initiated) {
3637                         /* RO bits */
3638                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3639                                 return 1;
3640
3641                         /* R bits, i.e. writes are ignored, but don't fault. */
3642                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3643                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3644                 }
3645
3646                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3647                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3648                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3649                                 return 1;
3650                         vcpu->arch.ia32_misc_enable_msr = data;
3651                         kvm_update_cpuid_runtime(vcpu);
3652                 } else {
3653                         vcpu->arch.ia32_misc_enable_msr = data;
3654                 }
3655                 break;
3656         }
3657         case MSR_IA32_SMBASE:
3658                 if (!msr_info->host_initiated)
3659                         return 1;
3660                 vcpu->arch.smbase = data;
3661                 break;
3662         case MSR_IA32_POWER_CTL:
3663                 vcpu->arch.msr_ia32_power_ctl = data;
3664                 break;
3665         case MSR_IA32_TSC:
3666                 if (msr_info->host_initiated) {
3667                         kvm_synchronize_tsc(vcpu, data);
3668                 } else {
3669                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3670                         adjust_tsc_offset_guest(vcpu, adj);
3671                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3672                 }
3673                 break;
3674         case MSR_IA32_XSS:
3675                 if (!msr_info->host_initiated &&
3676                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3677                         return 1;
3678                 /*
3679                  * KVM supports exposing PT to the guest, but does not support
3680                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3681                  * XSAVES/XRSTORS to save/restore PT MSRs.
3682                  */
3683                 if (data & ~kvm_caps.supported_xss)
3684                         return 1;
3685                 vcpu->arch.ia32_xss = data;
3686                 kvm_update_cpuid_runtime(vcpu);
3687                 break;
3688         case MSR_SMI_COUNT:
3689                 if (!msr_info->host_initiated)
3690                         return 1;
3691                 vcpu->arch.smi_count = data;
3692                 break;
3693         case MSR_KVM_WALL_CLOCK_NEW:
3694                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3695                         return 1;
3696
3697                 vcpu->kvm->arch.wall_clock = data;
3698                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3699                 break;
3700         case MSR_KVM_WALL_CLOCK:
3701                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3702                         return 1;
3703
3704                 vcpu->kvm->arch.wall_clock = data;
3705                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3706                 break;
3707         case MSR_KVM_SYSTEM_TIME_NEW:
3708                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3709                         return 1;
3710
3711                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3712                 break;
3713         case MSR_KVM_SYSTEM_TIME:
3714                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3715                         return 1;
3716
3717                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3718                 break;
3719         case MSR_KVM_ASYNC_PF_EN:
3720                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3721                         return 1;
3722
3723                 if (kvm_pv_enable_async_pf(vcpu, data))
3724                         return 1;
3725                 break;
3726         case MSR_KVM_ASYNC_PF_INT:
3727                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3728                         return 1;
3729
3730                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3731                         return 1;
3732                 break;
3733         case MSR_KVM_ASYNC_PF_ACK:
3734                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3735                         return 1;
3736                 if (data & 0x1) {
3737                         vcpu->arch.apf.pageready_pending = false;
3738                         kvm_check_async_pf_completion(vcpu);
3739                 }
3740                 break;
3741         case MSR_KVM_STEAL_TIME:
3742                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3743                         return 1;
3744
3745                 if (unlikely(!sched_info_on()))
3746                         return 1;
3747
3748                 if (data & KVM_STEAL_RESERVED_MASK)
3749                         return 1;
3750
3751                 vcpu->arch.st.msr_val = data;
3752
3753                 if (!(data & KVM_MSR_ENABLED))
3754                         break;
3755
3756                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3757
3758                 break;
3759         case MSR_KVM_PV_EOI_EN:
3760                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3761                         return 1;
3762
3763                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3764                         return 1;
3765                 break;
3766
3767         case MSR_KVM_POLL_CONTROL:
3768                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3769                         return 1;
3770
3771                 /* only enable bit supported */
3772                 if (data & (-1ULL << 1))
3773                         return 1;
3774
3775                 vcpu->arch.msr_kvm_poll_control = data;
3776                 break;
3777
3778         case MSR_IA32_MCG_CTL:
3779         case MSR_IA32_MCG_STATUS:
3780         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3781         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3782                 return set_msr_mce(vcpu, msr_info);
3783
3784         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3785         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3786                 pr = true;
3787                 fallthrough;
3788         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3789         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3790                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3791                         return kvm_pmu_set_msr(vcpu, msr_info);
3792
3793                 if (pr || data != 0)
3794                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3795                                     "0x%x data 0x%llx\n", msr, data);
3796                 break;
3797         case MSR_K7_CLK_CTL:
3798                 /*
3799                  * Ignore all writes to this no longer documented MSR.
3800                  * Writes are only relevant for old K7 processors,
3801                  * all pre-dating SVM, but a recommended workaround from
3802                  * AMD for these chips. It is possible to specify the
3803                  * affected processor models on the command line, hence
3804                  * the need to ignore the workaround.
3805                  */
3806                 break;
3807         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3808         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3809         case HV_X64_MSR_SYNDBG_OPTIONS:
3810         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3811         case HV_X64_MSR_CRASH_CTL:
3812         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3813         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3814         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3815         case HV_X64_MSR_TSC_EMULATION_STATUS:
3816                 return kvm_hv_set_msr_common(vcpu, msr, data,
3817                                              msr_info->host_initiated);
3818         case MSR_IA32_BBL_CR_CTL3:
3819                 /* Drop writes to this legacy MSR -- see rdmsr
3820                  * counterpart for further detail.
3821                  */
3822                 if (report_ignored_msrs)
3823                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3824                                 msr, data);
3825                 break;
3826         case MSR_AMD64_OSVW_ID_LENGTH:
3827                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3828                         return 1;
3829                 vcpu->arch.osvw.length = data;
3830                 break;
3831         case MSR_AMD64_OSVW_STATUS:
3832                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3833                         return 1;
3834                 vcpu->arch.osvw.status = data;
3835                 break;
3836         case MSR_PLATFORM_INFO:
3837                 if (!msr_info->host_initiated ||
3838                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3839                      cpuid_fault_enabled(vcpu)))
3840                         return 1;
3841                 vcpu->arch.msr_platform_info = data;
3842                 break;
3843         case MSR_MISC_FEATURES_ENABLES:
3844                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3845                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3846                      !supports_cpuid_fault(vcpu)))
3847                         return 1;
3848                 vcpu->arch.msr_misc_features_enables = data;
3849                 break;
3850 #ifdef CONFIG_X86_64
3851         case MSR_IA32_XFD:
3852                 if (!msr_info->host_initiated &&
3853                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3854                         return 1;
3855
3856                 if (data & ~kvm_guest_supported_xfd(vcpu))
3857                         return 1;
3858
3859                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3860                 break;
3861         case MSR_IA32_XFD_ERR:
3862                 if (!msr_info->host_initiated &&
3863                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3864                         return 1;
3865
3866                 if (data & ~kvm_guest_supported_xfd(vcpu))
3867                         return 1;
3868
3869                 vcpu->arch.guest_fpu.xfd_err = data;
3870                 break;
3871 #endif
3872         case MSR_IA32_PEBS_ENABLE:
3873         case MSR_IA32_DS_AREA:
3874         case MSR_PEBS_DATA_CFG:
3875         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3876                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3877                         return kvm_pmu_set_msr(vcpu, msr_info);
3878                 /*
3879                  * Userspace is allowed to write '0' to MSRs that KVM reports
3880                  * as to-be-saved, even if an MSRs isn't fully supported.
3881                  */
3882                 return !msr_info->host_initiated || data;
3883         default:
3884                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3885                         return kvm_pmu_set_msr(vcpu, msr_info);
3886                 return KVM_MSR_RET_INVALID;
3887         }
3888         return 0;
3889 }
3890 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3891
3892 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3893 {
3894         u64 data;
3895         u64 mcg_cap = vcpu->arch.mcg_cap;
3896         unsigned bank_num = mcg_cap & 0xff;
3897         u32 offset, last_msr;
3898
3899         switch (msr) {
3900         case MSR_IA32_P5_MC_ADDR:
3901         case MSR_IA32_P5_MC_TYPE:
3902                 data = 0;
3903                 break;
3904         case MSR_IA32_MCG_CAP:
3905                 data = vcpu->arch.mcg_cap;
3906                 break;
3907         case MSR_IA32_MCG_CTL:
3908                 if (!(mcg_cap & MCG_CTL_P) && !host)
3909                         return 1;
3910                 data = vcpu->arch.mcg_ctl;
3911                 break;
3912         case MSR_IA32_MCG_STATUS:
3913                 data = vcpu->arch.mcg_status;
3914                 break;
3915         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3916                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3917                 if (msr > last_msr)
3918                         return 1;
3919
3920                 if (!(mcg_cap & MCG_CMCI_P) && !host)
3921                         return 1;
3922                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3923                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3924                 data = vcpu->arch.mci_ctl2_banks[offset];
3925                 break;
3926         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3927                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3928                 if (msr > last_msr)
3929                         return 1;
3930
3931                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3932                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3933                 data = vcpu->arch.mce_banks[offset];
3934                 break;
3935         default:
3936                 return 1;
3937         }
3938         *pdata = data;
3939         return 0;
3940 }
3941
3942 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3943 {
3944         switch (msr_info->index) {
3945         case MSR_IA32_PLATFORM_ID:
3946         case MSR_IA32_EBL_CR_POWERON:
3947         case MSR_IA32_LASTBRANCHFROMIP:
3948         case MSR_IA32_LASTBRANCHTOIP:
3949         case MSR_IA32_LASTINTFROMIP:
3950         case MSR_IA32_LASTINTTOIP:
3951         case MSR_AMD64_SYSCFG:
3952         case MSR_K8_TSEG_ADDR:
3953         case MSR_K8_TSEG_MASK:
3954         case MSR_VM_HSAVE_PA:
3955         case MSR_K8_INT_PENDING_MSG:
3956         case MSR_AMD64_NB_CFG:
3957         case MSR_FAM10H_MMIO_CONF_BASE:
3958         case MSR_AMD64_BU_CFG2:
3959         case MSR_IA32_PERF_CTL:
3960         case MSR_AMD64_DC_CFG:
3961         case MSR_F15H_EX_CFG:
3962         /*
3963          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3964          * limit) MSRs. Just return 0, as we do not want to expose the host
3965          * data here. Do not conditionalize this on CPUID, as KVM does not do
3966          * so for existing CPU-specific MSRs.
3967          */
3968         case MSR_RAPL_POWER_UNIT:
3969         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3970         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3971         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3972         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3973                 msr_info->data = 0;
3974                 break;
3975         case MSR_IA32_PEBS_ENABLE:
3976         case MSR_IA32_DS_AREA:
3977         case MSR_PEBS_DATA_CFG:
3978         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3979                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3980                         return kvm_pmu_get_msr(vcpu, msr_info);
3981                 /*
3982                  * Userspace is allowed to read MSRs that KVM reports as
3983                  * to-be-saved, even if an MSR isn't fully supported.
3984                  */
3985                 if (!msr_info->host_initiated)
3986                         return 1;
3987                 msr_info->data = 0;
3988                 break;
3989         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3990         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3991         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3992         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3993                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3994                         return kvm_pmu_get_msr(vcpu, msr_info);
3995                 msr_info->data = 0;
3996                 break;
3997         case MSR_IA32_UCODE_REV:
3998                 msr_info->data = vcpu->arch.microcode_version;
3999                 break;
4000         case MSR_IA32_ARCH_CAPABILITIES:
4001                 if (!msr_info->host_initiated &&
4002                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4003                         return 1;
4004                 msr_info->data = vcpu->arch.arch_capabilities;
4005                 break;
4006         case MSR_IA32_PERF_CAPABILITIES:
4007                 if (!msr_info->host_initiated &&
4008                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4009                         return 1;
4010                 msr_info->data = vcpu->arch.perf_capabilities;
4011                 break;
4012         case MSR_IA32_POWER_CTL:
4013                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4014                 break;
4015         case MSR_IA32_TSC: {
4016                 /*
4017                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4018                  * even when not intercepted. AMD manual doesn't explicitly
4019                  * state this but appears to behave the same.
4020                  *
4021                  * On userspace reads and writes, however, we unconditionally
4022                  * return L1's TSC value to ensure backwards-compatible
4023                  * behavior for migration.
4024                  */
4025                 u64 offset, ratio;
4026
4027                 if (msr_info->host_initiated) {
4028                         offset = vcpu->arch.l1_tsc_offset;
4029                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4030                 } else {
4031                         offset = vcpu->arch.tsc_offset;
4032                         ratio = vcpu->arch.tsc_scaling_ratio;
4033                 }
4034
4035                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4036                 break;
4037         }
4038         case MSR_MTRRcap:
4039         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4040         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4041                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4042         case 0xcd: /* fsb frequency */
4043                 msr_info->data = 3;
4044                 break;
4045                 /*
4046                  * MSR_EBC_FREQUENCY_ID
4047                  * Conservative value valid for even the basic CPU models.
4048                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4049                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4050                  * and 266MHz for model 3, or 4. Set Core Clock
4051                  * Frequency to System Bus Frequency Ratio to 1 (bits
4052                  * 31:24) even though these are only valid for CPU
4053                  * models > 2, however guests may end up dividing or
4054                  * multiplying by zero otherwise.
4055                  */
4056         case MSR_EBC_FREQUENCY_ID:
4057                 msr_info->data = 1 << 24;
4058                 break;
4059         case MSR_IA32_APICBASE:
4060                 msr_info->data = kvm_get_apic_base(vcpu);
4061                 break;
4062         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4063                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4064         case MSR_IA32_TSC_DEADLINE:
4065                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4066                 break;
4067         case MSR_IA32_TSC_ADJUST:
4068                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4069                 break;
4070         case MSR_IA32_MISC_ENABLE:
4071                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4072                 break;
4073         case MSR_IA32_SMBASE:
4074                 if (!msr_info->host_initiated)
4075                         return 1;
4076                 msr_info->data = vcpu->arch.smbase;
4077                 break;
4078         case MSR_SMI_COUNT:
4079                 msr_info->data = vcpu->arch.smi_count;
4080                 break;
4081         case MSR_IA32_PERF_STATUS:
4082                 /* TSC increment by tick */
4083                 msr_info->data = 1000ULL;
4084                 /* CPU multiplier */
4085                 msr_info->data |= (((uint64_t)4ULL) << 40);
4086                 break;
4087         case MSR_EFER:
4088                 msr_info->data = vcpu->arch.efer;
4089                 break;
4090         case MSR_KVM_WALL_CLOCK:
4091                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4092                         return 1;
4093
4094                 msr_info->data = vcpu->kvm->arch.wall_clock;
4095                 break;
4096         case MSR_KVM_WALL_CLOCK_NEW:
4097                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4098                         return 1;
4099
4100                 msr_info->data = vcpu->kvm->arch.wall_clock;
4101                 break;
4102         case MSR_KVM_SYSTEM_TIME:
4103                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4104                         return 1;
4105
4106                 msr_info->data = vcpu->arch.time;
4107                 break;
4108         case MSR_KVM_SYSTEM_TIME_NEW:
4109                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4110                         return 1;
4111
4112                 msr_info->data = vcpu->arch.time;
4113                 break;
4114         case MSR_KVM_ASYNC_PF_EN:
4115                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4116                         return 1;
4117
4118                 msr_info->data = vcpu->arch.apf.msr_en_val;
4119                 break;
4120         case MSR_KVM_ASYNC_PF_INT:
4121                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4122                         return 1;
4123
4124                 msr_info->data = vcpu->arch.apf.msr_int_val;
4125                 break;
4126         case MSR_KVM_ASYNC_PF_ACK:
4127                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4128                         return 1;
4129
4130                 msr_info->data = 0;
4131                 break;
4132         case MSR_KVM_STEAL_TIME:
4133                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4134                         return 1;
4135
4136                 msr_info->data = vcpu->arch.st.msr_val;
4137                 break;
4138         case MSR_KVM_PV_EOI_EN:
4139                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4140                         return 1;
4141
4142                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4143                 break;
4144         case MSR_KVM_POLL_CONTROL:
4145                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4146                         return 1;
4147
4148                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4149                 break;
4150         case MSR_IA32_P5_MC_ADDR:
4151         case MSR_IA32_P5_MC_TYPE:
4152         case MSR_IA32_MCG_CAP:
4153         case MSR_IA32_MCG_CTL:
4154         case MSR_IA32_MCG_STATUS:
4155         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4156         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4157                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4158                                    msr_info->host_initiated);
4159         case MSR_IA32_XSS:
4160                 if (!msr_info->host_initiated &&
4161                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4162                         return 1;
4163                 msr_info->data = vcpu->arch.ia32_xss;
4164                 break;
4165         case MSR_K7_CLK_CTL:
4166                 /*
4167                  * Provide expected ramp-up count for K7. All other
4168                  * are set to zero, indicating minimum divisors for
4169                  * every field.
4170                  *
4171                  * This prevents guest kernels on AMD host with CPU
4172                  * type 6, model 8 and higher from exploding due to
4173                  * the rdmsr failing.
4174                  */
4175                 msr_info->data = 0x20000000;
4176                 break;
4177         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4178         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4179         case HV_X64_MSR_SYNDBG_OPTIONS:
4180         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4181         case HV_X64_MSR_CRASH_CTL:
4182         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4183         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4184         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4185         case HV_X64_MSR_TSC_EMULATION_STATUS:
4186                 return kvm_hv_get_msr_common(vcpu,
4187                                              msr_info->index, &msr_info->data,
4188                                              msr_info->host_initiated);
4189         case MSR_IA32_BBL_CR_CTL3:
4190                 /* This legacy MSR exists but isn't fully documented in current
4191                  * silicon.  It is however accessed by winxp in very narrow
4192                  * scenarios where it sets bit #19, itself documented as
4193                  * a "reserved" bit.  Best effort attempt to source coherent
4194                  * read data here should the balance of the register be
4195                  * interpreted by the guest:
4196                  *
4197                  * L2 cache control register 3: 64GB range, 256KB size,
4198                  * enabled, latency 0x1, configured
4199                  */
4200                 msr_info->data = 0xbe702111;
4201                 break;
4202         case MSR_AMD64_OSVW_ID_LENGTH:
4203                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4204                         return 1;
4205                 msr_info->data = vcpu->arch.osvw.length;
4206                 break;
4207         case MSR_AMD64_OSVW_STATUS:
4208                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4209                         return 1;
4210                 msr_info->data = vcpu->arch.osvw.status;
4211                 break;
4212         case MSR_PLATFORM_INFO:
4213                 if (!msr_info->host_initiated &&
4214                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4215                         return 1;
4216                 msr_info->data = vcpu->arch.msr_platform_info;
4217                 break;
4218         case MSR_MISC_FEATURES_ENABLES:
4219                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4220                 break;
4221         case MSR_K7_HWCR:
4222                 msr_info->data = vcpu->arch.msr_hwcr;
4223                 break;
4224 #ifdef CONFIG_X86_64
4225         case MSR_IA32_XFD:
4226                 if (!msr_info->host_initiated &&
4227                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4228                         return 1;
4229
4230                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4231                 break;
4232         case MSR_IA32_XFD_ERR:
4233                 if (!msr_info->host_initiated &&
4234                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4235                         return 1;
4236
4237                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4238                 break;
4239 #endif
4240         default:
4241                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4242                         return kvm_pmu_get_msr(vcpu, msr_info);
4243                 return KVM_MSR_RET_INVALID;
4244         }
4245         return 0;
4246 }
4247 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4248
4249 /*
4250  * Read or write a bunch of msrs. All parameters are kernel addresses.
4251  *
4252  * @return number of msrs set successfully.
4253  */
4254 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4255                     struct kvm_msr_entry *entries,
4256                     int (*do_msr)(struct kvm_vcpu *vcpu,
4257                                   unsigned index, u64 *data))
4258 {
4259         int i;
4260
4261         for (i = 0; i < msrs->nmsrs; ++i)
4262                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4263                         break;
4264
4265         return i;
4266 }
4267
4268 /*
4269  * Read or write a bunch of msrs. Parameters are user addresses.
4270  *
4271  * @return number of msrs set successfully.
4272  */
4273 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4274                   int (*do_msr)(struct kvm_vcpu *vcpu,
4275                                 unsigned index, u64 *data),
4276                   int writeback)
4277 {
4278         struct kvm_msrs msrs;
4279         struct kvm_msr_entry *entries;
4280         int r, n;
4281         unsigned size;
4282
4283         r = -EFAULT;
4284         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4285                 goto out;
4286
4287         r = -E2BIG;
4288         if (msrs.nmsrs >= MAX_IO_MSRS)
4289                 goto out;
4290
4291         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4292         entries = memdup_user(user_msrs->entries, size);
4293         if (IS_ERR(entries)) {
4294                 r = PTR_ERR(entries);
4295                 goto out;
4296         }
4297
4298         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4299         if (r < 0)
4300                 goto out_free;
4301
4302         r = -EFAULT;
4303         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4304                 goto out_free;
4305
4306         r = n;
4307
4308 out_free:
4309         kfree(entries);
4310 out:
4311         return r;
4312 }
4313
4314 static inline bool kvm_can_mwait_in_guest(void)
4315 {
4316         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4317                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4318                 boot_cpu_has(X86_FEATURE_ARAT);
4319 }
4320
4321 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4322                                             struct kvm_cpuid2 __user *cpuid_arg)
4323 {
4324         struct kvm_cpuid2 cpuid;
4325         int r;
4326
4327         r = -EFAULT;
4328         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4329                 return r;
4330
4331         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4332         if (r)
4333                 return r;
4334
4335         r = -EFAULT;
4336         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4337                 return r;
4338
4339         return 0;
4340 }
4341
4342 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4343 {
4344         int r = 0;
4345
4346         switch (ext) {
4347         case KVM_CAP_IRQCHIP:
4348         case KVM_CAP_HLT:
4349         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4350         case KVM_CAP_SET_TSS_ADDR:
4351         case KVM_CAP_EXT_CPUID:
4352         case KVM_CAP_EXT_EMUL_CPUID:
4353         case KVM_CAP_CLOCKSOURCE:
4354         case KVM_CAP_PIT:
4355         case KVM_CAP_NOP_IO_DELAY:
4356         case KVM_CAP_MP_STATE:
4357         case KVM_CAP_SYNC_MMU:
4358         case KVM_CAP_USER_NMI:
4359         case KVM_CAP_REINJECT_CONTROL:
4360         case KVM_CAP_IRQ_INJECT_STATUS:
4361         case KVM_CAP_IOEVENTFD:
4362         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4363         case KVM_CAP_PIT2:
4364         case KVM_CAP_PIT_STATE2:
4365         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4366         case KVM_CAP_VCPU_EVENTS:
4367         case KVM_CAP_HYPERV:
4368         case KVM_CAP_HYPERV_VAPIC:
4369         case KVM_CAP_HYPERV_SPIN:
4370         case KVM_CAP_HYPERV_SYNIC:
4371         case KVM_CAP_HYPERV_SYNIC2:
4372         case KVM_CAP_HYPERV_VP_INDEX:
4373         case KVM_CAP_HYPERV_EVENTFD:
4374         case KVM_CAP_HYPERV_TLBFLUSH:
4375         case KVM_CAP_HYPERV_SEND_IPI:
4376         case KVM_CAP_HYPERV_CPUID:
4377         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4378         case KVM_CAP_SYS_HYPERV_CPUID:
4379         case KVM_CAP_PCI_SEGMENT:
4380         case KVM_CAP_DEBUGREGS:
4381         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4382         case KVM_CAP_XSAVE:
4383         case KVM_CAP_ASYNC_PF:
4384         case KVM_CAP_ASYNC_PF_INT:
4385         case KVM_CAP_GET_TSC_KHZ:
4386         case KVM_CAP_KVMCLOCK_CTRL:
4387         case KVM_CAP_READONLY_MEM:
4388         case KVM_CAP_HYPERV_TIME:
4389         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4390         case KVM_CAP_TSC_DEADLINE_TIMER:
4391         case KVM_CAP_DISABLE_QUIRKS:
4392         case KVM_CAP_SET_BOOT_CPU_ID:
4393         case KVM_CAP_SPLIT_IRQCHIP:
4394         case KVM_CAP_IMMEDIATE_EXIT:
4395         case KVM_CAP_PMU_EVENT_FILTER:
4396         case KVM_CAP_GET_MSR_FEATURES:
4397         case KVM_CAP_MSR_PLATFORM_INFO:
4398         case KVM_CAP_EXCEPTION_PAYLOAD:
4399         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4400         case KVM_CAP_SET_GUEST_DEBUG:
4401         case KVM_CAP_LAST_CPU:
4402         case KVM_CAP_X86_USER_SPACE_MSR:
4403         case KVM_CAP_X86_MSR_FILTER:
4404         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4405 #ifdef CONFIG_X86_SGX_KVM
4406         case KVM_CAP_SGX_ATTRIBUTE:
4407 #endif
4408         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4409         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4410         case KVM_CAP_SREGS2:
4411         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4412         case KVM_CAP_VCPU_ATTRIBUTES:
4413         case KVM_CAP_SYS_ATTRIBUTES:
4414         case KVM_CAP_VAPIC:
4415         case KVM_CAP_ENABLE_CAP:
4416         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4417                 r = 1;
4418                 break;
4419         case KVM_CAP_EXIT_HYPERCALL:
4420                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4421                 break;
4422         case KVM_CAP_SET_GUEST_DEBUG2:
4423                 return KVM_GUESTDBG_VALID_MASK;
4424 #ifdef CONFIG_KVM_XEN
4425         case KVM_CAP_XEN_HVM:
4426                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4427                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4428                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4429                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4430                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4431                 if (sched_info_on())
4432                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4433                 break;
4434 #endif
4435         case KVM_CAP_SYNC_REGS:
4436                 r = KVM_SYNC_X86_VALID_FIELDS;
4437                 break;
4438         case KVM_CAP_ADJUST_CLOCK:
4439                 r = KVM_CLOCK_VALID_FLAGS;
4440                 break;
4441         case KVM_CAP_X86_DISABLE_EXITS:
4442                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4443
4444                 if (!mitigate_smt_rsb) {
4445                         r |= KVM_X86_DISABLE_EXITS_HLT |
4446                              KVM_X86_DISABLE_EXITS_CSTATE;
4447
4448                         if (kvm_can_mwait_in_guest())
4449                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4450                 }
4451                 break;
4452         case KVM_CAP_X86_SMM:
4453                 /* SMBASE is usually relocated above 1M on modern chipsets,
4454                  * and SMM handlers might indeed rely on 4G segment limits,
4455                  * so do not report SMM to be available if real mode is
4456                  * emulated via vm86 mode.  Still, do not go to great lengths
4457                  * to avoid userspace's usage of the feature, because it is a
4458                  * fringe case that is not enabled except via specific settings
4459                  * of the module parameters.
4460                  */
4461                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4462                 break;
4463         case KVM_CAP_NR_VCPUS:
4464                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4465                 break;
4466         case KVM_CAP_MAX_VCPUS:
4467                 r = KVM_MAX_VCPUS;
4468                 break;
4469         case KVM_CAP_MAX_VCPU_ID:
4470                 r = KVM_MAX_VCPU_IDS;
4471                 break;
4472         case KVM_CAP_PV_MMU:    /* obsolete */
4473                 r = 0;
4474                 break;
4475         case KVM_CAP_MCE:
4476                 r = KVM_MAX_MCE_BANKS;
4477                 break;
4478         case KVM_CAP_XCRS:
4479                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4480                 break;
4481         case KVM_CAP_TSC_CONTROL:
4482         case KVM_CAP_VM_TSC_CONTROL:
4483                 r = kvm_caps.has_tsc_control;
4484                 break;
4485         case KVM_CAP_X2APIC_API:
4486                 r = KVM_X2APIC_API_VALID_FLAGS;
4487                 break;
4488         case KVM_CAP_NESTED_STATE:
4489                 r = kvm_x86_ops.nested_ops->get_state ?
4490                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4491                 break;
4492         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4493                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4494                 break;
4495         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4496                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4497                 break;
4498         case KVM_CAP_SMALLER_MAXPHYADDR:
4499                 r = (int) allow_smaller_maxphyaddr;
4500                 break;
4501         case KVM_CAP_STEAL_TIME:
4502                 r = sched_info_on();
4503                 break;
4504         case KVM_CAP_X86_BUS_LOCK_EXIT:
4505                 if (kvm_caps.has_bus_lock_exit)
4506                         r = KVM_BUS_LOCK_DETECTION_OFF |
4507                             KVM_BUS_LOCK_DETECTION_EXIT;
4508                 else
4509                         r = 0;
4510                 break;
4511         case KVM_CAP_XSAVE2: {
4512                 u64 guest_perm = xstate_get_guest_group_perm();
4513
4514                 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4515                 if (r < sizeof(struct kvm_xsave))
4516                         r = sizeof(struct kvm_xsave);
4517                 break;
4518         }
4519         case KVM_CAP_PMU_CAPABILITY:
4520                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4521                 break;
4522         case KVM_CAP_DISABLE_QUIRKS2:
4523                 r = KVM_X86_VALID_QUIRKS;
4524                 break;
4525         case KVM_CAP_X86_NOTIFY_VMEXIT:
4526                 r = kvm_caps.has_notify_vmexit;
4527                 break;
4528         default:
4529                 break;
4530         }
4531         return r;
4532 }
4533
4534 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4535 {
4536         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4537
4538         if ((u64)(unsigned long)uaddr != attr->addr)
4539                 return ERR_PTR_USR(-EFAULT);
4540         return uaddr;
4541 }
4542
4543 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4544 {
4545         u64 __user *uaddr = kvm_get_attr_addr(attr);
4546
4547         if (attr->group)
4548                 return -ENXIO;
4549
4550         if (IS_ERR(uaddr))
4551                 return PTR_ERR(uaddr);
4552
4553         switch (attr->attr) {
4554         case KVM_X86_XCOMP_GUEST_SUPP:
4555                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4556                         return -EFAULT;
4557                 return 0;
4558         default:
4559                 return -ENXIO;
4560                 break;
4561         }
4562 }
4563
4564 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4565 {
4566         if (attr->group)
4567                 return -ENXIO;
4568
4569         switch (attr->attr) {
4570         case KVM_X86_XCOMP_GUEST_SUPP:
4571                 return 0;
4572         default:
4573                 return -ENXIO;
4574         }
4575 }
4576
4577 long kvm_arch_dev_ioctl(struct file *filp,
4578                         unsigned int ioctl, unsigned long arg)
4579 {
4580         void __user *argp = (void __user *)arg;
4581         long r;
4582
4583         switch (ioctl) {
4584         case KVM_GET_MSR_INDEX_LIST: {
4585                 struct kvm_msr_list __user *user_msr_list = argp;
4586                 struct kvm_msr_list msr_list;
4587                 unsigned n;
4588
4589                 r = -EFAULT;
4590                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4591                         goto out;
4592                 n = msr_list.nmsrs;
4593                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4594                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4595                         goto out;
4596                 r = -E2BIG;
4597                 if (n < msr_list.nmsrs)
4598                         goto out;
4599                 r = -EFAULT;
4600                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4601                                  num_msrs_to_save * sizeof(u32)))
4602                         goto out;
4603                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4604                                  &emulated_msrs,
4605                                  num_emulated_msrs * sizeof(u32)))
4606                         goto out;
4607                 r = 0;
4608                 break;
4609         }
4610         case KVM_GET_SUPPORTED_CPUID:
4611         case KVM_GET_EMULATED_CPUID: {
4612                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4613                 struct kvm_cpuid2 cpuid;
4614
4615                 r = -EFAULT;
4616                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4617                         goto out;
4618
4619                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4620                                             ioctl);
4621                 if (r)
4622                         goto out;
4623
4624                 r = -EFAULT;
4625                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4626                         goto out;
4627                 r = 0;
4628                 break;
4629         }
4630         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4631                 r = -EFAULT;
4632                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4633                                  sizeof(kvm_caps.supported_mce_cap)))
4634                         goto out;
4635                 r = 0;
4636                 break;
4637         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4638                 struct kvm_msr_list __user *user_msr_list = argp;
4639                 struct kvm_msr_list msr_list;
4640                 unsigned int n;
4641
4642                 r = -EFAULT;
4643                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4644                         goto out;
4645                 n = msr_list.nmsrs;
4646                 msr_list.nmsrs = num_msr_based_features;
4647                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4648                         goto out;
4649                 r = -E2BIG;
4650                 if (n < msr_list.nmsrs)
4651                         goto out;
4652                 r = -EFAULT;
4653                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4654                                  num_msr_based_features * sizeof(u32)))
4655                         goto out;
4656                 r = 0;
4657                 break;
4658         }
4659         case KVM_GET_MSRS:
4660                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4661                 break;
4662         case KVM_GET_SUPPORTED_HV_CPUID:
4663                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4664                 break;
4665         case KVM_GET_DEVICE_ATTR: {
4666                 struct kvm_device_attr attr;
4667                 r = -EFAULT;
4668                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4669                         break;
4670                 r = kvm_x86_dev_get_attr(&attr);
4671                 break;
4672         }
4673         case KVM_HAS_DEVICE_ATTR: {
4674                 struct kvm_device_attr attr;
4675                 r = -EFAULT;
4676                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4677                         break;
4678                 r = kvm_x86_dev_has_attr(&attr);
4679                 break;
4680         }
4681         default:
4682                 r = -EINVAL;
4683                 break;
4684         }
4685 out:
4686         return r;
4687 }
4688
4689 static void wbinvd_ipi(void *garbage)
4690 {
4691         wbinvd();
4692 }
4693
4694 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4695 {
4696         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4697 }
4698
4699 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4700 {
4701         /* Address WBINVD may be executed by guest */
4702         if (need_emulate_wbinvd(vcpu)) {
4703                 if (static_call(kvm_x86_has_wbinvd_exit)())
4704                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4705                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4706                         smp_call_function_single(vcpu->cpu,
4707                                         wbinvd_ipi, NULL, 1);
4708         }
4709
4710         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4711
4712         /* Save host pkru register if supported */
4713         vcpu->arch.host_pkru = read_pkru();
4714
4715         /* Apply any externally detected TSC adjustments (due to suspend) */
4716         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4717                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4718                 vcpu->arch.tsc_offset_adjustment = 0;
4719                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4720         }
4721
4722         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4723                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4724                                 rdtsc() - vcpu->arch.last_host_tsc;
4725                 if (tsc_delta < 0)
4726                         mark_tsc_unstable("KVM discovered backwards TSC");
4727
4728                 if (kvm_check_tsc_unstable()) {
4729                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4730                                                 vcpu->arch.last_guest_tsc);
4731                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4732                         vcpu->arch.tsc_catchup = 1;
4733                 }
4734
4735                 if (kvm_lapic_hv_timer_in_use(vcpu))
4736                         kvm_lapic_restart_hv_timer(vcpu);
4737
4738                 /*
4739                  * On a host with synchronized TSC, there is no need to update
4740                  * kvmclock on vcpu->cpu migration
4741                  */
4742                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4743                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4744                 if (vcpu->cpu != cpu)
4745                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4746                 vcpu->cpu = cpu;
4747         }
4748
4749         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4750 }
4751
4752 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4753 {
4754         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4755         struct kvm_steal_time __user *st;
4756         struct kvm_memslots *slots;
4757         static const u8 preempted = KVM_VCPU_PREEMPTED;
4758         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4759
4760         /*
4761          * The vCPU can be marked preempted if and only if the VM-Exit was on
4762          * an instruction boundary and will not trigger guest emulation of any
4763          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4764          * when this is true, for example allowing the vCPU to be marked
4765          * preempted if and only if the VM-Exit was due to a host interrupt.
