GNU Linux-libre 5.19-rc6-gnu
[releases.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "evmcs.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19
20 static bool __read_mostly enable_shadow_vmcs = 1;
21 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22
23 static bool __read_mostly nested_early_check = 0;
24 module_param(nested_early_check, bool, S_IRUGO);
25
26 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27
28 /*
29  * Hyper-V requires all of these, so mark them as supported even though
30  * they are just treated the same as all-context.
31  */
32 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
33         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
34         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
36         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37
38 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
39
40 enum {
41         VMX_VMREAD_BITMAP,
42         VMX_VMWRITE_BITMAP,
43         VMX_BITMAP_NR
44 };
45 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46
47 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
48 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
49
50 struct shadow_vmcs_field {
51         u16     encoding;
52         u16     offset;
53 };
54 static struct shadow_vmcs_field shadow_read_only_fields[] = {
55 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 #include "vmcs_shadow_fields.h"
57 };
58 static int max_shadow_read_only_fields =
59         ARRAY_SIZE(shadow_read_only_fields);
60
61 static struct shadow_vmcs_field shadow_read_write_fields[] = {
62 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 #include "vmcs_shadow_fields.h"
64 };
65 static int max_shadow_read_write_fields =
66         ARRAY_SIZE(shadow_read_write_fields);
67
68 static void init_vmcs_shadow_fields(void)
69 {
70         int i, j;
71
72         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
73         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74
75         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
77                 u16 field = entry.encoding;
78
79                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
80                     (i + 1 == max_shadow_read_only_fields ||
81                      shadow_read_only_fields[i + 1].encoding != field + 1))
82                         pr_err("Missing field from shadow_read_only_field %x\n",
83                                field + 1);
84
85                 clear_bit(field, vmx_vmread_bitmap);
86                 if (field & 1)
87 #ifdef CONFIG_X86_64
88                         continue;
89 #else
90                         entry.offset += sizeof(u32);
91 #endif
92                 shadow_read_only_fields[j++] = entry;
93         }
94         max_shadow_read_only_fields = j;
95
96         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
98                 u16 field = entry.encoding;
99
100                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
101                     (i + 1 == max_shadow_read_write_fields ||
102                      shadow_read_write_fields[i + 1].encoding != field + 1))
103                         pr_err("Missing field from shadow_read_write_field %x\n",
104                                field + 1);
105
106                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
107                           field <= GUEST_TR_AR_BYTES,
108                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109
110                 /*
111                  * PML and the preemption timer can be emulated, but the
112                  * processor cannot vmwrite to fields that don't exist
113                  * on bare metal.
114                  */
115                 switch (field) {
116                 case GUEST_PML_INDEX:
117                         if (!cpu_has_vmx_pml())
118                                 continue;
119                         break;
120                 case VMX_PREEMPTION_TIMER_VALUE:
121                         if (!cpu_has_vmx_preemption_timer())
122                                 continue;
123                         break;
124                 case GUEST_INTR_STATUS:
125                         if (!cpu_has_vmx_apicv())
126                                 continue;
127                         break;
128                 default:
129                         break;
130                 }
131
132                 clear_bit(field, vmx_vmwrite_bitmap);
133                 clear_bit(field, vmx_vmread_bitmap);
134                 if (field & 1)
135 #ifdef CONFIG_X86_64
136                         continue;
137 #else
138                         entry.offset += sizeof(u32);
139 #endif
140                 shadow_read_write_fields[j++] = entry;
141         }
142         max_shadow_read_write_fields = j;
143 }
144
145 /*
146  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
147  * set the success or error code of an emulated VMX instruction (as specified
148  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
149  * instruction.
150  */
151 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 {
153         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
154                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
155                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
156         return kvm_skip_emulated_instruction(vcpu);
157 }
158
159 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 {
161         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
162                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
163                             X86_EFLAGS_SF | X86_EFLAGS_OF))
164                         | X86_EFLAGS_CF);
165         return kvm_skip_emulated_instruction(vcpu);
166 }
167
168 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
169                                 u32 vm_instruction_error)
170 {
171         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
172                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
173                             X86_EFLAGS_SF | X86_EFLAGS_OF))
174                         | X86_EFLAGS_ZF);
175         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176         /*
177          * We don't need to force sync to shadow VMCS because
178          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
179          * fields and thus must be synced.
180          */
181         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
182                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183
184         return kvm_skip_emulated_instruction(vcpu);
185 }
186
187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189         struct vcpu_vmx *vmx = to_vmx(vcpu);
190
191         /*
192          * failValid writes the error number to the current VMCS, which
193          * can't be done if there isn't a current VMCS.
194          */
195         if (vmx->nested.current_vmptr == INVALID_GPA &&
196             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197                 return nested_vmx_failInvalid(vcpu);
198
199         return nested_vmx_failValid(vcpu, vm_instruction_error);
200 }
201
202 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 {
204         /* TODO: not to reset guest simply here. */
205         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
206         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
207 }
208
209 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 {
211         return fixed_bits_valid(control, low, high);
212 }
213
214 static inline u64 vmx_control_msr(u32 low, u32 high)
215 {
216         return low | ((u64)high << 32);
217 }
218
219 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 {
221         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223         vmx->nested.need_vmcs12_to_shadow_sync = false;
224 }
225
226 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 {
228         struct vcpu_vmx *vmx = to_vmx(vcpu);
229
230         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
231                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232                 vmx->nested.hv_evmcs = NULL;
233         }
234
235         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 }
237
238 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
239                                      struct loaded_vmcs *prev)
240 {
241         struct vmcs_host_state *dest, *src;
242
243         if (unlikely(!vmx->guest_state_loaded))
244                 return;
245
246         src = &prev->host_state;
247         dest = &vmx->loaded_vmcs->host_state;
248
249         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
250         dest->ldt_sel = src->ldt_sel;
251 #ifdef CONFIG_X86_64
252         dest->ds_sel = src->ds_sel;
253         dest->es_sel = src->es_sel;
254 #endif
255 }
256
257 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
258 {
259         struct vcpu_vmx *vmx = to_vmx(vcpu);
260         struct loaded_vmcs *prev;
261         int cpu;
262
263         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
264                 return;
265
266         cpu = get_cpu();
267         prev = vmx->loaded_vmcs;
268         vmx->loaded_vmcs = vmcs;
269         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
270         vmx_sync_vmcs_host_state(vmx, prev);
271         put_cpu();
272
273         vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
274
275         /*
276          * All lazily updated registers will be reloaded from VMCS12 on both
277          * vmentry and vmexit.
278          */
279         vcpu->arch.regs_dirty = 0;
280 }
281
282 /*
283  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
284  * just stops using VMX.
285  */
286 static void free_nested(struct kvm_vcpu *vcpu)
287 {
288         struct vcpu_vmx *vmx = to_vmx(vcpu);
289
290         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
291                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
292
293         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
294                 return;
295
296         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
297
298         vmx->nested.vmxon = false;
299         vmx->nested.smm.vmxon = false;
300         vmx->nested.vmxon_ptr = INVALID_GPA;
301         free_vpid(vmx->nested.vpid02);
302         vmx->nested.posted_intr_nv = -1;
303         vmx->nested.current_vmptr = INVALID_GPA;
304         if (enable_shadow_vmcs) {
305                 vmx_disable_shadow_vmcs(vmx);
306                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
307                 free_vmcs(vmx->vmcs01.shadow_vmcs);
308                 vmx->vmcs01.shadow_vmcs = NULL;
309         }
310         kfree(vmx->nested.cached_vmcs12);
311         vmx->nested.cached_vmcs12 = NULL;
312         kfree(vmx->nested.cached_shadow_vmcs12);
313         vmx->nested.cached_shadow_vmcs12 = NULL;
314         /* Unpin physical memory we referred to in the vmcs02 */
315         if (vmx->nested.apic_access_page) {
316                 kvm_release_page_clean(vmx->nested.apic_access_page);
317                 vmx->nested.apic_access_page = NULL;
318         }
319         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
320         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
321         vmx->nested.pi_desc = NULL;
322
323         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
324
325         nested_release_evmcs(vcpu);
326
327         free_loaded_vmcs(&vmx->nested.vmcs02);
328 }
329
330 /*
331  * Ensure that the current vmcs of the logical processor is the
332  * vmcs01 of the vcpu before calling free_nested().
333  */
334 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
335 {
336         vcpu_load(vcpu);
337         vmx_leave_nested(vcpu);
338         vcpu_put(vcpu);
339 }
340
341 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
342
343 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
344 {
345         return VALID_PAGE(root_hpa) &&
346                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
347 }
348
349 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
350                                        gpa_t addr)
351 {
352         uint i;
353         struct kvm_mmu_root_info *cached_root;
354
355         WARN_ON_ONCE(!mmu_is_nested(vcpu));
356
357         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
358                 cached_root = &vcpu->arch.mmu->prev_roots[i];
359
360                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
361                                             eptp))
362                         vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
363         }
364 }
365
366 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
367                 struct x86_exception *fault)
368 {
369         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
370         struct vcpu_vmx *vmx = to_vmx(vcpu);
371         u32 vm_exit_reason;
372         unsigned long exit_qualification = vcpu->arch.exit_qualification;
373
374         if (vmx->nested.pml_full) {
375                 vm_exit_reason = EXIT_REASON_PML_FULL;
376                 vmx->nested.pml_full = false;
377                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
378         } else {
379                 if (fault->error_code & PFERR_RSVD_MASK)
380                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
381                 else
382                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
383
384                 /*
385                  * Although the caller (kvm_inject_emulated_page_fault) would
386                  * have already synced the faulting address in the shadow EPT
387                  * tables for the current EPTP12, we also need to sync it for
388                  * any other cached EPTP02s based on the same EP4TA, since the
389                  * TLB associates mappings to the EP4TA rather than the full EPTP.