4766          */
4767         if (!vcpu->arch.at_instruction_boundary) {
4768                 vcpu->stat.preemption_other++;
4769                 return;
4770         }
4771
4772         vcpu->stat.preemption_reported++;
4773         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4774                 return;
4775
4776         if (vcpu->arch.st.preempted)
4777                 return;
4778
4779         /* This happens on process exit */
4780         if (unlikely(current->mm != vcpu->kvm->mm))
4781                 return;
4782
4783         slots = kvm_memslots(vcpu->kvm);
4784
4785         if (unlikely(slots->generation != ghc->generation ||
4786                      gpa != ghc->gpa ||
4787                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4788                 return;
4789
4790         st = (struct kvm_steal_time __user *)ghc->hva;
4791         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4792
4793         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4794                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4795
4796         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4797 }
4798
4799 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4800 {
4801         int idx;
4802
4803         if (vcpu->preempted) {
4804                 if (!vcpu->arch.guest_state_protected)
4805                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4806
4807                 /*
4808                  * Take the srcu lock as memslots will be accessed to check the gfn
4809                  * cache generation against the memslots generation.
4810                  */
4811                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4812                 if (kvm_xen_msr_enabled(vcpu->kvm))
4813                         kvm_xen_runstate_set_preempted(vcpu);
4814                 else
4815                         kvm_steal_time_set_preempted(vcpu);
4816                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4817         }
4818
4819         static_call(kvm_x86_vcpu_put)(vcpu);
4820         vcpu->arch.last_host_tsc = rdtsc();
4821 }
4822
4823 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4824                                     struct kvm_lapic_state *s)
4825 {
4826         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4827
4828         return kvm_apic_get_state(vcpu, s);
4829 }
4830
4831 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4832                                     struct kvm_lapic_state *s)
4833 {
4834         int r;
4835
4836         r = kvm_apic_set_state(vcpu, s);
4837         if (r)
4838                 return r;
4839         update_cr8_intercept(vcpu);
4840
4841         return 0;
4842 }
4843
4844 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4845 {
4846         /*
4847          * We can accept userspace's request for interrupt injection
4848          * as long as we have a place to store the interrupt number.
4849          * The actual injection will happen when the CPU is able to
4850          * deliver the interrupt.
4851          */
4852         if (kvm_cpu_has_extint(vcpu))
4853                 return false;
4854
4855         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4856         return (!lapic_in_kernel(vcpu) ||
4857                 kvm_apic_accept_pic_intr(vcpu));
4858 }
4859
4860 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4861 {
4862         /*
4863          * Do not cause an interrupt window exit if an exception
4864          * is pending or an event needs reinjection; userspace
4865          * might want to inject the interrupt manually using KVM_SET_REGS
4866          * or KVM_SET_SREGS.  For that to work, we must be at an
4867          * instruction boundary and with no events half-injected.
4868          */
4869         return (kvm_arch_interrupt_allowed(vcpu) &&
4870                 kvm_cpu_accept_dm_intr(vcpu) &&
4871                 !kvm_event_needs_reinjection(vcpu) &&
4872                 !kvm_is_exception_pending(vcpu));
4873 }
4874
4875 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4876                                     struct kvm_interrupt *irq)
4877 {
4878         if (irq->irq >= KVM_NR_INTERRUPTS)
4879                 return -EINVAL;
4880
4881         if (!irqchip_in_kernel(vcpu->kvm)) {
4882                 kvm_queue_interrupt(vcpu, irq->irq, false);
4883                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4884                 return 0;
4885         }
4886
4887         /*
4888          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4889          * fail for in-kernel 8259.
4890          */
4891         if (pic_in_kernel(vcpu->kvm))
4892                 return -ENXIO;
4893
4894         if (vcpu->arch.pending_external_vector != -1)
4895                 return -EEXIST;
4896
4897         vcpu->arch.pending_external_vector = irq->irq;
4898         kvm_make_request(KVM_REQ_EVENT, vcpu);
4899         return 0;
4900 }
4901
4902 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4903 {
4904         kvm_inject_nmi(vcpu);
4905
4906         return 0;
4907 }
4908
4909 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4910 {
4911         kvm_make_request(KVM_REQ_SMI, vcpu);
4912
4913         return 0;
4914 }
4915
4916 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4917                                            struct kvm_tpr_access_ctl *tac)
4918 {
4919         if (tac->flags)
4920                 return -EINVAL;
4921         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4922         return 0;
4923 }
4924
4925 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4926                                         u64 mcg_cap)
4927 {
4928         int r;
4929         unsigned bank_num = mcg_cap & 0xff, bank;
4930
4931         r = -EINVAL;
4932         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4933                 goto out;
4934         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4935                 goto out;
4936         r = 0;
4937         vcpu->arch.mcg_cap = mcg_cap;
4938         /* Init IA32_MCG_CTL to all 1s */
4939         if (mcg_cap & MCG_CTL_P)
4940                 vcpu->arch.mcg_ctl = ~(u64)0;
4941         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4942         for (bank = 0; bank < bank_num; bank++) {
4943                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4944                 if (mcg_cap & MCG_CMCI_P)
4945                         vcpu->arch.mci_ctl2_banks[bank] = 0;
4946         }
4947
4948         kvm_apic_after_set_mcg_cap(vcpu);
4949
4950         static_call(kvm_x86_setup_mce)(vcpu);
4951 out:
4952         return r;
4953 }
4954
4955 /*
4956  * Validate this is an UCNA (uncorrectable no action) error by checking the
4957  * MCG_STATUS and MCi_STATUS registers:
4958  * - none of the bits for Machine Check Exceptions are set
4959  * - both the VAL (valid) and UC (uncorrectable) bits are set
4960  * MCI_STATUS_PCC - Processor Context Corrupted
4961  * MCI_STATUS_S - Signaled as a Machine Check Exception
4962  * MCI_STATUS_AR - Software recoverable Action Required
4963  */
4964 static bool is_ucna(struct kvm_x86_mce *mce)
4965 {
4966         return  !mce->mcg_status &&
4967                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4968                 (mce->status & MCI_STATUS_VAL) &&
4969                 (mce->status & MCI_STATUS_UC);
4970 }
4971
4972 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4973 {
4974         u64 mcg_cap = vcpu->arch.mcg_cap;
4975
4976         banks[1] = mce->status;
4977         banks[2] = mce->addr;
4978         banks[3] = mce->misc;
4979         vcpu->arch.mcg_status = mce->mcg_status;
4980
4981         if (!(mcg_cap & MCG_CMCI_P) ||
4982             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4983                 return 0;
4984
4985         if (lapic_in_kernel(vcpu))
4986                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4987
4988         return 0;
4989 }
4990
4991 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4992                                       struct kvm_x86_mce *mce)
4993 {
4994         u64 mcg_cap = vcpu->arch.mcg_cap;
4995         unsigned bank_num = mcg_cap & 0xff;
4996         u64 *banks = vcpu->arch.mce_banks;
4997
4998         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4999                 return -EINVAL;
5000
5001         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5002
5003         if (is_ucna(mce))
5004                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5005
5006         /*
5007          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5008          * reporting is disabled
5009          */
5010         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5011             vcpu->arch.mcg_ctl != ~(u64)0)
5012                 return 0;
5013         /*
5014          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5015          * reporting is disabled for the bank
5016          */
5017         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5018                 return 0;
5019         if (mce->status & MCI_STATUS_UC) {
5020                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5021                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5022                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5023                         return 0;
5024                 }
5025                 if (banks[1] & MCI_STATUS_VAL)
5026                         mce->status |= MCI_STATUS_OVER;
5027                 banks[2] = mce->addr;
5028                 banks[3] = mce->misc;
5029                 vcpu->arch.mcg_status = mce->mcg_status;
5030                 banks[1] = mce->status;
5031                 kvm_queue_exception(vcpu, MC_VECTOR);
5032         } else if (!(banks[1] & MCI_STATUS_VAL)
5033                    || !(banks[1] & MCI_STATUS_UC)) {
5034                 if (banks[1] & MCI_STATUS_VAL)
5035                         mce->status |= MCI_STATUS_OVER;
5036                 banks[2] = mce->addr;
5037                 banks[3] = mce->misc;
5038                 banks[1] = mce->status;
5039         } else
5040                 banks[1] |= MCI_STATUS_OVER;
5041         return 0;
5042 }
5043
5044 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5045                                                struct kvm_vcpu_events *events)
5046 {
5047         struct kvm_queued_exception *ex;
5048
5049         process_nmi(vcpu);
5050
5051         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5052                 process_smi(vcpu);
5053
5054         /*
5055          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5056          * the only time there can be two queued exceptions is if there's a
5057          * non-exiting _injected_ exception, and a pending exiting exception.
5058          * In that case, ignore the VM-Exiting exception as it's an extension
5059          * of the injected exception.
5060          */
5061         if (vcpu->arch.exception_vmexit.pending &&
5062             !vcpu->arch.exception.pending &&
5063             !vcpu->arch.exception.injected)
5064                 ex = &vcpu->arch.exception_vmexit;
5065         else
5066                 ex = &vcpu->arch.exception;
5067
5068         /*
5069          * In guest mode, payload delivery should be deferred if the exception
5070          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5071          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5072          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5073          * propagate the payload and so it cannot be safely deferred.  Deliver
5074          * the payload if the capability hasn't been requested.
5075          */
5076         if (!vcpu->kvm->arch.exception_payload_enabled &&
5077             ex->pending && ex->has_payload)
5078                 kvm_deliver_exception_payload(vcpu, ex);
5079
5080         /*
5081          * The API doesn't provide the instruction length for software
5082          * exceptions, so don't report them. As long as the guest RIP
5083          * isn't advanced, we should expect to encounter the exception
5084          * again.
5085          */
5086         if (kvm_exception_is_soft(ex->vector)) {
5087                 events->exception.injected = 0;
5088                 events->exception.pending = 0;
5089         } else {
5090                 events->exception.injected = ex->injected;
5091                 events->exception.pending = ex->pending;
5092                 /*
5093                  * For ABI compatibility, deliberately conflate
5094                  * pending and injected exceptions when
5095                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5096                  */
5097                 if (!vcpu->kvm->arch.exception_payload_enabled)
5098                         events->exception.injected |= ex->pending;
5099         }
5100         events->exception.nr = ex->vector;
5101         events->exception.has_error_code = ex->has_error_code;
5102         events->exception.error_code = ex->error_code;
5103         events->exception_has_payload = ex->has_payload;
5104         events->exception_payload = ex->payload;
5105
5106         events->interrupt.injected =
5107                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5108         events->interrupt.nr = vcpu->arch.interrupt.nr;
5109         events->interrupt.soft = 0;
5110         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5111
5112         events->nmi.injected = vcpu->arch.nmi_injected;
5113         events->nmi.pending = vcpu->arch.nmi_pending != 0;
5114         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5115         events->nmi.pad = 0;
5116
5117         events->sipi_vector = 0; /* never valid when reporting to user space */
5118
5119         events->smi.smm = is_smm(vcpu);
5120         events->smi.pending = vcpu->arch.smi_pending;
5121         events->smi.smm_inside_nmi =
5122                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5123         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5124
5125         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5126                          | KVM_VCPUEVENT_VALID_SHADOW
5127                          | KVM_VCPUEVENT_VALID_SMM);
5128         if (vcpu->kvm->arch.exception_payload_enabled)
5129                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5130         if (vcpu->kvm->arch.triple_fault_event) {
5131                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5132                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5133         }
5134
5135         memset(&events->reserved, 0, sizeof(events->reserved));
5136 }
5137
5138 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5139
5140 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5141                                               struct kvm_vcpu_events *events)
5142 {
5143         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5144                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5145                               | KVM_VCPUEVENT_VALID_SHADOW
5146                               | KVM_VCPUEVENT_VALID_SMM
5147                               | KVM_VCPUEVENT_VALID_PAYLOAD
5148                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5149                 return -EINVAL;
5150
5151         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5152                 if (!vcpu->kvm->arch.exception_payload_enabled)
5153                         return -EINVAL;
5154                 if (events->exception.pending)
5155                         events->exception.injected = 0;
5156                 else
5157                         events->exception_has_payload = 0;
5158         } else {
5159                 events->exception.pending = 0;
5160                 events->exception_has_payload = 0;
5161         }
5162
5163         if ((events->exception.injected || events->exception.pending) &&
5164             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5165                 return -EINVAL;
5166
5167         /* INITs are latched while in SMM */
5168         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5169             (events->smi.smm || events->smi.pending) &&
5170             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5171                 return -EINVAL;
5172
5173         process_nmi(vcpu);
5174
5175         /*
5176          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5177          * morph the exception to a VM-Exit if appropriate.  Do this only for
5178          * pending exceptions, already-injected exceptions are not subject to
5179          * intercpetion.  Note, userspace that conflates pending and injected
5180          * is hosed, and will incorrectly convert an injected exception into a
5181          * pending exception, which in turn may cause a spurious VM-Exit.
5182          */
5183         vcpu->arch.exception_from_userspace = events->exception.pending;
5184
5185         vcpu->arch.exception_vmexit.pending = false;
5186
5187         vcpu->arch.exception.injected = events->exception.injected;
5188         vcpu->arch.exception.pending = events->exception.pending;
5189         vcpu->arch.exception.vector = events->exception.nr;
5190         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5191         vcpu->arch.exception.error_code = events->exception.error_code;
5192         vcpu->arch.exception.has_payload = events->exception_has_payload;
5193         vcpu->arch.exception.payload = events->exception_payload;
5194
5195         vcpu->arch.interrupt.injected = events->interrupt.injected;
5196         vcpu->arch.interrupt.nr = events->interrupt.nr;
5197         vcpu->arch.interrupt.soft = events->interrupt.soft;
5198         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5199                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5200                                                 events->interrupt.shadow);
5201
5202         vcpu->arch.nmi_injected = events->nmi.injected;
5203         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5204                 vcpu->arch.nmi_pending = events->nmi.pending;
5205         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5206
5207         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5208             lapic_in_kernel(vcpu))
5209                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5210
5211         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5212                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5213                         kvm_leave_nested(vcpu);
5214                         kvm_smm_changed(vcpu, events->smi.smm);
5215                 }
5216
5217                 vcpu->arch.smi_pending = events->smi.pending;
5218
5219                 if (events->smi.smm) {
5220                         if (events->smi.smm_inside_nmi)
5221                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5222                         else
5223                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5224                 }
5225
5226                 if (lapic_in_kernel(vcpu)) {
5227                         if (events->smi.latched_init)
5228                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5229                         else
5230                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5231                 }
5232         }
5233
5234         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5235                 if (!vcpu->kvm->arch.triple_fault_event)
5236                         return -EINVAL;
5237                 if (events->triple_fault.pending)
5238                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5239                 else
5240                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5241         }
5242
5243         kvm_make_request(KVM_REQ_EVENT, vcpu);
5244
5245         return 0;
5246 }
5247
5248 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5249                                              struct kvm_debugregs *dbgregs)
5250 {
5251         unsigned long val;
5252
5253         memset(dbgregs, 0, sizeof(*dbgregs));
5254         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5255         kvm_get_dr(vcpu, 6, &val);
5256         dbgregs->dr6 = val;
5257         dbgregs->dr7 = vcpu->arch.dr7;
5258 }
5259
5260 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5261                                             struct kvm_debugregs *dbgregs)
5262 {
5263         if (dbgregs->flags)
5264                 return -EINVAL;
5265
5266         if (!kvm_dr6_valid(dbgregs->dr6))
5267                 return -EINVAL;
5268         if (!kvm_dr7_valid(dbgregs->dr7))
5269                 return -EINVAL;
5270
5271         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5272         kvm_update_dr0123(vcpu);
5273         vcpu->arch.dr6 = dbgregs->dr6;
5274         vcpu->arch.dr7 = dbgregs->dr7;
5275         kvm_update_dr7(vcpu);
5276
5277         return 0;
5278 }
5279
5280 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5281                                          struct kvm_xsave *guest_xsave)
5282 {
5283         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5284                 return;
5285
5286         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5287                                        guest_xsave->region,
5288                                        sizeof(guest_xsave->region),
5289                                        vcpu->arch.pkru);
5290 }
5291
5292 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5293                                           u8 *state, unsigned int size)
5294 {
5295         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5296                 return;
5297
5298         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5299                                        state, size, vcpu->arch.pkru);
5300 }
5301
5302 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5303                                         struct kvm_xsave *guest_xsave)
5304 {
5305         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5306                 return 0;
5307
5308         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5309                                               guest_xsave->region,
5310                                               kvm_caps.supported_xcr0,
5311                                               &vcpu->arch.pkru);
5312 }
5313
5314 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5315                                         struct kvm_xcrs *guest_xcrs)
5316 {
5317         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5318                 guest_xcrs->nr_xcrs = 0;
5319                 return;
5320         }
5321
5322         guest_xcrs->nr_xcrs = 1;
5323         guest_xcrs->flags = 0;
5324         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5325         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5326 }
5327
5328 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5329                                        struct kvm_xcrs *guest_xcrs)
5330 {
5331         int i, r = 0;
5332
5333         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5334                 return -EINVAL;
5335
5336         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5337                 return -EINVAL;
5338
5339         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5340                 /* Only support XCR0 currently */
5341                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5342                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5343                                 guest_xcrs->xcrs[i].value);
5344                         break;
5345                 }
5346         if (r)
5347                 r = -EINVAL;
5348         return r;
5349 }
5350
5351 /*
5352  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5353  * stopped by the hypervisor.  This function will be called from the host only.
5354  * EINVAL is returned when the host attempts to set the flag for a guest that
5355  * does not support pv clocks.
5356  */
5357 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5358 {
5359         if (!vcpu->arch.pv_time.active)
5360                 return -EINVAL;
5361         vcpu->arch.pvclock_set_guest_stopped_request = true;
5362         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5363         return 0;
5364 }
5365
5366 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5367                                  struct kvm_device_attr *attr)
5368 {
5369         int r;
5370
5371         switch (attr->attr) {
5372         case KVM_VCPU_TSC_OFFSET:
5373                 r = 0;
5374                 break;
5375         default:
5376                 r = -ENXIO;
5377         }
5378
5379         return r;
5380 }
5381
5382 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5383                                  struct kvm_device_attr *attr)
5384 {
5385         u64 __user *uaddr = kvm_get_attr_addr(attr);
5386         int r;
5387
5388         if (IS_ERR(uaddr))
5389                 return PTR_ERR(uaddr);
5390
5391         switch (attr->attr) {
5392         case KVM_VCPU_TSC_OFFSET:
5393                 r = -EFAULT;
5394                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5395                         break;
5396                 r = 0;
5397                 break;
5398         default:
5399                 r = -ENXIO;
5400         }
5401
5402         return r;
5403 }
5404
5405 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5406                                  struct kvm_device_attr *attr)
5407 {
5408         u64 __user *uaddr = kvm_get_attr_addr(attr);
5409         struct kvm *kvm = vcpu->kvm;
5410         int r;
5411
5412         if (IS_ERR(uaddr))
5413                 return PTR_ERR(uaddr);
5414
5415         switch (attr->attr) {
5416         case KVM_VCPU_TSC_OFFSET: {
5417                 u64 offset, tsc, ns;
5418                 unsigned long flags;
5419                 bool matched;
5420
5421                 r = -EFAULT;
5422                 if (get_user(offset, uaddr))
5423                         break;
5424
5425                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5426
5427                 matched = (vcpu->arch.virtual_tsc_khz &&
5428                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5429                            kvm->arch.last_tsc_offset == offset);
5430
5431                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5432                 ns = get_kvmclock_base_ns();
5433
5434                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5435                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5436
5437                 r = 0;
5438                 break;
5439         }
5440         default:
5441                 r = -ENXIO;
5442         }
5443
5444         return r;
5445 }
5446
5447 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5448                                       unsigned int ioctl,
5449                                       void __user *argp)
5450 {
5451         struct kvm_device_attr attr;
5452         int r;
5453
5454         if (copy_from_user(&attr, argp, sizeof(attr)))
5455                 return -EFAULT;
5456
5457         if (attr.group != KVM_VCPU_TSC_CTRL)
5458                 return -ENXIO;
5459
5460         switch (ioctl) {
5461         case KVM_HAS_DEVICE_ATTR:
5462                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5463                 break;
5464         case KVM_GET_DEVICE_ATTR:
5465                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5466                 break;
5467         case KVM_SET_DEVICE_ATTR:
5468                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5469                 break;
5470         }
5471
5472         return r;
5473 }
5474
5475 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5476                                      struct kvm_enable_cap *cap)
5477 {
5478         int r;
5479         uint16_t vmcs_version;
5480         void __user *user_ptr;
5481
5482         if (cap->flags)
5483                 return -EINVAL;
5484
5485         switch (cap->cap) {
5486         case KVM_CAP_HYPERV_SYNIC2:
5487                 if (cap->args[0])
5488                         return -EINVAL;
5489                 fallthrough;
5490
5491         case KVM_CAP_HYPERV_SYNIC:
5492                 if (!irqchip_in_kernel(vcpu->kvm))
5493                         return -EINVAL;
5494                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5495                                              KVM_CAP_HYPERV_SYNIC2);
5496         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5497                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5498                         return -ENOTTY;
5499                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5500                 if (!r) {
5501                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5502                         if (copy_to_user(user_ptr, &vmcs_version,
5503                                          sizeof(vmcs_version)))
5504                                 r = -EFAULT;
5505                 }
5506                 return r;
5507         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5508                 if (!kvm_x86_ops.enable_direct_tlbflush)
5509                         return -ENOTTY;
5510
5511                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5512
5513         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5514                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5515
5516         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5517                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5518                 if (vcpu->arch.pv_cpuid.enforce)
5519                         kvm_update_pv_runtime(vcpu);
5520
5521                 return 0;
5522         default:
5523                 return -EINVAL;
5524         }
5525 }
5526
5527 long kvm_arch_vcpu_ioctl(struct file *filp,
5528                          unsigned int ioctl, unsigned long arg)
5529 {
5530         struct kvm_vcpu *vcpu = filp->private_data;
5531         void __user *argp = (void __user *)arg;
5532         int r;
5533         union {
5534                 struct kvm_sregs2 *sregs2;
5535                 struct kvm_lapic_state *lapic;
5536                 struct kvm_xsave *xsave;
5537                 struct kvm_xcrs *xcrs;
5538                 void *buffer;
5539         } u;
5540
5541         vcpu_load(vcpu);
5542
5543         u.buffer = NULL;
5544         switch (ioctl) {
5545         case KVM_GET_LAPIC: {
5546                 r = -EINVAL;
5547                 if (!lapic_in_kernel(vcpu))
5548                         goto out;
5549                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5550                                 GFP_KERNEL_ACCOUNT);
5551
5552                 r = -ENOMEM;
5553                 if (!u.lapic)
5554                         goto out;
5555                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5556                 if (r)
5557                         goto out;
5558                 r = -EFAULT;
5559                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5560                         goto out;
5561                 r = 0;
5562                 break;
5563         }
5564         case KVM_SET_LAPIC: {
5565                 r = -EINVAL;
5566                 if (!lapic_in_kernel(vcpu))
5567                         goto out;
5568                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5569                 if (IS_ERR(u.lapic)) {
5570                         r = PTR_ERR(u.lapic);
5571                         goto out_nofree;
5572                 }
5573
5574                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5575                 break;
5576         }
5577         case KVM_INTERRUPT: {
5578                 struct kvm_interrupt irq;
5579
5580                 r = -EFAULT;
5581                 if (copy_from_user(&irq, argp, sizeof(irq)))
5582                         goto out;
5583                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5584                 break;
5585         }
5586         case KVM_NMI: {
5587                 r = kvm_vcpu_ioctl_nmi(vcpu);
5588                 break;
5589         }
5590         case KVM_SMI: {
5591                 r = kvm_vcpu_ioctl_smi(vcpu);
5592                 break;
5593         }
5594         case KVM_SET_CPUID: {
5595                 struct kvm_cpuid __user *cpuid_arg = argp;
5596                 struct kvm_cpuid cpuid;
5597
5598                 r = -EFAULT;
5599                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5600                         goto out;
5601                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5602                 break;
5603         }
5604         case KVM_SET_CPUID2: {
5605                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5606                 struct kvm_cpuid2 cpuid;
5607
5608                 r = -EFAULT;
5609                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5610                         goto out;
5611                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5612                                               cpuid_arg->entries);
5613                 break;
5614         }
5615         case KVM_GET_CPUID2: {
5616                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5617                 struct kvm_cpuid2 cpuid;
5618
5619                 r = -EFAULT;
5620                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5621                         goto out;
5622                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5623                                               cpuid_arg->entries);
5624                 if (r)
5625                         goto out;
5626                 r = -EFAULT;
5627                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5628                         goto out;
5629                 r = 0;
5630                 break;
5631         }
5632         case KVM_GET_MSRS: {
5633                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5634                 r = msr_io(vcpu, argp, do_get_msr, 1);
5635                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5636                 break;
5637         }
5638         case KVM_SET_MSRS: {
5639                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5640                 r = msr_io(vcpu, argp, do_set_msr, 0);
5641                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5642                 break;
5643         }
5644         case KVM_TPR_ACCESS_REPORTING: {
5645                 struct kvm_tpr_access_ctl tac;
5646
5647                 r = -EFAULT;
5648                 if (copy_from_user(&tac, argp, sizeof(tac)))
5649                         goto out;
5650                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5651                 if (r)
5652                         goto out;
5653                 r = -EFAULT;
5654                 if (copy_to_user(argp, &tac, sizeof(tac)))
5655                         goto out;
5656                 r = 0;
5657                 break;
5658         };
5659         case KVM_SET_VAPIC_ADDR: {
5660                 struct kvm_vapic_addr va;
5661                 int idx;
5662
5663                 r = -EINVAL;
5664                 if (!lapic_in_kernel(vcpu))
5665                         goto out;
5666                 r = -EFAULT;
5667                 if (copy_from_user(&va, argp, sizeof(va)))
5668                         goto out;
5669                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5670                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5671                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5672                 break;
5673         }
5674         case KVM_X86_SETUP_MCE: {
5675                 u64 mcg_cap;
5676
5677                 r = -EFAULT;
5678                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5679                         goto out;
5680                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5681                 break;
5682         }
5683         case KVM_X86_SET_MCE: {
5684                 struct kvm_x86_mce mce;
5685
5686                 r = -EFAULT;
5687                 if (copy_from_user(&mce, argp, sizeof(mce)))
5688                         goto out;
5689                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5690                 break;
5691         }
5692         case KVM_GET_VCPU_EVENTS: {
5693                 struct kvm_vcpu_events events;
5694
5695                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5696
5697                 r = -EFAULT;
5698                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5699                         break;
5700                 r = 0;
5701                 break;
5702         }
5703         case KVM_SET_VCPU_EVENTS: {
5704                 struct kvm_vcpu_events events;
5705
5706                 r = -EFAULT;
5707                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5708                         break;
5709
5710                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5711                 break;
5712         }
5713         case KVM_GET_DEBUGREGS: {
5714                 struct kvm_debugregs dbgregs;
5715
5716                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5717
5718                 r = -EFAULT;
5719                 if (copy_to_user(argp, &dbgregs,
5720                                  sizeof(struct kvm_debugregs)))
5721                         break;
5722                 r = 0;
5723                 break;
5724         }
5725         case KVM_SET_DEBUGREGS: {
5726                 struct kvm_debugregs dbgregs;
5727
5728                 r = -EFAULT;
5729                 if (copy_from_user(&dbgregs, argp,
5730                                    sizeof(struct kvm_debugregs)))
5731                         break;
5732
5733                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5734                 break;
5735         }
5736         case KVM_GET_XSAVE: {
5737                 r = -EINVAL;
5738                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5739                         break;
5740
5741                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5742                 r = -ENOMEM;
5743                 if (!u.xsave)
5744                         break;
5745
5746                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5747
5748                 r = -EFAULT;
5749                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5750                         break;
5751                 r = 0;
5752                 break;
5753         }
5754         case KVM_SET_XSAVE: {
5755                 int size = vcpu->arch.guest_fpu.uabi_size;
5756
5757                 u.xsave = memdup_user(argp, size);
5758                 if (IS_ERR(u.xsave)) {
5759                         r = PTR_ERR(u.xsave);
5760                         goto out_nofree;
5761                 }
5762
5763                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5764                 break;
5765         }
5766
5767         case KVM_GET_XSAVE2: {
5768                 int size = vcpu->arch.guest_fpu.uabi_size;
5769
5770                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5771                 r = -ENOMEM;
5772                 if (!u.xsave)
5773                         break;
5774
5775                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5776
5777                 r = -EFAULT;
5778                 if (copy_to_user(argp, u.xsave, size))
5779                         break;
5780
5781                 r = 0;
5782                 break;
5783         }
5784
5785         case KVM_GET_XCRS: {
5786                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5787                 r = -ENOMEM;
5788                 if (!u.xcrs)
5789                         break;
5790
5791                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5792
5793                 r = -EFAULT;
5794                 if (copy_to_user(argp, u.xcrs,
5795                                  sizeof(struct kvm_xcrs)))
5796                         break;
5797                 r = 0;
5798                 break;
5799         }
5800         case KVM_SET_XCRS: {
5801                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5802                 if (IS_ERR(u.xcrs)) {
5803                         r = PTR_ERR(u.xcrs);
5804                         goto out_nofree;
5805                 }
5806
5807                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5808                 break;
5809         }
5810         case KVM_SET_TSC_KHZ: {
5811                 u32 user_tsc_khz;
5812
5813                 r = -EINVAL;
5814                 user_tsc_khz = (u32)arg;
5815
5816                 if (kvm_caps.has_tsc_control &&
5817                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5818                         goto out;
5819
5820                 if (user_tsc_khz == 0)
5821                         user_tsc_khz = tsc_khz;
5822
5823                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5824                         r = 0;
5825
5826                 goto out;
5827         }
5828         case KVM_GET_TSC_KHZ: {
5829                 r = vcpu->arch.virtual_tsc_khz;
5830                 goto out;
5831         }
5832         case KVM_KVMCLOCK_CTRL: {
5833                 r = kvm_set_guest_paused(vcpu);
5834                 goto out;
5835         }
5836         case KVM_ENABLE_CAP: {
5837                 struct kvm_enable_cap cap;
5838
5839                 r = -EFAULT;
5840                 if (copy_from_user(&cap, argp, sizeof(cap)))
5841                         goto out;
5842                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5843                 break;
5844         }
5845         case KVM_GET_NESTED_STATE: {
5846                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5847                 u32 user_data_size;
5848
5849                 r = -EINVAL;
5850                 if (!kvm_x86_ops.nested_ops->get_state)
5851                         break;
5852
5853                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5854                 r = -EFAULT;
5855                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5856                         break;
5857
5858                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5859                                                      user_data_size);
5860                 if (r < 0)
5861                         break;
5862
5863                 if (r > user_data_size) {
5864                         if (put_user(r, &user_kvm_nested_state->size))
5865                                 r = -EFAULT;
5866                         else
5867                                 r = -E2BIG;
5868                         break;
5869                 }
5870
5871                 r = 0;
5872                 break;
5873         }
5874         case KVM_SET_NESTED_STATE: {
5875                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5876                 struct kvm_nested_state kvm_state;
5877                 int idx;
5878
5879                 r = -EINVAL;
5880                 if (!kvm_x86_ops.nested_ops->set_state)
5881                         break;
5882
5883                 r = -EFAULT;
5884                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5885                         break;
5886
5887                 r = -EINVAL;
5888                 if (kvm_state.size < sizeof(kvm_state))
5889                         break;
5890
5891                 if (kvm_state.flags &
5892                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5893                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5894                       | KVM_STATE_NESTED_GIF_SET))
5895                         break;
5896
5897                 /* nested_run_pending implies guest_mode.  */
5898                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5899                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5900                         break;
5901
5902                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5903                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5904                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5905                 break;
5906         }
5907         case KVM_GET_SUPPORTED_HV_CPUID:
5908                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5909                 break;
5910 #ifdef CONFIG_KVM_XEN
5911         case KVM_XEN_VCPU_GET_ATTR: {
5912                 struct kvm_xen_vcpu_attr xva;
5913
5914                 r = -EFAULT;
5915                 if (copy_from_user(&xva, argp, sizeof(xva)))
5916                         goto out;
5917                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5918                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5919                         r = -EFAULT;
5920                 break;
5921         }
5922         case KVM_XEN_VCPU_SET_ATTR: {
5923                 struct kvm_xen_vcpu_attr xva;
5924
5925                 r = -EFAULT;
5926                 if (copy_from_user(&xva, argp, sizeof(xva)))
5927                         goto out;
5928                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5929                 break;
5930         }
5931 #endif
5932         case KVM_GET_SREGS2: {
5933                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5934                 r = -ENOMEM;
5935                 if (!u.sregs2)
5936                         goto out;
5937                 __get_sregs2(vcpu, u.sregs2);
5938                 r = -EFAULT;
5939                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5940                         goto out;
5941                 r = 0;
5942                 break;
5943         }
5944         case KVM_SET_SREGS2: {
5945                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5946                 if (IS_ERR(u.sregs2)) {
5947                         r = PTR_ERR(u.sregs2);
5948                         u.sregs2 = NULL;
5949                         goto out;
5950                 }
5951                 r = __set_sregs2(vcpu, u.sregs2);
5952                 break;
5953         }
5954         case KVM_HAS_DEVICE_ATTR:
5955         case KVM_GET_DEVICE_ATTR:
5956         case KVM_SET_DEVICE_ATTR:
5957                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5958                 break;
5959         default:
5960                 r = -EINVAL;
5961         }
5962 out:
5963         kfree(u.buffer);
5964 out_nofree:
5965         vcpu_put(vcpu);
5966         return r;
5967 }
5968
5969 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5970 {
5971         return VM_FAULT_SIGBUS;
5972 }
5973
5974 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5975 {
5976         int ret;
5977
5978         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5979                 return -EINVAL;
5980         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5981         return ret;
5982 }
5983
5984 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5985                                               u64 ident_addr)
5986 {
5987         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5988 }
5989
5990 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5991                                          unsigned long kvm_nr_mmu_pages)
5992 {
5993         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5994                 return -EINVAL;
5995
5996         mutex_lock(&kvm->slots_lock);
5997
5998         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5999         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6000
6001         mutex_unlock(&kvm->slots_lock);
6002         return 0;
6003 }
6004
6005 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6006 {
6007         return kvm->arch.n_max_mmu_pages;
6008 }
6009
6010 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6011 {
6012         struct kvm_pic *pic = kvm->arch.vpic;
6013         int r;
6014
6015         r = 0;
6016         switch (chip->chip_id) {
6017         case KVM_IRQCHIP_PIC_MASTER:
6018                 memcpy(&chip->chip.pic, &pic->pics[0],
6019                         sizeof(struct kvm_pic_state));
6020                 break;
6021         case KVM_IRQCHIP_PIC_SLAVE:
6022                 memcpy(&chip->chip.pic, &pic->pics[1],
6023                         sizeof(struct kvm_pic_state));
6024                 break;
6025         case KVM_IRQCHIP_IOAPIC:
6026                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6027                 break;
6028         default:
6029                 r = -EINVAL;
6030                 break;
6031         }
6032         return r;
6033 }
6034
6035 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6036 {
6037         struct kvm_pic *pic = kvm->arch.vpic;
6038         int r;
6039
6040         r = 0;
6041         switch (chip->chip_id) {
6042         case KVM_IRQCHIP_PIC_MASTER:
6043                 spin_lock(&pic->lock);
6044                 memcpy(&pic->pics[0], &chip->chip.pic,
6045                         sizeof(struct kvm_pic_state));
6046                 spin_unlock(&pic->lock);
6047                 break;
6048         case KVM_IRQCHIP_PIC_SLAVE:
6049                 spin_lock(&pic->lock);
6050                 memcpy(&pic->pics[1], &chip->chip.pic,
6051                         sizeof(struct kvm_pic_state));
6052                 spin_unlock(&pic->lock);
6053                 break;
6054         case KVM_IRQCHIP_IOAPIC:
6055                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6056                 break;
6057         default:
6058                 r = -EINVAL;
6059                 break;
6060         }
6061         kvm_pic_update_irq(pic);
6062         return r;
6063 }
6064
6065 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6066 {
6067         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6068
6069         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6070
6071         mutex_lock(&kps->lock);
6072         memcpy(ps, &kps->channels, sizeof(*ps));
6073         mutex_unlock(&kps->lock);
6074         return 0;
6075 }
6076
6077 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6078 {
6079         int i;
6080         struct kvm_pit *pit = kvm->arch.vpit;
6081
6082         mutex_lock(&pit->pit_state.lock);
6083         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6084         for (i = 0; i < 3; i++)
6085                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6086         mutex_unlock(&pit->pit_state.lock);
6087         return 0;
6088 }
6089
6090 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6091 {
6092         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6093         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6094                 sizeof(ps->channels));
6095         ps->flags = kvm->arch.vpit->pit_state.flags;
6096         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6097         memset(&ps->reserved, 0, sizeof(ps->reserved));
6098         return 0;
6099 }
6100
6101 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6102 {
6103         int start = 0;
6104         int i;
6105         u32 prev_legacy, cur_legacy;
6106         struct kvm_pit *pit = kvm->arch.vpit;
6107
6108         mutex_lock(&pit->pit_state.lock);
6109         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6110         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6111         if (!prev_legacy && cur_legacy)
6112                 start = 1;
6113         memcpy(&pit->pit_state.channels, &ps->channels,
6114                sizeof(pit->pit_state.channels));
6115         pit->pit_state.flags = ps->flags;
6116         for (i = 0; i < 3; i++)
6117                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6118                                    start && i == 0);
6119         mutex_unlock(&pit->pit_state.lock);
6120         return 0;
6121 }
6122
6123 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6124                                  struct kvm_reinject_control *control)
6125 {
6126         struct kvm_pit *pit = kvm->arch.vpit;
6127
6128         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6129          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6130          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6131          */
6132         mutex_lock(&pit->pit_state.lock);
6133         kvm_pit_set_reinject(pit, control->pit_reinject);
6134         mutex_unlock(&pit->pit_state.lock);
6135
6136         return 0;
6137 }
6138
6139 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6140 {
6141
6142         /*
6143          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6144          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6145          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6146          * VM-Exit.
6147          */
6148         struct kvm_vcpu *vcpu;
6149         unsigned long i;
6150
6151         kvm_for_each_vcpu(i, vcpu, kvm)
6152                 kvm_vcpu_kick(vcpu);
6153 }
6154
6155 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6156                         bool line_status)
6157 {
6158         if (!irqchip_in_kernel(kvm))
6159                 return -ENXIO;
6160
6161         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6162                                         irq_event->irq, irq_event->level,
6163                                         line_status);
6164         return 0;
6165 }
6166
6167 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6168                             struct kvm_enable_cap *cap)
6169 {
6170         int r;
6171
6172         if (cap->flags)
6173                 return -EINVAL;
6174
6175         switch (cap->cap) {
6176         case KVM_CAP_DISABLE_QUIRKS2:
6177                 r = -EINVAL;
6178                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6179                         break;
6180                 fallthrough;
6181         case KVM_CAP_DISABLE_QUIRKS:
6182                 kvm->arch.disabled_quirks = cap->args[0];
6183                 r = 0;
6184                 break;
6185         case KVM_CAP_SPLIT_IRQCHIP: {
6186                 mutex_lock(&kvm->lock);
6187                 r = -EINVAL;
6188                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6189                         goto split_irqchip_unlock;
6190                 r = -EEXIST;
6191                 if (irqchip_in_kernel(kvm))
6192                         goto split_irqchip_unlock;
6193                 if (kvm->created_vcpus)
6194                         goto split_irqchip_unlock;
6195                 r = kvm_setup_empty_irq_routing(kvm);
6196                 if (r)
6197                         goto split_irqchip_unlock;
6198                 /* Pairs with irqchip_in_kernel. */
6199                 smp_wmb();
6200                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6201                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6202                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6203                 r = 0;
6204 split_irqchip_unlock:
6205                 mutex_unlock(&kvm->lock);
6206                 break;
6207         }
6208         case KVM_CAP_X2APIC_API:
6209                 r = -EINVAL;
6210                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6211                         break;
6212
6213                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6214                         kvm->arch.x2apic_format = true;
6215                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6216                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6217
6218                 r = 0;
6219                 break;
6220         case KVM_CAP_X86_DISABLE_EXITS:
6221                 r = -EINVAL;
6222                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6223                         break;
6224
6225                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6226                         kvm->arch.pause_in_guest = true;
6227
6228 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6229                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6230
6231                 if (!mitigate_smt_rsb) {
6232                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6233                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6234                                 pr_warn_once(SMT_RSB_MSG);
6235
6236                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6237                             kvm_can_mwait_in_guest())
6238                                 kvm->arch.mwait_in_guest = true;
6239                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6240                                 kvm->arch.hlt_in_guest = true;
6241                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6242                                 kvm->arch.cstate_in_guest = true;
6243                 }
6244
6245                 r = 0;
6246                 break;
6247         case KVM_CAP_MSR_PLATFORM_INFO:
6248                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6249                 r = 0;
6250                 break;
6251         case KVM_CAP_EXCEPTION_PAYLOAD:
6252                 kvm->arch.exception_payload_enabled = cap->args[0];
6253                 r = 0;
6254                 break;
6255         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6256                 kvm->arch.triple_fault_event = cap->args[0];
6257                 r = 0;
6258                 break;
6259         case KVM_CAP_X86_USER_SPACE_MSR:
6260                 r = -EINVAL;
6261                 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6262                                      KVM_MSR_EXIT_REASON_UNKNOWN |
6263                                      KVM_MSR_EXIT_REASON_FILTER))
6264                         break;
6265                 kvm->arch.user_space_msr_mask = cap->args[0];
6266                 r = 0;
6267                 break;
6268         case KVM_CAP_X86_BUS_LOCK_EXIT:
6269                 r = -EINVAL;
6270                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6271                         break;
6272
6273                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6274                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6275                         break;
6276
6277                 if (kvm_caps.has_bus_lock_exit &&
6278                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6279                         kvm->arch.bus_lock_detection_enabled = true;
6280                 r = 0;
6281                 break;
6282 #ifdef CONFIG_X86_SGX_KVM
6283         case KVM_CAP_SGX_ATTRIBUTE: {
6284                 unsigned long allowed_attributes = 0;
6285
6286                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6287                 if (r)
6288                         break;
6289
6290                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6291                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6292                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6293                         kvm->arch.sgx_provisioning_allowed = true;
6294                 else
6295                         r = -EINVAL;
6296                 break;
6297         }
6298 #endif
6299         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6300                 r = -EINVAL;
6301                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6302                         break;
6303
6304                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6305                 break;
6306         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6307                 r = -EINVAL;
6308                 if (!kvm_x86_ops.vm_move_enc_context_from)
6309                         break;
6310
6311                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6312                 break;
6313         case KVM_CAP_EXIT_HYPERCALL:
6314                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6315                         r = -EINVAL;
6316                         break;
6317                 }
6318                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6319                 r = 0;
6320                 break;
6321         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6322                 r = -EINVAL;
6323                 if (cap->args[0] & ~1)
6324                         break;
6325                 kvm->arch.exit_on_emulation_error = cap->args[0];
6326                 r = 0;
6327                 break;
6328         case KVM_CAP_PMU_CAPABILITY:
6329                 r = -EINVAL;
6330                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6331                         break;
6332
6333                 mutex_lock(&kvm->lock);
6334                 if (!kvm->created_vcpus) {
6335                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6336                         r = 0;
6337                 }
6338                 mutex_unlock(&kvm->lock);
6339                 break;
6340         case KVM_CAP_MAX_VCPU_ID:
6341                 r = -EINVAL;
6342                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6343                         break;
6344
6345                 mutex_lock(&kvm->lock);
6346                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6347                         r = 0;
6348                 } else if (!kvm->arch.max_vcpu_ids) {
6349                         kvm->arch.max_vcpu_ids = cap->args[0];
6350                         r = 0;
6351                 }
6352                 mutex_unlock(&kvm->lock);
6353                 break;
6354         case KVM_CAP_X86_NOTIFY_VMEXIT:
6355                 r = -EINVAL;
6356                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6357                         break;
6358                 if (!kvm_caps.has_notify_vmexit)
6359                         break;
6360                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6361                         break;
6362                 mutex_lock(&kvm->lock);
6363                 if (!kvm->created_vcpus) {
6364                         kvm->arch.notify_window = cap->args[0] >> 32;
6365                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6366                         r = 0;
6367                 }
6368                 mutex_unlock(&kvm->lock);
6369                 break;
6370         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6371                 r = -EINVAL;
6372
6373                 /*
6374                  * Since the risk of disabling NX hugepages is a guest crashing
6375                  * the system, ensure the userspace process has permission to
6376                  * reboot the system.
6377                  *
6378                  * Note that unlike the reboot() syscall, the process must have
6379                  * this capability in the root namespace because exposing
6380                  * /dev/kvm into a container does not limit the scope of the
6381                  * iTLB multihit bug to that container. In other words,
6382                  * this must use capable(), not ns_capable().
6383                  */
6384                 if (!capable(CAP_SYS_BOOT)) {
6385                         r = -EPERM;
6386                         break;
6387                 }
6388
6389                 if (cap->args[0])
6390                         break;
6391
6392                 mutex_lock(&kvm->lock);
6393                 if (!kvm->created_vcpus) {
6394                         kvm->arch.disable_nx_huge_pages = true;
6395                         r = 0;
6396                 }
6397                 mutex_unlock(&kvm->lock);
6398                 break;
6399         default:
6400                 r = -EINVAL;
6401                 break;
6402         }
6403         return r;
6404 }
6405
6406 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6407 {
6408         struct kvm_x86_msr_filter *msr_filter;
6409
6410         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6411         if (!msr_filter)
6412                 return NULL;
6413
6414         msr_filter->default_allow = default_allow;
6415         return msr_filter;
6416 }
6417
6418 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6419 {
6420         u32 i;
6421
6422         if (!msr_filter)
6423                 return;
6424
6425         for (i = 0; i < msr_filter->count; i++)
6426                 kfree(msr_filter->ranges[i].bitmap);
6427
6428         kfree(msr_filter);
6429 }
6430
6431 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6432                               struct kvm_msr_filter_range *user_range)
6433 {
6434         unsigned long *bitmap = NULL;
6435         size_t bitmap_size;
6436
6437         if (!user_range->nmsrs)
6438                 return 0;
6439
6440         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6441                 return -EINVAL;
6442
6443         if (!user_range->flags)
6444                 return -EINVAL;
6445
6446         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6447         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6448                 return -EINVAL;
6449
6450         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6451         if (IS_ERR(bitmap))
6452                 return PTR_ERR(bitmap);
6453
6454         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6455                 .flags = user_range->flags,
6456                 .base = user_range->base,
6457                 .nmsrs = user_range->nmsrs,
6458                 .bitmap = bitmap,
6459         };
6460
6461         msr_filter->count++;
6462         return 0;
6463 }
6464
6465 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6466                                        struct kvm_msr_filter *filter)
6467 {
6468         struct kvm_x86_msr_filter *new_filter, *old_filter;
6469         bool default_allow;
6470         bool empty = true;
6471         int r = 0;
6472         u32 i;
6473
6474         if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6475                 return -EINVAL;
6476
6477         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6478                 empty &= !filter->ranges[i].nmsrs;
6479
6480         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6481         if (empty && !default_allow)
6482                 return -EINVAL;
6483
6484         new_filter = kvm_alloc_msr_filter(default_allow);
6485         if (!new_filter)
6486                 return -ENOMEM;
6487
6488         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6489                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6490                 if (r) {
6491                         kvm_free_msr_filter(new_filter);
6492                         return r;
6493                 }
6494         }
6495
6496         mutex_lock(&kvm->lock);
6497
6498         /* The per-VM filter is protected by kvm->lock... */
6499         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6500
6501         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6502         synchronize_srcu(&kvm->srcu);
6503
6504         kvm_free_msr_filter(old_filter);
6505
6506         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6507         mutex_unlock(&kvm->lock);
6508
6509         return 0;
6510 }
6511
6512 #ifdef CONFIG_KVM_COMPAT
6513 /* for KVM_X86_SET_MSR_FILTER */
6514 struct kvm_msr_filter_range_compat {
6515         __u32 flags;
6516         __u32 nmsrs;
6517         __u32 base;
6518         __u32 bitmap;
6519 };
6520
6521 struct kvm_msr_filter_compat {
6522         __u32 flags;
6523         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6524 };
6525
6526 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6527
6528 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6529                               unsigned long arg)
6530 {
6531         void __user *argp = (void __user *)arg;
6532         struct kvm *kvm = filp->private_data;
6533         long r = -ENOTTY;
6534
6535         switch (ioctl) {
6536         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6537                 struct kvm_msr_filter __user *user_msr_filter = argp;
6538                 struct kvm_msr_filter_compat filter_compat;
6539                 struct kvm_msr_filter filter;
6540                 int i;
6541
6542                 if (copy_from_user(&filter_compat, user_msr_filter,
6543                                    sizeof(filter_compat)))
6544                         return -EFAULT;
6545
6546                 filter.flags = filter_compat.flags;
6547                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6548                         struct kvm_msr_filter_range_compat *cr;
6549
6550                         cr = &filter_compat.ranges[i];
6551                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6552                                 .flags = cr->flags,
6553                                 .nmsrs = cr->nmsrs,
6554                                 .base = cr->base,
6555                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6556                         };
6557                 }
6558
6559                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6560                 break;
6561         }
6562         }
6563
6564         return r;
6565 }
6566 #endif
6567
6568 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6569 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6570 {
6571         struct kvm_vcpu *vcpu;
6572         unsigned long i;
6573         int ret = 0;
6574
6575         mutex_lock(&kvm->lock);
6576         kvm_for_each_vcpu(i, vcpu, kvm) {
6577                 if (!vcpu->arch.pv_time.active)
6578                         continue;
6579
6580                 ret = kvm_set_guest_paused(vcpu);
6581                 if (ret) {
6582                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6583                                 vcpu->vcpu_id, ret);
6584                         break;
6585                 }
6586         }
6587         mutex_unlock(&kvm->lock);
6588
6589         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6590 }
6591
6592 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6593 {
6594         switch (state) {
6595         case PM_HIBERNATION_PREPARE:
6596         case PM_SUSPEND_PREPARE:
6597                 return kvm_arch_suspend_notifier(kvm);
6598         }
6599
6600         return NOTIFY_DONE;
6601 }
6602 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6603
6604 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6605 {
6606         struct kvm_clock_data data = { 0 };
6607
6608         get_kvmclock(kvm, &data);
6609         if (copy_to_user(argp, &data, sizeof(data)))
6610                 return -EFAULT;
6611
6612         return 0;
6613 }
6614
6615 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6616 {
6617         struct kvm_arch *ka = &kvm->arch;
6618         struct kvm_clock_data data;
6619         u64 now_raw_ns;
6620
6621         if (copy_from_user(&data, argp, sizeof(data)))
6622                 return -EFAULT;
6623
6624         /*
6625          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6626          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6627          */
6628         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6629                 return -EINVAL;
6630
6631         kvm_hv_request_tsc_page_update(kvm);
6632         kvm_start_pvclock_update(kvm);
6633         pvclock_update_vm_gtod_copy(kvm);
6634
6635         /*
6636          * This pairs with kvm_guest_time_update(): when masterclock is
6637          * in use, we use master_kernel_ns + kvmclock_offset to set
6638          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6639          * is slightly ahead) here we risk going negative on unsigned
6640          * 'system_time' when 'data.clock' is very small.
6641          */
6642         if (data.flags & KVM_CLOCK_REALTIME) {
6643                 u64 now_real_ns = ktime_get_real_ns();
6644
6645                 /*
6646                  * Avoid stepping the kvmclock backwards.
6647                  */
6648                 if (now_real_ns > data.realtime)
6649                         data.clock += now_real_ns - data.realtime;
6650         }
6651
6652         if (ka->use_master_clock)
6653                 now_raw_ns = ka->master_kernel_ns;
6654         else
6655                 now_raw_ns = get_kvmclock_base_ns();
6656         ka->kvmclock_offset = data.clock - now_raw_ns;
6657         kvm_end_pvclock_update(kvm);
6658         return 0;
6659 }
6660
6661 long kvm_arch_vm_ioctl(struct file *filp,
6662                        unsigned int ioctl, unsigned long arg)
6663 {
6664         struct kvm *kvm = filp->private_data;
6665         void __user *argp = (void __user *)arg;
6666         int r = -ENOTTY;
6667         /*
6668          * This union makes it completely explicit to gcc-3.x
6669          * that these two variables' stack usage should be
6670          * combined, not added together.
6671          */
6672         union {
6673                 struct kvm_pit_state ps;
6674                 struct kvm_pit_state2 ps2;
6675                 struct kvm_pit_config pit_config;
6676         } u;
6677
6678         switch (ioctl) {
6679         case KVM_SET_TSS_ADDR:
6680                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6681                 break;
6682         case KVM_SET_IDENTITY_MAP_ADDR: {
6683                 u64 ident_addr;
6684
6685                 mutex_lock(&kvm->lock);
6686                 r = -EINVAL;
6687                 if (kvm->created_vcpus)
6688                         goto set_identity_unlock;
6689                 r = -EFAULT;
6690                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6691                         goto set_identity_unlock;
6692                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6693 set_identity_unlock:
6694                 mutex_unlock(&kvm->lock);
6695                 break;
6696         }
6697         case KVM_SET_NR_MMU_PAGES:
6698                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6699                 break;
6700         case KVM_GET_NR_MMU_PAGES:
6701                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6702                 break;
6703         case KVM_CREATE_IRQCHIP: {
6704                 mutex_lock(&kvm->lock);
6705
6706                 r = -EEXIST;
6707                 if (irqchip_in_kernel(kvm))
6708                         goto create_irqchip_unlock;
6709
6710                 r = -EINVAL;
6711                 if (kvm->created_vcpus)
6712                         goto create_irqchip_unlock;
6713
6714                 r = kvm_pic_init(kvm);
6715                 if (r)
6716                         goto create_irqchip_unlock;
6717
6718                 r = kvm_ioapic_init(kvm);
6719                 if (r) {
6720                         kvm_pic_destroy(kvm);
6721                         goto create_irqchip_unlock;
6722                 }
6723
6724                 r = kvm_setup_default_irq_routing(kvm);
6725                 if (r) {
6726                         kvm_ioapic_destroy(kvm);
6727                         kvm_pic_destroy(kvm);
6728                         goto create_irqchip_unlock;
6729                 }
6730                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6731                 smp_wmb();
6732                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6733                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6734         create_irqchip_unlock:
6735                 mutex_unlock(&kvm->lock);
6736                 break;
6737         }
6738         case KVM_CREATE_PIT:
6739                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6740                 goto create_pit;
6741         case KVM_CREATE_PIT2:
6742                 r = -EFAULT;
6743                 if (copy_from_user(&u.pit_config, argp,
6744                                    sizeof(struct kvm_pit_config)))
6745                         goto out;
6746         create_pit:
6747                 mutex_lock(&kvm->lock);
6748                 r = -EEXIST;
6749                 if (kvm->arch.vpit)
6750                         goto create_pit_unlock;
6751                 r = -ENOMEM;
6752                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6753                 if (kvm->arch.vpit)
6754                         r = 0;
6755         create_pit_unlock:
6756                 mutex_unlock(&kvm->lock);
6757                 break;
6758         case KVM_GET_IRQCHIP: {
6759                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6760                 struct kvm_irqchip *chip;
6761
6762                 chip = memdup_user(argp, sizeof(*chip));
6763                 if (IS_ERR(chip)) {
6764                         r = PTR_ERR(chip);
6765                         goto out;
6766                 }
6767
6768                 r = -ENXIO;
6769                 if (!irqchip_kernel(kvm))
6770                         goto get_irqchip_out;
6771                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6772                 if (r)
6773                         goto get_irqchip_out;
6774                 r = -EFAULT;
6775                 if (copy_to_user(argp, chip, sizeof(*chip)))
6776                         goto get_irqchip_out;
6777                 r = 0;
6778         get_irqchip_out:
6779                 kfree(chip);
6780                 break;
6781         }
6782         case KVM_SET_IRQCHIP: {
6783                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6784                 struct kvm_irqchip *chip;
6785
6786                 chip = memdup_user(argp, sizeof(*chip));
6787                 if (IS_ERR(chip)) {
6788                         r = PTR_ERR(chip);
6789                         goto out;
6790                 }
6791
6792                 r = -ENXIO;
6793                 if (!irqchip_kernel(kvm))
6794                         goto set_irqchip_out;
6795                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6796         set_irqchip_out:
6797                 kfree(chip);
6798                 break;
6799         }
6800         case KVM_GET_PIT: {
6801                 r = -EFAULT;
6802                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6803                         goto out;
6804                 r = -ENXIO;
6805                 if (!kvm->arch.vpit)
6806                         goto out;
6807                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6808                 if (r)
6809                         goto out;
6810                 r = -EFAULT;
6811                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6812                         goto out;
6813                 r = 0;
6814                 break;
6815         }
6816         case KVM_SET_PIT: {
6817                 r = -EFAULT;
6818                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6819                         goto out;
6820                 mutex_lock(&kvm->lock);
6821                 r = -ENXIO;
6822                 if (!kvm->arch.vpit)
6823                         goto set_pit_out;
6824                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6825 set_pit_out:
6826                 mutex_unlock(&kvm->lock);
6827                 break;
6828         }
6829         case KVM_GET_PIT2: {
6830                 r = -ENXIO;
6831                 if (!kvm->arch.vpit)
6832                         goto out;
6833                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6834                 if (r)
6835                         goto out;
6836                 r = -EFAULT;
6837                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6838                         goto out;
6839                 r = 0;
6840                 break;
6841         }
6842         case KVM_SET_PIT2: {
6843                 r = -EFAULT;
6844                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6845                         goto out;
6846                 mutex_lock(&kvm->lock);
6847                 r = -ENXIO;
6848                 if (!kvm->arch.vpit)
6849                         goto set_pit2_out;
6850                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6851 set_pit2_out:
6852                 mutex_unlock(&kvm->lock);
6853                 break;
6854         }
6855         case KVM_REINJECT_CONTROL: {
6856                 struct kvm_reinject_control control;
6857                 r =  -EFAULT;
6858                 if (copy_from_user(&control, argp, sizeof(control)))
6859                         goto out;
6860                 r = -ENXIO;
6861                 if (!kvm->arch.vpit)
6862                         goto out;
6863                 r = kvm_vm_ioctl_reinject(kvm, &control);
6864                 break;
6865         }
6866         case KVM_SET_BOOT_CPU_ID:
6867                 r = 0;
6868                 mutex_lock(&kvm->lock);
6869                 if (kvm->created_vcpus)
6870                         r = -EBUSY;
6871                 else
6872                         kvm->arch.bsp_vcpu_id = arg;
6873                 mutex_unlock(&kvm->lock);
6874                 break;
6875 #ifdef CONFIG_KVM_XEN
6876         case KVM_XEN_HVM_CONFIG: {
6877                 struct kvm_xen_hvm_config xhc;
6878                 r = -EFAULT;
6879                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6880                         goto out;
6881                 r = kvm_xen_hvm_config(kvm, &xhc);
6882                 break;
6883         }
6884         case KVM_XEN_HVM_GET_ATTR: {
6885                 struct kvm_xen_hvm_attr xha;
6886
6887                 r = -EFAULT;
6888                 if (copy_from_user(&xha, argp, sizeof(xha)))
6889                         goto out;
6890                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6891                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6892                         r = -EFAULT;
6893                 break;
6894         }
6895         case KVM_XEN_HVM_SET_ATTR: {
6896                 struct kvm_xen_hvm_attr xha;
6897
6898                 r = -EFAULT;
6899                 if (copy_from_user(&xha, argp, sizeof(xha)))
6900                         goto out;
6901                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6902                 break;
6903         }
6904         case KVM_XEN_HVM_EVTCHN_SEND: {
6905                 struct kvm_irq_routing_xen_evtchn uxe;
6906
6907                 r = -EFAULT;
6908                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6909                         goto out;
6910                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6911                 break;
6912         }
6913 #endif
6914         case KVM_SET_CLOCK:
6915                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6916                 break;
6917         case KVM_GET_CLOCK:
6918                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6919                 break;
6920         case KVM_SET_TSC_KHZ: {
6921                 u32 user_tsc_khz;
6922
6923                 r = -EINVAL;
6924                 user_tsc_khz = (u32)arg;
6925
6926                 if (kvm_caps.has_tsc_control &&
6927                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6928                         goto out;
6929
6930                 if (user_tsc_khz == 0)
6931                         user_tsc_khz = tsc_khz;
6932
6933                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6934                 r = 0;
6935
6936                 goto out;
6937         }
6938         case KVM_GET_TSC_KHZ: {
6939                 r = READ_ONCE(kvm->arch.default_tsc_khz);
6940                 goto out;
6941         }
6942         case KVM_MEMORY_ENCRYPT_OP: {
6943                 r = -ENOTTY;
6944                 if (!kvm_x86_ops.mem_enc_ioctl)
6945                         goto out;
6946
6947                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6948                 break;
6949         }
6950         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6951                 struct kvm_enc_region region;
6952
6953                 r = -EFAULT;
6954                 if (copy_from_user(&region, argp, sizeof(region)))
6955                         goto out;
6956
6957                 r = -ENOTTY;
6958                 if (!kvm_x86_ops.mem_enc_register_region)
6959                         goto out;
6960
6961                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6962                 break;
6963         }
6964         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6965                 struct kvm_enc_region region;
6966
6967                 r = -EFAULT;
6968                 if (copy_from_user(&region, argp, sizeof(region)))
6969                         goto out;
6970
6971                 r = -ENOTTY;
6972                 if (!kvm_x86_ops.mem_enc_unregister_region)
6973                         goto out;
6974
6975                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6976                 break;
6977         }
6978         case KVM_HYPERV_EVENTFD: {
6979                 struct kvm_hyperv_eventfd hvevfd;
6980
6981                 r = -EFAULT;
6982                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6983                         goto out;
6984                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6985                 break;
6986         }
6987         case KVM_SET_PMU_EVENT_FILTER:
6988                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6989                 break;
6990         case KVM_X86_SET_MSR_FILTER: {
6991                 struct kvm_msr_filter __user *user_msr_filter = argp;
6992                 struct kvm_msr_filter filter;
6993
6994                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6995                         return -EFAULT;
6996
6997                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6998                 break;
6999         }
7000         default:
7001                 r = -ENOTTY;
7002         }
7003 out:
7004         return r;
7005 }
7006
7007 static void kvm_init_msr_list(void)
7008 {
7009         u32 dummy[2];
7010         unsigned i;
7011
7012         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7013                          "Please update the fixed PMCs in msrs_to_saved_all[]");
7014
7015         num_msrs_to_save = 0;
7016         num_emulated_msrs = 0;
7017         num_msr_based_features = 0;
7018
7019         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7020                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7021                         continue;
7022
7023                 /*
7024                  * Even MSRs that are valid in the host may not be exposed
7025                  * to the guests in some cases.
7026                  */
7027                 switch (msrs_to_save_all[i]) {
7028                 case MSR_IA32_BNDCFGS:
7029                         if (!kvm_mpx_supported())
7030                                 continue;
7031                         break;
7032                 case MSR_TSC_AUX:
7033                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7034                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7035                                 continue;
7036                         break;
7037                 case MSR_IA32_UMWAIT_CONTROL:
7038                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7039                                 continue;
7040                         break;
7041                 case MSR_IA32_RTIT_CTL:
7042                 case MSR_IA32_RTIT_STATUS:
7043                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7044                                 continue;
7045                         break;
7046                 case MSR_IA32_RTIT_CR3_MATCH:
7047                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7048                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7049                                 continue;
7050                         break;
7051                 case MSR_IA32_RTIT_OUTPUT_BASE:
7052                 case MSR_IA32_RTIT_OUTPUT_MASK:
7053                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7054                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7055                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7056                                 continue;
7057                         break;
7058                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7059                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7060                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7061                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7062                                 continue;
7063                         break;
7064                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7065                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7066                             min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7067                                 continue;
7068                         break;
7069                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7070                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7071                             min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7072                                 continue;
7073                         break;
7074                 case MSR_IA32_XFD:
7075                 case MSR_IA32_XFD_ERR:
7076                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7077                                 continue;
7078                         break;
7079                 default:
7080                         break;
7081                 }
7082
7083                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7084         }
7085
7086         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7087                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7088                         continue;
7089
7090                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7091         }
7092
7093         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7094                 struct kvm_msr_entry msr;
7095
7096                 msr.index = msr_based_features_all[i];
7097                 if (kvm_get_msr_feature(&msr))
7098                         continue;
7099
7100                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7101         }
7102 }
7103
7104 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7105                            const void *v)
7106 {
7107         int handled = 0;
7108         int n;
7109
7110         do {
7111                 n = min(len, 8);
7112                 if (!(lapic_in_kernel(vcpu) &&
7113                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7114                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7115                         break;
7116                 handled += n;
7117                 addr += n;
7118                 len -= n;
7119                 v += n;
7120         } while (len);
7121
7122         return handled;
7123 }
7124
7125 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7126 {
7127         int handled = 0;
7128         int n;
7129
7130         do {
7131                 n = min(len, 8);
7132                 if (!(lapic_in_kernel(vcpu) &&
7133                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7134                                          addr, n, v))
7135                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7136                         break;
7137                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7138                 handled += n;
7139                 addr += n;
7140                 len -= n;
7141                 v += n;
7142         } while (len);
7143
7144         return handled;
7145 }
7146
7147 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7148                         struct kvm_segment *var, int seg)
7149 {
7150         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7151 }
7152
7153 void kvm_get_segment(struct kvm_vcpu *vcpu,
7154                      struct kvm_segment *var, int seg)
7155 {
7156         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7157 }
7158
7159 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7160                            struct x86_exception *exception)
7161 {
7162         struct kvm_mmu *mmu = vcpu->arch.mmu;
7163         gpa_t t_gpa;
7164
7165         BUG_ON(!mmu_is_nested(vcpu));
7166
7167         /* NPT walks are always user-walks */
7168         access |= PFERR_USER_MASK;
7169         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7170
7171         return t_gpa;
7172 }
7173
7174 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7175                               struct x86_exception *exception)
7176 {
7177         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7178
7179         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7180         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7181 }
7182 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7183
7184  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7185                                 struct x86_exception *exception)
7186 {
7187         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7188
7189         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7190         access |= PFERR_FETCH_MASK;
7191         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7192 }
7193
7194 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7195                                struct x86_exception *exception)
7196 {
7197         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7198
7199         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7200         access |= PFERR_WRITE_MASK;
7201         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7202 }
7203 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7204
7205 /* uses this to access any guest's mapped memory without checking CPL */
7206 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7207                                 struct x86_exception *exception)
7208 {
7209         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7210
7211         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7212 }
7213
7214 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7215                                       struct kvm_vcpu *vcpu, u64 access,
7216                                       struct x86_exception *exception)
7217 {
7218         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7219         void *data = val;
7220         int r = X86EMUL_CONTINUE;
7221
7222         while (bytes) {
7223                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7224                 unsigned offset = addr & (PAGE_SIZE-1);
7225                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7226                 int ret;
7227
7228                 if (gpa == INVALID_GPA)
7229                         return X86EMUL_PROPAGATE_FAULT;
7230                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7231                                                offset, toread);
7232                 if (ret < 0) {
7233                         r = X86EMUL_IO_NEEDED;
7234                         goto out;
7235                 }
7236
7237                 bytes -= toread;
7238                 data += toread;
7239                 addr += toread;
7240         }
7241 out:
7242         return r;
7243 }
7244
7245 /* used for instruction fetching */
7246 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7247                                 gva_t addr, void *val, unsigned int bytes,
7248                                 struct x86_exception *exception)
7249 {
7250         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7251         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7252         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7253         unsigned offset;
7254         int ret;
7255
7256         /* Inline kvm_read_guest_virt_helper for speed.  */
7257         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7258                                     exception);
7259         if (unlikely(gpa == INVALID_GPA))
7260                 return X86EMUL_PROPAGATE_FAULT;
7261
7262         offset = addr & (PAGE_SIZE-1);
7263         if (WARN_ON(offset + bytes > PAGE_SIZE))
7264                 bytes = (unsigned)PAGE_SIZE - offset;
7265         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7266                                        offset, bytes);
7267         if (unlikely(ret < 0))
7268                 return X86EMUL_IO_NEEDED;
7269
7270         return X86EMUL_CONTINUE;
7271 }
7272
7273 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7274                                gva_t addr, void *val, unsigned int bytes,
7275                                struct x86_exception *exception)
7276 {
7277         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7278
7279         /*
7280          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7281          * is returned, but our callers are not ready for that and they blindly
7282          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7283          * uninitialized kernel stack memory into cr2 and error code.