390                  */
391                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
392                                            fault->address);
393         }
394
395         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
396         vmcs12->guest_physical_address = fault->address;
397 }
398
399 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
400 {
401         struct vcpu_vmx *vmx = to_vmx(vcpu);
402         bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
403         int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
404
405         kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
406                                 nested_ept_ad_enabled(vcpu),
407                                 nested_ept_get_eptp(vcpu));
408 }
409
410 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
411 {
412         WARN_ON(mmu_is_nested(vcpu));
413
414         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
415         nested_ept_new_eptp(vcpu);
416         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
417         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
418         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
419
420         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
421 }
422
423 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
424 {
425         vcpu->arch.mmu = &vcpu->arch.root_mmu;
426         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
427 }
428
429 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
430                                             u16 error_code)
431 {
432         bool inequality, bit;
433
434         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
435         inequality =
436                 (error_code & vmcs12->page_fault_error_code_mask) !=
437                  vmcs12->page_fault_error_code_match;
438         return inequality ^ bit;
439 }
440
441
442 /*
443  * KVM wants to inject page-faults which it got to the guest. This function
444  * checks whether in a nested guest, we need to inject them to L1 or L2.
445  */
446 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
447 {
448         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
449         unsigned int nr = vcpu->arch.exception.nr;
450         bool has_payload = vcpu->arch.exception.has_payload;
451         unsigned long payload = vcpu->arch.exception.payload;
452
453         if (nr == PF_VECTOR) {
454                 if (vcpu->arch.exception.nested_apf) {
455                         *exit_qual = vcpu->arch.apf.nested_apf_token;
456                         return 1;
457                 }
458                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
459                                                     vcpu->arch.exception.error_code)) {
460                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
461                         return 1;
462                 }
463         } else if (vmcs12->exception_bitmap & (1u << nr)) {
464                 if (nr == DB_VECTOR) {
465                         if (!has_payload) {
466                                 payload = vcpu->arch.dr6;
467                                 payload &= ~DR6_BT;
468                                 payload ^= DR6_ACTIVE_LOW;
469                         }
470                         *exit_qual = payload;
471                 } else
472                         *exit_qual = 0;
473                 return 1;
474         }
475
476         return 0;
477 }
478
479 static bool nested_vmx_handle_page_fault_workaround(struct kvm_vcpu *vcpu,
480                                                     struct x86_exception *fault)
481 {
482         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
483
484         WARN_ON(!is_guest_mode(vcpu));
485
486         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
487             !WARN_ON_ONCE(to_vmx(vcpu)->nested.nested_run_pending)) {
488                 vmcs12->vm_exit_intr_error_code = fault->error_code;
489                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
490                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
491                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
492                                   fault->address);
493                 return true;
494         }
495         return false;
496 }
497
498 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
499                                                struct vmcs12 *vmcs12)
500 {
501         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
502                 return 0;
503
504         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
505             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
506                 return -EINVAL;
507
508         return 0;
509 }
510
511 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
512                                                 struct vmcs12 *vmcs12)
513 {
514         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
515                 return 0;
516
517         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
518                 return -EINVAL;
519
520         return 0;
521 }
522
523 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
524                                                 struct vmcs12 *vmcs12)
525 {
526         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
527                 return 0;
528
529         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
530                 return -EINVAL;
531
532         return 0;
533 }
534
535 /*
536  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
537  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
538  * only the "disable intercept" case needs to be handled.
539  */
540 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
541                                                         unsigned long *msr_bitmap_l0,
542                                                         u32 msr, int type)
543 {
544         if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
545                 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
546
547         if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
548                 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
549 }
550
551 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
552 {
553         int msr;
554
555         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
556                 unsigned word = msr / BITS_PER_LONG;
557
558                 msr_bitmap[word] = ~0;
559                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
560         }
561 }
562
563 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)                                     \
564 static inline                                                                   \
565 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,                  \
566                                          unsigned long *msr_bitmap_l1,          \
567                                          unsigned long *msr_bitmap_l0, u32 msr) \
568 {                                                                               \
569         if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||            \
570             vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))                       \
571                 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);                    \
572         else                                                                    \
573                 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);                  \
574 }
575 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
576 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
577
578 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
579                                                     unsigned long *msr_bitmap_l1,
580                                                     unsigned long *msr_bitmap_l0,
581                                                     u32 msr, int types)
582 {
583         if (types & MSR_TYPE_R)
584                 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
585                                                   msr_bitmap_l0, msr);
586         if (types & MSR_TYPE_W)
587                 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
588                                                    msr_bitmap_l0, msr);
589 }
590
591 /*
592  * Merge L0's and L1's MSR bitmap, return false to indicate that
593  * we do not use the hardware.
594  */
595 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
596                                                  struct vmcs12 *vmcs12)
597 {
598         struct vcpu_vmx *vmx = to_vmx(vcpu);
599         int msr;
600         unsigned long *msr_bitmap_l1;
601         unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
602         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
603         struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
604
605         /* Nothing to do if the MSR bitmap is not in use.  */
606         if (!cpu_has_vmx_msr_bitmap() ||
607             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
608                 return false;
609
610         /*
611          * MSR bitmap update can be skipped when:
612          * - MSR bitmap for L1 hasn't changed.
613          * - Nested hypervisor (L1) is attempting to launch the same L2 as
614          *   before.
615          * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
616          *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
617          */
618         if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
619             evmcs->hv_enlightenments_control.msr_bitmap &&
620             evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
621                 return true;
622
623         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
624                 return false;
625
626         msr_bitmap_l1 = (unsigned long *)map->hva;
627
628         /*
629          * To keep the control flow simple, pay eight 8-byte writes (sixteen
630          * 4-byte writes on 32-bit systems) up front to enable intercepts for
631          * the x2APIC MSR range and selectively toggle those relevant to L2.
632          */
633         enable_x2apic_msr_intercepts(msr_bitmap_l0);
634
635         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
636                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
637                         /*
638                          * L0 need not intercept reads for MSRs between 0x800
639                          * and 0x8ff, it just lets the processor take the value
640                          * from the virtual-APIC page; take those 256 bits
641                          * directly from the L1 bitmap.
642                          */
643                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
644                                 unsigned word = msr / BITS_PER_LONG;
645
646                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
647                         }
648                 }
649
650                 nested_vmx_disable_intercept_for_x2apic_msr(
651                         msr_bitmap_l1, msr_bitmap_l0,
652                         X2APIC_MSR(APIC_TASKPRI),
653                         MSR_TYPE_R | MSR_TYPE_W);
654
655                 if (nested_cpu_has_vid(vmcs12)) {
656                         nested_vmx_disable_intercept_for_x2apic_msr(
657                                 msr_bitmap_l1, msr_bitmap_l0,
658                                 X2APIC_MSR(APIC_EOI),
659                                 MSR_TYPE_W);
660                         nested_vmx_disable_intercept_for_x2apic_msr(
661                                 msr_bitmap_l1, msr_bitmap_l0,
662                                 X2APIC_MSR(APIC_SELF_IPI),
663                                 MSR_TYPE_W);
664                 }
665         }
666
667         /*
668          * Always check vmcs01's bitmap to honor userspace MSR filters and any
669          * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
670          */
671 #ifdef CONFIG_X86_64
672         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
673                                          MSR_FS_BASE, MSR_TYPE_RW);
674
675         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
676                                          MSR_GS_BASE, MSR_TYPE_RW);
677
678         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
679                                          MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
680 #endif
681         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
682                                          MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
683
684         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
685                                          MSR_IA32_PRED_CMD, MSR_TYPE_W);
686
687         kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
688
689         vmx->nested.force_msr_bitmap_recalc = false;
690
691         return true;
692 }
693
694 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
695                                        struct vmcs12 *vmcs12)
696 {
697         struct vcpu_vmx *vmx = to_vmx(vcpu);
698         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
699
700         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
701             vmcs12->vmcs_link_pointer == INVALID_GPA)
702                 return;
703
704         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
705             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
706                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
707                 return;
708
709         kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
710                               VMCS12_SIZE);
711 }
712
713 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
714                                               struct vmcs12 *vmcs12)
715 {
716         struct vcpu_vmx *vmx = to_vmx(vcpu);
717         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
718
719         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
720             vmcs12->vmcs_link_pointer == INVALID_GPA)
721                 return;
722
723         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
724             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
725                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
726                 return;
727
728         kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
729                                VMCS12_SIZE);
730 }
731
732 /*
733  * In nested virtualization, check if L1 has set
734  * VM_EXIT_ACK_INTR_ON_EXIT
735  */
736 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
737 {
738         return get_vmcs12(vcpu)->vm_exit_controls &
739                 VM_EXIT_ACK_INTR_ON_EXIT;
740 }
741
742 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
743                                           struct vmcs12 *vmcs12)
744 {
745         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
746             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
747                 return -EINVAL;
748         else
749                 return 0;
750 }
751
752 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
753                                            struct vmcs12 *vmcs12)
754 {
755         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
756             !nested_cpu_has_apic_reg_virt(vmcs12) &&
757             !nested_cpu_has_vid(vmcs12) &&
758             !nested_cpu_has_posted_intr(vmcs12))
759                 return 0;
760
761         /*
762          * If virtualize x2apic mode is enabled,
763          * virtualize apic access must be disabled.
764          */
765         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
766                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
767                 return -EINVAL;
768
769         /*
770          * If virtual interrupt delivery is enabled,
771          * we must exit on external interrupts.
772          */
773         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
774                 return -EINVAL;
775
776         /*
777          * bits 15:8 should be zero in posted_intr_nv,
778          * the descriptor address has been already checked
779          * in nested_get_vmcs12_pages.
780          *
781          * bits 5:0 of posted_intr_desc_addr should be zero.