7284          */
7285         memset(exception, 0, sizeof(*exception));
7286         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7287                                           exception);
7288 }
7289 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7290
7291 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7292                              gva_t addr, void *val, unsigned int bytes,
7293                              struct x86_exception *exception, bool system)
7294 {
7295         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7296         u64 access = 0;
7297
7298         if (system)
7299                 access |= PFERR_IMPLICIT_ACCESS;
7300         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7301                 access |= PFERR_USER_MASK;
7302
7303         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7304 }
7305
7306 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7307                 unsigned long addr, void *val, unsigned int bytes)
7308 {
7309         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7310         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7311
7312         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7313 }
7314
7315 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7316                                       struct kvm_vcpu *vcpu, u64 access,
7317                                       struct x86_exception *exception)
7318 {
7319         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7320         void *data = val;
7321         int r = X86EMUL_CONTINUE;
7322
7323         while (bytes) {
7324                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7325                 unsigned offset = addr & (PAGE_SIZE-1);
7326                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7327                 int ret;
7328
7329                 if (gpa == INVALID_GPA)
7330                         return X86EMUL_PROPAGATE_FAULT;
7331                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7332                 if (ret < 0) {
7333                         r = X86EMUL_IO_NEEDED;
7334                         goto out;
7335                 }
7336
7337                 bytes -= towrite;
7338                 data += towrite;
7339                 addr += towrite;
7340         }
7341 out:
7342         return r;
7343 }
7344
7345 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7346                               unsigned int bytes, struct x86_exception *exception,
7347                               bool system)
7348 {
7349         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7350         u64 access = PFERR_WRITE_MASK;
7351
7352         if (system)
7353                 access |= PFERR_IMPLICIT_ACCESS;
7354         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7355                 access |= PFERR_USER_MASK;
7356
7357         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7358                                            access, exception);
7359 }
7360
7361 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7362                                 unsigned int bytes, struct x86_exception *exception)
7363 {
7364         /* kvm_write_guest_virt_system can pull in tons of pages. */
7365         vcpu->arch.l1tf_flush_l1d = true;
7366
7367         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7368                                            PFERR_WRITE_MASK, exception);
7369 }
7370 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7371
7372 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7373                                 void *insn, int insn_len)
7374 {
7375         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7376                                                             insn, insn_len);
7377 }
7378
7379 int handle_ud(struct kvm_vcpu *vcpu)
7380 {
7381         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7382         int fep_flags = READ_ONCE(force_emulation_prefix);
7383         int emul_type = EMULTYPE_TRAP_UD;
7384         char sig[5]; /* ud2; .ascii "kvm" */
7385         struct x86_exception e;
7386
7387         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7388                 return 1;
7389
7390         if (fep_flags &&
7391             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7392                                 sig, sizeof(sig), &e) == 0 &&
7393             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7394                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7395                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7396                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7397                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7398         }
7399
7400         return kvm_emulate_instruction(vcpu, emul_type);
7401 }
7402 EXPORT_SYMBOL_GPL(handle_ud);
7403
7404 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7405                             gpa_t gpa, bool write)
7406 {
7407         /* For APIC access vmexit */
7408         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7409                 return 1;
7410
7411         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7412                 trace_vcpu_match_mmio(gva, gpa, write, true);
7413                 return 1;
7414         }
7415
7416         return 0;
7417 }
7418
7419 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7420                                 gpa_t *gpa, struct x86_exception *exception,
7421                                 bool write)
7422 {
7423         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7424         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7425                 | (write ? PFERR_WRITE_MASK : 0);
7426
7427         /*
7428          * currently PKRU is only applied to ept enabled guest so
7429          * there is no pkey in EPT page table for L1 guest or EPT
7430          * shadow page table for L2 guest.
7431          */
7432         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7433             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7434                               vcpu->arch.mmio_access, 0, access))) {
7435                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7436                                         (gva & (PAGE_SIZE - 1));
7437                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7438                 return 1;
7439         }
7440
7441         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7442
7443         if (*gpa == INVALID_GPA)
7444                 return -1;
7445
7446         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7447 }
7448
7449 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7450                         const void *val, int bytes)
7451 {
7452         int ret;
7453
7454         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7455         if (ret < 0)
7456                 return 0;
7457         kvm_page_track_write(vcpu, gpa, val, bytes);
7458         return 1;
7459 }
7460
7461 struct read_write_emulator_ops {
7462         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7463                                   int bytes);
7464         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7465                                   void *val, int bytes);
7466         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7467                                int bytes, void *val);
7468         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7469                                     void *val, int bytes);
7470         bool write;
7471 };
7472
7473 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7474 {
7475         if (vcpu->mmio_read_completed) {
7476                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7477                                vcpu->mmio_fragments[0].gpa, val);
7478                 vcpu->mmio_read_completed = 0;
7479                 return 1;
7480         }
7481
7482         return 0;
7483 }
7484
7485 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7486                         void *val, int bytes)
7487 {
7488         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7489 }
7490
7491 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7492                          void *val, int bytes)
7493 {
7494         return emulator_write_phys(vcpu, gpa, val, bytes);
7495 }
7496
7497 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7498 {
7499         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7500         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7501 }
7502
7503 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7504                           void *val, int bytes)
7505 {
7506         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7507         return X86EMUL_IO_NEEDED;
7508 }
7509
7510 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7511                            void *val, int bytes)
7512 {
7513         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7514
7515         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7516         return X86EMUL_CONTINUE;
7517 }
7518
7519 static const struct read_write_emulator_ops read_emultor = {
7520         .read_write_prepare = read_prepare,
7521         .read_write_emulate = read_emulate,
7522         .read_write_mmio = vcpu_mmio_read,
7523         .read_write_exit_mmio = read_exit_mmio,
7524 };
7525
7526 static const struct read_write_emulator_ops write_emultor = {
7527         .read_write_emulate = write_emulate,
7528         .read_write_mmio = write_mmio,
7529         .read_write_exit_mmio = write_exit_mmio,
7530         .write = true,
7531 };
7532
7533 static int emulator_read_write_onepage(unsigned long addr, void *val,
7534                                        unsigned int bytes,
7535                                        struct x86_exception *exception,
7536                                        struct kvm_vcpu *vcpu,
7537                                        const struct read_write_emulator_ops *ops)
7538 {
7539         gpa_t gpa;
7540         int handled, ret;
7541         bool write = ops->write;
7542         struct kvm_mmio_fragment *frag;
7543         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7544
7545         /*
7546          * If the exit was due to a NPF we may already have a GPA.
7547          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7548          * Note, this cannot be used on string operations since string
7549          * operation using rep will only have the initial GPA from the NPF
7550          * occurred.
7551          */
7552         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7553             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7554                 gpa = ctxt->gpa_val;
7555                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7556         } else {
7557                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7558                 if (ret < 0)
7559                         return X86EMUL_PROPAGATE_FAULT;
7560         }
7561
7562         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7563                 return X86EMUL_CONTINUE;
7564
7565         /*
7566          * Is this MMIO handled locally?
7567          */
7568         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7569         if (handled == bytes)
7570                 return X86EMUL_CONTINUE;
7571
7572         gpa += handled;
7573         bytes -= handled;
7574         val += handled;
7575
7576         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7577         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7578         frag->gpa = gpa;
7579         frag->data = val;
7580         frag->len = bytes;
7581         return X86EMUL_CONTINUE;
7582 }
7583
7584 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7585                         unsigned long addr,
7586                         void *val, unsigned int bytes,
7587                         struct x86_exception *exception,
7588                         const struct read_write_emulator_ops *ops)
7589 {
7590         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7591         gpa_t gpa;
7592         int rc;
7593
7594         if (ops->read_write_prepare &&
7595                   ops->read_write_prepare(vcpu, val, bytes))
7596                 return X86EMUL_CONTINUE;
7597
7598         vcpu->mmio_nr_fragments = 0;
7599
7600         /* Crossing a page boundary? */
7601         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7602                 int now;
7603
7604                 now = -addr & ~PAGE_MASK;
7605                 rc = emulator_read_write_onepage(addr, val, now, exception,
7606                                                  vcpu, ops);
7607
7608                 if (rc != X86EMUL_CONTINUE)
7609                         return rc;
7610                 addr += now;
7611                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7612                         addr = (u32)addr;
7613                 val += now;
7614                 bytes -= now;
7615         }
7616
7617         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7618                                          vcpu, ops);
7619         if (rc != X86EMUL_CONTINUE)
7620                 return rc;
7621
7622         if (!vcpu->mmio_nr_fragments)
7623                 return rc;
7624
7625         gpa = vcpu->mmio_fragments[0].gpa;
7626
7627         vcpu->mmio_needed = 1;
7628         vcpu->mmio_cur_fragment = 0;
7629
7630         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7631         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7632         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7633         vcpu->run->mmio.phys_addr = gpa;
7634
7635         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7636 }
7637
7638 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7639                                   unsigned long addr,
7640                                   void *val,
7641                                   unsigned int bytes,
7642                                   struct x86_exception *exception)
7643 {
7644         return emulator_read_write(ctxt, addr, val, bytes,
7645                                    exception, &read_emultor);
7646 }
7647
7648 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7649                             unsigned long addr,
7650                             const void *val,
7651                             unsigned int bytes,
7652                             struct x86_exception *exception)
7653 {
7654         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7655                                    exception, &write_emultor);
7656 }
7657
7658 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7659         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7660
7661 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7662                                      unsigned long addr,
7663                                      const void *old,
7664                                      const void *new,
7665                                      unsigned int bytes,
7666                                      struct x86_exception *exception)
7667 {
7668         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7669         u64 page_line_mask;
7670         unsigned long hva;
7671         gpa_t gpa;
7672         int r;
7673
7674         /* guests cmpxchg8b have to be emulated atomically */
7675         if (bytes > 8 || (bytes & (bytes - 1)))
7676                 goto emul_write;
7677
7678         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7679
7680         if (gpa == INVALID_GPA ||
7681             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7682                 goto emul_write;
7683
7684         /*
7685          * Emulate the atomic as a straight write to avoid #AC if SLD is
7686          * enabled in the host and the access splits a cache line.
7687          */
7688         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7689                 page_line_mask = ~(cache_line_size() - 1);
7690         else
7691                 page_line_mask = PAGE_MASK;
7692
7693         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7694                 goto emul_write;
7695
7696         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7697         if (kvm_is_error_hva(hva))
7698                 goto emul_write;
7699
7700         hva += offset_in_page(gpa);
7701
7702         switch (bytes) {
7703         case 1:
7704                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7705                 break;
7706         case 2:
7707                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7708                 break;
7709         case 4:
7710                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7711                 break;
7712         case 8:
7713                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7714                 break;
7715         default:
7716                 BUG();
7717         }
7718
7719         if (r < 0)
7720                 return X86EMUL_UNHANDLEABLE;
7721         if (r)
7722                 return X86EMUL_CMPXCHG_FAILED;
7723
7724         kvm_page_track_write(vcpu, gpa, new, bytes);
7725
7726         return X86EMUL_CONTINUE;
7727
7728 emul_write:
7729         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7730
7731         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7732 }
7733
7734 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7735                                unsigned short port, void *data,
7736                                unsigned int count, bool in)
7737 {
7738         unsigned i;
7739         int r;
7740
7741         WARN_ON_ONCE(vcpu->arch.pio.count);
7742         for (i = 0; i < count; i++) {
7743                 if (in)
7744                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7745                 else
7746                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7747
7748                 if (r) {
7749                         if (i == 0)
7750                                 goto userspace_io;
7751
7752                         /*
7753                          * Userspace must have unregistered the device while PIO
7754                          * was running.  Drop writes / read as 0.
7755                          */
7756                         if (in)
7757                                 memset(data, 0, size * (count - i));
7758                         break;
7759                 }
7760
7761                 data += size;
7762         }
7763         return 1;
7764
7765 userspace_io:
7766         vcpu->arch.pio.port = port;
7767         vcpu->arch.pio.in = in;
7768         vcpu->arch.pio.count = count;
7769         vcpu->arch.pio.size = size;
7770
7771         if (in)
7772                 memset(vcpu->arch.pio_data, 0, size * count);
7773         else
7774                 memcpy(vcpu->arch.pio_data, data, size * count);
7775
7776         vcpu->run->exit_reason = KVM_EXIT_IO;
7777         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7778         vcpu->run->io.size = size;
7779         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7780         vcpu->run->io.count = count;
7781         vcpu->run->io.port = port;
7782         return 0;
7783 }
7784
7785 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7786                            unsigned short port, void *val, unsigned int count)
7787 {
7788         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7789         if (r)
7790                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7791
7792         return r;
7793 }
7794
7795 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7796 {
7797         int size = vcpu->arch.pio.size;
7798         unsigned int count = vcpu->arch.pio.count;
7799         memcpy(val, vcpu->arch.pio_data, size * count);
7800         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7801         vcpu->arch.pio.count = 0;
7802 }
7803
7804 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7805                                     int size, unsigned short port, void *val,
7806                                     unsigned int count)
7807 {
7808         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7809         if (vcpu->arch.pio.count) {
7810                 /*
7811                  * Complete a previous iteration that required userspace I/O.
7812                  * Note, @count isn't guaranteed to match pio.count as userspace
7813                  * can modify ECX before rerunning the vCPU.  Ignore any such
7814                  * shenanigans as KVM doesn't support modifying the rep count,
7815                  * and the emulator ensures @count doesn't overflow the buffer.
7816                  */
7817                 complete_emulator_pio_in(vcpu, val);
7818                 return 1;
7819         }
7820
7821         return emulator_pio_in(vcpu, size, port, val, count);
7822 }
7823
7824 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7825                             unsigned short port, const void *val,
7826                             unsigned int count)
7827 {
7828         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7829         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7830 }
7831
7832 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7833                                      int size, unsigned short port,
7834                                      const void *val, unsigned int count)
7835 {
7836         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7837 }
7838
7839 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7840 {
7841         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7842 }
7843
7844 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7845 {
7846         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7847 }
7848
7849 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7850 {
7851         if (!need_emulate_wbinvd(vcpu))
7852                 return X86EMUL_CONTINUE;
7853
7854         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7855                 int cpu = get_cpu();
7856
7857                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7858                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7859                                 wbinvd_ipi, NULL, 1);
7860                 put_cpu();
7861                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7862         } else
7863                 wbinvd();
7864         return X86EMUL_CONTINUE;
7865 }
7866
7867 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7868 {
7869         kvm_emulate_wbinvd_noskip(vcpu);
7870         return kvm_skip_emulated_instruction(vcpu);
7871 }
7872 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7873
7874
7875
7876 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7877 {
7878         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7879 }
7880
7881 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7882                             unsigned long *dest)
7883 {
7884         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7885 }
7886
7887 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7888                            unsigned long value)
7889 {
7890
7891         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7892 }
7893
7894 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7895 {
7896         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7897 }
7898
7899 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7900 {
7901         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7902         unsigned long value;
7903
7904         switch (cr) {
7905         case 0:
7906                 value = kvm_read_cr0(vcpu);
7907                 break;
7908         case 2:
7909                 value = vcpu->arch.cr2;
7910                 break;
7911         case 3:
7912                 value = kvm_read_cr3(vcpu);
7913                 break;
7914         case 4:
7915                 value = kvm_read_cr4(vcpu);
7916                 break;
7917         case 8:
7918                 value = kvm_get_cr8(vcpu);
7919                 break;
7920         default:
7921                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7922                 return 0;
7923         }
7924
7925         return value;
7926 }
7927
7928 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7929 {
7930         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7931         int res = 0;
7932
7933         switch (cr) {
7934         case 0:
7935                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7936                 break;
7937         case 2:
7938                 vcpu->arch.cr2 = val;
7939                 break;
7940         case 3:
7941                 res = kvm_set_cr3(vcpu, val);
7942                 break;
7943         case 4:
7944                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7945                 break;
7946         case 8:
7947                 res = kvm_set_cr8(vcpu, val);
7948                 break;
7949         default:
7950                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7951                 res = -1;
7952         }
7953
7954         return res;
7955 }
7956
7957 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7958 {
7959         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7960 }
7961
7962 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7963 {
7964         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7965 }
7966
7967 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7968 {
7969         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7970 }
7971
7972 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7973 {
7974         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7975 }
7976
7977 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7978 {
7979         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7980 }
7981
7982 static unsigned long emulator_get_cached_segment_base(
7983         struct x86_emulate_ctxt *ctxt, int seg)
7984 {
7985         return get_segment_base(emul_to_vcpu(ctxt), seg);
7986 }
7987
7988 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7989                                  struct desc_struct *desc, u32 *base3,
7990                                  int seg)
7991 {
7992         struct kvm_segment var;
7993
7994         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7995         *selector = var.selector;
7996
7997         if (var.unusable) {
7998                 memset(desc, 0, sizeof(*desc));
7999                 if (base3)
8000                         *base3 = 0;
8001                 return false;
8002         }
8003
8004         if (var.g)
8005                 var.limit >>= 12;
8006         set_desc_limit(desc, var.limit);
8007         set_desc_base(desc, (unsigned long)var.base);
8008 #ifdef CONFIG_X86_64
8009         if (base3)
8010                 *base3 = var.base >> 32;
8011 #endif
8012         desc->type = var.type;
8013         desc->s = var.s;
8014         desc->dpl = var.dpl;
8015         desc->p = var.present;
8016         desc->avl = var.avl;
8017         desc->l = var.l;
8018         desc->d = var.db;
8019         desc->g = var.g;
8020
8021         return true;
8022 }
8023
8024 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8025                                  struct desc_struct *desc, u32 base3,
8026                                  int seg)
8027 {
8028         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8029         struct kvm_segment var;
8030
8031         var.selector = selector;
8032         var.base = get_desc_base(desc);
8033 #ifdef CONFIG_X86_64
8034         var.base |= ((u64)base3) << 32;
8035 #endif
8036         var.limit = get_desc_limit(desc);
8037         if (desc->g)
8038                 var.limit = (var.limit << 12) | 0xfff;
8039         var.type = desc->type;
8040         var.dpl = desc->dpl;
8041         var.db = desc->d;
8042         var.s = desc->s;
8043         var.l = desc->l;
8044         var.g = desc->g;
8045         var.avl = desc->avl;
8046         var.present = desc->p;
8047         var.unusable = !var.present;
8048         var.padding = 0;
8049
8050         kvm_set_segment(vcpu, &var, seg);
8051         return;
8052 }
8053
8054 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8055                                         u32 msr_index, u64 *pdata)
8056 {
8057         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8058         int r;
8059
8060         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8061         if (r < 0)
8062                 return X86EMUL_UNHANDLEABLE;
8063
8064         if (r) {
8065                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8066                                        complete_emulated_rdmsr, r))
8067                         return X86EMUL_IO_NEEDED;
8068
8069                 trace_kvm_msr_read_ex(msr_index);
8070                 return X86EMUL_PROPAGATE_FAULT;
8071         }
8072
8073         trace_kvm_msr_read(msr_index, *pdata);
8074         return X86EMUL_CONTINUE;
8075 }
8076
8077 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8078                                         u32 msr_index, u64 data)
8079 {
8080         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8081         int r;
8082
8083         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8084         if (r < 0)
8085                 return X86EMUL_UNHANDLEABLE;
8086
8087         if (r) {
8088                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8089                                        complete_emulated_msr_access, r))
8090                         return X86EMUL_IO_NEEDED;
8091
8092                 trace_kvm_msr_write_ex(msr_index, data);
8093                 return X86EMUL_PROPAGATE_FAULT;
8094         }
8095
8096         trace_kvm_msr_write(msr_index, data);
8097         return X86EMUL_CONTINUE;
8098 }
8099
8100 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8101                             u32 msr_index, u64 *pdata)
8102 {
8103         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8104 }
8105
8106 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
8107                             u32 msr_index, u64 data)
8108 {
8109         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
8110 }
8111
8112 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
8113 {
8114         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8115
8116         return vcpu->arch.smbase;
8117 }
8118
8119 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
8120 {
8121         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8122
8123         vcpu->arch.smbase = smbase;
8124 }
8125
8126 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8127                               u32 pmc)
8128 {
8129         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8130                 return 0;
8131         return -EINVAL;
8132 }
8133
8134 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8135                              u32 pmc, u64 *pdata)
8136 {
8137         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8138 }
8139
8140 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8141 {
8142         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8143 }
8144
8145 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8146                               struct x86_instruction_info *info,
8147                               enum x86_intercept_stage stage)
8148 {
8149         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8150                                             &ctxt->exception);
8151 }
8152
8153 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8154                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8155                               bool exact_only)
8156 {
8157         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8158 }
8159
8160 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8161 {
8162         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8163 }
8164
8165 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8166 {
8167         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8168 }
8169
8170 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8171 {
8172         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8173 }
8174
8175 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8176 {
8177         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8178 }
8179
8180 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8181 {
8182         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8183 }
8184
8185 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8186 {
8187         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8188 }
8189
8190 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8191 {
8192         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8193 }
8194
8195 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8196 {
8197         return emul_to_vcpu(ctxt)->arch.hflags;
8198 }
8199
8200 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8201 {
8202         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8203
8204         kvm_smm_changed(vcpu, false);
8205 }
8206
8207 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8208                                   const char *smstate)
8209 {
8210         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8211 }
8212
8213 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8214 {
8215         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8216 }
8217
8218 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8219 {
8220         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8221 }
8222
8223 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8224 {
8225         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8226
8227         if (!kvm->vm_bugged)
8228                 kvm_vm_bugged(kvm);
8229 }
8230
8231 static const struct x86_emulate_ops emulate_ops = {
8232         .vm_bugged           = emulator_vm_bugged,
8233         .read_gpr            = emulator_read_gpr,
8234         .write_gpr           = emulator_write_gpr,
8235         .read_std            = emulator_read_std,
8236         .write_std           = emulator_write_std,
8237         .read_phys           = kvm_read_guest_phys_system,
8238         .fetch               = kvm_fetch_guest_virt,
8239         .read_emulated       = emulator_read_emulated,
8240         .write_emulated      = emulator_write_emulated,
8241         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8242         .invlpg              = emulator_invlpg,
8243         .pio_in_emulated     = emulator_pio_in_emulated,
8244         .pio_out_emulated    = emulator_pio_out_emulated,
8245         .get_segment         = emulator_get_segment,
8246         .set_segment         = emulator_set_segment,
8247         .get_cached_segment_base = emulator_get_cached_segment_base,
8248         .get_gdt             = emulator_get_gdt,
8249         .get_idt             = emulator_get_idt,
8250         .set_gdt             = emulator_set_gdt,
8251         .set_idt             = emulator_set_idt,
8252         .get_cr              = emulator_get_cr,
8253         .set_cr              = emulator_set_cr,
8254         .cpl                 = emulator_get_cpl,
8255         .get_dr              = emulator_get_dr,
8256         .set_dr              = emulator_set_dr,
8257         .get_smbase          = emulator_get_smbase,
8258         .set_smbase          = emulator_set_smbase,
8259         .set_msr_with_filter = emulator_set_msr_with_filter,
8260         .get_msr_with_filter = emulator_get_msr_with_filter,
8261         .set_msr             = emulator_set_msr,
8262         .get_msr             = emulator_get_msr,
8263         .check_pmc           = emulator_check_pmc,
8264         .read_pmc            = emulator_read_pmc,
8265         .halt                = emulator_halt,
8266         .wbinvd              = emulator_wbinvd,
8267         .fix_hypercall       = emulator_fix_hypercall,
8268         .intercept           = emulator_intercept,
8269         .get_cpuid           = emulator_get_cpuid,
8270         .guest_has_long_mode = emulator_guest_has_long_mode,
8271         .guest_has_movbe     = emulator_guest_has_movbe,
8272         .guest_has_fxsr      = emulator_guest_has_fxsr,
8273         .guest_has_rdpid     = emulator_guest_has_rdpid,
8274         .set_nmi_mask        = emulator_set_nmi_mask,
8275         .get_hflags          = emulator_get_hflags,
8276         .exiting_smm         = emulator_exiting_smm,
8277         .leave_smm           = emulator_leave_smm,
8278         .triple_fault        = emulator_triple_fault,
8279         .set_xcr             = emulator_set_xcr,
8280 };
8281
8282 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8283 {
8284         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8285         /*
8286          * an sti; sti; sequence only disable interrupts for the first
8287          * instruction. So, if the last instruction, be it emulated or
8288          * not, left the system with the INT_STI flag enabled, it
8289          * means that the last instruction is an sti. We should not
8290          * leave the flag on in this case. The same goes for mov ss
8291          */
8292         if (int_shadow & mask)
8293                 mask = 0;
8294         if (unlikely(int_shadow || mask)) {
8295                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8296                 if (!mask)
8297                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8298         }
8299 }
8300
8301 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8302 {
8303         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8304
8305         if (ctxt->exception.vector == PF_VECTOR)
8306                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8307         else if (ctxt->exception.error_code_valid)
8308                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8309                                       ctxt->exception.error_code);
8310         else
8311                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8312 }
8313
8314 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8315 {
8316         struct x86_emulate_ctxt *ctxt;
8317
8318         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8319         if (!ctxt) {
8320                 pr_err("kvm: failed to allocate vcpu's emulator\n");
8321                 return NULL;
8322         }
8323
8324         ctxt->vcpu = vcpu;
8325         ctxt->ops = &emulate_ops;
8326         vcpu->arch.emulate_ctxt = ctxt;
8327
8328         return ctxt;
8329 }
8330
8331 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8332 {
8333         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8334         int cs_db, cs_l;
8335
8336         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8337
8338         ctxt->gpa_available = false;
8339         ctxt->eflags = kvm_get_rflags(vcpu);
8340         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8341
8342         ctxt->eip = kvm_rip_read(vcpu);
8343         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8344                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8345                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8346                      cs_db                              ? X86EMUL_MODE_PROT32 :
8347                                                           X86EMUL_MODE_PROT16;
8348         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8349         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8350         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8351
8352         ctxt->interruptibility = 0;
8353         ctxt->have_exception = false;
8354         ctxt->exception.vector = -1;
8355         ctxt->perm_ok = false;
8356
8357         init_decode_cache(ctxt);
8358         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8359 }
8360
8361 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8362 {
8363         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8364         int ret;
8365
8366         init_emulate_ctxt(vcpu);
8367
8368         ctxt->op_bytes = 2;
8369         ctxt->ad_bytes = 2;
8370         ctxt->_eip = ctxt->eip + inc_eip;
8371         ret = emulate_int_real(ctxt, irq);
8372
8373         if (ret != X86EMUL_CONTINUE) {
8374                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8375         } else {
8376                 ctxt->eip = ctxt->_eip;
8377                 kvm_rip_write(vcpu, ctxt->eip);
8378                 kvm_set_rflags(vcpu, ctxt->eflags);
8379         }
8380 }
8381 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8382
8383 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8384                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8385 {
8386         struct kvm_run *run = vcpu->run;
8387         u64 info[5];
8388         u8 info_start;
8389
8390         /*
8391          * Zero the whole array used to retrieve the exit info, as casting to
8392          * u32 for select entries will leave some chunks uninitialized.
8393          */
8394         memset(&info, 0, sizeof(info));
8395
8396         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8397                                            &info[2], (u32 *)&info[3],
8398                                            (u32 *)&info[4]);
8399
8400         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8401         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8402
8403         /*
8404          * There's currently space for 13 entries, but 5 are used for the exit
8405          * reason and info.  Restrict to 4 to reduce the maintenance burden
8406          * when expanding kvm_run.emulation_failure in the future.
8407          */
8408         if (WARN_ON_ONCE(ndata > 4))
8409                 ndata = 4;
8410
8411         /* Always include the flags as a 'data' entry. */
8412         info_start = 1;
8413         run->emulation_failure.flags = 0;
8414
8415         if (insn_size) {
8416                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8417                               sizeof(run->emulation_failure.insn_bytes) != 16));
8418                 info_start += 2;
8419                 run->emulation_failure.flags |=
8420                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8421                 run->emulation_failure.insn_size = insn_size;
8422                 memset(run->emulation_failure.insn_bytes, 0x90,
8423                        sizeof(run->emulation_failure.insn_bytes));
8424                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8425         }
8426
8427         memcpy(&run->internal.data[info_start], info, sizeof(info));
8428         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8429                ndata * sizeof(data[0]));
8430
8431         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8432 }
8433
8434 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8435 {
8436         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8437
8438         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8439                                        ctxt->fetch.end - ctxt->fetch.data);
8440 }
8441
8442 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8443                                           u8 ndata)
8444 {
8445         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8446 }
8447 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8448
8449 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8450 {
8451         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8452 }
8453 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8454
8455 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8456 {
8457         struct kvm *kvm = vcpu->kvm;
8458
8459         ++vcpu->stat.insn_emulation_fail;
8460         trace_kvm_emulate_insn_failed(vcpu);
8461
8462         if (emulation_type & EMULTYPE_VMWARE_GP) {
8463                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8464                 return 1;
8465         }
8466
8467         if (kvm->arch.exit_on_emulation_error ||
8468             (emulation_type & EMULTYPE_SKIP)) {
8469                 prepare_emulation_ctxt_failure_exit(vcpu);
8470                 return 0;
8471         }
8472
8473         kvm_queue_exception(vcpu, UD_VECTOR);
8474
8475         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8476                 prepare_emulation_ctxt_failure_exit(vcpu);
8477                 return 0;
8478         }
8479
8480         return 1;
8481 }
8482
8483 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8484                                   bool write_fault_to_shadow_pgtable,
8485                                   int emulation_type)
8486 {
8487         gpa_t gpa = cr2_or_gpa;
8488         kvm_pfn_t pfn;
8489
8490         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8491                 return false;
8492
8493         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8494             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8495                 return false;
8496
8497         if (!vcpu->arch.mmu->root_role.direct) {
8498                 /*
8499                  * Write permission should be allowed since only
8500                  * write access need to be emulated.
8501                  */
8502                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8503
8504                 /*
8505                  * If the mapping is invalid in guest, let cpu retry
8506                  * it to generate fault.
8507                  */
8508                 if (gpa == INVALID_GPA)
8509                         return true;
8510         }
8511
8512         /*
8513          * Do not retry the unhandleable instruction if it faults on the
8514          * readonly host memory, otherwise it will goto a infinite loop:
8515          * retry instruction -> write #PF -> emulation fail -> retry
8516          * instruction -> ...
8517          */
8518         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8519
8520         /*
8521          * If the instruction failed on the error pfn, it can not be fixed,
8522          * report the error to userspace.
8523          */
8524         if (is_error_noslot_pfn(pfn))
8525                 return false;
8526
8527         kvm_release_pfn_clean(pfn);
8528
8529         /* The instructions are well-emulated on direct mmu. */
8530         if (vcpu->arch.mmu->root_role.direct) {
8531                 unsigned int indirect_shadow_pages;
8532
8533                 write_lock(&vcpu->kvm->mmu_lock);
8534                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8535                 write_unlock(&vcpu->kvm->mmu_lock);
8536
8537                 if (indirect_shadow_pages)
8538                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8539
8540                 return true;
8541         }
8542
8543         /*
8544          * if emulation was due to access to shadowed page table
8545          * and it failed try to unshadow page and re-enter the
8546          * guest to let CPU execute the instruction.
8547          */
8548         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8549
8550         /*
8551          * If the access faults on its page table, it can not
8552          * be fixed by unprotecting shadow page and it should
8553          * be reported to userspace.
8554          */
8555         return !write_fault_to_shadow_pgtable;
8556 }
8557
8558 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8559                               gpa_t cr2_or_gpa,  int emulation_type)
8560 {
8561         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8562         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8563
8564         last_retry_eip = vcpu->arch.last_retry_eip;
8565         last_retry_addr = vcpu->arch.last_retry_addr;
8566
8567         /*
8568          * If the emulation is caused by #PF and it is non-page_table
8569          * writing instruction, it means the VM-EXIT is caused by shadow
8570          * page protected, we can zap the shadow page and retry this
8571          * instruction directly.
8572          *
8573          * Note: if the guest uses a non-page-table modifying instruction
8574          * on the PDE that points to the instruction, then we will unmap
8575          * the instruction and go to an infinite loop. So, we cache the
8576          * last retried eip and the last fault address, if we meet the eip
8577          * and the address again, we can break out of the potential infinite
8578          * loop.
8579          */
8580         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8581
8582         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8583                 return false;
8584
8585         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8586             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8587                 return false;
8588
8589         if (x86_page_table_writing_insn(ctxt))
8590                 return false;
8591
8592         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8593                 return false;
8594
8595         vcpu->arch.last_retry_eip = ctxt->eip;
8596         vcpu->arch.last_retry_addr = cr2_or_gpa;
8597
8598         if (!vcpu->arch.mmu->root_role.direct)
8599                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8600
8601         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8602
8603         return true;
8604 }
8605
8606 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8607 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8608
8609 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8610 {
8611         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8612
8613         if (entering_smm) {
8614                 vcpu->arch.hflags |= HF_SMM_MASK;
8615         } else {
8616                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8617
8618                 /* Process a latched INIT or SMI, if any.  */
8619                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8620
8621                 /*
8622                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8623                  * on SMM exit we still need to reload them from
8624                  * guest memory
8625                  */
8626                 vcpu->arch.pdptrs_from_userspace = false;
8627         }
8628
8629         kvm_mmu_reset_context(vcpu);
8630 }
8631
8632 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8633                                 unsigned long *db)
8634 {
8635         u32 dr6 = 0;
8636         int i;
8637         u32 enable, rwlen;
8638
8639         enable = dr7;
8640         rwlen = dr7 >> 16;
8641         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8642                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8643                         dr6 |= (1 << i);
8644         return dr6;
8645 }
8646
8647 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8648 {
8649         struct kvm_run *kvm_run = vcpu->run;
8650
8651         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8652                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8653                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8654                 kvm_run->debug.arch.exception = DB_VECTOR;
8655                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8656                 return 0;
8657         }
8658         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8659         return 1;
8660 }
8661
8662 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8663 {
8664         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8665         int r;
8666
8667         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8668         if (unlikely(!r))
8669                 return 0;
8670
8671         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8672
8673         /*
8674          * rflags is the old, "raw" value of the flags.  The new value has
8675          * not been saved yet.
8676          *
8677          * This is correct even for TF set by the guest, because "the
8678          * processor will not generate this exception after the instruction
8679          * that sets the TF flag".
8680          */
8681         if (unlikely(rflags & X86_EFLAGS_TF))
8682                 r = kvm_vcpu_do_singlestep(vcpu);
8683         return r;
8684 }
8685 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8686
8687 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8688 {
8689         u32 shadow;
8690
8691         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8692                 return true;
8693
8694         /*
8695          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8696          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8697          * to avoid the relatively expensive CPUID lookup.
8698          */
8699         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8700         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8701                guest_cpuid_is_intel(vcpu);
8702 }
8703
8704 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8705                                            int emulation_type, int *r)
8706 {
8707         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8708
8709         /*
8710          * Do not check for code breakpoints if hardware has already done the
8711          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8712          * the instruction has passed all exception checks, and all intercepted
8713          * exceptions that trigger emulation have lower priority than code
8714          * breakpoints, i.e. the fact that the intercepted exception occurred
8715          * means any code breakpoints have already been serviced.
8716          *
8717          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8718          * hardware has checked the RIP of the magic prefix, but not the RIP of
8719          * the instruction being emulated.  The intent of forced emulation is
8720          * to behave as if KVM intercepted the instruction without an exception
8721          * and without a prefix.
8722          */
8723         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8724                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8725                 return false;
8726
8727         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8728             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8729                 struct kvm_run *kvm_run = vcpu->run;
8730                 unsigned long eip = kvm_get_linear_rip(vcpu);
8731                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8732                                            vcpu->arch.guest_debug_dr7,
8733                                            vcpu->arch.eff_db);
8734
8735                 if (dr6 != 0) {
8736                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8737                         kvm_run->debug.arch.pc = eip;
8738                         kvm_run->debug.arch.exception = DB_VECTOR;
8739                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8740                         *r = 0;
8741                         return true;
8742                 }
8743         }
8744
8745         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8746             !kvm_is_code_breakpoint_inhibited(vcpu)) {
8747                 unsigned long eip = kvm_get_linear_rip(vcpu);
8748                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8749                                            vcpu->arch.dr7,
8750                                            vcpu->arch.db);
8751
8752                 if (dr6 != 0) {
8753                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8754                         *r = 1;
8755                         return true;
8756                 }
8757         }
8758
8759         return false;
8760 }
8761
8762 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8763 {
8764         switch (ctxt->opcode_len) {
8765         case 1:
8766                 switch (ctxt->b) {
8767                 case 0xe4:      /* IN */
8768                 case 0xe5:
8769                 case 0xec:
8770                 case 0xed:
8771                 case 0xe6:      /* OUT */
8772                 case 0xe7:
8773                 case 0xee:
8774                 case 0xef:
8775                 case 0x6c:      /* INS */
8776                 case 0x6d:
8777                 case 0x6e:      /* OUTS */
8778                 case 0x6f:
8779                         return true;
8780                 }
8781                 break;
8782         case 2:
8783                 switch (ctxt->b) {
8784                 case 0x33:      /* RDPMC */
8785                         return true;
8786                 }
8787                 break;
8788         }
8789
8790         return false;
8791 }
8792
8793 /*
8794  * Decode an instruction for emulation.  The caller is responsible for handling
8795  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8796  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8797  * code breakpoints have higher priority and thus have already been done by
8798  * hardware.
8799  *
8800  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8801  *     response to a machine check.
8802  */
8803 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8804                                     void *insn, int insn_len)
8805 {
8806         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8807         int r;
8808
8809         init_emulate_ctxt(vcpu);
8810
8811         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8812
8813         trace_kvm_emulate_insn_start(vcpu);
8814         ++vcpu->stat.insn_emulation;
8815
8816         return r;
8817 }
8818 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8819
8820 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8821                             int emulation_type, void *insn, int insn_len)
8822 {
8823         int r;
8824         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8825         bool writeback = true;
8826         bool write_fault_to_spt;
8827
8828         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8829                 return 1;
8830
8831         vcpu->arch.l1tf_flush_l1d = true;
8832
8833         /*
8834          * Clear write_fault_to_shadow_pgtable here to ensure it is
8835          * never reused.
8836          */
8837         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8838         vcpu->arch.write_fault_to_shadow_pgtable = false;
8839
8840         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8841                 kvm_clear_exception_queue(vcpu);
8842
8843                 /*
8844                  * Return immediately if RIP hits a code breakpoint, such #DBs
8845                  * are fault-like and are higher priority than any faults on
8846                  * the code fetch itself.
8847                  */
8848                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8849                         return r;
8850
8851                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8852                                                     insn, insn_len);
8853                 if (r != EMULATION_OK)  {
8854                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8855                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8856                                 kvm_queue_exception(vcpu, UD_VECTOR);
8857                                 return 1;
8858                         }
8859                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8860                                                   write_fault_to_spt,
8861                                                   emulation_type))
8862                                 return 1;
8863
8864                         if (ctxt->have_exception &&
8865                             !(emulation_type & EMULTYPE_SKIP)) {
8866                                 /*
8867                                  * #UD should result in just EMULATION_FAILED, and trap-like
8868                                  * exception should not be encountered during decode.
8869                                  */
8870                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8871                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8872                                 inject_emulated_exception(vcpu);
8873                                 return 1;
8874                         }
8875                         return handle_emulation_failure(vcpu, emulation_type);
8876                 }
8877         }
8878
8879         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8880             !is_vmware_backdoor_opcode(ctxt)) {
8881                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8882                 return 1;
8883         }
8884
8885         /*
8886          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8887          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8888          * The caller is responsible for updating interruptibility state and
8889          * injecting single-step #DBs.
8890          */
8891         if (emulation_type & EMULTYPE_SKIP) {
8892                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8893                         ctxt->eip = (u32)ctxt->_eip;
8894                 else
8895                         ctxt->eip = ctxt->_eip;
8896
8897                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8898                         r = 1;
8899                         goto writeback;
8900                 }
8901
8902                 kvm_rip_write(vcpu, ctxt->eip);
8903                 if (ctxt->eflags & X86_EFLAGS_RF)
8904                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8905                 return 1;
8906         }
8907
8908         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8909                 return 1;
8910
8911         /* this is needed for vmware backdoor interface to work since it
8912            changes registers values  during IO operation */
8913         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8914                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8915                 emulator_invalidate_register_cache(ctxt);
8916         }
8917
8918 restart:
8919         if (emulation_type & EMULTYPE_PF) {
8920                 /* Save the faulting GPA (cr2) in the address field */
8921                 ctxt->exception.address = cr2_or_gpa;
8922
8923                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8924                 if (vcpu->arch.mmu->root_role.direct) {
8925                         ctxt->gpa_available = true;
8926                         ctxt->gpa_val = cr2_or_gpa;
8927                 }
8928         } else {
8929                 /* Sanitize the address out of an abundance of paranoia. */
8930                 ctxt->exception.address = 0;
8931         }
8932
8933         r = x86_emulate_insn(ctxt);
8934
8935         if (r == EMULATION_INTERCEPTED)
8936                 return 1;
8937
8938         if (r == EMULATION_FAILED) {
8939                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8940                                         emulation_type))
8941                         return 1;
8942
8943                 return handle_emulation_failure(vcpu, emulation_type);
8944         }
8945
8946         if (ctxt->have_exception) {
8947                 r = 1;
8948                 inject_emulated_exception(vcpu);
8949         } else if (vcpu->arch.pio.count) {
8950                 if (!vcpu->arch.pio.in) {
8951                         /* FIXME: return into emulator if single-stepping.  */
8952                         vcpu->arch.pio.count = 0;
8953                 } else {
8954                         writeback = false;
8955                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8956                 }
8957                 r = 0;
8958         } else if (vcpu->mmio_needed) {
8959                 ++vcpu->stat.mmio_exits;
8960
8961                 if (!vcpu->mmio_is_write)
8962                         writeback = false;
8963                 r = 0;
8964                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8965         } else if (vcpu->arch.complete_userspace_io) {
8966                 writeback = false;
8967                 r = 0;
8968         } else if (r == EMULATION_RESTART)
8969                 goto restart;
8970         else
8971                 r = 1;
8972
8973 writeback:
8974         if (writeback) {
8975                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8976                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8977                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8978
8979                 /*
8980                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
8981                  * only supports code breakpoints and general detect #DB, both
8982                  * of which are fault-like.
8983                  */
8984                 if (!ctxt->have_exception ||
8985                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8986                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8987                         if (ctxt->is_branch)
8988                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8989                         kvm_rip_write(vcpu, ctxt->eip);
8990                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8991                                 r = kvm_vcpu_do_singlestep(vcpu);
8992                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8993                         __kvm_set_rflags(vcpu, ctxt->eflags);
8994                 }
8995
8996                 /*
8997                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8998                  * do nothing, and it will be requested again as soon as
8999                  * the shadow expires.  But we still need to check here,
9000                  * because POPF has no interrupt shadow.
9001                  */
9002                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9003                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9004         } else
9005                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9006
9007         return r;
9008 }
9009
9010 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9011 {
9012         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9013 }
9014 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9015
9016 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9017                                         void *insn, int insn_len)
9018 {
9019         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9020 }
9021 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9022
9023 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9024 {
9025         vcpu->arch.pio.count = 0;
9026         return 1;
9027 }
9028
9029 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9030 {
9031         vcpu->arch.pio.count = 0;
9032
9033         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9034                 return 1;
9035
9036         return kvm_skip_emulated_instruction(vcpu);
9037 }
9038
9039 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9040                             unsigned short port)
9041 {
9042         unsigned long val = kvm_rax_read(vcpu);
9043         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9044
9045         if (ret)
9046                 return ret;
9047
9048         /*
9049          * Workaround userspace that relies on old KVM behavior of %rip being
9050          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9051          */
9052         if (port == 0x7e &&
9053             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9054                 vcpu->arch.complete_userspace_io =
9055                         complete_fast_pio_out_port_0x7e;
9056                 kvm_skip_emulated_instruction(vcpu);
9057         } else {
9058                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9059                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9060         }
9061         return 0;
9062 }
9063
9064 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9065 {
9066         unsigned long val;
9067
9068         /* We should only ever be called with arch.pio.count equal to 1 */
9069         BUG_ON(vcpu->arch.pio.count != 1);
9070
9071         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9072                 vcpu->arch.pio.count = 0;
9073                 return 1;
9074         }
9075
9076         /* For size less than 4 we merge, else we zero extend */
9077         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9078
9079         complete_emulator_pio_in(vcpu, &val);
9080         kvm_rax_write(vcpu, val);
9081
9082         return kvm_skip_emulated_instruction(vcpu);
9083 }
9084
9085 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9086                            unsigned short port)
9087 {
9088         unsigned long val;
9089         int ret;
9090
9091         /* For size less than 4 we merge, else we zero extend */
9092         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9093
9094         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9095         if (ret) {
9096                 kvm_rax_write(vcpu, val);
9097                 return ret;
9098         }
9099
9100         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9101         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9102
9103         return 0;
9104 }
9105
9106 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9107 {
9108         int ret;
9109
9110         if (in)
9111                 ret = kvm_fast_pio_in(vcpu, size, port);
9112         else
9113                 ret = kvm_fast_pio_out(vcpu, size, port);
9114         return ret && kvm_skip_emulated_instruction(vcpu);
9115 }
9116 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9117
9118 static int kvmclock_cpu_down_prep(unsigned int cpu)
9119 {
9120         __this_cpu_write(cpu_tsc_khz, 0);
9121         return 0;
9122 }
9123
9124 static void tsc_khz_changed(void *data)
9125 {
9126         struct cpufreq_freqs *freq = data;
9127         unsigned long khz = 0;
9128
9129         if (data)
9130                 khz = freq->new;
9131         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9132                 khz = cpufreq_quick_get(raw_smp_processor_id());
9133         if (!khz)
9134                 khz = tsc_khz;
9135         __this_cpu_write(cpu_tsc_khz, khz);
9136 }
9137
9138 #ifdef CONFIG_X86_64
9139 static void kvm_hyperv_tsc_notifier(void)
9140 {
9141         struct kvm *kvm;
9142         int cpu;
9143
9144         mutex_lock(&kvm_lock);
9145         list_for_each_entry(kvm, &vm_list, vm_list)
9146                 kvm_make_mclock_inprogress_request(kvm);
9147
9148         /* no guest entries from this point */
9149         hyperv_stop_tsc_emulation();
9150
9151         /* TSC frequency always matches when on Hyper-V */
9152         for_each_present_cpu(cpu)
9153                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9154         kvm_caps.max_guest_tsc_khz = tsc_khz;
9155
9156         list_for_each_entry(kvm, &vm_list, vm_list) {
9157                 __kvm_start_pvclock_update(kvm);
9158                 pvclock_update_vm_gtod_copy(kvm);
9159                 kvm_end_pvclock_update(kvm);
9160         }
9161
9162         mutex_unlock(&kvm_lock);
9163 }
9164 #endif
9165
9166 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9167 {
9168         struct kvm *kvm;
9169         struct kvm_vcpu *vcpu;
9170         int send_ipi = 0;
9171         unsigned long i;
9172
9173         /*
9174          * We allow guests to temporarily run on slowing clocks,
9175          * provided we notify them after, or to run on accelerating
9176          * clocks, provided we notify them before.  Thus time never
9177          * goes backwards.
9178          *
9179          * However, we have a problem.  We can't atomically update
9180          * the frequency of a given CPU from this function; it is
9181          * merely a notifier, which can be called from any CPU.
9182          * Changing the TSC frequency at arbitrary points in time
9183          * requires a recomputation of local variables related to
9184          * the TSC for each VCPU.  We must flag these local variables
9185          * to be updated and be sure the update takes place with the
9186          * new frequency before any guests proceed.
9187          *
9188          * Unfortunately, the combination of hotplug CPU and frequency
9189          * change creates an intractable locking scenario; the order
9190          * of when these callouts happen is undefined with respect to
9191          * CPU hotplug, and they can race with each other.  As such,
9192          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9193          * undefined; you can actually have a CPU frequency change take
9194          * place in between the computation of X and the setting of the
9195          * variable.  To protect against this problem, all updates of
9196          * the per_cpu tsc_khz variable are done in an interrupt
9197          * protected IPI, and all callers wishing to update the value
9198          * must wait for a synchronous IPI to complete (which is trivial
9199          * if the caller is on the CPU already).  This establishes the
9200          * necessary total order on variable updates.
9201          *
9202          * Note that because a guest time update may take place
9203          * anytime after the setting of the VCPU's request bit, the
9204          * correct TSC value must be set before the request.  However,
9205          * to ensure the update actually makes it to any guest which
9206          * starts running in hardware virtualization between the set
9207          * and the acquisition of the spinlock, we must also ping the
9208          * CPU after setting the request bit.
9209          *
9210          */
9211
9212         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9213
9214         mutex_lock(&kvm_lock);
9215         list_for_each_entry(kvm, &vm_list, vm_list) {
9216                 kvm_for_each_vcpu(i, vcpu, kvm) {
9217                         if (vcpu->cpu != cpu)
9218                                 continue;
9219                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9220                         if (vcpu->cpu != raw_smp_processor_id())
9221                                 send_ipi = 1;
9222                 }
9223         }
9224         mutex_unlock(&kvm_lock);
9225
9226         if (freq->old < freq->new && send_ipi) {
9227                 /*
9228                  * We upscale the frequency.  Must make the guest
9229                  * doesn't see old kvmclock values while running with
9230                  * the new frequency, otherwise we risk the guest sees
9231                  * time go backwards.
9232                  *
9233                  * In case we update the frequency for another cpu
9234                  * (which might be in guest context) send an interrupt
9235                  * to kick the cpu out of guest context.  Next time
9236                  * guest context is entered kvmclock will be updated,
9237                  * so the guest will not see stale values.
9238                  */
9239                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9240         }
9241 }
9242
9243 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9244                                      void *data)
9245 {
9246         struct cpufreq_freqs *freq = data;
9247         int cpu;
9248
9249         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9250                 return 0;
9251         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9252                 return 0;
9253
9254         for_each_cpu(cpu, freq->policy->cpus)
9255                 __kvmclock_cpufreq_notifier(freq, cpu);
9256
9257         return 0;
9258 }
9259
9260 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9261         .notifier_call  = kvmclock_cpufreq_notifier
9262 };
9263
9264 static int kvmclock_cpu_online(unsigned int cpu)
9265 {
9266         tsc_khz_changed(NULL);
9267         return 0;
9268 }
9269
9270 static void kvm_timer_init(void)
9271 {
9272         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9273                 max_tsc_khz = tsc_khz;
9274
9275                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9276                         struct cpufreq_policy *policy;
9277                         int cpu;
9278
9279                         cpu = get_cpu();
9280                         policy = cpufreq_cpu_get(cpu);
9281                         if (policy) {
9282                                 if (policy->cpuinfo.max_freq)
9283                                         max_tsc_khz = policy->cpuinfo.max_freq;
9284                                 cpufreq_cpu_put(policy);
9285                         }
9286                         put_cpu();
9287                 }
9288                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9289                                           CPUFREQ_TRANSITION_NOTIFIER);
9290         }
9291
9292         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9293                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
9294 }
9295
9296 #ifdef CONFIG_X86_64
9297 static void pvclock_gtod_update_fn(struct work_struct *work)
9298 {
9299         struct kvm *kvm;
9300         struct kvm_vcpu *vcpu;
9301         unsigned long i;
9302
9303         mutex_lock(&kvm_lock);
9304         list_for_each_entry(kvm, &vm_list, vm_list)
9305                 kvm_for_each_vcpu(i, vcpu, kvm)
9306                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9307         atomic_set(&kvm_guest_has_master_clock, 0);
9308         mutex_unlock(&kvm_lock);
9309 }
9310
9311 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9312
9313 /*
9314  * Indirection to move queue_work() out of the tk_core.seq write held
9315  * region to prevent possible deadlocks against time accessors which
9316  * are invoked with work related locks held.
9317  */
9318 static void pvclock_irq_work_fn(struct irq_work *w)
9319 {
9320         queue_work(system_long_wq, &pvclock_gtod_work);
9321 }
9322
9323 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9324
9325 /*
9326  * Notification about pvclock gtod data update.
9327  */
9328 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9329                                void *priv)
9330 {
9331         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9332         struct timekeeper *tk = priv;
9333
9334         update_pvclock_gtod(tk);
9335
9336         /*
9337          * Disable master clock if host does not trust, or does not use,
9338          * TSC based clocksource. Delegate queue_work() to irq_work as
9339          * this is invoked with tk_core.seq write held.
9340          */
9341         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9342             atomic_read(&kvm_guest_has_master_clock) != 0)
9343                 irq_work_queue(&pvclock_irq_work);
9344         return 0;
9345 }
9346
9347 static struct notifier_block pvclock_gtod_notifier = {
9348         .notifier_call = pvclock_gtod_notify,
9349 };
9350 #endif
9351
9352 int kvm_arch_init(void *opaque)
9353 {
9354         return 0;
9355 }
9356
9357 void kvm_arch_exit(void)
9358 {
9359
9360 }
9361
9362 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9363 {
9364         u64 host_pat;
9365         int r;
9366
9367         if (kvm_x86_ops.hardware_enable) {
9368                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9369                 return -EEXIST;
9370         }
9371
9372         if (!ops->cpu_has_kvm_support()) {
9373                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9374                                    ops->runtime_ops->name);
9375                 return -EOPNOTSUPP;
9376         }
9377         if (ops->disabled_by_bios()) {
9378                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9379                                    ops->runtime_ops->name);
9380                 return -EOPNOTSUPP;
9381         }
9382
9383         /*
9384          * KVM explicitly assumes that the guest has an FPU and
9385          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9386          * vCPU's FPU state as a fxregs_state struct.
9387          */
9388         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9389                 printk(KERN_ERR "kvm: inadequate fpu\n");
9390                 return -EOPNOTSUPP;
9391         }
9392
9393         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9394                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9395                 return -EOPNOTSUPP;
9396         }
9397
9398         /*
9399          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9400          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9401          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9402          * with an exception.  PAT[0] is set to WB on RESET and also by the
9403          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9404          */
9405         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9406             (host_pat & GENMASK(2, 0)) != 6) {
9407                 pr_err("kvm: host PAT[0] is not WB\n");
9408                 return -EIO;
9409         }
9410
9411         x86_emulator_cache = kvm_alloc_emulator_cache();
9412         if (!x86_emulator_cache) {
9413                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
9414                 return -ENOMEM;
9415         }
9416
9417         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9418         if (!user_return_msrs) {
9419                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9420                 r = -ENOMEM;
9421                 goto out_free_x86_emulator_cache;
9422         }
9423         kvm_nr_uret_msrs = 0;
9424
9425         r = kvm_mmu_vendor_module_init();
9426         if (r)
9427                 goto out_free_percpu;
9428
9429         kvm_timer_init();
9430
9431         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9432                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9433                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9434         }
9435
9436         if (pi_inject_timer == -1)
9437                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9438 #ifdef CONFIG_X86_64
9439         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9440
9441         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9442                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9443 #endif
9444
9445         return 0;
9446
9447 out_free_percpu:
9448         free_percpu(user_return_msrs);
9449 out_free_x86_emulator_cache:
9450         kmem_cache_destroy(x86_emulator_cache);
9451         return r;
9452 }
9453 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9454
9455 void kvm_x86_vendor_exit(void)
9456 {
9457 #ifdef CONFIG_X86_64
9458         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9459                 clear_hv_tscchange_cb();
9460 #endif
9461         kvm_lapic_exit();
9462
9463         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9464                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9465                                             CPUFREQ_TRANSITION_NOTIFIER);
9466         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9467 #ifdef CONFIG_X86_64
9468         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9469         irq_work_sync(&pvclock_irq_work);
9470         cancel_work_sync(&pvclock_gtod_work);
9471 #endif
9472         kvm_x86_ops.hardware_enable = NULL;
9473         kvm_mmu_vendor_module_exit();
9474         free_percpu(user_return_msrs);
9475         kmem_cache_destroy(x86_emulator_cache);
9476 #ifdef CONFIG_KVM_XEN
9477         static_key_deferred_flush(&kvm_xen_enabled);
9478         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9479 #endif
9480 }
9481 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9482
9483 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9484 {
9485         /*
9486          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9487          * local APIC is in-kernel, the run loop will detect the non-runnable
9488          * state and halt the vCPU.  Exit to userspace if the local APIC is
9489          * managed by userspace, in which case userspace is responsible for
9490          * handling wake events.
9491          */
9492         ++vcpu->stat.halt_exits;
9493         if (lapic_in_kernel(vcpu)) {
9494                 vcpu->arch.mp_state = state;
9495                 return 1;
9496         } else {
9497                 vcpu->run->exit_reason = reason;
9498                 return 0;
9499         }
9500 }
9501
9502 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9503 {
9504         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9505 }
9506 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9507
9508 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9509 {
9510         int ret = kvm_skip_emulated_instruction(vcpu);
9511         /*
9512          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9513          * KVM_EXIT_DEBUG here.
9514          */
9515         return kvm_emulate_halt_noskip(vcpu) && ret;
9516 }
9517 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9518
9519 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9520 {
9521         int ret = kvm_skip_emulated_instruction(vcpu);
9522
9523         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9524                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9525 }
9526 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9527
9528 #ifdef CONFIG_X86_64
9529 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9530                                 unsigned long clock_type)
9531 {
9532         struct kvm_clock_pairing clock_pairing;
9533         struct timespec64 ts;
9534         u64 cycle;
9535         int ret;
9536
9537         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9538                 return -KVM_EOPNOTSUPP;
9539
9540         /*
9541          * When tsc is in permanent catchup mode guests won't be able to use
9542          * pvclock_read_retry loop to get consistent view of pvclock
9543          */
9544         if (vcpu->arch.tsc_always_catchup)
9545                 return -KVM_EOPNOTSUPP;
9546
9547         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9548                 return -KVM_EOPNOTSUPP;
9549
9550         clock_pairing.sec = ts.tv_sec;
9551         clock_pairing.nsec = ts.tv_nsec;
9552         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9553         clock_pairing.flags = 0;
9554         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9555
9556         ret = 0;
9557         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9558                             sizeof(struct kvm_clock_pairing)))
9559                 ret = -KVM_EFAULT;
9560
9561         return ret;
9562 }
9563 #endif
9564
9565 /*
9566  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9567  *
9568  * @apicid - apicid of vcpu to be kicked.
9569  */
9570 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9571 {
9572         /*
9573          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9574          * common code, e.g. for tracing. Defer initialization to the compiler.
9575          */
9576         struct kvm_lapic_irq lapic_irq = {
9577                 .delivery_mode = APIC_DM_REMRD,
9578                 .dest_mode = APIC_DEST_PHYSICAL,
9579                 .shorthand = APIC_DEST_NOSHORT,
9580                 .dest_id = apicid,
9581         };
9582
9583         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9584 }
9585
9586 bool kvm_apicv_activated(struct kvm *kvm)
9587 {
9588         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9589 }
9590 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9591
9592 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9593 {
9594         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9595         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9596
9597         return (vm_reasons | vcpu_reasons) == 0;
9598 }
9599 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9600
9601 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9602                                        enum kvm_apicv_inhibit reason, bool set)
9603 {
9604         if (set)
9605                 __set_bit(reason, inhibits);
9606         else
9607                 __clear_bit(reason, inhibits);
9608
9609         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9610 }
9611
9612 static void kvm_apicv_init(struct kvm *kvm)
9613 {
9614         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9615
9616         init_rwsem(&kvm->arch.apicv_update_lock);
9617
9618         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9619
9620         if (!enable_apicv)
9621                 set_or_clear_apicv_inhibit(inhibits,
9622                                            APICV_INHIBIT_REASON_DISABLE, true);
9623 }
9624
9625 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9626 {
9627         struct kvm_vcpu *target = NULL;
9628         struct kvm_apic_map *map;
9629
9630         vcpu->stat.directed_yield_attempted++;
9631
9632         if (single_task_running())
9633                 goto no_yield;
9634
9635         rcu_read_lock();
9636         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9637
9638         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9639                 target = map->phys_map[dest_id]->vcpu;
9640
9641         rcu_read_unlock();
9642
9643         if (!target || !READ_ONCE(target->ready))
9644                 goto no_yield;
9645
9646         /* Ignore requests to yield to self */
9647         if (vcpu == target)
9648                 goto no_yield;
9649
9650         if (kvm_vcpu_yield_to(target) <= 0)
9651                 goto no_yield;
9652
9653         vcpu->stat.directed_yield_successful++;
9654
9655 no_yield:
9656         return;
9657 }
9658
9659 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9660 {
9661         u64 ret = vcpu->run->hypercall.ret;
9662
9663         if (!is_64_bit_mode(vcpu))
9664                 ret = (u32)ret;
9665         kvm_rax_write(vcpu, ret);
9666         ++vcpu->stat.hypercalls;
9667         return kvm_skip_emulated_instruction(vcpu);
9668 }
9669
9670 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9671 {
9672         unsigned long nr, a0, a1, a2, a3, ret;
9673         int op_64_bit;
9674
9675         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9676                 return kvm_xen_hypercall(vcpu);
9677
9678         if (kvm_hv_hypercall_enabled(vcpu))
9679                 return kvm_hv_hypercall(vcpu);
9680
9681         nr = kvm_rax_read(vcpu);
9682         a0 = kvm_rbx_read(vcpu);
9683         a1 = kvm_rcx_read(vcpu);
9684         a2 = kvm_rdx_read(vcpu);
9685         a3 = kvm_rsi_read(vcpu);
9686
9687         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9688
9689         op_64_bit = is_64_bit_hypercall(vcpu);
9690         if (!op_64_bit) {
9691                 nr &= 0xFFFFFFFF;
9692                 a0 &= 0xFFFFFFFF;
9693                 a1 &= 0xFFFFFFFF;
9694                 a2 &= 0xFFFFFFFF;
9695                 a3 &= 0xFFFFFFFF;
9696         }
9697
9698         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9699                 ret = -KVM_EPERM;
9700                 goto out;
9701         }
9702
9703         ret = -KVM_ENOSYS;
9704
9705         switch (nr) {
9706         case KVM_HC_VAPIC_POLL_IRQ:
9707                 ret = 0;
9708                 break;
9709         case KVM_HC_KICK_CPU:
9710                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9711                         break;
9712
9713                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9714                 kvm_sched_yield(vcpu, a1);
9715                 ret = 0;
9716                 break;
9717 #ifdef CONFIG_X86_64
9718         case KVM_HC_CLOCK_PAIRING:
9719                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9720                 break;
9721 #endif
9722         case KVM_HC_SEND_IPI:
9723                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9724                         break;
9725
9726                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9727                 break;
9728         case KVM_HC_SCHED_YIELD:
9729                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9730                         break;
9731
9732                 kvm_sched_yield(vcpu, a0);
9733                 ret = 0;
9734                 break;
9735         case KVM_HC_MAP_GPA_RANGE: {
9736                 u64 gpa = a0, npages = a1, attrs = a2;
9737
9738                 ret = -KVM_ENOSYS;
9739                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9740                         break;
9741
9742                 if (!PAGE_ALIGNED(gpa) || !npages ||
9743                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9744                         ret = -KVM_EINVAL;
9745                         break;
9746                 }
9747
9748                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9749                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9750                 vcpu->run->hypercall.args[0]  = gpa;
9751                 vcpu->run->hypercall.args[1]  = npages;
9752                 vcpu->run->hypercall.args[2]  = attrs;
9753                 vcpu->run->hypercall.longmode = op_64_bit;
9754                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9755                 return 0;
9756         }
9757         default:
9758                 ret = -KVM_ENOSYS;
9759                 break;
9760         }
9761 out:
9762         if (!op_64_bit)
9763                 ret = (u32)ret;
9764         kvm_rax_write(vcpu, ret);
9765
9766         ++vcpu->stat.hypercalls;
9767         return kvm_skip_emulated_instruction(vcpu);
9768 }
9769 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9770
9771 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9772 {
9773         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9774         char instruction[3];
9775         unsigned long rip = kvm_rip_read(vcpu);
9776
9777         /*
9778          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9779          * the pieces.
9780          */
9781         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9782                 ctxt->exception.error_code_valid = false;
9783                 ctxt->exception.vector = UD_VECTOR;
9784                 ctxt->have_exception = true;
9785                 return X86EMUL_PROPAGATE_FAULT;
9786         }
9787
9788         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9789
9790         return emulator_write_emulated(ctxt, rip, instruction, 3,
9791                 &ctxt->exception);
9792 }
9793
9794 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9795 {
9796         return vcpu->run->request_interrupt_window &&
9797                 likely(!pic_in_kernel(vcpu->kvm));
9798 }
9799
9800 /* Called within kvm->srcu read side.  */
9801 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9802 {
9803         struct kvm_run *kvm_run = vcpu->run;
9804
9805         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9806         kvm_run->cr8 = kvm_get_cr8(vcpu);
9807         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9808
9809         kvm_run->ready_for_interrupt_injection =
9810                 pic_in_kernel(vcpu->kvm) ||
9811                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9812
9813         if (is_smm(vcpu))
9814                 kvm_run->flags |= KVM_RUN_X86_SMM;
9815 }
9816
9817 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9818 {
9819         int max_irr, tpr;
9820
9821         if (!kvm_x86_ops.update_cr8_intercept)
9822                 return;
9823
9824         if (!lapic_in_kernel(vcpu))
9825                 return;
9826
9827         if (vcpu->arch.apic->apicv_active)
9828                 return;
9829
9830         if (!vcpu->arch.apic->vapic_addr)
9831                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9832         else
9833                 max_irr = -1;
9834
9835         if (max_irr != -1)
9836                 max_irr >>= 4;
9837
9838         tpr = kvm_lapic_get_cr8(vcpu);
9839
9840         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9841 }
9842
9843
9844 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9845 {
9846         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9847                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9848                 return 1;
9849         }
9850
9851         return kvm_x86_ops.nested_ops->check_events(vcpu);
9852 }
9853
9854 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9855 {
9856         /*
9857          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
9858          * exceptions don't report error codes.  The presence of an error code
9859          * is carried with the exception and only stripped when the exception
9860          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
9861          * report an error code despite the CPU being in Real Mode.
9862          */
9863         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
9864
9865         trace_kvm_inj_exception(vcpu->arch.exception.vector,
9866                                 vcpu->arch.exception.has_error_code,
9867                                 vcpu->arch.exception.error_code,
9868                                 vcpu->arch.exception.injected);
9869
9870         static_call(kvm_x86_inject_exception)(vcpu);
9871 }
9872
9873 /*
9874  * Check for any event (interrupt or exception) that is ready to be injected,
9875  * and if there is at least one event, inject the event with the highest
9876  * priority.  This handles both "pending" events, i.e. events that have never
9877  * been injected into the guest, and "injected" events, i.e. events that were
9878  * injected as part of a previous VM-Enter, but weren't successfully delivered
9879  * and need to be re-injected.
9880  *
9881  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9882  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9883  * be able to inject exceptions in the "middle" of an instruction, and so must
9884  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9885  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9886  * boundaries is necessary and correct.
9887  *
9888  * For simplicity, KVM uses a single path to inject all events (except events
9889  * that are injected directly from L1 to L2) and doesn't explicitly track
9890  * instruction boundaries for asynchronous events.  However, because VM-Exits
9891  * that can occur during instruction execution typically result in KVM skipping
9892  * the instruction or injecting an exception, e.g. instruction and exception
9893  * intercepts, and because pending exceptions have higher priority than pending
9894  * interrupts, KVM still honors instruction boundaries in most scenarios.
9895  *
9896  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9897  * the instruction or inject an exception, then KVM can incorrecty inject a new
9898  * asynchrounous event if the event became pending after the CPU fetched the
9899  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9900  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9901  * injected on the restarted instruction instead of being deferred until the
9902  * instruction completes.
9903  *
9904  * In practice, this virtualization hole is unlikely to be observed by the
9905  * guest, and even less likely to cause functional problems.  To detect the
9906  * hole, the guest would have to trigger an event on a side effect of an early
9907  * phase of instruction execution, e.g. on the instruction fetch from memory.
9908  * And for it to be a functional problem, the guest would need to depend on the
9909  * ordering between that side effect, the instruction completing, _and_ the
9910  * delivery of the asynchronous event.
9911  */
9912 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9913                                        bool *req_immediate_exit)
9914 {
9915         bool can_inject;
9916         int r;
9917
9918         /*
9919          * Process nested events first, as nested VM-Exit supercedes event
9920          * re-injection.  If there's an event queued for re-injection, it will
9921          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9922          */
9923         if (is_guest_mode(vcpu))
9924                 r = kvm_check_nested_events(vcpu);
9925         else
9926                 r = 0;
9927
9928         /*
9929          * Re-inject exceptions and events *especially* if immediate entry+exit
9930          * to/from L2 is needed, as any event that has already been injected
9931          * into L2 needs to complete its lifecycle before injecting a new event.
9932          *
9933          * Don't re-inject an NMI or interrupt if there is a pending exception.
9934          * This collision arises if an exception occurred while vectoring the
9935          * injected event, KVM intercepted said exception, and KVM ultimately
9936          * determined the fault belongs to the guest and queues the exception
9937          * for injection back into the guest.
9938          *
9939          * "Injected" interrupts can also collide with pending exceptions if
9940          * userspace ignores the "ready for injection" flag and blindly queues
9941          * an interrupt.  In that case, prioritizing the exception is correct,
9942          * as the exception "occurred" before the exit to userspace.  Trap-like
9943          * exceptions, e.g. most #DBs, have higher priority than interrupts.
9944          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9945          * priority, they're only generated (pended) during instruction
9946          * execution, and interrupts are recognized at instruction boundaries.
9947          * Thus a pending fault-like exception means the fault occurred on the
9948          * *previous* instruction and must be serviced prior to recognizing any
9949          * new events in order to fully complete the previous instruction.
9950          */
9951         if (vcpu->arch.exception.injected)
9952                 kvm_inject_exception(vcpu);
9953         else if (kvm_is_exception_pending(vcpu))
9954                 ; /* see above */
9955         else if (vcpu->arch.nmi_injected)
9956                 static_call(kvm_x86_inject_nmi)(vcpu);
9957         else if (vcpu->arch.interrupt.injected)
9958                 static_call(kvm_x86_inject_irq)(vcpu, true);
9959
9960         /*
9961          * Exceptions that morph to VM-Exits are handled above, and pending
9962          * exceptions on top of injected exceptions that do not VM-Exit should
9963          * either morph to #DF or, sadly, override the injected exception.
9964          */
9965         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9966                      vcpu->arch.exception.pending);
9967
9968         /*
9969          * Bail if immediate entry+exit to/from the guest is needed to complete
9970          * nested VM-Enter or event re-injection so that a different pending
9971          * event can be serviced (or if KVM needs to exit to userspace).
9972          *
9973          * Otherwise, continue processing events even if VM-Exit occurred.  The
9974          * VM-Exit will have cleared exceptions that were meant for L2, but
9975          * there may now be events that can be injected into L1.
9976          */
9977         if (r < 0)
9978                 goto out;
9979
9980         /*
9981          * A pending exception VM-Exit should either result in nested VM-Exit
9982          * or force an immediate re-entry and exit to/from L2, and exception
9983          * VM-Exits cannot be injected (flag should _never_ be set).
9984          */
9985         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9986                      vcpu->arch.exception_vmexit.pending);
9987
9988         /*
9989          * New events, other than exceptions, cannot be injected if KVM needs
9990          * to re-inject a previous event.  See above comments on re-injecting
9991          * for why pending exceptions get priority.