782          */
783         if (nested_cpu_has_posted_intr(vmcs12) &&
784            (CC(!nested_cpu_has_vid(vmcs12)) ||
785             CC(!nested_exit_intr_ack_set(vcpu)) ||
786             CC((vmcs12->posted_intr_nv & 0xff00)) ||
787             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
788                 return -EINVAL;
789
790         /* tpr shadow is needed by all apicv features. */
791         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
792                 return -EINVAL;
793
794         return 0;
795 }
796
797 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
798                                        u32 count, u64 addr)
799 {
800         if (count == 0)
801                 return 0;
802
803         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
804             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
805                 return -EINVAL;
806
807         return 0;
808 }
809
810 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
811                                                      struct vmcs12 *vmcs12)
812 {
813         if (CC(nested_vmx_check_msr_switch(vcpu,
814                                            vmcs12->vm_exit_msr_load_count,
815                                            vmcs12->vm_exit_msr_load_addr)) ||
816             CC(nested_vmx_check_msr_switch(vcpu,
817                                            vmcs12->vm_exit_msr_store_count,
818                                            vmcs12->vm_exit_msr_store_addr)))
819                 return -EINVAL;
820
821         return 0;
822 }
823
824 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
825                                                       struct vmcs12 *vmcs12)
826 {
827         if (CC(nested_vmx_check_msr_switch(vcpu,
828                                            vmcs12->vm_entry_msr_load_count,
829                                            vmcs12->vm_entry_msr_load_addr)))
830                 return -EINVAL;
831
832         return 0;
833 }
834
835 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
836                                          struct vmcs12 *vmcs12)
837 {
838         if (!nested_cpu_has_pml(vmcs12))
839                 return 0;
840
841         if (CC(!nested_cpu_has_ept(vmcs12)) ||
842             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
843                 return -EINVAL;
844
845         return 0;
846 }
847
848 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
849                                                         struct vmcs12 *vmcs12)
850 {
851         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
852                !nested_cpu_has_ept(vmcs12)))
853                 return -EINVAL;
854         return 0;
855 }
856
857 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
858                                                          struct vmcs12 *vmcs12)
859 {
860         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
861                !nested_cpu_has_ept(vmcs12)))
862                 return -EINVAL;
863         return 0;
864 }
865
866 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
867                                                  struct vmcs12 *vmcs12)
868 {
869         if (!nested_cpu_has_shadow_vmcs(vmcs12))
870                 return 0;
871
872         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
873             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
874                 return -EINVAL;
875
876         return 0;
877 }
878
879 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
880                                        struct vmx_msr_entry *e)
881 {
882         /* x2APIC MSR accesses are not allowed */
883         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
884                 return -EINVAL;
885         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
886             CC(e->index == MSR_IA32_UCODE_REV))
887                 return -EINVAL;
888         if (CC(e->reserved != 0))
889                 return -EINVAL;
890         return 0;
891 }
892
893 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
894                                      struct vmx_msr_entry *e)
895 {
896         if (CC(e->index == MSR_FS_BASE) ||
897             CC(e->index == MSR_GS_BASE) ||
898             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
899             nested_vmx_msr_check_common(vcpu, e))
900                 return -EINVAL;
901         return 0;
902 }
903
904 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
905                                       struct vmx_msr_entry *e)
906 {
907         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
908             nested_vmx_msr_check_common(vcpu, e))
909                 return -EINVAL;
910         return 0;
911 }
912
913 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
914 {
915         struct vcpu_vmx *vmx = to_vmx(vcpu);
916         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
917                                        vmx->nested.msrs.misc_high);
918
919         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
920 }
921
922 /*
923  * Load guest's/host's msr at nested entry/exit.
924  * return 0 for success, entry index for failure.
925  *
926  * One of the failure modes for MSR load/store is when a list exceeds the
927  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
928  * as possible, process all valid entries before failing rather than precheck
929  * for a capacity violation.
930  */
931 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
932 {
933         u32 i;
934         struct vmx_msr_entry e;
935         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
936
937         for (i = 0; i < count; i++) {
938                 if (unlikely(i >= max_msr_list_size))
939                         goto fail;
940
941                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
942                                         &e, sizeof(e))) {
943                         pr_debug_ratelimited(
944                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
945                                 __func__, i, gpa + i * sizeof(e));
946                         goto fail;
947                 }
948                 if (nested_vmx_load_msr_check(vcpu, &e)) {
949                         pr_debug_ratelimited(
950                                 "%s check failed (%u, 0x%x, 0x%x)\n",
951                                 __func__, i, e.index, e.reserved);
952                         goto fail;
953                 }
954                 if (kvm_set_msr(vcpu, e.index, e.value)) {
955                         pr_debug_ratelimited(
956                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
957                                 __func__, i, e.index, e.value);
958                         goto fail;
959                 }
960         }
961         return 0;
962 fail:
963         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
964         return i + 1;
965 }
966
967 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
968                                             u32 msr_index,
969                                             u64 *data)
970 {
971         struct vcpu_vmx *vmx = to_vmx(vcpu);
972
973         /*
974          * If the L0 hypervisor stored a more accurate value for the TSC that
975          * does not include the time taken for emulation of the L2->L1
976          * VM-exit in L0, use the more accurate value.
977          */
978         if (msr_index == MSR_IA32_TSC) {
979                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
980                                                     MSR_IA32_TSC);
981
982                 if (i >= 0) {
983                         u64 val = vmx->msr_autostore.guest.val[i].value;
984
985                         *data = kvm_read_l1_tsc(vcpu, val);
986                         return true;
987                 }
988         }
989
990         if (kvm_get_msr(vcpu, msr_index, data)) {
991                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
992                         msr_index);
993                 return false;
994         }
995         return true;
996 }
997
998 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
999                                      struct vmx_msr_entry *e)
1000 {
1001         if (kvm_vcpu_read_guest(vcpu,
1002                                 gpa + i * sizeof(*e),
1003                                 e, 2 * sizeof(u32))) {
1004                 pr_debug_ratelimited(
1005                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1006                         __func__, i, gpa + i * sizeof(*e));
1007                 return false;
1008         }
1009         if (nested_vmx_store_msr_check(vcpu, e)) {
1010                 pr_debug_ratelimited(
1011                         "%s check failed (%u, 0x%x, 0x%x)\n",
1012                         __func__, i, e->index, e->reserved);
1013                 return false;
1014         }
1015         return true;
1016 }
1017
1018 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1019 {
1020         u64 data;
1021         u32 i;
1022         struct vmx_msr_entry e;
1023         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1024
1025         for (i = 0; i < count; i++) {
1026                 if (unlikely(i >= max_msr_list_size))
1027                         return -EINVAL;
1028
1029                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1030                         return -EINVAL;
1031
1032                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1033                         return -EINVAL;
1034
1035                 if (kvm_vcpu_write_guest(vcpu,
1036                                          gpa + i * sizeof(e) +
1037                                              offsetof(struct vmx_msr_entry, value),
1038                                          &data, sizeof(data))) {
1039                         pr_debug_ratelimited(
1040                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1041                                 __func__, i, e.index, data);
1042                         return -EINVAL;
1043                 }
1044         }
1045         return 0;
1046 }
1047
1048 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1049 {
1050         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1051         u32 count = vmcs12->vm_exit_msr_store_count;
1052         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1053         struct vmx_msr_entry e;
1054         u32 i;
1055
1056         for (i = 0; i < count; i++) {
1057                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1058                         return false;
1059
1060                 if (e.index == msr_index)
1061                         return true;
1062         }
1063         return false;
1064 }
1065
1066 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1067                                            u32 msr_index)
1068 {
1069         struct vcpu_vmx *vmx = to_vmx(vcpu);
1070         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1071         bool in_vmcs12_store_list;
1072         int msr_autostore_slot;
1073         bool in_autostore_list;
1074         int last;
1075
1076         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1077         in_autostore_list = msr_autostore_slot >= 0;
1078         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1079
1080         if (in_vmcs12_store_list && !in_autostore_list) {
1081                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1082                         /*
1083                          * Emulated VMEntry does not fail here.  Instead a less
1084                          * accurate value will be returned by
1085                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1086                          * instead of reading the value from the vmcs02 VMExit
1087                          * MSR-store area.
1088                          */
1089                         pr_warn_ratelimited(
1090                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1091                                 msr_index);
1092                         return;
1093                 }
1094                 last = autostore->nr++;
1095                 autostore->val[last].index = msr_index;
1096         } else if (!in_vmcs12_store_list && in_autostore_list) {
1097                 last = --autostore->nr;
1098                 autostore->val[msr_autostore_slot] = autostore->val[last];
1099         }
1100 }
1101
1102 /*
1103  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1104  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1105  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1106  * @entry_failure_code.
1107  */
1108 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1109                                bool nested_ept, bool reload_pdptrs,
1110                                enum vm_entry_failure_code *entry_failure_code)
1111 {
1112         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1113                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1114                 return -EINVAL;
1115         }
1116
1117         /*
1118          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1119          * must not be dereferenced.
1120          */
1121         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1122             CC(!load_pdptrs(vcpu, cr3))) {
1123                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1124                 return -EINVAL;
1125         }
1126
1127         vcpu->arch.cr3 = cr3;
1128         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1129
1130         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1131         kvm_init_mmu(vcpu);
1132
1133         if (!nested_ept)
1134                 kvm_mmu_new_pgd(vcpu, cr3);
1135
1136         return 0;
1137 }
1138
1139 /*
1140  * Returns if KVM is able to config CPU to tag TLB entries
1141  * populated by L2 differently than TLB entries populated
1142  * by L1.
1143  *
1144  * If L0 uses EPT, L1 and L2 run with different EPTP because
1145  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1146  * are tagged with different EPTP.
1147  *
1148  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1149  * with different VPID (L1 entries are tagged with vmx->vpid
1150  * while L2 entries are tagged with vmx->nested.vpid02).
1151  */
1152 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1153 {
1154         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1155
1156         return enable_ept ||
1157                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1158 }
1159
1160 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1161                                             struct vmcs12 *vmcs12,
1162                                             bool is_vmenter)
1163 {
1164         struct vcpu_vmx *vmx = to_vmx(vcpu);
1165
1166         /*
1167          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1168          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1169          * full TLB flush from the guest's perspective.  This is required even
1170          * if VPID is disabled in the host as KVM may need to synchronize the
1171          * MMU in response to the guest TLB flush.
1172          *
1173          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1174          * EPT is a special snowflake, as guest-physical mappings aren't
1175          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1176          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1177          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1178          * those mappings.
1179          */
1180         if (!nested_cpu_has_vpid(vmcs12)) {
1181                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1182                 return;
1183         }
1184
1185         /* L2 should never have a VPID if VPID is disabled. */
1186         WARN_ON(!enable_vpid);
1187
1188         /*
1189          * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1190          * emulate a guest TLB flush as KVM does not track vpid12 history nor
1191          * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1192          * that the new vpid12 has never been used and thus represents a new
1193          * guest ASID that cannot have entries in the TLB.