9992          */
9993         can_inject = !kvm_event_needs_reinjection(vcpu);
9994
9995         if (vcpu->arch.exception.pending) {
9996                 /*
9997                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9998                  * value pushed on the stack.  Trap-like exception and all #DBs
9999                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10000                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10001                  *
10002                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10003                  * describe the behavior of General Detect #DBs, which are
10004                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10005                  */
10006                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10007                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10008                                              X86_EFLAGS_RF);
10009
10010                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10011                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10012                         if (vcpu->arch.dr7 & DR7_GD) {
10013                                 vcpu->arch.dr7 &= ~DR7_GD;
10014                                 kvm_update_dr7(vcpu);
10015                         }
10016                 }
10017
10018                 kvm_inject_exception(vcpu);
10019
10020                 vcpu->arch.exception.pending = false;
10021                 vcpu->arch.exception.injected = true;
10022
10023                 can_inject = false;
10024         }
10025
10026         /* Don't inject interrupts if the user asked to avoid doing so */
10027         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10028                 return 0;
10029
10030         /*
10031          * Finally, inject interrupt events.  If an event cannot be injected
10032          * due to architectural conditions (e.g. IF=0) a window-open exit
10033          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10034          * and can architecturally be injected, but we cannot do it right now:
10035          * an interrupt could have arrived just now and we have to inject it
10036          * as a vmexit, or there could already an event in the queue, which is
10037          * indicated by can_inject.  In that case we request an immediate exit
10038          * in order to make progress and get back here for another iteration.
10039          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10040          */
10041         if (vcpu->arch.smi_pending) {
10042                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10043                 if (r < 0)
10044                         goto out;
10045                 if (r) {
10046                         vcpu->arch.smi_pending = false;
10047                         ++vcpu->arch.smi_count;
10048                         enter_smm(vcpu);
10049                         can_inject = false;
10050                 } else
10051                         static_call(kvm_x86_enable_smi_window)(vcpu);
10052         }
10053
10054         if (vcpu->arch.nmi_pending) {
10055                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10056                 if (r < 0)
10057                         goto out;
10058                 if (r) {
10059                         --vcpu->arch.nmi_pending;
10060                         vcpu->arch.nmi_injected = true;
10061                         static_call(kvm_x86_inject_nmi)(vcpu);
10062                         can_inject = false;
10063                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10064                 }
10065                 if (vcpu->arch.nmi_pending)
10066                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10067         }
10068
10069         if (kvm_cpu_has_injectable_intr(vcpu)) {
10070                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10071                 if (r < 0)
10072                         goto out;
10073                 if (r) {
10074                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10075                         static_call(kvm_x86_inject_irq)(vcpu, false);
10076                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10077                 }
10078                 if (kvm_cpu_has_injectable_intr(vcpu))
10079                         static_call(kvm_x86_enable_irq_window)(vcpu);
10080         }
10081
10082         if (is_guest_mode(vcpu) &&
10083             kvm_x86_ops.nested_ops->has_events &&
10084             kvm_x86_ops.nested_ops->has_events(vcpu))
10085                 *req_immediate_exit = true;
10086
10087         /*
10088          * KVM must never queue a new exception while injecting an event; KVM
10089          * is done emulating and should only propagate the to-be-injected event
10090          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10091          * infinite loop as KVM will bail from VM-Enter to inject the pending
10092          * exception and start the cycle all over.
10093          *
10094          * Exempt triple faults as they have special handling and won't put the
10095          * vCPU into an infinite loop.  Triple fault can be queued when running
10096          * VMX without unrestricted guest, as that requires KVM to emulate Real
10097          * Mode events (see kvm_inject_realmode_interrupt()).
10098          */
10099         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10100                      vcpu->arch.exception_vmexit.pending);
10101         return 0;
10102
10103 out:
10104         if (r == -EBUSY) {
10105                 *req_immediate_exit = true;
10106                 r = 0;
10107         }
10108         return r;
10109 }
10110
10111 static void process_nmi(struct kvm_vcpu *vcpu)
10112 {
10113         unsigned limit = 2;
10114
10115         /*
10116          * x86 is limited to one NMI running, and one NMI pending after it.
10117          * If an NMI is already in progress, limit further NMIs to just one.
10118          * Otherwise, allow two (and we'll inject the first one immediately).
10119          */
10120         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10121                 limit = 1;
10122
10123         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10124         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10125         kvm_make_request(KVM_REQ_EVENT, vcpu);
10126 }
10127
10128 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
10129 {
10130         u32 flags = 0;
10131         flags |= seg->g       << 23;
10132         flags |= seg->db      << 22;
10133         flags |= seg->l       << 21;
10134         flags |= seg->avl     << 20;
10135         flags |= seg->present << 15;
10136         flags |= seg->dpl     << 13;
10137         flags |= seg->s       << 12;
10138         flags |= seg->type    << 8;
10139         return flags;
10140 }
10141
10142 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
10143 {
10144         struct kvm_segment seg;
10145         int offset;
10146
10147         kvm_get_segment(vcpu, &seg, n);
10148         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
10149
10150         if (n < 3)
10151                 offset = 0x7f84 + n * 12;
10152         else
10153                 offset = 0x7f2c + (n - 3) * 12;
10154
10155         put_smstate(u32, buf, offset + 8, seg.base);
10156         put_smstate(u32, buf, offset + 4, seg.limit);
10157         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
10158 }
10159
10160 #ifdef CONFIG_X86_64
10161 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
10162 {
10163         struct kvm_segment seg;
10164         int offset;
10165         u16 flags;
10166
10167         kvm_get_segment(vcpu, &seg, n);
10168         offset = 0x7e00 + n * 16;
10169
10170         flags = enter_smm_get_segment_flags(&seg) >> 8;
10171         put_smstate(u16, buf, offset, seg.selector);
10172         put_smstate(u16, buf, offset + 2, flags);
10173         put_smstate(u32, buf, offset + 4, seg.limit);
10174         put_smstate(u64, buf, offset + 8, seg.base);
10175 }
10176 #endif
10177
10178 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
10179 {
10180         struct desc_ptr dt;
10181         struct kvm_segment seg;
10182         unsigned long val;
10183         int i;
10184
10185         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
10186         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
10187         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
10188         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
10189
10190         for (i = 0; i < 8; i++)
10191                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
10192
10193         kvm_get_dr(vcpu, 6, &val);
10194         put_smstate(u32, buf, 0x7fcc, (u32)val);
10195         kvm_get_dr(vcpu, 7, &val);
10196         put_smstate(u32, buf, 0x7fc8, (u32)val);
10197
10198         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10199         put_smstate(u32, buf, 0x7fc4, seg.selector);
10200         put_smstate(u32, buf, 0x7f64, seg.base);
10201         put_smstate(u32, buf, 0x7f60, seg.limit);
10202         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
10203
10204         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10205         put_smstate(u32, buf, 0x7fc0, seg.selector);
10206         put_smstate(u32, buf, 0x7f80, seg.base);
10207         put_smstate(u32, buf, 0x7f7c, seg.limit);
10208         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
10209
10210         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10211         put_smstate(u32, buf, 0x7f74, dt.address);
10212         put_smstate(u32, buf, 0x7f70, dt.size);
10213
10214         static_call(kvm_x86_get_idt)(vcpu, &dt);
10215         put_smstate(u32, buf, 0x7f58, dt.address);
10216         put_smstate(u32, buf, 0x7f54, dt.size);
10217
10218         for (i = 0; i < 6; i++)
10219                 enter_smm_save_seg_32(vcpu, buf, i);
10220
10221         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
10222
10223         /* revision id */
10224         put_smstate(u32, buf, 0x7efc, 0x00020000);
10225         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
10226 }
10227
10228 #ifdef CONFIG_X86_64
10229 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
10230 {
10231         struct desc_ptr dt;
10232         struct kvm_segment seg;
10233         unsigned long val;
10234         int i;
10235
10236         for (i = 0; i < 16; i++)
10237                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
10238
10239         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
10240         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
10241
10242         kvm_get_dr(vcpu, 6, &val);
10243         put_smstate(u64, buf, 0x7f68, val);
10244         kvm_get_dr(vcpu, 7, &val);
10245         put_smstate(u64, buf, 0x7f60, val);
10246
10247         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
10248         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
10249         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
10250
10251         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
10252
10253         /* revision id */
10254         put_smstate(u32, buf, 0x7efc, 0x00020064);
10255
10256         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
10257
10258         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10259         put_smstate(u16, buf, 0x7e90, seg.selector);
10260         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
10261         put_smstate(u32, buf, 0x7e94, seg.limit);
10262         put_smstate(u64, buf, 0x7e98, seg.base);
10263
10264         static_call(kvm_x86_get_idt)(vcpu, &dt);
10265         put_smstate(u32, buf, 0x7e84, dt.size);
10266         put_smstate(u64, buf, 0x7e88, dt.address);
10267
10268         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10269         put_smstate(u16, buf, 0x7e70, seg.selector);
10270         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
10271         put_smstate(u32, buf, 0x7e74, seg.limit);
10272         put_smstate(u64, buf, 0x7e78, seg.base);
10273
10274         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10275         put_smstate(u32, buf, 0x7e64, dt.size);
10276         put_smstate(u64, buf, 0x7e68, dt.address);
10277
10278         for (i = 0; i < 6; i++)
10279                 enter_smm_save_seg_64(vcpu, buf, i);
10280 }
10281 #endif
10282
10283 static void enter_smm(struct kvm_vcpu *vcpu)
10284 {
10285         struct kvm_segment cs, ds;
10286         struct desc_ptr dt;
10287         unsigned long cr0;
10288         char buf[512];
10289
10290         memset(buf, 0, 512);
10291 #ifdef CONFIG_X86_64
10292         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10293                 enter_smm_save_state_64(vcpu, buf);
10294         else
10295 #endif
10296                 enter_smm_save_state_32(vcpu, buf);
10297
10298         /*
10299          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10300          * state (e.g. leave guest mode) after we've saved the state into the
10301          * SMM state-save area.
10302          */
10303         static_call(kvm_x86_enter_smm)(vcpu, buf);
10304
10305         kvm_smm_changed(vcpu, true);
10306         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10307
10308         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10309                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10310         else
10311                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10312
10313         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10314         kvm_rip_write(vcpu, 0x8000);
10315
10316         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10317         static_call(kvm_x86_set_cr0)(vcpu, cr0);
10318         vcpu->arch.cr0 = cr0;
10319
10320         static_call(kvm_x86_set_cr4)(vcpu, 0);
10321
10322         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
10323         dt.address = dt.size = 0;
10324         static_call(kvm_x86_set_idt)(vcpu, &dt);
10325
10326         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10327
10328         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10329         cs.base = vcpu->arch.smbase;
10330
10331         ds.selector = 0;
10332         ds.base = 0;
10333
10334         cs.limit    = ds.limit = 0xffffffff;
10335         cs.type     = ds.type = 0x3;
10336         cs.dpl      = ds.dpl = 0;
10337         cs.db       = ds.db = 0;
10338         cs.s        = ds.s = 1;
10339         cs.l        = ds.l = 0;
10340         cs.g        = ds.g = 1;
10341         cs.avl      = ds.avl = 0;
10342         cs.present  = ds.present = 1;
10343         cs.unusable = ds.unusable = 0;
10344         cs.padding  = ds.padding = 0;
10345
10346         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10347         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10348         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10349         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10350         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10351         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10352
10353 #ifdef CONFIG_X86_64
10354         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10355                 static_call(kvm_x86_set_efer)(vcpu, 0);
10356 #endif
10357
10358         kvm_update_cpuid_runtime(vcpu);
10359         kvm_mmu_reset_context(vcpu);
10360 }
10361
10362 static void process_smi(struct kvm_vcpu *vcpu)
10363 {
10364         vcpu->arch.smi_pending = true;
10365         kvm_make_request(KVM_REQ_EVENT, vcpu);
10366 }
10367
10368 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10369                                        unsigned long *vcpu_bitmap)
10370 {
10371         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10372 }
10373
10374 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10375 {
10376         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10377 }
10378
10379 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10380 {
10381         struct kvm_lapic *apic = vcpu->arch.apic;
10382         bool activate;
10383
10384         if (!lapic_in_kernel(vcpu))
10385                 return;
10386
10387         down_read(&vcpu->kvm->arch.apicv_update_lock);
10388         preempt_disable();
10389
10390         /* Do not activate APICV when APIC is disabled */
10391         activate = kvm_vcpu_apicv_activated(vcpu) &&
10392                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10393
10394         if (apic->apicv_active == activate)
10395                 goto out;
10396
10397         apic->apicv_active = activate;
10398         kvm_apic_update_apicv(vcpu);
10399         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10400
10401         /*
10402          * When APICv gets disabled, we may still have injected interrupts
10403          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10404          * still active when the interrupt got accepted. Make sure
10405          * kvm_check_and_inject_events() is called to check for that.
10406          */
10407         if (!apic->apicv_active)
10408                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10409
10410 out:
10411         preempt_enable();
10412         up_read(&vcpu->kvm->arch.apicv_update_lock);
10413 }
10414 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10415
10416 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10417                                       enum kvm_apicv_inhibit reason, bool set)
10418 {
10419         unsigned long old, new;
10420
10421         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10422
10423         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10424                 return;
10425
10426         old = new = kvm->arch.apicv_inhibit_reasons;
10427
10428         set_or_clear_apicv_inhibit(&new, reason, set);
10429
10430         if (!!old != !!new) {
10431                 /*
10432                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10433                  * false positives in the sanity check WARN in svm_vcpu_run().
10434                  * This task will wait for all vCPUs to ack the kick IRQ before
10435                  * updating apicv_inhibit_reasons, and all other vCPUs will
10436                  * block on acquiring apicv_update_lock so that vCPUs can't
10437                  * redo svm_vcpu_run() without seeing the new inhibit state.
10438                  *
10439                  * Note, holding apicv_update_lock and taking it in the read
10440                  * side (handling the request) also prevents other vCPUs from
10441                  * servicing the request with a stale apicv_inhibit_reasons.
10442                  */
10443                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10444                 kvm->arch.apicv_inhibit_reasons = new;
10445                 if (new) {
10446                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10447                         int idx = srcu_read_lock(&kvm->srcu);
10448
10449                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10450                         srcu_read_unlock(&kvm->srcu, idx);
10451                 }
10452         } else {
10453                 kvm->arch.apicv_inhibit_reasons = new;
10454         }
10455 }
10456
10457 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10458                                     enum kvm_apicv_inhibit reason, bool set)
10459 {
10460         if (!enable_apicv)
10461                 return;
10462
10463         down_write(&kvm->arch.apicv_update_lock);
10464         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10465         up_write(&kvm->arch.apicv_update_lock);
10466 }
10467 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10468
10469 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10470 {
10471         if (!kvm_apic_present(vcpu))
10472                 return;
10473
10474         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10475
10476         if (irqchip_split(vcpu->kvm))
10477                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10478         else {
10479                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10480                 if (ioapic_in_kernel(vcpu->kvm))
10481                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10482         }
10483
10484         if (is_guest_mode(vcpu))
10485                 vcpu->arch.load_eoi_exitmap_pending = true;
10486         else
10487                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10488 }
10489
10490 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10491 {
10492         u64 eoi_exit_bitmap[4];
10493
10494         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10495                 return;
10496
10497         if (to_hv_vcpu(vcpu)) {
10498                 bitmap_or((ulong *)eoi_exit_bitmap,
10499                           vcpu->arch.ioapic_handled_vectors,
10500                           to_hv_synic(vcpu)->vec_bitmap, 256);
10501                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10502                 return;
10503         }
10504
10505         static_call_cond(kvm_x86_load_eoi_exitmap)(
10506                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10507 }
10508
10509 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10510                                             unsigned long start, unsigned long end)
10511 {
10512         unsigned long apic_address;
10513
10514         /*
10515          * The physical address of apic access page is stored in the VMCS.
10516          * Update it when it becomes invalid.
10517          */
10518         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10519         if (start <= apic_address && apic_address < end)
10520                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10521 }
10522
10523 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10524 {
10525         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10526 }
10527
10528 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10529 {
10530         if (!lapic_in_kernel(vcpu))
10531                 return;
10532
10533         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10534 }
10535
10536 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10537 {
10538         smp_send_reschedule(vcpu->cpu);
10539 }
10540 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10541
10542 /*
10543  * Called within kvm->srcu read side.
10544  * Returns 1 to let vcpu_run() continue the guest execution loop without
10545  * exiting to the userspace.  Otherwise, the value will be returned to the
10546  * userspace.
10547  */
10548 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10549 {
10550         int r;
10551         bool req_int_win =
10552                 dm_request_for_irq_injection(vcpu) &&
10553                 kvm_cpu_accept_dm_intr(vcpu);
10554         fastpath_t exit_fastpath;
10555
10556         bool req_immediate_exit = false;
10557
10558         /* Forbid vmenter if vcpu dirty ring is soft-full */
10559         if (unlikely(vcpu->kvm->dirty_ring_size &&
10560                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10561                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10562                 trace_kvm_dirty_ring_exit(vcpu);
10563                 r = 0;
10564                 goto out;
10565         }
10566
10567         if (kvm_request_pending(vcpu)) {
10568                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10569                         r = -EIO;
10570                         goto out;
10571                 }
10572                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10573                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10574                                 r = 0;
10575                                 goto out;
10576                         }
10577                 }
10578                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10579                         kvm_mmu_free_obsolete_roots(vcpu);
10580                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10581                         __kvm_migrate_timers(vcpu);
10582                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10583                         kvm_update_masterclock(vcpu->kvm);
10584                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10585                         kvm_gen_kvmclock_update(vcpu);
10586                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10587                         r = kvm_guest_time_update(vcpu);
10588                         if (unlikely(r))
10589                                 goto out;
10590                 }
10591                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10592                         kvm_mmu_sync_roots(vcpu);
10593                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10594                         kvm_mmu_load_pgd(vcpu);
10595                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10596                         kvm_vcpu_flush_tlb_all(vcpu);
10597
10598                         /* Flushing all ASIDs flushes the current ASID... */
10599                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10600                 }
10601                 kvm_service_local_tlb_flush_requests(vcpu);
10602
10603                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10604                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10605                         r = 0;
10606                         goto out;
10607                 }
10608                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10609                         if (is_guest_mode(vcpu))
10610                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10611
10612                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10613                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10614                                 vcpu->mmio_needed = 0;
10615                                 r = 0;
10616                                 goto out;
10617                         }
10618                 }
10619                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10620                         /* Page is swapped out. Do synthetic halt */
10621                         vcpu->arch.apf.halted = true;
10622                         r = 1;
10623                         goto out;
10624                 }
10625                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10626                         record_steal_time(vcpu);
10627                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10628                         process_smi(vcpu);
10629                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10630                         process_nmi(vcpu);
10631                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10632                         kvm_pmu_handle_event(vcpu);
10633                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10634                         kvm_pmu_deliver_pmi(vcpu);
10635                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10636                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10637                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10638                                      vcpu->arch.ioapic_handled_vectors)) {
10639                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10640                                 vcpu->run->eoi.vector =
10641                                                 vcpu->arch.pending_ioapic_eoi;
10642                                 r = 0;
10643                                 goto out;
10644                         }
10645                 }
10646                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10647                         vcpu_scan_ioapic(vcpu);
10648                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10649                         vcpu_load_eoi_exitmap(vcpu);
10650                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10651                         kvm_vcpu_reload_apic_access_page(vcpu);
10652                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10653                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10654                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10655                         vcpu->run->system_event.ndata = 0;
10656                         r = 0;
10657                         goto out;
10658                 }
10659                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10660                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10661                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10662                         vcpu->run->system_event.ndata = 0;
10663                         r = 0;
10664                         goto out;
10665                 }
10666                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10667                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10668
10669                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10670                         vcpu->run->hyperv = hv_vcpu->exit;
10671                         r = 0;
10672                         goto out;
10673                 }
10674
10675                 /*
10676                  * KVM_REQ_HV_STIMER has to be processed after
10677                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10678                  * depend on the guest clock being up-to-date
10679                  */
10680                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10681                         kvm_hv_process_stimers(vcpu);
10682                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10683                         kvm_vcpu_update_apicv(vcpu);
10684                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10685                         kvm_check_async_pf_completion(vcpu);
10686                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10687                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10688
10689                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10690                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10691         }
10692
10693         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10694             kvm_xen_has_interrupt(vcpu)) {
10695                 ++vcpu->stat.req_event;
10696                 r = kvm_apic_accept_events(vcpu);
10697                 if (r < 0) {
10698                         r = 0;
10699                         goto out;
10700                 }
10701                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10702                         r = 1;
10703                         goto out;
10704                 }
10705
10706                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10707                 if (r < 0) {
10708                         r = 0;
10709                         goto out;
10710                 }
10711                 if (req_int_win)
10712                         static_call(kvm_x86_enable_irq_window)(vcpu);
10713
10714                 if (kvm_lapic_enabled(vcpu)) {
10715                         update_cr8_intercept(vcpu);
10716                         kvm_lapic_sync_to_vapic(vcpu);
10717                 }
10718         }
10719
10720         r = kvm_mmu_reload(vcpu);
10721         if (unlikely(r)) {
10722                 goto cancel_injection;
10723         }
10724
10725         preempt_disable();
10726
10727         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10728
10729         /*
10730          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10731          * IPI are then delayed after guest entry, which ensures that they
10732          * result in virtual interrupt delivery.
10733          */
10734         local_irq_disable();
10735
10736         /* Store vcpu->apicv_active before vcpu->mode.  */
10737         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10738
10739         kvm_vcpu_srcu_read_unlock(vcpu);
10740
10741         /*
10742          * 1) We should set ->mode before checking ->requests.  Please see
10743          * the comment in kvm_vcpu_exiting_guest_mode().
10744          *
10745          * 2) For APICv, we should set ->mode before checking PID.ON. This
10746          * pairs with the memory barrier implicit in pi_test_and_set_on
10747          * (see vmx_deliver_posted_interrupt).
10748          *
10749          * 3) This also orders the write to mode from any reads to the page
10750          * tables done while the VCPU is running.  Please see the comment
10751          * in kvm_flush_remote_tlbs.
10752          */
10753         smp_mb__after_srcu_read_unlock();
10754
10755         /*
10756          * Process pending posted interrupts to handle the case where the
10757          * notification IRQ arrived in the host, or was never sent (because the
10758          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10759          * status, KVM doesn't update assigned devices when APICv is inhibited,
10760          * i.e. they can post interrupts even if APICv is temporarily disabled.
10761          */
10762         if (kvm_lapic_enabled(vcpu))
10763                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10764
10765         if (kvm_vcpu_exit_request(vcpu)) {
10766                 vcpu->mode = OUTSIDE_GUEST_MODE;
10767                 smp_wmb();
10768                 local_irq_enable();
10769                 preempt_enable();
10770                 kvm_vcpu_srcu_read_lock(vcpu);
10771                 r = 1;
10772                 goto cancel_injection;
10773         }
10774
10775         if (req_immediate_exit) {
10776                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10777                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10778         }
10779
10780         fpregs_assert_state_consistent();
10781         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10782                 switch_fpu_return();
10783
10784         if (vcpu->arch.guest_fpu.xfd_err)
10785                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10786
10787         if (unlikely(vcpu->arch.switch_db_regs)) {
10788                 set_debugreg(0, 7);
10789                 set_debugreg(vcpu->arch.eff_db[0], 0);
10790                 set_debugreg(vcpu->arch.eff_db[1], 1);
10791                 set_debugreg(vcpu->arch.eff_db[2], 2);
10792                 set_debugreg(vcpu->arch.eff_db[3], 3);
10793         } else if (unlikely(hw_breakpoint_active())) {
10794                 set_debugreg(0, 7);
10795         }
10796
10797         guest_timing_enter_irqoff();
10798
10799         for (;;) {
10800                 /*
10801                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10802                  * update must kick and wait for all vCPUs before toggling the
10803                  * per-VM state, and responsing vCPUs must wait for the update
10804                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10805                  */
10806                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10807                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10808
10809                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10810                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10811                         break;
10812
10813                 if (kvm_lapic_enabled(vcpu))
10814                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10815
10816                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10817                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10818                         break;
10819                 }
10820         }
10821
10822         /*
10823          * Do this here before restoring debug registers on the host.  And
10824          * since we do this before handling the vmexit, a DR access vmexit
10825          * can (a) read the correct value of the debug registers, (b) set
10826          * KVM_DEBUGREG_WONT_EXIT again.
10827          */
10828         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10829                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10830                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10831                 kvm_update_dr0123(vcpu);
10832                 kvm_update_dr7(vcpu);
10833         }
10834
10835         /*
10836          * If the guest has used debug registers, at least dr7
10837          * will be disabled while returning to the host.
10838          * If we don't have active breakpoints in the host, we don't
10839          * care about the messed up debug address registers. But if
10840          * we have some of them active, restore the old state.
10841          */
10842         if (hw_breakpoint_active())
10843                 hw_breakpoint_restore();
10844
10845         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10846         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10847
10848         vcpu->mode = OUTSIDE_GUEST_MODE;
10849         smp_wmb();
10850
10851         /*
10852          * Sync xfd before calling handle_exit_irqoff() which may
10853          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10854          * in #NM irqoff handler).
10855          */
10856         if (vcpu->arch.xfd_no_write_intercept)
10857                 fpu_sync_guest_vmexit_xfd_state();
10858
10859         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10860
10861         if (vcpu->arch.guest_fpu.xfd_err)
10862                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10863
10864         /*
10865          * Consume any pending interrupts, including the possible source of
10866          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10867          * An instruction is required after local_irq_enable() to fully unblock
10868          * interrupts on processors that implement an interrupt shadow, the
10869          * stat.exits increment will do nicely.
10870          */
10871         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10872         local_irq_enable();
10873         ++vcpu->stat.exits;
10874         local_irq_disable();
10875         kvm_after_interrupt(vcpu);
10876
10877         /*
10878          * Wait until after servicing IRQs to account guest time so that any
10879          * ticks that occurred while running the guest are properly accounted
10880          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10881          * of accounting via context tracking, but the loss of accuracy is
10882          * acceptable for all known use cases.
10883          */
10884         guest_timing_exit_irqoff();
10885
10886         local_irq_enable();
10887         preempt_enable();
10888
10889         kvm_vcpu_srcu_read_lock(vcpu);
10890
10891         /*
10892          * Profile KVM exit RIPs:
10893          */
10894         if (unlikely(prof_on == KVM_PROFILING)) {
10895                 unsigned long rip = kvm_rip_read(vcpu);
10896                 profile_hit(KVM_PROFILING, (void *)rip);
10897         }
10898
10899         if (unlikely(vcpu->arch.tsc_always_catchup))
10900                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10901
10902         if (vcpu->arch.apic_attention)
10903                 kvm_lapic_sync_from_vapic(vcpu);
10904
10905         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10906         return r;
10907
10908 cancel_injection:
10909         if (req_immediate_exit)
10910                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10911         static_call(kvm_x86_cancel_injection)(vcpu);
10912         if (unlikely(vcpu->arch.apic_attention))
10913                 kvm_lapic_sync_from_vapic(vcpu);
10914 out:
10915         return r;
10916 }
10917
10918 /* Called within kvm->srcu read side.  */
10919 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10920 {
10921         bool hv_timer;
10922
10923         if (!kvm_arch_vcpu_runnable(vcpu)) {
10924                 /*
10925                  * Switch to the software timer before halt-polling/blocking as
10926                  * the guest's timer may be a break event for the vCPU, and the
10927                  * hypervisor timer runs only when the CPU is in guest mode.
10928                  * Switch before halt-polling so that KVM recognizes an expired
10929                  * timer before blocking.
10930                  */
10931                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10932                 if (hv_timer)
10933                         kvm_lapic_switch_to_sw_timer(vcpu);
10934
10935                 kvm_vcpu_srcu_read_unlock(vcpu);
10936                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10937                         kvm_vcpu_halt(vcpu);
10938                 else
10939                         kvm_vcpu_block(vcpu);
10940                 kvm_vcpu_srcu_read_lock(vcpu);
10941
10942                 if (hv_timer)
10943                         kvm_lapic_switch_to_hv_timer(vcpu);
10944
10945                 /*
10946                  * If the vCPU is not runnable, a signal or another host event
10947                  * of some kind is pending; service it without changing the
10948                  * vCPU's activity state.
10949                  */
10950                 if (!kvm_arch_vcpu_runnable(vcpu))
10951                         return 1;
10952         }
10953
10954         /*
10955          * Evaluate nested events before exiting the halted state.  This allows
10956          * the halt state to be recorded properly in the VMCS12's activity
10957          * state field (AMD does not have a similar field and a VM-Exit always
10958          * causes a spurious wakeup from HLT).
10959          */
10960         if (is_guest_mode(vcpu)) {
10961                 if (kvm_check_nested_events(vcpu) < 0)
10962                         return 0;
10963         }
10964
10965         if (kvm_apic_accept_events(vcpu) < 0)
10966                 return 0;
10967         switch(vcpu->arch.mp_state) {
10968         case KVM_MP_STATE_HALTED:
10969         case KVM_MP_STATE_AP_RESET_HOLD:
10970                 vcpu->arch.pv.pv_unhalted = false;
10971                 vcpu->arch.mp_state =
10972                         KVM_MP_STATE_RUNNABLE;
10973                 fallthrough;
10974         case KVM_MP_STATE_RUNNABLE:
10975                 vcpu->arch.apf.halted = false;
10976                 break;
10977         case KVM_MP_STATE_INIT_RECEIVED:
10978                 break;
10979         default:
10980                 WARN_ON_ONCE(1);
10981                 break;
10982         }
10983         return 1;
10984 }
10985
10986 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10987 {
10988         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10989                 !vcpu->arch.apf.halted);
10990 }
10991
10992 /* Called within kvm->srcu read side.  */
10993 static int vcpu_run(struct kvm_vcpu *vcpu)
10994 {
10995         int r;
10996
10997         vcpu->arch.l1tf_flush_l1d = true;
10998
10999         for (;;) {
11000                 /*
11001                  * If another guest vCPU requests a PV TLB flush in the middle
11002                  * of instruction emulation, the rest of the emulation could
11003                  * use a stale page translation. Assume that any code after
11004                  * this point can start executing an instruction.
11005                  */
11006                 vcpu->arch.at_instruction_boundary = false;
11007                 if (kvm_vcpu_running(vcpu)) {
11008                         r = vcpu_enter_guest(vcpu);
11009                 } else {
11010                         r = vcpu_block(vcpu);
11011                 }
11012
11013                 if (r <= 0)
11014                         break;
11015
11016                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11017                 if (kvm_xen_has_pending_events(vcpu))
11018                         kvm_xen_inject_pending_events(vcpu);
11019
11020                 if (kvm_cpu_has_pending_timer(vcpu))
11021                         kvm_inject_pending_timer_irqs(vcpu);
11022
11023                 if (dm_request_for_irq_injection(vcpu) &&
11024                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11025                         r = 0;
11026                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11027                         ++vcpu->stat.request_irq_exits;
11028                         break;
11029                 }
11030
11031                 if (__xfer_to_guest_mode_work_pending()) {
11032                         kvm_vcpu_srcu_read_unlock(vcpu);
11033                         r = xfer_to_guest_mode_handle_work(vcpu);
11034                         kvm_vcpu_srcu_read_lock(vcpu);
11035                         if (r)
11036                                 return r;
11037                 }
11038         }
11039
11040         return r;
11041 }
11042
11043 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11044 {
11045         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11046 }
11047
11048 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11049 {
11050         BUG_ON(!vcpu->arch.pio.count);
11051
11052         return complete_emulated_io(vcpu);
11053 }
11054
11055 /*
11056  * Implements the following, as a state machine:
11057  *
11058  * read:
11059  *   for each fragment
11060  *     for each mmio piece in the fragment
11061  *       write gpa, len
11062  *       exit
11063  *       copy data
11064  *   execute insn
11065  *
11066  * write:
11067  *   for each fragment
11068  *     for each mmio piece in the fragment
11069  *       write gpa, len
11070  *       copy data
11071  *       exit
11072  */
11073 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11074 {
11075         struct kvm_run *run = vcpu->run;
11076         struct kvm_mmio_fragment *frag;
11077         unsigned len;
11078
11079         BUG_ON(!vcpu->mmio_needed);
11080
11081         /* Complete previous fragment */
11082         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11083         len = min(8u, frag->len);
11084         if (!vcpu->mmio_is_write)
11085                 memcpy(frag->data, run->mmio.data, len);
11086
11087         if (frag->len <= 8) {
11088                 /* Switch to the next fragment. */
11089                 frag++;
11090                 vcpu->mmio_cur_fragment++;
11091         } else {
11092                 /* Go forward to the next mmio piece. */
11093                 frag->data += len;
11094                 frag->gpa += len;
11095                 frag->len -= len;
11096         }
11097
11098         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11099                 vcpu->mmio_needed = 0;
11100
11101                 /* FIXME: return into emulator if single-stepping.  */
11102                 if (vcpu->mmio_is_write)
11103                         return 1;
11104                 vcpu->mmio_read_completed = 1;
11105                 return complete_emulated_io(vcpu);
11106         }
11107
11108         run->exit_reason = KVM_EXIT_MMIO;
11109         run->mmio.phys_addr = frag->gpa;
11110         if (vcpu->mmio_is_write)
11111                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11112         run->mmio.len = min(8u, frag->len);
11113         run->mmio.is_write = vcpu->mmio_is_write;
11114         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11115         return 0;
11116 }
11117
11118 /* Swap (qemu) user FPU context for the guest FPU context. */
11119 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11120 {
11121         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11122         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11123         trace_kvm_fpu(1);
11124 }
11125
11126 /* When vcpu_run ends, restore user space FPU context. */
11127 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11128 {
11129         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11130         ++vcpu->stat.fpu_reload;
11131         trace_kvm_fpu(0);
11132 }
11133
11134 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11135 {
11136         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11137         struct kvm_run *kvm_run = vcpu->run;
11138         int r;
11139
11140         vcpu_load(vcpu);
11141         kvm_sigset_activate(vcpu);
11142         kvm_run->flags = 0;
11143         kvm_load_guest_fpu(vcpu);
11144
11145         kvm_vcpu_srcu_read_lock(vcpu);
11146         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11147                 if (kvm_run->immediate_exit) {
11148                         r = -EINTR;
11149                         goto out;
11150                 }
11151                 /*
11152                  * It should be impossible for the hypervisor timer to be in
11153                  * use before KVM has ever run the vCPU.
11154                  */
11155                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11156
11157                 kvm_vcpu_srcu_read_unlock(vcpu);
11158                 kvm_vcpu_block(vcpu);
11159                 kvm_vcpu_srcu_read_lock(vcpu);
11160
11161                 if (kvm_apic_accept_events(vcpu) < 0) {
11162                         r = 0;
11163                         goto out;
11164                 }
11165                 r = -EAGAIN;
11166                 if (signal_pending(current)) {
11167                         r = -EINTR;
11168                         kvm_run->exit_reason = KVM_EXIT_INTR;
11169                         ++vcpu->stat.signal_exits;
11170                 }
11171                 goto out;
11172         }
11173
11174         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11175             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11176                 r = -EINVAL;
11177                 goto out;
11178         }
11179
11180         if (kvm_run->kvm_dirty_regs) {
11181                 r = sync_regs(vcpu);
11182                 if (r != 0)
11183                         goto out;
11184         }
11185
11186         /* re-sync apic's tpr */
11187         if (!lapic_in_kernel(vcpu)) {
11188                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11189                         r = -EINVAL;
11190                         goto out;
11191                 }
11192         }
11193
11194         /*
11195          * If userspace set a pending exception and L2 is active, convert it to
11196          * a pending VM-Exit if L1 wants to intercept the exception.