1194          */
1195         if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1196                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1197                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1198                 return;
1199         }
1200
1201         /*
1202          * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1203          * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1204          * KVM was unable to allocate a VPID for L2, flush the current context
1205          * as the effective ASID is common to both L1 and L2.
1206          */
1207         if (!nested_has_guest_tlb_tag(vcpu))
1208                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1209 }
1210
1211 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1212 {
1213         superset &= mask;
1214         subset &= mask;
1215
1216         return (superset | subset) == superset;
1217 }
1218
1219 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1220 {
1221         const u64 feature_and_reserved =
1222                 /* feature (except bit 48; see below) */
1223                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1224                 /* reserved */
1225                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1226         u64 vmx_basic = vmx->nested.msrs.basic;
1227
1228         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1229                 return -EINVAL;
1230
1231         /*
1232          * KVM does not emulate a version of VMX that constrains physical
1233          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1234          */
1235         if (data & BIT_ULL(48))
1236                 return -EINVAL;
1237
1238         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1239             vmx_basic_vmcs_revision_id(data))
1240                 return -EINVAL;
1241
1242         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1243                 return -EINVAL;
1244
1245         vmx->nested.msrs.basic = data;
1246         return 0;
1247 }
1248
1249 static int
1250 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1251 {
1252         u64 supported;
1253         u32 *lowp, *highp;
1254
1255         switch (msr_index) {
1256         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1257                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1258                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1259                 break;
1260         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1261                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1262                 highp = &vmx->nested.msrs.procbased_ctls_high;
1263                 break;
1264         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1265                 lowp = &vmx->nested.msrs.exit_ctls_low;
1266                 highp = &vmx->nested.msrs.exit_ctls_high;
1267                 break;
1268         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1269                 lowp = &vmx->nested.msrs.entry_ctls_low;
1270                 highp = &vmx->nested.msrs.entry_ctls_high;
1271                 break;
1272         case MSR_IA32_VMX_PROCBASED_CTLS2:
1273                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1274                 highp = &vmx->nested.msrs.secondary_ctls_high;
1275                 break;
1276         default:
1277                 BUG();
1278         }
1279
1280         supported = vmx_control_msr(*lowp, *highp);
1281
1282         /* Check must-be-1 bits are still 1. */
1283         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1284                 return -EINVAL;
1285
1286         /* Check must-be-0 bits are still 0. */
1287         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1288                 return -EINVAL;
1289
1290         *lowp = data;
1291         *highp = data >> 32;
1292         return 0;
1293 }
1294
1295 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1296 {
1297         const u64 feature_and_reserved_bits =
1298                 /* feature */
1299                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1300                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1301                 /* reserved */
1302                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1303         u64 vmx_misc;
1304
1305         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1306                                    vmx->nested.msrs.misc_high);
1307
1308         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1309                 return -EINVAL;
1310
1311         if ((vmx->nested.msrs.pinbased_ctls_high &
1312              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1313             vmx_misc_preemption_timer_rate(data) !=
1314             vmx_misc_preemption_timer_rate(vmx_misc))
1315                 return -EINVAL;
1316
1317         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1318                 return -EINVAL;
1319
1320         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1321                 return -EINVAL;
1322
1323         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1324                 return -EINVAL;
1325
1326         vmx->nested.msrs.misc_low = data;
1327         vmx->nested.msrs.misc_high = data >> 32;
1328
1329         return 0;
1330 }
1331
1332 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1333 {
1334         u64 vmx_ept_vpid_cap;
1335
1336         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1337                                            vmx->nested.msrs.vpid_caps);
1338
1339         /* Every bit is either reserved or a feature bit. */
1340         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1341                 return -EINVAL;
1342
1343         vmx->nested.msrs.ept_caps = data;
1344         vmx->nested.msrs.vpid_caps = data >> 32;
1345         return 0;
1346 }
1347
1348 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1349 {
1350         u64 *msr;
1351
1352         switch (msr_index) {
1353         case MSR_IA32_VMX_CR0_FIXED0:
1354                 msr = &vmx->nested.msrs.cr0_fixed0;
1355                 break;
1356         case MSR_IA32_VMX_CR4_FIXED0:
1357                 msr = &vmx->nested.msrs.cr4_fixed0;
1358                 break;
1359         default:
1360                 BUG();
1361         }
1362
1363         /*
1364          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1365          * must be 1 in the restored value.
1366          */
1367         if (!is_bitwise_subset(data, *msr, -1ULL))
1368                 return -EINVAL;
1369
1370         *msr = data;
1371         return 0;
1372 }
1373
1374 /*
1375  * Called when userspace is restoring VMX MSRs.
1376  *
1377  * Returns 0 on success, non-0 otherwise.
1378  */
1379 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1380 {
1381         struct vcpu_vmx *vmx = to_vmx(vcpu);
1382
1383         /*
1384          * Don't allow changes to the VMX capability MSRs while the vCPU
1385          * is in VMX operation.
1386          */
1387         if (vmx->nested.vmxon)
1388                 return -EBUSY;
1389
1390         switch (msr_index) {
1391         case MSR_IA32_VMX_BASIC:
1392                 return vmx_restore_vmx_basic(vmx, data);
1393         case MSR_IA32_VMX_PINBASED_CTLS:
1394         case MSR_IA32_VMX_PROCBASED_CTLS:
1395         case MSR_IA32_VMX_EXIT_CTLS:
1396         case MSR_IA32_VMX_ENTRY_CTLS:
1397                 /*
1398                  * The "non-true" VMX capability MSRs are generated from the
1399                  * "true" MSRs, so we do not support restoring them directly.
1400                  *
1401                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1402                  * should restore the "true" MSRs with the must-be-1 bits
1403                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1404                  * DEFAULT SETTINGS".
1405                  */
1406                 return -EINVAL;
1407         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1408         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1409         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1410         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1411         case MSR_IA32_VMX_PROCBASED_CTLS2:
1412                 return vmx_restore_control_msr(vmx, msr_index, data);
1413         case MSR_IA32_VMX_MISC:
1414                 return vmx_restore_vmx_misc(vmx, data);
1415         case MSR_IA32_VMX_CR0_FIXED0:
1416         case MSR_IA32_VMX_CR4_FIXED0:
1417                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1418         case MSR_IA32_VMX_CR0_FIXED1:
1419         case MSR_IA32_VMX_CR4_FIXED1:
1420                 /*
1421                  * These MSRs are generated based on the vCPU's CPUID, so we
1422                  * do not support restoring them directly.
1423                  */
1424                 return -EINVAL;
1425         case MSR_IA32_VMX_EPT_VPID_CAP:
1426                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1427         case MSR_IA32_VMX_VMCS_ENUM:
1428                 vmx->nested.msrs.vmcs_enum = data;
1429                 return 0;
1430         case MSR_IA32_VMX_VMFUNC:
1431                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1432                         return -EINVAL;
1433                 vmx->nested.msrs.vmfunc_controls = data;
1434                 return 0;
1435         default:
1436                 /*
1437                  * The rest of the VMX capability MSRs do not support restore.
1438                  */
1439                 return -EINVAL;
1440         }
1441 }
1442
1443 /* Returns 0 on success, non-0 otherwise. */
1444 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1445 {
1446         switch (msr_index) {
1447         case MSR_IA32_VMX_BASIC:
1448                 *pdata = msrs->basic;
1449                 break;
1450         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1451         case MSR_IA32_VMX_PINBASED_CTLS:
1452                 *pdata = vmx_control_msr(
1453                         msrs->pinbased_ctls_low,
1454                         msrs->pinbased_ctls_high);
1455                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1456                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1457                 break;
1458         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1459         case MSR_IA32_VMX_PROCBASED_CTLS:
1460                 *pdata = vmx_control_msr(
1461                         msrs->procbased_ctls_low,
1462                         msrs->procbased_ctls_high);
1463                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1464                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465                 break;
1466         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1467         case MSR_IA32_VMX_EXIT_CTLS:
1468                 *pdata = vmx_control_msr(
1469                         msrs->exit_ctls_low,
1470                         msrs->exit_ctls_high);
1471                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1472                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1473                 break;
1474         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1475         case MSR_IA32_VMX_ENTRY_CTLS:
1476                 *pdata = vmx_control_msr(
1477                         msrs->entry_ctls_low,
1478                         msrs->entry_ctls_high);
1479                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1480                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1481                 break;
1482         case MSR_IA32_VMX_MISC:
1483                 *pdata = vmx_control_msr(
1484                         msrs->misc_low,
1485                         msrs->misc_high);
1486                 break;
1487         case MSR_IA32_VMX_CR0_FIXED0:
1488                 *pdata = msrs->cr0_fixed0;
1489                 break;
1490         case MSR_IA32_VMX_CR0_FIXED1:
1491                 *pdata = msrs->cr0_fixed1;
1492                 break;
1493         case MSR_IA32_VMX_CR4_FIXED0:
1494                 *pdata = msrs->cr4_fixed0;
1495                 break;
1496         case MSR_IA32_VMX_CR4_FIXED1:
1497                 *pdata = msrs->cr4_fixed1;
1498                 break;
1499         case MSR_IA32_VMX_VMCS_ENUM:
1500                 *pdata = msrs->vmcs_enum;
1501                 break;
1502         case MSR_IA32_VMX_PROCBASED_CTLS2:
1503                 *pdata = vmx_control_msr(
1504                         msrs->secondary_ctls_low,
1505                         msrs->secondary_ctls_high);
1506                 break;
1507         case MSR_IA32_VMX_EPT_VPID_CAP:
1508                 *pdata = msrs->ept_caps |
1509                         ((u64)msrs->vpid_caps << 32);
1510                 break;
1511         case MSR_IA32_VMX_VMFUNC:
1512                 *pdata = msrs->vmfunc_controls;
1513                 break;
1514         default:
1515                 return 1;
1516         }
1517
1518         return 0;
1519 }
1520
1521 /*
1522  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1523  * been modified by the L1 guest.  Note, "writable" in this context means
1524  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1525  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1526  * VM-exit information fields (which are actually writable if the vCPU is
1527  * configured to support "VMWRITE to any supported field in the VMCS").
1528  */
1529 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1530 {
1531         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1532         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1533         struct shadow_vmcs_field field;
1534         unsigned long val;
1535         int i;
1536
1537         if (WARN_ON(!shadow_vmcs))
1538                 return;
1539
1540         preempt_disable();
1541
1542         vmcs_load(shadow_vmcs);
1543
1544         for (i = 0; i < max_shadow_read_write_fields; i++) {
1545                 field = shadow_read_write_fields[i];
1546                 val = __vmcs_readl(field.encoding);
1547                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1548         }
1549
1550         vmcs_clear(shadow_vmcs);
1551         vmcs_load(vmx->loaded_vmcs->vmcs);
1552
1553         preempt_enable();
1554 }
1555
1556 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1557 {
1558         const struct shadow_vmcs_field *fields[] = {
1559                 shadow_read_write_fields,
1560                 shadow_read_only_fields
1561         };
1562         const int max_fields[] = {
1563                 max_shadow_read_write_fields,
1564                 max_shadow_read_only_fields
1565         };
1566         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1567         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1568         struct shadow_vmcs_field field;
1569         unsigned long val;
1570         int i, q;
1571
1572         if (WARN_ON(!shadow_vmcs))
1573                 return;
1574
1575         vmcs_load(shadow_vmcs);
1576
1577         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1578                 for (i = 0; i < max_fields[q]; i++) {
1579                         field = fields[q][i];
1580                         val = vmcs12_read_any(vmcs12, field.encoding,
1581                                               field.offset);
1582                         __vmcs_writel(field.encoding, val);
1583                 }
1584         }
1585
1586         vmcs_clear(shadow_vmcs);
1587         vmcs_load(vmx->loaded_vmcs->vmcs);
1588 }
1589
1590 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1591 {
1592         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1593         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1594
1595         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1596         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1597         vmcs12->guest_rip = evmcs->guest_rip;
1598
1599         if (unlikely(!(hv_clean_fields &
1600                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1601                 vmcs12->guest_rsp = evmcs->guest_rsp;
1602                 vmcs12->guest_rflags = evmcs->guest_rflags;
1603                 vmcs12->guest_interruptibility_info =
1604                         evmcs->guest_interruptibility_info;
1605         }
1606
1607         if (unlikely(!(hv_clean_fields &
1608                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1609                 vmcs12->cpu_based_vm_exec_control =
1610                         evmcs->cpu_based_vm_exec_control;
1611         }
1612
1613         if (unlikely(!(hv_clean_fields &
1614                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1615                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1616         }
1617
1618         if (unlikely(!(hv_clean_fields &
1619                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1620                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1621         }
1622
1623         if (unlikely(!(hv_clean_fields &
1624                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1625                 vmcs12->vm_entry_intr_info_field =
1626                         evmcs->vm_entry_intr_info_field;
1627                 vmcs12->vm_entry_exception_error_code =
1628                         evmcs->vm_entry_exception_error_code;
1629                 vmcs12->vm_entry_instruction_len =
1630                         evmcs->vm_entry_instruction_len;
1631         }
1632
1633         if (unlikely(!(hv_clean_fields &
1634                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1635                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1636                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1637                 vmcs12->host_cr0 = evmcs->host_cr0;
1638                 vmcs12->host_cr3 = evmcs->host_cr3;
1639                 vmcs12->host_cr4 = evmcs->host_cr4;
1640                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1641                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1642                 vmcs12->host_rip = evmcs->host_rip;
1643                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1644                 vmcs12->host_es_selector = evmcs->host_es_selector;
1645                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1646                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1647                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1648                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1649                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1650                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1651         }
1652
1653         if (unlikely(!(hv_clean_fields &
1654                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1655                 vmcs12->pin_based_vm_exec_control =
1656                         evmcs->pin_based_vm_exec_control;
1657                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1658                 vmcs12->secondary_vm_exec_control =
1659                         evmcs->secondary_vm_exec_control;
1660         }
1661
1662         if (unlikely(!(hv_clean_fields &
1663                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1664                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1665                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1666         }
1667
1668         if (unlikely(!(hv_clean_fields &
1669                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1670                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1671         }
1672
1673         if (unlikely(!(hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1675                 vmcs12->guest_es_base = evmcs->guest_es_base;
1676                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1677                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1678                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1679                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1680                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1681                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1682                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1683                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1684                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1685                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1686                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1687                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1688                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1689                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1690                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1691                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1692                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1693                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1694                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1695                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1696                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1697                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1698                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1699                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1700                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1701                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1702                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1703                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1704                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1705                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1706                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1707                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1708                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1709                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1710                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1711         }
1712
1713         if (unlikely(!(hv_clean_fields &
1714                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1715                 vmcs12->tsc_offset = evmcs->tsc_offset;
1716                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1717                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1718         }
1719
1720         if (unlikely(!(hv_clean_fields &
1721                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1722                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1723                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1724                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1725                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1726                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1727                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1728                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1729                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1730         }
1731
1732         if (unlikely(!(hv_clean_fields &
1733                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1734                 vmcs12->host_fs_base = evmcs->host_fs_base;
1735                 vmcs12->host_gs_base = evmcs->host_gs_base;
1736                 vmcs12->host_tr_base = evmcs->host_tr_base;
1737                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1738                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1739                 vmcs12->host_rsp = evmcs->host_rsp;
1740         }
1741
1742         if (unlikely(!(hv_clean_fields &
1743                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1744                 vmcs12->ept_pointer = evmcs->ept_pointer;
1745                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1746         }
1747
1748         if (unlikely(!(hv_clean_fields &
1749                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1750                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1751                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1752                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1753                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1754                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1755                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1756                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1757                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1758                 vmcs12->guest_pending_dbg_exceptions =
1759                         evmcs->guest_pending_dbg_exceptions;
1760                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1761                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1762                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1763                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1764                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1765         }
1766
1767         /*
1768          * Not used?
1769          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1770          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1771          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1772          * vmcs12->page_fault_error_code_mask =
1773          *              evmcs->page_fault_error_code_mask;
1774          * vmcs12->page_fault_error_code_match =
1775          *              evmcs->page_fault_error_code_match;
1776          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1777          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1778          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1779          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1780          */
1781
1782         /*
1783          * Read only fields:
1784          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1785          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1786          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1787          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1788          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1789          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1790          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1791          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1792          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1793          * vmcs12->exit_qualification = evmcs->exit_qualification;
1794          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1795          *
1796          * Not present in struct vmcs12:
1797          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1798          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1799          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1800          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1801          */
1802
1803         return;
1804 }
1805
1806 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1807 {
1808         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1809         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1810
1811         /*
1812          * Should not be changed by KVM:
1813          *
1814          * evmcs->host_es_selector = vmcs12->host_es_selector;
1815          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1816          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1817          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1818          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1819          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1820          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1821          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1822          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1823          * evmcs->host_cr0 = vmcs12->host_cr0;
1824          * evmcs->host_cr3 = vmcs12->host_cr3;
1825          * evmcs->host_cr4 = vmcs12->host_cr4;
1826          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1827          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1828          * evmcs->host_rip = vmcs12->host_rip;
1829          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1830          * evmcs->host_fs_base = vmcs12->host_fs_base;
1831          * evmcs->host_gs_base = vmcs12->host_gs_base;
1832          * evmcs->host_tr_base = vmcs12->host_tr_base;
1833          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1834          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1835          * evmcs->host_rsp = vmcs12->host_rsp;
1836          * sync_vmcs02_to_vmcs12() doesn't read these:
1837          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1838          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1839          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1840          * evmcs->ept_pointer = vmcs12->ept_pointer;
1841          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1842          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1843          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1844          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1845          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1846          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1847          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1848          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1849          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1850          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1851          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1852          * evmcs->page_fault_error_code_mask =
1853          *              vmcs12->page_fault_error_code_mask;
1854          * evmcs->page_fault_error_code_match =
1855          *              vmcs12->page_fault_error_code_match;
1856          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1857          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1858          * evmcs->tsc_offset = vmcs12->tsc_offset;
1859          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1860          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1861          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1862          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1863          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1864          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1865          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1866          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1867          *
1868          * Not present in struct vmcs12:
1869          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1870          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1871          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1872          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1873          */
1874
1875         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1876         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1877         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1878         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1879         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1880         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1881         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1882         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1883
1884         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1885         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1886         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1887         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1888         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1889         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1890         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1891         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1892         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1893         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1894
1895         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1896         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1897         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1898         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1899         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1900         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1901         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1902         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1903
1904         evmcs->guest_es_base = vmcs12->guest_es_base;
1905         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1906         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1907         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1908         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1909         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1910         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1911         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1912         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1913         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1914
1915         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1916         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1917
1918         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1919         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1920         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1921         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1922
1923         evmcs->guest_pending_dbg_exceptions =
1924                 vmcs12->guest_pending_dbg_exceptions;
1925         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1926         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1927
1928         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1929         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1930
1931         evmcs->guest_cr0 = vmcs12->guest_cr0;
1932         evmcs->guest_cr3 = vmcs12->guest_cr3;
1933         evmcs->guest_cr4 = vmcs12->guest_cr4;
1934         evmcs->guest_dr7 = vmcs12->guest_dr7;
1935
1936         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1937
1938         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1939         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1940         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1941         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1942         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1943         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1944         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1945         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1946
1947         evmcs->exit_qualification = vmcs12->exit_qualification;
1948
1949         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1950         evmcs->guest_rsp = vmcs12->guest_rsp;
1951         evmcs->guest_rflags = vmcs12->guest_rflags;
1952
1953         evmcs->guest_interruptibility_info =
1954                 vmcs12->guest_interruptibility_info;
1955         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1956         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1957         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1958         evmcs->vm_entry_exception_error_code =
1959                 vmcs12->vm_entry_exception_error_code;
1960         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1961
1962         evmcs->guest_rip = vmcs12->guest_rip;
1963
1964         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1965
1966         return;
1967 }
1968
1969 /*
1970  * This is an equivalent of the nested hypervisor executing the vmptrld
1971  * instruction.