11197          */
11198         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11199             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11200                                                         ex->error_code)) {
11201                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11202                                            ex->has_error_code, ex->error_code,
11203                                            ex->has_payload, ex->payload);
11204                 ex->injected = false;
11205                 ex->pending = false;
11206         }
11207         vcpu->arch.exception_from_userspace = false;
11208
11209         if (unlikely(vcpu->arch.complete_userspace_io)) {
11210                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11211                 vcpu->arch.complete_userspace_io = NULL;
11212                 r = cui(vcpu);
11213                 if (r <= 0)
11214                         goto out;
11215         } else {
11216                 WARN_ON_ONCE(vcpu->arch.pio.count);
11217                 WARN_ON_ONCE(vcpu->mmio_needed);
11218         }
11219
11220         if (kvm_run->immediate_exit) {
11221                 r = -EINTR;
11222                 goto out;
11223         }
11224
11225         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11226         if (r <= 0)
11227                 goto out;
11228
11229         r = vcpu_run(vcpu);
11230
11231 out:
11232         kvm_put_guest_fpu(vcpu);
11233         if (kvm_run->kvm_valid_regs)
11234                 store_regs(vcpu);
11235         post_kvm_run_save(vcpu);
11236         kvm_vcpu_srcu_read_unlock(vcpu);
11237
11238         kvm_sigset_deactivate(vcpu);
11239         vcpu_put(vcpu);
11240         return r;
11241 }
11242
11243 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11244 {
11245         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11246                 /*
11247                  * We are here if userspace calls get_regs() in the middle of
11248                  * instruction emulation. Registers state needs to be copied
11249                  * back from emulation context to vcpu. Userspace shouldn't do
11250                  * that usually, but some bad designed PV devices (vmware
11251                  * backdoor interface) need this to work
11252                  */
11253                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11254                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11255         }
11256         regs->rax = kvm_rax_read(vcpu);
11257         regs->rbx = kvm_rbx_read(vcpu);
11258         regs->rcx = kvm_rcx_read(vcpu);
11259         regs->rdx = kvm_rdx_read(vcpu);
11260         regs->rsi = kvm_rsi_read(vcpu);
11261         regs->rdi = kvm_rdi_read(vcpu);
11262         regs->rsp = kvm_rsp_read(vcpu);
11263         regs->rbp = kvm_rbp_read(vcpu);
11264 #ifdef CONFIG_X86_64
11265         regs->r8 = kvm_r8_read(vcpu);
11266         regs->r9 = kvm_r9_read(vcpu);
11267         regs->r10 = kvm_r10_read(vcpu);
11268         regs->r11 = kvm_r11_read(vcpu);
11269         regs->r12 = kvm_r12_read(vcpu);
11270         regs->r13 = kvm_r13_read(vcpu);
11271         regs->r14 = kvm_r14_read(vcpu);
11272         regs->r15 = kvm_r15_read(vcpu);
11273 #endif
11274
11275         regs->rip = kvm_rip_read(vcpu);
11276         regs->rflags = kvm_get_rflags(vcpu);
11277 }
11278
11279 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11280 {
11281         vcpu_load(vcpu);
11282         __get_regs(vcpu, regs);
11283         vcpu_put(vcpu);
11284         return 0;
11285 }
11286
11287 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11288 {
11289         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11290         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11291
11292         kvm_rax_write(vcpu, regs->rax);
11293         kvm_rbx_write(vcpu, regs->rbx);
11294         kvm_rcx_write(vcpu, regs->rcx);
11295         kvm_rdx_write(vcpu, regs->rdx);
11296         kvm_rsi_write(vcpu, regs->rsi);
11297         kvm_rdi_write(vcpu, regs->rdi);
11298         kvm_rsp_write(vcpu, regs->rsp);
11299         kvm_rbp_write(vcpu, regs->rbp);
11300 #ifdef CONFIG_X86_64
11301         kvm_r8_write(vcpu, regs->r8);
11302         kvm_r9_write(vcpu, regs->r9);
11303         kvm_r10_write(vcpu, regs->r10);
11304         kvm_r11_write(vcpu, regs->r11);
11305         kvm_r12_write(vcpu, regs->r12);
11306         kvm_r13_write(vcpu, regs->r13);
11307         kvm_r14_write(vcpu, regs->r14);
11308         kvm_r15_write(vcpu, regs->r15);
11309 #endif
11310
11311         kvm_rip_write(vcpu, regs->rip);
11312         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11313
11314         vcpu->arch.exception.pending = false;
11315         vcpu->arch.exception_vmexit.pending = false;
11316
11317         kvm_make_request(KVM_REQ_EVENT, vcpu);
11318 }
11319
11320 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11321 {
11322         vcpu_load(vcpu);
11323         __set_regs(vcpu, regs);
11324         vcpu_put(vcpu);
11325         return 0;
11326 }
11327
11328 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11329 {
11330         struct desc_ptr dt;
11331
11332         if (vcpu->arch.guest_state_protected)
11333                 goto skip_protected_regs;
11334
11335         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11336         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11337         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11338         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11339         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11340         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11341
11342         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11343         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11344
11345         static_call(kvm_x86_get_idt)(vcpu, &dt);
11346         sregs->idt.limit = dt.size;
11347         sregs->idt.base = dt.address;
11348         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11349         sregs->gdt.limit = dt.size;
11350         sregs->gdt.base = dt.address;
11351
11352         sregs->cr2 = vcpu->arch.cr2;
11353         sregs->cr3 = kvm_read_cr3(vcpu);
11354
11355 skip_protected_regs:
11356         sregs->cr0 = kvm_read_cr0(vcpu);
11357         sregs->cr4 = kvm_read_cr4(vcpu);
11358         sregs->cr8 = kvm_get_cr8(vcpu);
11359         sregs->efer = vcpu->arch.efer;
11360         sregs->apic_base = kvm_get_apic_base(vcpu);
11361 }
11362
11363 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11364 {
11365         __get_sregs_common(vcpu, sregs);
11366
11367         if (vcpu->arch.guest_state_protected)
11368                 return;
11369
11370         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11371                 set_bit(vcpu->arch.interrupt.nr,
11372                         (unsigned long *)sregs->interrupt_bitmap);
11373 }
11374
11375 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11376 {
11377         int i;
11378
11379         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11380
11381         if (vcpu->arch.guest_state_protected)
11382                 return;
11383
11384         if (is_pae_paging(vcpu)) {
11385                 for (i = 0 ; i < 4 ; i++)
11386                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11387                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11388         }
11389 }
11390
11391 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11392                                   struct kvm_sregs *sregs)
11393 {
11394         vcpu_load(vcpu);
11395         __get_sregs(vcpu, sregs);
11396         vcpu_put(vcpu);
11397         return 0;
11398 }
11399
11400 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11401                                     struct kvm_mp_state *mp_state)
11402 {
11403         int r;
11404
11405         vcpu_load(vcpu);
11406         if (kvm_mpx_supported())
11407                 kvm_load_guest_fpu(vcpu);
11408
11409         r = kvm_apic_accept_events(vcpu);
11410         if (r < 0)
11411                 goto out;
11412         r = 0;
11413
11414         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11415              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11416             vcpu->arch.pv.pv_unhalted)
11417                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11418         else
11419                 mp_state->mp_state = vcpu->arch.mp_state;
11420
11421 out:
11422         if (kvm_mpx_supported())
11423                 kvm_put_guest_fpu(vcpu);
11424         vcpu_put(vcpu);
11425         return r;
11426 }
11427
11428 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11429                                     struct kvm_mp_state *mp_state)
11430 {
11431         int ret = -EINVAL;
11432
11433         vcpu_load(vcpu);
11434
11435         switch (mp_state->mp_state) {
11436         case KVM_MP_STATE_UNINITIALIZED:
11437         case KVM_MP_STATE_HALTED:
11438         case KVM_MP_STATE_AP_RESET_HOLD:
11439         case KVM_MP_STATE_INIT_RECEIVED:
11440         case KVM_MP_STATE_SIPI_RECEIVED:
11441                 if (!lapic_in_kernel(vcpu))
11442                         goto out;
11443                 break;
11444
11445         case KVM_MP_STATE_RUNNABLE:
11446                 break;
11447
11448         default:
11449                 goto out;
11450         }
11451
11452         /*
11453          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11454          * forcing the guest into INIT/SIPI if those events are supposed to be
11455          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11456          * if an SMI is pending as well.
11457          */
11458         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11459             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11460              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11461                 goto out;
11462
11463         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11464                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11465                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11466         } else
11467                 vcpu->arch.mp_state = mp_state->mp_state;
11468         kvm_make_request(KVM_REQ_EVENT, vcpu);
11469
11470         ret = 0;
11471 out:
11472         vcpu_put(vcpu);
11473         return ret;
11474 }
11475
11476 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11477                     int reason, bool has_error_code, u32 error_code)
11478 {
11479         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11480         int ret;
11481
11482         init_emulate_ctxt(vcpu);
11483
11484         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11485                                    has_error_code, error_code);
11486         if (ret) {
11487                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11488                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11489                 vcpu->run->internal.ndata = 0;
11490                 return 0;
11491         }
11492
11493         kvm_rip_write(vcpu, ctxt->eip);
11494         kvm_set_rflags(vcpu, ctxt->eflags);
11495         return 1;
11496 }
11497 EXPORT_SYMBOL_GPL(kvm_task_switch);
11498
11499 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11500 {
11501         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11502                 /*
11503                  * When EFER.LME and CR0.PG are set, the processor is in
11504                  * 64-bit mode (though maybe in a 32-bit code segment).
11505                  * CR4.PAE and EFER.LMA must be set.
11506                  */
11507                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11508                         return false;
11509                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11510                         return false;
11511         } else {
11512                 /*
11513                  * Not in 64-bit mode: EFER.LMA is clear and the code
11514                  * segment cannot be 64-bit.
11515                  */
11516                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11517                         return false;
11518         }
11519
11520         return kvm_is_valid_cr4(vcpu, sregs->cr4);
11521 }
11522
11523 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11524                 int *mmu_reset_needed, bool update_pdptrs)
11525 {
11526         struct msr_data apic_base_msr;
11527         int idx;
11528         struct desc_ptr dt;
11529
11530         if (!kvm_is_valid_sregs(vcpu, sregs))
11531                 return -EINVAL;
11532
11533         apic_base_msr.data = sregs->apic_base;
11534         apic_base_msr.host_initiated = true;
11535         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11536                 return -EINVAL;
11537
11538         if (vcpu->arch.guest_state_protected)
11539                 return 0;
11540
11541         dt.size = sregs->idt.limit;
11542         dt.address = sregs->idt.base;
11543         static_call(kvm_x86_set_idt)(vcpu, &dt);
11544         dt.size = sregs->gdt.limit;
11545         dt.address = sregs->gdt.base;
11546         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11547
11548         vcpu->arch.cr2 = sregs->cr2;
11549         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11550         vcpu->arch.cr3 = sregs->cr3;
11551         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11552         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11553
11554         kvm_set_cr8(vcpu, sregs->cr8);
11555
11556         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11557         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11558
11559         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11560         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11561         vcpu->arch.cr0 = sregs->cr0;
11562
11563         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11564         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11565
11566         if (update_pdptrs) {
11567                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11568                 if (is_pae_paging(vcpu)) {
11569                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11570                         *mmu_reset_needed = 1;
11571                 }
11572                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11573         }
11574
11575         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11576         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11577         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11578         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11579         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11580         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11581
11582         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11583         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11584
11585         update_cr8_intercept(vcpu);
11586
11587         /* Older userspace won't unhalt the vcpu on reset. */
11588         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11589             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11590             !is_protmode(vcpu))
11591                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11592
11593         return 0;
11594 }
11595
11596 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11597 {
11598         int pending_vec, max_bits;
11599         int mmu_reset_needed = 0;
11600         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11601
11602         if (ret)
11603                 return ret;
11604
11605         if (mmu_reset_needed)
11606                 kvm_mmu_reset_context(vcpu);
11607
11608         max_bits = KVM_NR_INTERRUPTS;
11609         pending_vec = find_first_bit(
11610                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11611
11612         if (pending_vec < max_bits) {
11613                 kvm_queue_interrupt(vcpu, pending_vec, false);
11614                 pr_debug("Set back pending irq %d\n", pending_vec);
11615                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11616         }
11617         return 0;
11618 }
11619
11620 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11621 {
11622         int mmu_reset_needed = 0;
11623         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11624         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11625                 !(sregs2->efer & EFER_LMA);
11626         int i, ret;
11627
11628         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11629                 return -EINVAL;
11630
11631         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11632                 return -EINVAL;
11633
11634         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11635                                  &mmu_reset_needed, !valid_pdptrs);
11636         if (ret)
11637                 return ret;
11638
11639         if (valid_pdptrs) {
11640                 for (i = 0; i < 4 ; i++)
11641                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11642
11643                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11644                 mmu_reset_needed = 1;
11645                 vcpu->arch.pdptrs_from_userspace = true;
11646         }
11647         if (mmu_reset_needed)
11648                 kvm_mmu_reset_context(vcpu);
11649         return 0;
11650 }
11651
11652 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11653                                   struct kvm_sregs *sregs)
11654 {
11655         int ret;
11656
11657         vcpu_load(vcpu);
11658         ret = __set_sregs(vcpu, sregs);
11659         vcpu_put(vcpu);
11660         return ret;
11661 }
11662
11663 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11664 {
11665         bool set = false;
11666         struct kvm_vcpu *vcpu;
11667         unsigned long i;
11668
11669         if (!enable_apicv)
11670                 return;
11671
11672         down_write(&kvm->arch.apicv_update_lock);
11673
11674         kvm_for_each_vcpu(i, vcpu, kvm) {
11675                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11676                         set = true;
11677                         break;
11678                 }
11679         }
11680         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11681         up_write(&kvm->arch.apicv_update_lock);
11682 }
11683
11684 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11685                                         struct kvm_guest_debug *dbg)
11686 {
11687         unsigned long rflags;
11688         int i, r;
11689
11690         if (vcpu->arch.guest_state_protected)
11691                 return -EINVAL;
11692
11693         vcpu_load(vcpu);
11694
11695         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11696                 r = -EBUSY;
11697                 if (kvm_is_exception_pending(vcpu))
11698                         goto out;
11699                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11700                         kvm_queue_exception(vcpu, DB_VECTOR);
11701                 else
11702                         kvm_queue_exception(vcpu, BP_VECTOR);
11703         }
11704
11705         /*
11706          * Read rflags as long as potentially injected trace flags are still
11707          * filtered out.
11708          */
11709         rflags = kvm_get_rflags(vcpu);
11710
11711         vcpu->guest_debug = dbg->control;
11712         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11713                 vcpu->guest_debug = 0;
11714
11715         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11716                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11717                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11718                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11719         } else {
11720                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11721                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11722         }
11723         kvm_update_dr7(vcpu);
11724
11725         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11726                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11727
11728         /*
11729          * Trigger an rflags update that will inject or remove the trace
11730          * flags.
11731          */
11732         kvm_set_rflags(vcpu, rflags);
11733
11734         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11735
11736         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11737
11738         r = 0;
11739
11740 out:
11741         vcpu_put(vcpu);
11742         return r;
11743 }
11744
11745 /*
11746  * Translate a guest virtual address to a guest physical address.
11747  */
11748 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11749                                     struct kvm_translation *tr)
11750 {
11751         unsigned long vaddr = tr->linear_address;
11752         gpa_t gpa;
11753         int idx;
11754
11755         vcpu_load(vcpu);
11756
11757         idx = srcu_read_lock(&vcpu->kvm->srcu);
11758         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11759         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11760         tr->physical_address = gpa;
11761         tr->valid = gpa != INVALID_GPA;
11762         tr->writeable = 1;
11763         tr->usermode = 0;
11764
11765         vcpu_put(vcpu);
11766         return 0;
11767 }
11768
11769 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11770 {
11771         struct fxregs_state *fxsave;
11772
11773         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11774                 return 0;
11775
11776         vcpu_load(vcpu);
11777
11778         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11779         memcpy(fpu->fpr, fxsave->st_space, 128);
11780         fpu->fcw = fxsave->cwd;
11781         fpu->fsw = fxsave->swd;
11782         fpu->ftwx = fxsave->twd;
11783         fpu->last_opcode = fxsave->fop;
11784         fpu->last_ip = fxsave->rip;
11785         fpu->last_dp = fxsave->rdp;
11786         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11787
11788         vcpu_put(vcpu);
11789         return 0;
11790 }
11791
11792 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11793 {
11794         struct fxregs_state *fxsave;
11795
11796         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11797                 return 0;
11798
11799         vcpu_load(vcpu);
11800
11801         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11802
11803         memcpy(fxsave->st_space, fpu->fpr, 128);
11804         fxsave->cwd = fpu->fcw;
11805         fxsave->swd = fpu->fsw;
11806         fxsave->twd = fpu->ftwx;
11807         fxsave->fop = fpu->last_opcode;
11808         fxsave->rip = fpu->last_ip;
11809         fxsave->rdp = fpu->last_dp;
11810         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11811
11812         vcpu_put(vcpu);
11813         return 0;
11814 }
11815
11816 static void store_regs(struct kvm_vcpu *vcpu)
11817 {
11818         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11819
11820         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11821                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11822
11823         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11824                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11825
11826         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11827                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11828                                 vcpu, &vcpu->run->s.regs.events);
11829 }
11830
11831 static int sync_regs(struct kvm_vcpu *vcpu)
11832 {
11833         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11834                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11835                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11836         }
11837         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11838                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11839                         return -EINVAL;
11840                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11841         }
11842         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11843                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11844                                 vcpu, &vcpu->run->s.regs.events))
11845                         return -EINVAL;
11846                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11847         }
11848
11849         return 0;
11850 }
11851
11852 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11853 {
11854         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11855                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11856                              "guest TSC will not be reliable\n");
11857
11858         if (!kvm->arch.max_vcpu_ids)
11859                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11860
11861         if (id >= kvm->arch.max_vcpu_ids)
11862                 return -EINVAL;
11863
11864         return static_call(kvm_x86_vcpu_precreate)(kvm);
11865 }
11866
11867 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11868 {
11869         struct page *page;
11870         int r;
11871
11872         vcpu->arch.last_vmentry_cpu = -1;
11873         vcpu->arch.regs_avail = ~0;
11874         vcpu->arch.regs_dirty = ~0;
11875
11876         kvm_gpc_init(&vcpu->arch.pv_time);
11877
11878         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11879                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11880         else
11881                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11882
11883         r = kvm_mmu_create(vcpu);
11884         if (r < 0)
11885                 return r;
11886
11887         if (irqchip_in_kernel(vcpu->kvm)) {
11888                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11889                 if (r < 0)
11890                         goto fail_mmu_destroy;
11891
11892                 /*
11893                  * Defer evaluating inhibits until the vCPU is first run, as
11894                  * this vCPU will not get notified of any changes until this
11895                  * vCPU is visible to other vCPUs (marked online and added to
11896                  * the set of vCPUs).  Opportunistically mark APICv active as
11897                  * VMX in particularly is highly unlikely to have inhibits.
11898                  * Ignore the current per-VM APICv state so that vCPU creation
11899                  * is guaranteed to run with a deterministic value, the request
11900                  * will ensure the vCPU gets the correct state before VM-Entry.
11901                  */
11902                 if (enable_apicv) {
11903                         vcpu->arch.apic->apicv_active = true;
11904                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11905                 }
11906         } else
11907                 static_branch_inc(&kvm_has_noapic_vcpu);
11908
11909         r = -ENOMEM;
11910
11911         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11912         if (!page)
11913                 goto fail_free_lapic;
11914         vcpu->arch.pio_data = page_address(page);
11915
11916         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11917                                        GFP_KERNEL_ACCOUNT);
11918         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11919                                             GFP_KERNEL_ACCOUNT);
11920         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11921                 goto fail_free_mce_banks;
11922         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11923
11924         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11925                                 GFP_KERNEL_ACCOUNT))
11926                 goto fail_free_mce_banks;
11927
11928         if (!alloc_emulate_ctxt(vcpu))
11929                 goto free_wbinvd_dirty_mask;
11930
11931         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11932                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11933                 goto free_emulate_ctxt;
11934         }
11935
11936         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11937         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11938
11939         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11940
11941         kvm_async_pf_hash_reset(vcpu);
11942         kvm_pmu_init(vcpu);
11943
11944         vcpu->arch.pending_external_vector = -1;
11945         vcpu->arch.preempted_in_kernel = false;
11946
11947 #if IS_ENABLED(CONFIG_HYPERV)
11948         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11949 #endif
11950
11951         r = static_call(kvm_x86_vcpu_create)(vcpu);
11952         if (r)
11953                 goto free_guest_fpu;
11954
11955         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11956         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11957         kvm_xen_init_vcpu(vcpu);
11958         kvm_vcpu_mtrr_init(vcpu);
11959         vcpu_load(vcpu);
11960         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11961         kvm_vcpu_reset(vcpu, false);
11962         kvm_init_mmu(vcpu);
11963         vcpu_put(vcpu);
11964         return 0;
11965
11966 free_guest_fpu:
11967         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11968 free_emulate_ctxt:
11969         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11970 free_wbinvd_dirty_mask:
11971         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11972 fail_free_mce_banks:
11973         kfree(vcpu->arch.mce_banks);
11974         kfree(vcpu->arch.mci_ctl2_banks);
11975         free_page((unsigned long)vcpu->arch.pio_data);
11976 fail_free_lapic:
11977         kvm_free_lapic(vcpu);
11978 fail_mmu_destroy:
11979         kvm_mmu_destroy(vcpu);
11980         return r;
11981 }
11982
11983 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11984 {
11985         struct kvm *kvm = vcpu->kvm;
11986
11987         if (mutex_lock_killable(&vcpu->mutex))
11988                 return;
11989         vcpu_load(vcpu);
11990         kvm_synchronize_tsc(vcpu, 0);
11991         vcpu_put(vcpu);
11992
11993         /* poll control enabled by default */
11994         vcpu->arch.msr_kvm_poll_control = 1;
11995
11996         mutex_unlock(&vcpu->mutex);
11997
11998         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11999                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12000                                                 KVMCLOCK_SYNC_PERIOD);
12001 }
12002
12003 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12004 {
12005         int idx;
12006
12007         kvmclock_reset(vcpu);
12008
12009         static_call(kvm_x86_vcpu_free)(vcpu);
12010
12011         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12012         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12013         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12014
12015         kvm_xen_destroy_vcpu(vcpu);
12016         kvm_hv_vcpu_uninit(vcpu);
12017         kvm_pmu_destroy(vcpu);
12018         kfree(vcpu->arch.mce_banks);
12019         kfree(vcpu->arch.mci_ctl2_banks);
12020         kvm_free_lapic(vcpu);
12021         idx = srcu_read_lock(&vcpu->kvm->srcu);
12022         kvm_mmu_destroy(vcpu);
12023         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12024         free_page((unsigned long)vcpu->arch.pio_data);
12025         kvfree(vcpu->arch.cpuid_entries);
12026         if (!lapic_in_kernel(vcpu))
12027                 static_branch_dec(&kvm_has_noapic_vcpu);
12028 }
12029
12030 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12031 {
12032         struct kvm_cpuid_entry2 *cpuid_0x1;
12033         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12034         unsigned long new_cr0;
12035
12036         /*
12037          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12038          * to handle side effects.  RESET emulation hits those flows and relies
12039          * on emulated/virtualized registers, including those that are loaded
12040          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12041          * to detect improper or missing initialization.
12042          */
12043         WARN_ON_ONCE(!init_event &&
12044                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12045
12046         /*
12047          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12048          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12049          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12050          * bits), i.e. virtualization is disabled.
12051          */
12052         if (is_guest_mode(vcpu))
12053                 kvm_leave_nested(vcpu);
12054
12055         kvm_lapic_reset(vcpu, init_event);
12056
12057         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12058         vcpu->arch.hflags = 0;
12059
12060         vcpu->arch.smi_pending = 0;
12061         vcpu->arch.smi_count = 0;
12062         atomic_set(&vcpu->arch.nmi_queued, 0);
12063         vcpu->arch.nmi_pending = 0;
12064         vcpu->arch.nmi_injected = false;
12065         kvm_clear_interrupt_queue(vcpu);
12066         kvm_clear_exception_queue(vcpu);
12067
12068         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12069         kvm_update_dr0123(vcpu);
12070         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12071         vcpu->arch.dr7 = DR7_FIXED_1;
12072         kvm_update_dr7(vcpu);
12073
12074         vcpu->arch.cr2 = 0;
12075
12076         kvm_make_request(KVM_REQ_EVENT, vcpu);
12077         vcpu->arch.apf.msr_en_val = 0;
12078         vcpu->arch.apf.msr_int_val = 0;
12079         vcpu->arch.st.msr_val = 0;
12080
12081         kvmclock_reset(vcpu);
12082
12083         kvm_clear_async_pf_completion_queue(vcpu);
12084         kvm_async_pf_hash_reset(vcpu);
12085         vcpu->arch.apf.halted = false;
12086
12087         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12088                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12089
12090                 /*
12091                  * All paths that lead to INIT are required to load the guest's
12092                  * FPU state (because most paths are buried in KVM_RUN).
12093                  */
12094                 if (init_event)
12095                         kvm_put_guest_fpu(vcpu);
12096
12097                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12098                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12099
12100                 if (init_event)
12101                         kvm_load_guest_fpu(vcpu);
12102         }
12103
12104         if (!init_event) {
12105                 kvm_pmu_reset(vcpu);
12106                 vcpu->arch.smbase = 0x30000;
12107
12108                 vcpu->arch.msr_misc_features_enables = 0;
12109                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12110                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12111
12112                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12113                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12114         }
12115
12116         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12117         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12118         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12119
12120         /*
12121          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12122          * if no CPUID match is found.  Note, it's impossible to get a match at
12123          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12124          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12125          * on RESET.  But, go through the motions in case that's ever remedied.
12126          */
12127         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12128         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12129
12130         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12131
12132         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12133         kvm_rip_write(vcpu, 0xfff0);
12134
12135         vcpu->arch.cr3 = 0;
12136         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12137
12138         /*
12139          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12140          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12141          * (or qualify) that with a footnote stating that CD/NW are preserved.
12142          */
12143         new_cr0 = X86_CR0_ET;
12144         if (init_event)
12145                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12146         else
12147                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12148
12149         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12150         static_call(kvm_x86_set_cr4)(vcpu, 0);
12151         static_call(kvm_x86_set_efer)(vcpu, 0);
12152         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12153
12154         /*
12155          * On the standard CR0/CR4/EFER modification paths, there are several
12156          * complex conditions determining whether the MMU has to be reset and/or
12157          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12158          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12159          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12160          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12161          */
12162         if (old_cr0 & X86_CR0_PG) {
12163                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12164                 kvm_mmu_reset_context(vcpu);
12165         }
12166
12167         /*
12168          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12169          * APM states the TLBs are untouched by INIT, but it also states that
12170          * the TLBs are flushed on "External initialization of the processor."
12171          * Flush the guest TLB regardless of vendor, there is no meaningful
12172          * benefit in relying on the guest to flush the TLB immediately after
12173          * INIT.  A spurious TLB flush is benign and likely negligible from a
12174          * performance perspective.
12175          */
12176         if (init_event)
12177                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12178 }
12179 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12180
12181 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12182 {
12183         struct kvm_segment cs;
12184
12185         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12186         cs.selector = vector << 8;
12187         cs.base = vector << 12;
12188         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12189         kvm_rip_write(vcpu, 0);
12190 }
12191 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12192
12193 int kvm_arch_hardware_enable(void)
12194 {
12195         struct kvm *kvm;
12196         struct kvm_vcpu *vcpu;
12197         unsigned long i;
12198         int ret;
12199         u64 local_tsc;
12200         u64 max_tsc = 0;
12201         bool stable, backwards_tsc = false;
12202
12203         kvm_user_return_msr_cpu_online();
12204         ret = static_call(kvm_x86_hardware_enable)();
12205         if (ret != 0)
12206                 return ret;
12207
12208         local_tsc = rdtsc();
12209         stable = !kvm_check_tsc_unstable();
12210         list_for_each_entry(kvm, &vm_list, vm_list) {
12211                 kvm_for_each_vcpu(i, vcpu, kvm) {
12212                         if (!stable && vcpu->cpu == smp_processor_id())
12213                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12214                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12215                                 backwards_tsc = true;
12216                                 if (vcpu->arch.last_host_tsc > max_tsc)
12217                                         max_tsc = vcpu->arch.last_host_tsc;
12218                         }
12219                 }
12220         }
12221
12222         /*
12223          * Sometimes, even reliable TSCs go backwards.  This happens on
12224          * platforms that reset TSC during suspend or hibernate actions, but
12225          * maintain synchronization.  We must compensate.  Fortunately, we can
12226          * detect that condition here, which happens early in CPU bringup,
12227          * before any KVM threads can be running.  Unfortunately, we can't
12228          * bring the TSCs fully up to date with real time, as we aren't yet far
12229          * enough into CPU bringup that we know how much real time has actually
12230          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12231          * variables that haven't been updated yet.
12232          *
12233          * So we simply find the maximum observed TSC above, then record the
12234          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12235          * the adjustment will be applied.  Note that we accumulate
12236          * adjustments, in case multiple suspend cycles happen before some VCPU
12237          * gets a chance to run again.  In the event that no KVM threads get a
12238          * chance to run, we will miss the entire elapsed period, as we'll have
12239          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12240          * loose cycle time.  This isn't too big a deal, since the loss will be
12241          * uniform across all VCPUs (not to mention the scenario is extremely
12242          * unlikely). It is possible that a second hibernate recovery happens
12243          * much faster than a first, causing the observed TSC here to be
12244          * smaller; this would require additional padding adjustment, which is
12245          * why we set last_host_tsc to the local tsc observed here.
12246          *
12247          * N.B. - this code below runs only on platforms with reliable TSC,
12248          * as that is the only way backwards_tsc is set above.  Also note
12249          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12250          * have the same delta_cyc adjustment applied if backwards_tsc
12251          * is detected.  Note further, this adjustment is only done once,
12252          * as we reset last_host_tsc on all VCPUs to stop this from being
12253          * called multiple times (one for each physical CPU bringup).
12254          *
12255          * Platforms with unreliable TSCs don't have to deal with this, they
12256          * will be compensated by the logic in vcpu_load, which sets the TSC to
12257          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12258          * guarantee that they stay in perfect synchronization.
12259          */
12260         if (backwards_tsc) {
12261                 u64 delta_cyc = max_tsc - local_tsc;
12262                 list_for_each_entry(kvm, &vm_list, vm_list) {
12263                         kvm->arch.backwards_tsc_observed = true;
12264                         kvm_for_each_vcpu(i, vcpu, kvm) {
12265                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12266                                 vcpu->arch.last_host_tsc = local_tsc;
12267                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12268                         }
12269
12270                         /*
12271                          * We have to disable TSC offset matching.. if you were
12272                          * booting a VM while issuing an S4 host suspend....
12273                          * you may have some problem.  Solving this issue is
12274                          * left as an exercise to the reader.
12275                          */
12276                         kvm->arch.last_tsc_nsec = 0;
12277                         kvm->arch.last_tsc_write = 0;
12278                 }
12279
12280         }
12281         return 0;
12282 }
12283
12284 void kvm_arch_hardware_disable(void)
12285 {
12286         static_call(kvm_x86_hardware_disable)();
12287         drop_user_return_notifiers();
12288 }
12289
12290 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
12291 {
12292         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
12293
12294 #define __KVM_X86_OP(func) \
12295         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
12296 #define KVM_X86_OP(func) \
12297         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
12298 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
12299 #define KVM_X86_OP_OPTIONAL_RET0(func) \
12300         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
12301                                            (void *)__static_call_return0);
12302 #include <asm/kvm-x86-ops.h>
12303 #undef __KVM_X86_OP
12304
12305         kvm_pmu_ops_update(ops->pmu_ops);
12306 }
12307
12308 int kvm_arch_hardware_setup(void *opaque)
12309 {
12310         struct kvm_x86_init_ops *ops = opaque;
12311         int r;
12312
12313         rdmsrl_safe(MSR_EFER, &host_efer);
12314
12315         if (boot_cpu_has(X86_FEATURE_XSAVES))
12316                 rdmsrl(MSR_IA32_XSS, host_xss);
12317
12318         kvm_init_pmu_capability();
12319
12320         r = ops->hardware_setup();
12321         if (r != 0)
12322                 return r;
12323
12324         kvm_ops_update(ops);
12325
12326         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
12327
12328         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
12329                 kvm_caps.supported_xss = 0;
12330
12331 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12332         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12333 #undef __kvm_cpu_cap_has
12334
12335         if (kvm_caps.has_tsc_control) {
12336                 /*
12337                  * Make sure the user can only configure tsc_khz values that
12338                  * fit into a signed integer.
12339                  * A min value is not calculated because it will always
12340                  * be 1 on all machines.
12341                  */
12342                 u64 max = min(0x7fffffffULL,
12343                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12344                 kvm_caps.max_guest_tsc_khz = max;
12345         }
12346         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12347         kvm_init_msr_list();
12348         return 0;
12349 }
12350
12351 void kvm_arch_hardware_unsetup(void)
12352 {
12353         kvm_unregister_perf_callbacks();
12354
12355         static_call(kvm_x86_hardware_unsetup)();
12356 }
12357
12358 int kvm_arch_check_processor_compat(void *opaque)
12359 {
12360         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12361         struct kvm_x86_init_ops *ops = opaque;
12362
12363         WARN_ON(!irqs_disabled());
12364
12365         if (__cr4_reserved_bits(cpu_has, c) !=
12366             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12367                 return -EIO;
12368
12369         return ops->check_processor_compatibility();
12370 }
12371
12372 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12373 {
12374         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12375 }
12376 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12377
12378 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12379 {
12380         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12381 }
12382
12383 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12384 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12385
12386 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12387 {
12388         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12389
12390         vcpu->arch.l1tf_flush_l1d = true;
12391         if (pmu->version && unlikely(pmu->event_count)) {
12392                 pmu->need_cleanup = true;
12393                 kvm_make_request(KVM_REQ_PMU, vcpu);
12394         }
12395         static_call(kvm_x86_sched_in)(vcpu, cpu);
12396 }
12397
12398 void kvm_arch_free_vm(struct kvm *kvm)
12399 {
12400         kfree(to_kvm_hv(kvm)->hv_pa_pg);
12401         __kvm_arch_free_vm(kvm);
12402 }
12403
12404
12405 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12406 {
12407         int ret;
12408         unsigned long flags;
12409
12410         if (type)
12411                 return -EINVAL;
12412
12413         ret = kvm_page_track_init(kvm);
12414         if (ret)
12415                 goto out;
12416
12417         ret = kvm_mmu_init_vm(kvm);
12418         if (ret)
12419                 goto out_page_track;
12420
12421         ret = static_call(kvm_x86_vm_init)(kvm);
12422         if (ret)
12423                 goto out_uninit_mmu;
12424
12425         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12426         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12427         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12428
12429         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12430         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12431         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12432         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12433                 &kvm->arch.irq_sources_bitmap);
12434
12435         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12436         mutex_init(&kvm->arch.apic_map_lock);
12437         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12438         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12439
12440         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12441         pvclock_update_vm_gtod_copy(kvm);
12442         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12443
12444         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12445         kvm->arch.guest_can_read_msr_platform_info = true;
12446         kvm->arch.enable_pmu = enable_pmu;
12447
12448 #if IS_ENABLED(CONFIG_HYPERV)
12449         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12450         kvm->arch.hv_root_tdp = INVALID_PAGE;
12451 #endif
12452
12453         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12454         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12455
12456         kvm_apicv_init(kvm);
12457         kvm_hv_init_vm(kvm);
12458         kvm_xen_init_vm(kvm);
12459
12460         return 0;
12461
12462 out_uninit_mmu:
12463         kvm_mmu_uninit_vm(kvm);
12464 out_page_track:
12465         kvm_page_track_cleanup(kvm);
12466 out:
12467         return ret;
12468 }
12469
12470 int kvm_arch_post_init_vm(struct kvm *kvm)
12471 {
12472         return kvm_mmu_post_init_vm(kvm);
12473 }
12474
12475 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12476 {
12477         vcpu_load(vcpu);
12478         kvm_mmu_unload(vcpu);
12479         vcpu_put(vcpu);
12480 }
12481
12482 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12483 {
12484         unsigned long i;
12485         struct kvm_vcpu *vcpu;
12486
12487         kvm_for_each_vcpu(i, vcpu, kvm) {
12488                 kvm_clear_async_pf_completion_queue(vcpu);
12489                 kvm_unload_vcpu_mmu(vcpu);
12490         }
12491 }
12492
12493 void kvm_arch_sync_events(struct kvm *kvm)
12494 {
12495         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12496         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12497         kvm_free_pit(kvm);
12498 }
12499
12500 /**
12501  * __x86_set_memory_region: Setup KVM internal memory slot
12502  *
12503  * @kvm: the kvm pointer to the VM.