1972  */
1973 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1974         struct kvm_vcpu *vcpu, bool from_launch)
1975 {
1976         struct vcpu_vmx *vmx = to_vmx(vcpu);
1977         bool evmcs_gpa_changed = false;
1978         u64 evmcs_gpa;
1979
1980         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1981                 return EVMPTRLD_DISABLED;
1982
1983         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1984                 nested_release_evmcs(vcpu);
1985                 return EVMPTRLD_DISABLED;
1986         }
1987
1988         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1989                 vmx->nested.current_vmptr = INVALID_GPA;
1990
1991                 nested_release_evmcs(vcpu);
1992
1993                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1994                                  &vmx->nested.hv_evmcs_map))
1995                         return EVMPTRLD_ERROR;
1996
1997                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1998
1999                 /*
2000                  * Currently, KVM only supports eVMCS version 1
2001                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2002                  * value to first u32 field of eVMCS which should specify eVMCS
2003                  * VersionNumber.
2004                  *
2005                  * Guest should be aware of supported eVMCS versions by host by
2006                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2007                  * expected to set this CPUID leaf according to the value
2008                  * returned in vmcs_version from nested_enable_evmcs().
2009                  *
2010                  * However, it turns out that Microsoft Hyper-V fails to comply
2011                  * to their own invented interface: When Hyper-V use eVMCS, it
2012                  * just sets first u32 field of eVMCS to revision_id specified
2013                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2014                  * which is one of the supported versions specified in
2015                  * CPUID.0x4000000A.EAX[0:15].
2016                  *
2017                  * To overcome Hyper-V bug, we accept here either a supported
2018                  * eVMCS version or VMCS12 revision_id as valid values for first
2019                  * u32 field of eVMCS.
2020                  */
2021                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2022                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2023                         nested_release_evmcs(vcpu);
2024                         return EVMPTRLD_VMFAIL;
2025                 }
2026
2027                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2028
2029                 evmcs_gpa_changed = true;
2030                 /*
2031                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2032                  * reloaded from guest's memory (read only fields, fields not
2033                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2034                  * are no leftovers.
2035                  */
2036                 if (from_launch) {
2037                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2038                         memset(vmcs12, 0, sizeof(*vmcs12));
2039                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2040                 }
2041
2042         }
2043
2044         /*
2045          * Clean fields data can't be used on VMLAUNCH and when we switch
2046          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2047          */
2048         if (from_launch || evmcs_gpa_changed) {
2049                 vmx->nested.hv_evmcs->hv_clean_fields &=
2050                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2051
2052                 vmx->nested.force_msr_bitmap_recalc = true;
2053         }
2054
2055         return EVMPTRLD_SUCCEEDED;
2056 }
2057
2058 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2059 {
2060         struct vcpu_vmx *vmx = to_vmx(vcpu);
2061
2062         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2063                 copy_vmcs12_to_enlightened(vmx);
2064         else
2065                 copy_vmcs12_to_shadow(vmx);
2066
2067         vmx->nested.need_vmcs12_to_shadow_sync = false;
2068 }
2069
2070 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2071 {
2072         struct vcpu_vmx *vmx =
2073                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2074
2075         vmx->nested.preemption_timer_expired = true;
2076         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2077         kvm_vcpu_kick(&vmx->vcpu);
2078
2079         return HRTIMER_NORESTART;
2080 }
2081
2082 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2083 {
2084         struct vcpu_vmx *vmx = to_vmx(vcpu);
2085         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2086
2087         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2088                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2089
2090         if (!vmx->nested.has_preemption_timer_deadline) {
2091                 vmx->nested.preemption_timer_deadline =
2092                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2093                 vmx->nested.has_preemption_timer_deadline = true;
2094         }
2095         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2096 }
2097
2098 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2099                                         u64 preemption_timeout)
2100 {
2101         struct vcpu_vmx *vmx = to_vmx(vcpu);
2102
2103         /*
2104          * A timer value of zero is architecturally guaranteed to cause
2105          * a VMExit prior to executing any instructions in the guest.
2106          */
2107         if (preemption_timeout == 0) {
2108                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2109                 return;
2110         }
2111
2112         if (vcpu->arch.virtual_tsc_khz == 0)
2113                 return;
2114
2115         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2116         preemption_timeout *= 1000000;
2117         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2118         hrtimer_start(&vmx->nested.preemption_timer,
2119                       ktime_add_ns(ktime_get(), preemption_timeout),
2120                       HRTIMER_MODE_ABS_PINNED);
2121 }
2122
2123 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2124 {
2125         if (vmx->nested.nested_run_pending &&
2126             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2127                 return vmcs12->guest_ia32_efer;
2128         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2129                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2130         else
2131                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2132 }
2133
2134 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2135 {
2136         /*
2137          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2138          * according to L0's settings (vmcs12 is irrelevant here).  Host
2139          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2140          * will be set as needed prior to VMLAUNCH/VMRESUME.
2141          */
2142         if (vmx->nested.vmcs02_initialized)
2143                 return;
2144         vmx->nested.vmcs02_initialized = true;
2145
2146         /*
2147          * We don't care what the EPTP value is we just need to guarantee
2148          * it's valid so we don't get a false positive when doing early
2149          * consistency checks.
2150          */
2151         if (enable_ept && nested_early_check)
2152                 vmcs_write64(EPT_POINTER,
2153                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2154
2155         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2156         if (cpu_has_vmx_vmfunc())
2157                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2158
2159         if (cpu_has_vmx_posted_intr())
2160                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2161
2162         if (cpu_has_vmx_msr_bitmap())
2163                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2164
2165         /*
2166          * PML is emulated for L2, but never enabled in hardware as the MMU
2167          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2168          * deal with filtering out L2 GPAs from the buffer.
2169          */
2170         if (enable_pml) {
2171                 vmcs_write64(PML_ADDRESS, 0);
2172                 vmcs_write16(GUEST_PML_INDEX, -1);
2173         }
2174
2175         if (cpu_has_vmx_encls_vmexit())
2176                 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2177
2178         /*
2179          * Set the MSR load/store lists to match L0's settings.  Only the
2180          * addresses are constant (for vmcs02), the counts can change based
2181          * on L2's behavior, e.g. switching to/from long mode.
2182          */
2183         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2184         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2185         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2186
2187         vmx_set_constant_host_state(vmx);
2188 }
2189
2190 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2191                                       struct vmcs12 *vmcs12)
2192 {
2193         prepare_vmcs02_constant_state(vmx);
2194
2195         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2196
2197         if (enable_vpid) {
2198                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2199                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2200                 else
2201                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2202         }
2203 }
2204
2205 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2206                                  struct vmcs12 *vmcs12)
2207 {
2208         u32 exec_control;
2209         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2210
2211         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2212                 prepare_vmcs02_early_rare(vmx, vmcs12);
2213
2214         /*
2215          * PIN CONTROLS
2216          */
2217         exec_control = __pin_controls_get(vmcs01);
2218         exec_control |= (vmcs12->pin_based_vm_exec_control &
2219                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2220
2221         /* Posted interrupts setting is only taken from vmcs12.  */
2222         vmx->nested.pi_pending = false;
2223         if (nested_cpu_has_posted_intr(vmcs12))
2224                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2225         else
2226                 exec_control &= ~PIN_BASED_POSTED_INTR;
2227         pin_controls_set(vmx, exec_control);
2228
2229         /*
2230          * EXEC CONTROLS
2231          */
2232         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2233         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2234         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2235         exec_control &= ~CPU_BASED_TPR_SHADOW;
2236         exec_control |= vmcs12->cpu_based_vm_exec_control;
2237
2238         vmx->nested.l1_tpr_threshold = -1;
2239         if (exec_control & CPU_BASED_TPR_SHADOW)
2240                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2241 #ifdef CONFIG_X86_64
2242         else
2243                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2244                                 CPU_BASED_CR8_STORE_EXITING;
2245 #endif
2246
2247         /*
2248          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2249          * for I/O port accesses.
2250          */
2251         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2252         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2253
2254         /*
2255          * This bit will be computed in nested_get_vmcs12_pages, because
2256          * we do not have access to L1's MSR bitmap yet.  For now, keep
2257          * the same bit as before, hoping to avoid multiple VMWRITEs that
2258          * only set/clear this bit.
2259          */
2260         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2261         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2262
2263         exec_controls_set(vmx, exec_control);
2264
2265         /*
2266          * SECONDARY EXEC CONTROLS
2267          */
2268         if (cpu_has_secondary_exec_ctrls()) {
2269                 exec_control = __secondary_exec_controls_get(vmcs01);
2270
2271                 /* Take the following fields only from vmcs12 */
2272                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2273                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2274                                   SECONDARY_EXEC_ENABLE_INVPCID |
2275                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2276                                   SECONDARY_EXEC_XSAVES |
2277                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2278                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2279                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2280                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2281                                   SECONDARY_EXEC_TSC_SCALING |
2282                                   SECONDARY_EXEC_DESC);
2283
2284                 if (nested_cpu_has(vmcs12,
2285                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2286                         exec_control |= vmcs12->secondary_vm_exec_control;
2287
2288                 /* PML is emulated and never enabled in hardware for L2. */
2289                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2290
2291                 /* VMCS shadowing for L2 is emulated for now */
2292                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2293
2294                 /*
2295                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2296                  * will not have to rewrite the controls just for this bit.
2297                  */
2298                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2299                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2300                         exec_control |= SECONDARY_EXEC_DESC;
2301
2302                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2303                         vmcs_write16(GUEST_INTR_STATUS,
2304                                 vmcs12->guest_intr_status);
2305
2306                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2307                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2308
2309                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2310                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2311
2312                 secondary_exec_controls_set(vmx, exec_control);
2313         }
2314
2315         /*
2316          * ENTRY CONTROLS
2317          *
2318          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2319          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2320          * on the related bits (if supported by the CPU) in the hope that
2321          * we can avoid VMWrites during vmx_set_efer().