12504  * @id: the slot ID to setup.
12505  * @gpa: the GPA to install the slot (unused when @size == 0).
12506  * @size: the size of the slot. Set to zero to uninstall a slot.
12507  *
12508  * This function helps to setup a KVM internal memory slot.  Specify
12509  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12510  * slot.  The return code can be one of the following:
12511  *
12512  *   HVA:           on success (uninstall will return a bogus HVA)
12513  *   -errno:        on error
12514  *
12515  * The caller should always use IS_ERR() to check the return value
12516  * before use.  Note, the KVM internal memory slots are guaranteed to
12517  * remain valid and unchanged until the VM is destroyed, i.e., the
12518  * GPA->HVA translation will not change.  However, the HVA is a user
12519  * address, i.e. its accessibility is not guaranteed, and must be
12520  * accessed via __copy_{to,from}_user().
12521  */
12522 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12523                                       u32 size)
12524 {
12525         int i, r;
12526         unsigned long hva, old_npages;
12527         struct kvm_memslots *slots = kvm_memslots(kvm);
12528         struct kvm_memory_slot *slot;
12529
12530         /* Called with kvm->slots_lock held.  */
12531         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12532                 return ERR_PTR_USR(-EINVAL);
12533
12534         slot = id_to_memslot(slots, id);
12535         if (size) {
12536                 if (slot && slot->npages)
12537                         return ERR_PTR_USR(-EEXIST);
12538
12539                 /*
12540                  * MAP_SHARED to prevent internal slot pages from being moved
12541                  * by fork()/COW.
12542                  */
12543                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12544                               MAP_SHARED | MAP_ANONYMOUS, 0);
12545                 if (IS_ERR((void *)hva))
12546                         return (void __user *)hva;
12547         } else {
12548                 if (!slot || !slot->npages)
12549                         return NULL;
12550
12551                 old_npages = slot->npages;
12552                 hva = slot->userspace_addr;
12553         }
12554
12555         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12556                 struct kvm_userspace_memory_region m;
12557
12558                 m.slot = id | (i << 16);
12559                 m.flags = 0;
12560                 m.guest_phys_addr = gpa;
12561                 m.userspace_addr = hva;
12562                 m.memory_size = size;
12563                 r = __kvm_set_memory_region(kvm, &m);
12564                 if (r < 0)
12565                         return ERR_PTR_USR(r);
12566         }
12567
12568         if (!size)
12569                 vm_munmap(hva, old_npages * PAGE_SIZE);
12570
12571         return (void __user *)hva;
12572 }
12573 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12574
12575 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12576 {
12577         kvm_mmu_pre_destroy_vm(kvm);
12578 }
12579
12580 void kvm_arch_destroy_vm(struct kvm *kvm)
12581 {
12582         if (current->mm == kvm->mm) {
12583                 /*
12584                  * Free memory regions allocated on behalf of userspace,
12585                  * unless the memory map has changed due to process exit
12586                  * or fd copying.
12587                  */
12588                 mutex_lock(&kvm->slots_lock);
12589                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12590                                         0, 0);
12591                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12592                                         0, 0);
12593                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12594                 mutex_unlock(&kvm->slots_lock);
12595         }
12596         kvm_unload_vcpu_mmus(kvm);
12597         static_call_cond(kvm_x86_vm_destroy)(kvm);
12598         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12599         kvm_pic_destroy(kvm);
12600         kvm_ioapic_destroy(kvm);
12601         kvm_destroy_vcpus(kvm);
12602         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12603         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12604         kvm_mmu_uninit_vm(kvm);
12605         kvm_page_track_cleanup(kvm);
12606         kvm_xen_destroy_vm(kvm);
12607         kvm_hv_destroy_vm(kvm);
12608 }
12609
12610 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12611 {
12612         int i;
12613
12614         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12615                 kvfree(slot->arch.rmap[i]);
12616                 slot->arch.rmap[i] = NULL;
12617         }
12618 }
12619
12620 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12621 {
12622         int i;
12623
12624         memslot_rmap_free(slot);
12625
12626         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12627                 kvfree(slot->arch.lpage_info[i - 1]);
12628                 slot->arch.lpage_info[i - 1] = NULL;
12629         }
12630
12631         kvm_page_track_free_memslot(slot);
12632 }
12633
12634 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12635 {
12636         const int sz = sizeof(*slot->arch.rmap[0]);
12637         int i;
12638
12639         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12640                 int level = i + 1;
12641                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12642
12643                 if (slot->arch.rmap[i])
12644                         continue;
12645
12646                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12647                 if (!slot->arch.rmap[i]) {
12648                         memslot_rmap_free(slot);
12649                         return -ENOMEM;
12650                 }
12651         }
12652
12653         return 0;
12654 }
12655
12656 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12657                                       struct kvm_memory_slot *slot)
12658 {
12659         unsigned long npages = slot->npages;
12660         int i, r;
12661
12662         /*
12663          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12664          * old arrays will be freed by __kvm_set_memory_region() if installing
12665          * the new memslot is successful.
12666          */
12667         memset(&slot->arch, 0, sizeof(slot->arch));
12668
12669         if (kvm_memslots_have_rmaps(kvm)) {
12670                 r = memslot_rmap_alloc(slot, npages);
12671                 if (r)
12672                         return r;
12673         }
12674
12675         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12676                 struct kvm_lpage_info *linfo;
12677                 unsigned long ugfn;
12678                 int lpages;
12679                 int level = i + 1;
12680
12681                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12682
12683                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12684                 if (!linfo)
12685                         goto out_free;
12686
12687                 slot->arch.lpage_info[i - 1] = linfo;
12688
12689                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12690                         linfo[0].disallow_lpage = 1;
12691                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12692                         linfo[lpages - 1].disallow_lpage = 1;
12693                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12694                 /*
12695                  * If the gfn and userspace address are not aligned wrt each
12696                  * other, disable large page support for this slot.
12697                  */
12698                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12699                         unsigned long j;
12700
12701                         for (j = 0; j < lpages; ++j)
12702                                 linfo[j].disallow_lpage = 1;
12703                 }
12704         }
12705
12706         if (kvm_page_track_create_memslot(kvm, slot, npages))
12707                 goto out_free;
12708
12709         return 0;
12710
12711 out_free:
12712         memslot_rmap_free(slot);
12713
12714         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12715                 kvfree(slot->arch.lpage_info[i - 1]);
12716                 slot->arch.lpage_info[i - 1] = NULL;
12717         }
12718         return -ENOMEM;
12719 }
12720
12721 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12722 {
12723         struct kvm_vcpu *vcpu;
12724         unsigned long i;
12725
12726         /*
12727          * memslots->generation has been incremented.
12728          * mmio generation may have reached its maximum value.
12729          */
12730         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12731
12732         /* Force re-initialization of steal_time cache */
12733         kvm_for_each_vcpu(i, vcpu, kvm)
12734                 kvm_vcpu_kick(vcpu);
12735 }
12736
12737 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12738                                    const struct kvm_memory_slot *old,
12739                                    struct kvm_memory_slot *new,
12740                                    enum kvm_mr_change change)
12741 {
12742         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12743                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12744                         return -EINVAL;
12745
12746                 return kvm_alloc_memslot_metadata(kvm, new);
12747         }
12748
12749         if (change == KVM_MR_FLAGS_ONLY)
12750                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12751         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12752                 return -EIO;
12753
12754         return 0;
12755 }
12756
12757
12758 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12759 {
12760         struct kvm_arch *ka = &kvm->arch;
12761
12762         if (!kvm_x86_ops.cpu_dirty_log_size)
12763                 return;
12764
12765         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12766             (!enable && --ka->cpu_dirty_logging_count == 0))
12767                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12768
12769         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12770 }
12771
12772 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12773                                      struct kvm_memory_slot *old,
12774                                      const struct kvm_memory_slot *new,
12775                                      enum kvm_mr_change change)
12776 {
12777         u32 old_flags = old ? old->flags : 0;
12778         u32 new_flags = new ? new->flags : 0;
12779         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12780
12781         /*
12782          * Update CPU dirty logging if dirty logging is being toggled.  This
12783          * applies to all operations.
12784          */
12785         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12786                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12787
12788         /*
12789          * Nothing more to do for RO slots (which can't be dirtied and can't be
12790          * made writable) or CREATE/MOVE/DELETE of a slot.
12791          *
12792          * For a memslot with dirty logging disabled:
12793          * CREATE:      No dirty mappings will already exist.
12794          * MOVE/DELETE: The old mappings will already have been cleaned up by
12795          *              kvm_arch_flush_shadow_memslot()
12796          *
12797          * For a memslot with dirty logging enabled:
12798          * CREATE:      No shadow pages exist, thus nothing to write-protect
12799          *              and no dirty bits to clear.
12800          * MOVE/DELETE: The old mappings will already have been cleaned up by
12801          *              kvm_arch_flush_shadow_memslot().
12802          */
12803         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12804                 return;
12805
12806         /*
12807          * READONLY and non-flags changes were filtered out above, and the only
12808          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12809          * logging isn't being toggled on or off.
12810          */
12811         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12812                 return;
12813
12814         if (!log_dirty_pages) {
12815                 /*
12816                  * Dirty logging tracks sptes in 4k granularity, meaning that
12817                  * large sptes have to be split.  If live migration succeeds,
12818                  * the guest in the source machine will be destroyed and large
12819                  * sptes will be created in the destination.  However, if the
12820                  * guest continues to run in the source machine (for example if
12821                  * live migration fails), small sptes will remain around and
12822                  * cause bad performance.
12823                  *
12824                  * Scan sptes if dirty logging has been stopped, dropping those
12825                  * which can be collapsed into a single large-page spte.  Later
12826                  * page faults will create the large-page sptes.
12827                  */
12828                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12829         } else {
12830                 /*
12831                  * Initially-all-set does not require write protecting any page,
12832                  * because they're all assumed to be dirty.
12833                  */
12834                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12835                         return;
12836
12837                 if (READ_ONCE(eager_page_split))
12838                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12839
12840                 if (kvm_x86_ops.cpu_dirty_log_size) {
12841                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12842                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12843                 } else {
12844                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12845                 }
12846
12847                 /*
12848                  * Unconditionally flush the TLBs after enabling dirty logging.
12849                  * A flush is almost always going to be necessary (see below),
12850                  * and unconditionally flushing allows the helpers to omit
12851                  * the subtly complex checks when removing write access.
12852                  *
12853                  * Do the flush outside of mmu_lock to reduce the amount of
12854                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12855                  * safe as KVM only needs to guarantee the slot is fully
12856                  * write-protected before returning to userspace, i.e. before
12857                  * userspace can consume the dirty status.
12858                  *
12859                  * Flushing outside of mmu_lock requires KVM to be careful when
12860                  * making decisions based on writable status of an SPTE, e.g. a
12861                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12862                  *
12863                  * Specifically, KVM also write-protects guest page tables to
12864                  * monitor changes when using shadow paging, and must guarantee
12865                  * no CPUs can write to those page before mmu_lock is dropped.
12866                  * Because CPUs may have stale TLB entries at this point, a
12867                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12868                  *
12869                  * KVM also allows making SPTES writable outside of mmu_lock,
12870                  * e.g. to allow dirty logging without taking mmu_lock.
12871                  *
12872                  * To handle these scenarios, KVM uses a separate software-only
12873                  * bit (MMU-writable) to track if a SPTE is !writable due to
12874                  * a guest page table being write-protected (KVM clears the
12875                  * MMU-writable flag when write-protecting for shadow paging).
12876                  *
12877                  * The use of MMU-writable is also the primary motivation for
12878                  * the unconditional flush.  Because KVM must guarantee that a
12879                  * CPU doesn't contain stale, writable TLB entries for a
12880                  * !MMU-writable SPTE, KVM must flush if it encounters any
12881                  * MMU-writable SPTE regardless of whether the actual hardware
12882                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12883                  * to flush, while unconditionally flushing allows the "remove
12884                  * write access" helpers to ignore MMU-writable entirely.
12885                  *
12886                  * See is_writable_pte() for more details (the case involving
12887                  * access-tracked SPTEs is particularly relevant).
12888                  */
12889                 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12890         }
12891 }
12892
12893 void kvm_arch_commit_memory_region(struct kvm *kvm,
12894                                 struct kvm_memory_slot *old,
12895                                 const struct kvm_memory_slot *new,
12896                                 enum kvm_mr_change change)
12897 {
12898         if (!kvm->arch.n_requested_mmu_pages &&
12899             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12900                 unsigned long nr_mmu_pages;
12901
12902                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12903                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12904                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12905         }
12906
12907         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12908
12909         /* Free the arrays associated with the old memslot. */
12910         if (change == KVM_MR_MOVE)
12911                 kvm_arch_free_memslot(kvm, old);
12912 }
12913
12914 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12915 {
12916         kvm_mmu_zap_all(kvm);
12917 }
12918
12919 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12920                                    struct kvm_memory_slot *slot)
12921 {
12922         kvm_page_track_flush_slot(kvm, slot);
12923 }
12924
12925 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12926 {
12927         return (is_guest_mode(vcpu) &&
12928                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12929 }
12930
12931 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12932 {
12933         if (!list_empty_careful(&vcpu->async_pf.done))
12934                 return true;
12935
12936         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12937             kvm_apic_init_sipi_allowed(vcpu))
12938                 return true;
12939
12940         if (vcpu->arch.pv.pv_unhalted)
12941                 return true;
12942
12943         if (kvm_is_exception_pending(vcpu))
12944                 return true;
12945
12946         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12947             (vcpu->arch.nmi_pending &&
12948              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12949                 return true;
12950
12951         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12952             (vcpu->arch.smi_pending &&
12953              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12954                 return true;
12955
12956         if (kvm_arch_interrupt_allowed(vcpu) &&
12957             (kvm_cpu_has_interrupt(vcpu) ||
12958             kvm_guest_apic_has_interrupt(vcpu)))
12959                 return true;
12960
12961         if (kvm_hv_has_stimer_pending(vcpu))
12962                 return true;
12963
12964         if (is_guest_mode(vcpu) &&
12965             kvm_x86_ops.nested_ops->has_events &&
12966             kvm_x86_ops.nested_ops->has_events(vcpu))
12967                 return true;
12968
12969         if (kvm_xen_has_pending_events(vcpu))
12970                 return true;
12971
12972         return false;
12973 }
12974
12975 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12976 {
12977         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12978 }
12979
12980 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12981 {
12982         if (kvm_vcpu_apicv_active(vcpu) &&
12983             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12984                 return true;
12985
12986         return false;
12987 }
12988
12989 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12990 {
12991         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12992                 return true;
12993
12994         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12995                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12996                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12997                 return true;
12998
12999         return kvm_arch_dy_has_pending_interrupt(vcpu);
13000 }
13001
13002 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13003 {
13004         if (vcpu->arch.guest_state_protected)
13005                 return true;
13006
13007         return vcpu->arch.preempted_in_kernel;
13008 }
13009
13010 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13011 {
13012         return kvm_rip_read(vcpu);
13013 }
13014
13015 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13016 {
13017         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13018 }
13019
13020 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13021 {
13022         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13023 }
13024
13025 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13026 {
13027         /* Can't read the RIP when guest state is protected, just return 0 */
13028         if (vcpu->arch.guest_state_protected)
13029                 return 0;
13030
13031         if (is_64_bit_mode(vcpu))
13032                 return kvm_rip_read(vcpu);
13033         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13034                      kvm_rip_read(vcpu));
13035 }
13036 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13037
13038 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13039 {
13040         return kvm_get_linear_rip(vcpu) == linear_rip;
13041 }
13042 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13043
13044 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13045 {
13046         unsigned long rflags;
13047
13048         rflags = static_call(kvm_x86_get_rflags)(vcpu);
13049         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13050                 rflags &= ~X86_EFLAGS_TF;
13051         return rflags;
13052 }
13053 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13054
13055 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13056 {
13057         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13058             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13059                 rflags |= X86_EFLAGS_TF;
13060         static_call(kvm_x86_set_rflags)(vcpu, rflags);
13061 }
13062
13063 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13064 {
13065         __kvm_set_rflags(vcpu, rflags);
13066         kvm_make_request(KVM_REQ_EVENT, vcpu);
13067 }
13068 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13069
13070 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13071 {
13072         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13073
13074         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13075 }
13076
13077 static inline u32 kvm_async_pf_next_probe(u32 key)
13078 {
13079         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13080 }
13081
13082 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13083 {
13084         u32 key = kvm_async_pf_hash_fn(gfn);
13085
13086         while (vcpu->arch.apf.gfns[key] != ~0)
13087                 key = kvm_async_pf_next_probe(key);
13088
13089         vcpu->arch.apf.gfns[key] = gfn;
13090 }
13091
13092 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13093 {
13094         int i;
13095         u32 key = kvm_async_pf_hash_fn(gfn);
13096
13097         for (i = 0; i < ASYNC_PF_PER_VCPU &&
13098                      (vcpu->arch.apf.gfns[key] != gfn &&
13099                       vcpu->arch.apf.gfns[key] != ~0); i++)
13100                 key = kvm_async_pf_next_probe(key);
13101
13102         return key;
13103 }
13104
13105 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13106 {
13107         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13108 }
13109
13110 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13111 {
13112         u32 i, j, k;
13113
13114         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13115
13116         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13117                 return;
13118
13119         while (true) {
13120                 vcpu->arch.apf.gfns[i] = ~0;
13121                 do {
13122                         j = kvm_async_pf_next_probe(j);
13123                         if (vcpu->arch.apf.gfns[j] == ~0)
13124                                 return;
13125                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13126                         /*
13127                          * k lies cyclically in ]i,j]
13128                          * |    i.k.j |
13129                          * |....j i.k.| or  |.k..j i...|
13130                          */
13131                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13132                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13133                 i = j;
13134         }
13135 }
13136
13137 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13138 {
13139         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13140
13141         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13142                                       sizeof(reason));
13143 }
13144
13145 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13146 {
13147         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13148
13149         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13150                                              &token, offset, sizeof(token));
13151 }
13152
13153 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13154 {
13155         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13156         u32 val;
13157
13158         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13159                                          &val, offset, sizeof(val)))
13160                 return false;
13161
13162         return !val;
13163 }
13164
13165 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13166 {
13167
13168         if (!kvm_pv_async_pf_enabled(vcpu))
13169                 return false;
13170
13171         if (vcpu->arch.apf.send_user_only &&
13172             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13173                 return false;
13174
13175         if (is_guest_mode(vcpu)) {
13176                 /*
13177                  * L1 needs to opt into the special #PF vmexits that are
13178                  * used to deliver async page faults.
13179                  */
13180                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13181         } else {
13182                 /*
13183                  * Play it safe in case the guest temporarily disables paging.
13184                  * The real mode IDT in particular is unlikely to have a #PF
13185                  * exception setup.
13186                  */
13187                 return is_paging(vcpu);
13188         }
13189 }
13190
13191 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13192 {
13193         if (unlikely(!lapic_in_kernel(vcpu) ||
13194                      kvm_event_needs_reinjection(vcpu) ||
13195                      kvm_is_exception_pending(vcpu)))
13196                 return false;
13197
13198         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13199                 return false;
13200
13201         /*
13202          * If interrupts are off we cannot even use an artificial
13203          * halt state.
13204          */
13205         return kvm_arch_interrupt_allowed(vcpu);
13206 }
13207
13208 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13209                                      struct kvm_async_pf *work)
13210 {
13211         struct x86_exception fault;
13212
13213         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13214         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13215
13216         if (kvm_can_deliver_async_pf(vcpu) &&
13217             !apf_put_user_notpresent(vcpu)) {
13218                 fault.vector = PF_VECTOR;
13219                 fault.error_code_valid = true;
13220                 fault.error_code = 0;
13221                 fault.nested_page_fault = false;
13222                 fault.address = work->arch.token;
13223                 fault.async_page_fault = true;
13224                 kvm_inject_page_fault(vcpu, &fault);
13225                 return true;
13226         } else {
13227                 /*
13228                  * It is not possible to deliver a paravirtualized asynchronous
13229                  * page fault, but putting the guest in an artificial halt state
13230                  * can be beneficial nevertheless: if an interrupt arrives, we
13231                  * can deliver it timely and perhaps the guest will schedule
13232                  * another process.  When the instruction that triggered a page
13233                  * fault is retried, hopefully the page will be ready in the host.
13234                  */
13235                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13236                 return false;
13237         }
13238 }
13239
13240 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13241                                  struct kvm_async_pf *work)
13242 {
13243         struct kvm_lapic_irq irq = {
13244                 .delivery_mode = APIC_DM_FIXED,
13245                 .vector = vcpu->arch.apf.vec
13246         };
13247
13248         if (work->wakeup_all)
13249                 work->arch.token = ~0; /* broadcast wakeup */
13250         else
13251                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13252         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13253
13254         if ((work->wakeup_all || work->notpresent_injected) &&
13255             kvm_pv_async_pf_enabled(vcpu) &&
13256             !apf_put_user_ready(vcpu, work->arch.token)) {
13257                 vcpu->arch.apf.pageready_pending = true;
13258                 kvm_apic_set_irq(vcpu, &irq, NULL);
13259         }
13260
13261         vcpu->arch.apf.halted = false;
13262         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13263 }
13264
13265 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13266 {
13267         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13268         if (!vcpu->arch.apf.pageready_pending)
13269                 kvm_vcpu_kick(vcpu);
13270 }
13271
13272 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13273 {
13274         if (!kvm_pv_async_pf_enabled(vcpu))
13275                 return true;
13276         else
13277                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13278 }
13279
13280 void kvm_arch_start_assignment(struct kvm *kvm)
13281 {
13282         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13283                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13284 }
13285 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13286
13287 void kvm_arch_end_assignment(struct kvm *kvm)
13288 {
13289         atomic_dec(&kvm->arch.assigned_device_count);
13290 }
13291 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13292
13293 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13294 {
13295         return arch_atomic_read(&kvm->arch.assigned_device_count);
13296 }
13297 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13298
13299 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13300 {
13301         atomic_inc(&kvm->arch.noncoherent_dma_count);
13302 }
13303 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13304
13305 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13306 {
13307         atomic_dec(&kvm->arch.noncoherent_dma_count);
13308 }
13309 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13310
13311 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13312 {
13313         return atomic_read(&kvm->arch.noncoherent_dma_count);
13314 }
13315 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13316
13317 bool kvm_arch_has_irq_bypass(void)
13318 {
13319         return true;
13320 }
13321
13322 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13323                                       struct irq_bypass_producer *prod)
13324 {
13325         struct kvm_kernel_irqfd *irqfd =
13326                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13327         int ret;
13328
13329         irqfd->producer = prod;
13330         kvm_arch_start_assignment(irqfd->kvm);
13331         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13332                                          prod->irq, irqfd->gsi, 1);
13333
13334         if (ret)
13335                 kvm_arch_end_assignment(irqfd->kvm);
13336
13337         return ret;
13338 }
13339
13340 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13341                                       struct irq_bypass_producer *prod)
13342 {
13343         int ret;
13344         struct kvm_kernel_irqfd *irqfd =
13345                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13346
13347         WARN_ON(irqfd->producer != prod);
13348         irqfd->producer = NULL;
13349
13350         /*
13351          * When producer of consumer is unregistered, we change back to
13352          * remapped mode, so we can re-use the current implementation
13353          * when the irq is masked/disabled or the consumer side (KVM
13354          * int this case doesn't want to receive the interrupts.
13355         */
13356         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13357         if (ret)
13358                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13359                        " fails: %d\n", irqfd->consumer.token, ret);
13360
13361         kvm_arch_end_assignment(irqfd->kvm);
13362 }
13363
13364 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13365                                    uint32_t guest_irq, bool set)
13366 {
13367         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13368 }
13369
13370 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13371                                   struct kvm_kernel_irq_routing_entry *new)
13372 {
13373         if (new->type != KVM_IRQ_ROUTING_MSI)
13374                 return true;
13375
13376         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13377 }
13378
13379 bool kvm_vector_hashing_enabled(void)
13380 {
13381         return vector_hashing;
13382 }
13383
13384 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13385 {
13386         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13387 }
13388 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13389
13390
13391 int kvm_spec_ctrl_test_value(u64 value)
13392 {
13393         /*
13394          * test that setting IA32_SPEC_CTRL to given value
13395          * is allowed by the host processor
13396          */
13397
13398         u64 saved_value;
13399         unsigned long flags;
13400         int ret = 0;
13401
13402         local_irq_save(flags);
13403
13404         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13405                 ret = 1;
13406         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13407                 ret = 1;
13408         else
13409                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13410
13411         local_irq_restore(flags);
13412
13413         return ret;
13414 }
13415 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13416
13417 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13418 {
13419         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13420         struct x86_exception fault;
13421         u64 access = error_code &
13422                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13423
13424         if (!(error_code & PFERR_PRESENT_MASK) ||
13425             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13426                 /*
13427                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13428                  * tables probably do not match the TLB.  Just proceed
13429                  * with the error code that the processor gave.
13430                  */
13431                 fault.vector = PF_VECTOR;
13432                 fault.error_code_valid = true;
13433                 fault.error_code = error_code;
13434                 fault.nested_page_fault = false;
13435                 fault.address = gva;
13436                 fault.async_page_fault = false;
13437         }
13438         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13439 }
13440 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13441
13442 /*
13443  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13444  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13445  * indicates whether exit to userspace is needed.
13446  */
13447 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13448                               struct x86_exception *e)
13449 {
13450         if (r == X86EMUL_PROPAGATE_FAULT) {
13451                 kvm_inject_emulated_page_fault(vcpu, e);
13452                 return 1;
13453         }
13454
13455         /*
13456          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13457          * while handling a VMX instruction KVM could've handled the request
13458          * correctly by exiting to userspace and performing I/O but there
13459          * doesn't seem to be a real use-case behind such requests, just return
13460          * KVM_EXIT_INTERNAL_ERROR for now.
13461          */
13462         kvm_prepare_emulation_failure_exit(vcpu);
13463
13464         return 0;
13465 }
13466 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13467
13468 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13469 {
13470         bool pcid_enabled;
13471         struct x86_exception e;
13472         struct {
13473                 u64 pcid;
13474                 u64 gla;
13475         } operand;
13476         int r;
13477
13478         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13479         if (r != X86EMUL_CONTINUE)
13480                 return kvm_handle_memory_failure(vcpu, r, &e);
13481
13482         if (operand.pcid >> 12 != 0) {
13483                 kvm_inject_gp(vcpu, 0);
13484                 return 1;
13485         }
13486
13487         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13488
13489         switch (type) {
13490         case INVPCID_TYPE_INDIV_ADDR:
13491                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13492                     is_noncanonical_address(operand.gla, vcpu)) {
13493                         kvm_inject_gp(vcpu, 0);
13494                         return 1;
13495                 }
13496                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13497                 return kvm_skip_emulated_instruction(vcpu);
13498
13499         case INVPCID_TYPE_SINGLE_CTXT:
13500                 if (!pcid_enabled && (operand.pcid != 0)) {
13501                         kvm_inject_gp(vcpu, 0);
13502                         return 1;
13503                 }
13504
13505                 kvm_invalidate_pcid(vcpu, operand.pcid);
13506                 return kvm_skip_emulated_instruction(vcpu);
13507
13508         case INVPCID_TYPE_ALL_NON_GLOBAL:
13509                 /*
13510                  * Currently, KVM doesn't mark global entries in the shadow
13511                  * page tables, so a non-global flush just degenerates to a
13512                  * global flush. If needed, we could optimize this later by
13513                  * keeping track of global entries in shadow page tables.
13514                  */
13515
13516                 fallthrough;
13517         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13518                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13519                 return kvm_skip_emulated_instruction(vcpu);
13520
13521         default:
13522                 kvm_inject_gp(vcpu, 0);
13523                 return 1;
13524         }
13525 }
13526 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13527
13528 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13529 {
13530         struct kvm_run *run = vcpu->run;
13531         struct kvm_mmio_fragment *frag;
13532         unsigned int len;
13533
13534         BUG_ON(!vcpu->mmio_needed);
13535
13536         /* Complete previous fragment */
13537         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13538         len = min(8u, frag->len);
13539         if (!vcpu->mmio_is_write)
13540                 memcpy(frag->data, run->mmio.data, len);
13541
13542         if (frag->len <= 8) {
13543                 /* Switch to the next fragment. */
13544                 frag++;
13545                 vcpu->mmio_cur_fragment++;
13546         } else {
13547                 /* Go forward to the next mmio piece. */
13548                 frag->data += len;
13549                 frag->gpa += len;
13550                 frag->len -= len;
13551         }
13552
13553         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13554                 vcpu->mmio_needed = 0;
13555
13556                 // VMG change, at this point, we're always done
13557                 // RIP has already been advanced
13558                 return 1;
13559         }
13560
13561         // More MMIO is needed
13562         run->mmio.phys_addr = frag->gpa;
13563         run->mmio.len = min(8u, frag->len);
13564         run->mmio.is_write = vcpu->mmio_is_write;
13565         if (run->mmio.is_write)
13566                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13567         run->exit_reason = KVM_EXIT_MMIO;
13568
13569         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13570
13571         return 0;
13572 }
13573
13574 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13575                           void *data)
13576 {
13577         int handled;
13578         struct kvm_mmio_fragment *frag;
13579
13580         if (!data)
13581                 return -EINVAL;
13582
13583         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13584         if (handled == bytes)
13585                 return 1;
13586
13587         bytes -= handled;
13588         gpa += handled;
13589         data += handled;
13590
13591         /*TODO: Check if need to increment number of frags */
13592         frag = vcpu->mmio_fragments;
13593         vcpu->mmio_nr_fragments = 1;
13594         frag->len = bytes;
13595         frag->gpa = gpa;
13596         frag->data = data;
13597
13598         vcpu->mmio_needed = 1;
13599         vcpu->mmio_cur_fragment = 0;
13600
13601         vcpu->run->mmio.phys_addr = gpa;
13602         vcpu->run->mmio.len = min(8u, frag->len);
13603         vcpu->run->mmio.is_write = 1;
13604         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13605         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13606
13607         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13608
13609         return 0;
13610 }
13611 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13612
13613 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13614                          void *data)
13615 {
13616         int handled;
13617         struct kvm_mmio_fragment *frag;
13618
13619         if (!data)
13620                 return -EINVAL;
13621
13622         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13623         if (handled == bytes)
13624                 return 1;
13625
13626         bytes -= handled;
13627         gpa += handled;
13628         data += handled;
13629
13630         /*TODO: Check if need to increment number of frags */
13631         frag = vcpu->mmio_fragments;
13632         vcpu->mmio_nr_fragments = 1;
13633         frag->len = bytes;
13634         frag->gpa = gpa;
13635         frag->data = data;
13636
13637         vcpu->mmio_needed = 1;
13638         vcpu->mmio_cur_fragment = 0;
13639
13640         vcpu->run->mmio.phys_addr = gpa;
13641         vcpu->run->mmio.len = min(8u, frag->len);
13642         vcpu->run->mmio.is_write = 0;
13643         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13644
13645         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13646
13647         return 0;
13648 }
13649 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13650
13651 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13652 {
13653         vcpu->arch.sev_pio_count -= count;
13654         vcpu->arch.sev_pio_data += count * size;
13655 }
13656
13657 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13658                            unsigned int port);
13659
13660 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13661 {
13662         int size = vcpu->arch.pio.size;
13663         int port = vcpu->arch.pio.port;
13664
13665         vcpu->arch.pio.count = 0;
13666         if (vcpu->arch.sev_pio_count)
13667                 return kvm_sev_es_outs(vcpu, size, port);
13668         return 1;
13669 }
13670
13671 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13672                            unsigned int port)
13673 {
13674         for (;;) {
13675                 unsigned int count =
13676                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13677                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13678
13679                 /* memcpy done already by emulator_pio_out.  */
13680                 advance_sev_es_emulated_pio(vcpu, count, size);
13681                 if (!ret)
13682                         break;
13683
13684                 /* Emulation done by the kernel.  */
13685                 if (!vcpu->arch.sev_pio_count)
13686                         return 1;
13687         }
13688
13689         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13690         return 0;
13691 }
13692
13693 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13694                           unsigned int port);
13695
13696 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13697 {
13698         unsigned count = vcpu->arch.pio.count;
13699         int size = vcpu->arch.pio.size;
13700         int port = vcpu->arch.pio.port;
13701
13702         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13703         advance_sev_es_emulated_pio(vcpu, count, size);
13704         if (vcpu->arch.sev_pio_count)
13705                 return kvm_sev_es_ins(vcpu, size, port);
13706         return 1;
13707 }
13708
13709 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13710                           unsigned int port)
13711 {
13712         for (;;) {
13713                 unsigned int count =
13714                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13715                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13716                         break;
13717
13718                 /* Emulation done by the kernel.  */
13719                 advance_sev_es_emulated_pio(vcpu, count, size);
13720                 if (!vcpu->arch.sev_pio_count)
13721                         return 1;
13722         }
13723
13724         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13725         return 0;
13726 }
13727
13728 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13729                          unsigned int port, void *data,  unsigned int count,
13730                          int in)
13731 {
13732         vcpu->arch.sev_pio_data = data;
13733         vcpu->arch.sev_pio_count = count;
13734         return in ? kvm_sev_es_ins(vcpu, size, port)
13735                   : kvm_sev_es_outs(vcpu, size, port);
13736 }
13737 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13738
13739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13746 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13747 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13748 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13749 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13750 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13751 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13752 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13753 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13754 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13755 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13756 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13757 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13758 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13759 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13760 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13761 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13762 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13763 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13764 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13765 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13766 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13767 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13768
13769 static int __init kvm_x86_init(void)
13770 {
13771         kvm_mmu_x86_module_init();
13772         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13773         return 0;
13774 }
13775 module_init(kvm_x86_init);
13776
13777 static void __exit kvm_x86_exit(void)
13778 {
13779         /*
13780          * If module_init() is implemented, module_exit() must also be
13781          * implemented to allow module unload.
13782          */
13783 }
13784 module_exit(kvm_x86_exit);