2322          */
2323         exec_control = __vm_entry_controls_get(vmcs01);
2324         exec_control |= vmcs12->vm_entry_controls;
2325         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2326         if (cpu_has_load_ia32_efer()) {
2327                 if (guest_efer & EFER_LMA)
2328                         exec_control |= VM_ENTRY_IA32E_MODE;
2329                 if (guest_efer != host_efer)
2330                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2331         }
2332         vm_entry_controls_set(vmx, exec_control);
2333
2334         /*
2335          * EXIT CONTROLS
2336          *
2337          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2338          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2339          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2340          */
2341         exec_control = __vm_exit_controls_get(vmcs01);
2342         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2343                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2344         else
2345                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2346         vm_exit_controls_set(vmx, exec_control);
2347
2348         /*
2349          * Interrupt/Exception Fields
2350          */
2351         if (vmx->nested.nested_run_pending) {
2352                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2353                              vmcs12->vm_entry_intr_info_field);
2354                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2355                              vmcs12->vm_entry_exception_error_code);
2356                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2357                              vmcs12->vm_entry_instruction_len);
2358                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2359                              vmcs12->guest_interruptibility_info);
2360                 vmx->loaded_vmcs->nmi_known_unmasked =
2361                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2362         } else {
2363                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2364         }
2365 }
2366
2367 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2368 {
2369         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2370
2371         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2372                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2373                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2374                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2375                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2376                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2377                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2378                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2379                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2380                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2381                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2382                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2383                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2384                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2385                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2386                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2387                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2388                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2389                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2390                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2391                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2392                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2393                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2394                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2395                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2396                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2397                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2398                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2399                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2400                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2401                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2402                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2403                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2404                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2405                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2406                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2407                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2408                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2409
2410                 vmx->segment_cache.bitmask = 0;
2411         }
2412
2413         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2414                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2415                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2416                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2417                             vmcs12->guest_pending_dbg_exceptions);
2418                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2419                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2420
2421                 /*
2422                  * L1 may access the L2's PDPTR, so save them to construct
2423                  * vmcs12
2424                  */
2425                 if (enable_ept) {
2426                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2427                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2428                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2429                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2430                 }
2431
2432                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2433                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2434                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2435         }
2436
2437         if (nested_cpu_has_xsaves(vmcs12))
2438                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2439
2440         /*
2441          * Whether page-faults are trapped is determined by a combination of
2442          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2443          * doesn't care about page faults then we should set all of these to
2444          * L1's desires. However, if L0 does care about (some) page faults, it
2445          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2446          * simply ask to exit on each and every L2 page fault. This is done by
2447          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2448          * Note that below we don't need special code to set EB.PF beyond the
2449          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2450          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2451          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2452          */
2453         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2454                 /*
2455                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2456                  * go ahead and use it?
2457                  */
2458                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2459                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2460         } else {
2461                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2462                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2463         }
2464
2465         if (cpu_has_vmx_apicv()) {
2466                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2467                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2468                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2469                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2470         }
2471
2472         /*
2473          * Make sure the msr_autostore list is up to date before we set the
2474          * count in the vmcs02.
2475          */
2476         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2477
2478         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2479         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2480         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2481
2482         set_cr4_guest_host_mask(vmx);
2483 }
2484
2485 /*
2486  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2487  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2488  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2489  * guest in a way that will both be appropriate to L1's requests, and our
2490  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2491  * function also has additional necessary side-effects, like setting various
2492  * vcpu->arch fields.
2493  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2494  * is assigned to entry_failure_code on failure.
2495  */
2496 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2497                           bool from_vmentry,
2498                           enum vm_entry_failure_code *entry_failure_code)
2499 {
2500         struct vcpu_vmx *vmx = to_vmx(vcpu);
2501         bool load_guest_pdptrs_vmcs12 = false;
2502
2503         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2504                 prepare_vmcs02_rare(vmx, vmcs12);
2505                 vmx->nested.dirty_vmcs12 = false;
2506
2507                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2508                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2509                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2510         }
2511
2512         if (vmx->nested.nested_run_pending &&
2513             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2514                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2515                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2516         } else {
2517                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2518                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2519         }
2520         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2521             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2522                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2523         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2524
2525         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2526          * bitwise-or of what L1 wants to trap for L2, and what we want to
2527          * trap. Note that CR0.TS also needs updating - we do this later.
2528          */
2529         vmx_update_exception_bitmap(vcpu);
2530         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2531         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2532
2533         if (vmx->nested.nested_run_pending &&
2534             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2535                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2536                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2537         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2538                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2539         }
2540
2541         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2542                         vcpu->arch.l1_tsc_offset,
2543                         vmx_get_l2_tsc_offset(vcpu),
2544                         vmx_get_l2_tsc_multiplier(vcpu));
2545
2546         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2547                         vcpu->arch.l1_tsc_scaling_ratio,
2548                         vmx_get_l2_tsc_multiplier(vcpu));
2549
2550         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2551         if (kvm_has_tsc_control)
2552                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2553
2554         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2555
2556         if (nested_cpu_has_ept(vmcs12))
2557                 nested_ept_init_mmu_context(vcpu);
2558
2559         /*
2560          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2561          * bits which we consider mandatory enabled.
2562          * The CR0_READ_SHADOW is what L2 should have expected to read given
2563          * the specifications by L1; It's not enough to take
2564          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2565          * have more bits than L1 expected.
2566          */
2567         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2568         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2569
2570         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2571         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2572
2573         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2574         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2575         vmx_set_efer(vcpu, vcpu->arch.efer);
2576
2577         /*
2578          * Guest state is invalid and unrestricted guest is disabled,
2579          * which means L1 attempted VMEntry to L2 with invalid state.
2580          * Fail the VMEntry.
2581          *
2582          * However when force loading the guest state (SMM exit or
2583          * loading nested state after migration, it is possible to
2584          * have invalid guest state now, which will be later fixed by
2585          * restoring L2 register state
2586          */
2587         if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2588                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2589                 return -EINVAL;
2590         }
2591
2592         /* Shadow page tables on either EPT or shadow page tables. */
2593         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2594                                 from_vmentry, entry_failure_code))
2595                 return -EINVAL;
2596
2597         /*
2598          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2599          * on nested VM-Exit, which can occur without actually running L2 and
2600          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2601          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2602          * transition to HLT instead of running L2.
2603          */
2604         if (enable_ept)
2605                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2606
2607         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2608         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2609             is_pae_paging(vcpu)) {
2610                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2611                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2612                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2613                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2614         }
2615
2616         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2617             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2618                                      vmcs12->guest_ia32_perf_global_ctrl))) {
2619                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2620                 return -EINVAL;
2621         }
2622
2623         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2624         kvm_rip_write(vcpu, vmcs12->guest_rip);
2625
2626         /*
2627          * It was observed that genuine Hyper-V running in L1 doesn't reset
2628          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2629          * bits when it changes a field in eVMCS. Mark all fields as clean
2630          * here.
2631          */
2632         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2633                 vmx->nested.hv_evmcs->hv_clean_fields |=
2634                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2635
2636         return 0;
2637 }
2638
2639 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2640 {
2641         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2642                nested_cpu_has_virtual_nmis(vmcs12)))
2643                 return -EINVAL;
2644
2645         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2646                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2647                 return -EINVAL;
2648
2649         return 0;
2650 }
2651
2652 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2653 {
2654         struct vcpu_vmx *vmx = to_vmx(vcpu);
2655
2656         /* Check for memory type validity */
2657         switch (new_eptp & VMX_EPTP_MT_MASK) {
2658         case VMX_EPTP_MT_UC:
2659                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2660                         return false;
2661                 break;
2662         case VMX_EPTP_MT_WB:
2663                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2664                         return false;
2665                 break;
2666         default:
2667                 return false;
2668         }
2669
2670         /* Page-walk levels validity. */
2671         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2672         case VMX_EPTP_PWL_5:
2673                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2674                         return false;
2675                 break;
2676         case VMX_EPTP_PWL_4:
2677                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2678                         return false;
2679                 break;
2680         default:
2681                 return false;
2682         }
2683
2684         /* Reserved bits should not be set */
2685         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2686                 return false;
2687
2688         /* AD, if set, should be supported */
2689         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2690                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2691                         return false;
2692         }
2693
2694         return true;
2695 }
2696
2697 /*
2698  * Checks related to VM-Execution Control Fields
2699  */
2700 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2701                                               struct vmcs12 *vmcs12)
2702 {
2703         struct vcpu_vmx *vmx = to_vmx(vcpu);
2704
2705         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2706                                    vmx->nested.msrs.pinbased_ctls_low,
2707                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2708             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2709                                    vmx->nested.msrs.procbased_ctls_low,
2710                                    vmx->nested.msrs.procbased_ctls_high)))
2711                 return -EINVAL;
2712
2713         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2714             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2715                                    vmx->nested.msrs.secondary_ctls_low,
2716                                    vmx->nested.msrs.secondary_ctls_high)))
2717                 return -EINVAL;
2718
2719         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2720             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2721             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2722             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2723             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2724             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2725             nested_vmx_check_nmi_controls(vmcs12) ||
2726             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2727             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2728             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2729             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2730             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2731                 return -EINVAL;
2732
2733         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2734             nested_cpu_has_save_preemption_timer(vmcs12))
2735                 return -EINVAL;
2736
2737         if (nested_cpu_has_ept(vmcs12) &&
2738             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2739                 return -EINVAL;
2740
2741         if (nested_cpu_has_vmfunc(vmcs12)) {
2742                 if (CC(vmcs12->vm_function_control &
2743                        ~vmx->nested.msrs.vmfunc_controls))
2744                         return -EINVAL;
2745
2746                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2747                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2748                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2749                                 return -EINVAL;
2750                 }
2751         }
2752
2753         return 0;
2754 }
2755
2756 /*
2757  * Checks related to VM-Exit Control Fields
2758  */
2759 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2760                                          struct vmcs12 *vmcs12)
2761 {
2762         struct vcpu_vmx *vmx = to_vmx(vcpu);
2763
2764         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2765                                     vmx->nested.msrs.exit_ctls_low,
2766                                     vmx->nested.msrs.exit_ctls_high)) ||
2767             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2768                 return -EINVAL;
2769
2770         return 0;
2771 }
2772
2773 /*
2774  * Checks related to VM-Entry Control Fields
2775  */
2776 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2777                                           struct vmcs12 *vmcs12)
2778 {
2779         struct vcpu_vmx *vmx = to_vmx(vcpu);
2780
2781         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2782                                     vmx->nested.msrs.entry_ctls_low,
2783                                     vmx->nested.msrs.entry_ctls_high)))
2784                 return -EINVAL;
2785
2786         /*
2787          * From the Intel SDM, volume 3:
2788          * Fields relevant to VM-entry event injection must be set properly.
2789          * These fields are the VM-entry interruption-information field, the
2790          * VM-entry exception error code, and the VM-entry instruction length.
2791          */
2792         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2793                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2794                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2795                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2796                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2797                 bool should_have_error_code;
2798                 bool urg = nested_cpu_has2(vmcs12,
2799                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2800                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2801
2802                 /* VM-entry interruption-info field: interruption type */
2803                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2804                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2805                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2806                         return -EINVAL;
2807
2808                 /* VM-entry interruption-info field: vector */
2809                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2810                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2811                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2812                         return -EINVAL;
2813
2814                 /* VM-entry interruption-info field: deliver error code */
2815                 should_have_error_code =
2816                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2817                         x86_exception_has_error_code(vector);
2818                 if (CC(has_error_code != should_have_error_code))
2819                         return -EINVAL;
2820
2821                 /* VM-entry exception error code */
2822                 if (CC(has_error_code &&
2823                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2824                         return -EINVAL;
2825
2826                 /* VM-entry interruption-info field: reserved bits */
2827                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2828                         return -EINVAL;
2829
2830                 /* VM-entry instruction length */
2831                 switch (intr_type) {
2832                 case INTR_TYPE_SOFT_EXCEPTION:
2833                 case INTR_TYPE_SOFT_INTR:
2834                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2835                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2836                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2837                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2838                                 return -EINVAL;
2839                 }
2840         }
2841
2842         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2843                 return -EINVAL;
2844
2845         return 0;
2846 }
2847
2848 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2849                                      struct vmcs12 *vmcs12)
2850 {
2851         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2852             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2853             nested_check_vm_entry_controls(vcpu, vmcs12))
2854                 return -EINVAL;
2855
2856         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2857                 return nested_evmcs_check_controls(vmcs12);
2858
2859         return 0;
2860 }
2861
2862 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2863                                        struct vmcs12 *vmcs12)
2864 {
2865 #ifdef CONFIG_X86_64
2866         if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2867                 !!(vcpu->arch.efer & EFER_LMA)))
2868                 return -EINVAL;
2869 #endif
2870         return 0;
2871 }
2872
2873 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2874                                        struct vmcs12 *vmcs12)
2875 {
2876         bool ia32e;
2877
2878         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2879             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2880             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2881                 return -EINVAL;
2882
2883         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2884             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2885                 return -EINVAL;
2886
2887         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2888             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2889                 return -EINVAL;
2890
2891         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2892             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2893                                            vmcs12->host_ia32_perf_global_ctrl)))
2894                 return -EINVAL;
2895
2896 #ifdef CONFIG_X86_64
2897         ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2898 #else
2899         ia32e = false;
2900 #endif
2901
2902         if (ia32e) {
2903                 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2904                         return -EINVAL;
2905         } else {
2906                 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2907                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2908                     CC((vmcs12->host_rip) >> 32))
2909                         return -EINVAL;
2910         }
2911
2912         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2913             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2914             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2915             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2916             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2917             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2918             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2919             CC(vmcs12->host_cs_selector == 0) ||
2920             CC(vmcs12->host_tr_selector == 0) ||
2921             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2922                 return -EINVAL;
2923
2924         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2925             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2926             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2927             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2928             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2929             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2930                 return -EINVAL;
2931
2932         /*
2933          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2934          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2935          * the values of the LMA and LME bits in the field must each be that of
2936          * the host address-space size VM-exit control.
2937          */
2938         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2939                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2940                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2941                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2942                         return -EINVAL;
2943         }
2944
2945         return 0;
2946 }
2947
2948 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2949                                           struct vmcs12 *vmcs12)
2950 {
2951         struct vcpu_vmx *vmx = to_vmx(vcpu);
2952         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2953         struct vmcs_hdr hdr;
2954
2955         if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2956                 return 0;
2957
2958         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2959                 return -EINVAL;
2960
2961         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2962             CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2963                                          vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2964                 return -EINVAL;
2965
2966         if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2967                                             offsetof(struct vmcs12, hdr),
2968                                             sizeof(hdr))))
2969                 return -EINVAL;
2970
2971         if (CC(hdr.revision_id != VMCS12_REVISION) ||
2972             CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2973                 return -EINVAL;
2974
2975         return 0;
2976 }
2977
2978 /*
2979  * Checks related to Guest Non-register State
2980  */
2981 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2982 {
2983         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2984                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2985                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2986                 return -EINVAL;
2987
2988         return 0;
2989 }
2990
2991 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2992                                         struct vmcs12 *vmcs12,
2993                                         enum vm_entry_failure_code *entry_failure_code)
2994 {
2995         bool ia32e;
2996
2997         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2998
2999         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3000             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3001                 return -EINVAL;
3002
3003         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3004             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3005                 return -EINVAL;
3006
3007         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3008             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3009                 return -EINVAL;
3010
3011         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3012                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3013                 return -EINVAL;
3014         }
3015
3016         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3017             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3018                                            vmcs12->guest_ia32_perf_global_ctrl)))
3019                 return -EINVAL;
3020
3021         /*
3022          * If the load IA32_EFER VM-entry control is 1, the following checks
3023          * are performed on the field for the IA32_EFER MSR:
3024          * - Bits reserved in the IA32_EFER MSR must be 0.
3025          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3026          *   the IA-32e mode guest VM-exit control. It must also be identical
3027          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3028          *   CR0.PG) is 1.
3029          */
3030         if (to_vmx(vcpu)->nested.nested_run_pending &&
3031             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3032                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3033                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3034                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3035                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3036                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3037                         return -EINVAL;
3038         }
3039
3040         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3041             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3042              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3043                 return -EINVAL;
3044
3045         if (nested_check_guest_non_reg_state(vmcs12))
3046                 return -EINVAL;
3047
3048         return 0;
3049 }
3050
3051 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3052 {
3053         struct vcpu_vmx *vmx = to_vmx(vcpu);
3054         unsigned long cr3, cr4;
3055         bool vm_fail;
3056
3057         if (!nested_early_check)
3058                 return 0;
3059
3060         if (vmx->msr_autoload.host.nr)
3061                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3062         if (vmx->msr_autoload.guest.nr)
3063                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3064
3065         preempt_disable();
3066
3067         vmx_prepare_switch_to_guest(vcpu);
3068
3069         /*
3070          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3071          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3072          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3073          * there is no need to preserve other bits or save/restore the field.
3074          */
3075         vmcs_writel(GUEST_RFLAGS, 0);
3076
3077         cr3 = __get_current_cr3_fast();
3078         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3079                 vmcs_writel(HOST_CR3, cr3);
3080                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3081         }
3082
3083         cr4 = cr4_read_shadow();
3084         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3085                 vmcs_writel(HOST_CR4, cr4);
3086                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3087         }
3088
3089         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3090                                  vmx->loaded_vmcs->launched);
3091
3092         if (vmx->msr_autoload.host.nr)
3093                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3094         if (vmx->msr_autoload.guest.nr)
3095                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3096
3097         if (vm_fail) {
3098                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3099
3100                 preempt_enable();
3101
3102                 trace_kvm_nested_vmenter_failed(
3103                         "early hardware check VM-instruction error: ", error);
3104                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3105                 return 1;
3106         }
3107
3108         /*
3109          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3110          */
3111         if (hw_breakpoint_active())
3112                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3113         local_irq_enable();
3114         preempt_enable();
3115
3116         /*
3117          * A non-failing VMEntry means we somehow entered guest mode with
3118          * an illegal RIP, and that's just the tip of the iceberg.  There
3119          * is no telling what memory has been modified or what state has
3120          * been exposed to unknown code.  Hitting this all but guarantees
3121          * a (very critical) hardware issue.
3122          */
3123         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3124                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3125
3126         return 0;
3127 }
3128
3129 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3130 {
3131         struct vcpu_vmx *vmx = to_vmx(vcpu);
3132
3133         /*
3134          * hv_evmcs may end up being not mapped after migration (when
3135          * L2 was running), map it here to make sure vmcs12 changes are
3136          * properly reflected.
3137          */
3138         if (vmx->nested.enlightened_vmcs_enabled &&
3139             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3140                 enum nested_evmptrld_status evmptrld_status =
3141                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3142
3143                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3144                     evmptrld_status == EVMPTRLD_ERROR)
3145                         return false;
3146
3147                 /*
3148                  * Post migration VMCS12 always provides the most actual
3149                  * information, copy it to eVMCS upon entry.
3150                  */
3151                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3152         }
3153
3154         return true;
3155 }
3156
3157 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3158 {
3159         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3160         struct vcpu_vmx *vmx = to_vmx(vcpu);
3161         struct kvm_host_map *map;
3162         struct page *page;
3163         u64 hpa;
3164
3165         if (!vcpu->arch.pdptrs_from_userspace &&
3166             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3167                 /*
3168                  * Reload the guest's PDPTRs since after a migration
3169                  * the guest CR3 might be restored prior to setting the nested
3170                  * state which can lead to a load of wrong PDPTRs.
3171                  */
3172                 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3173                         return false;
3174         }
3175
3176
3177         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3178                 /*
3179                  * Translate L1 physical address to host physical
3180                  * address for vmcs02. Keep the page pinned, so this
3181                  * physical address remains valid. We keep a reference
3182                  * to it so we can release it later.
3183                  */
3184                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3185                         kvm_release_page_clean(vmx->nested.apic_access_page);
3186                         vmx->nested.apic_access_page = NULL;
3187                 }
3188                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3189                 if (!is_error_page(page)) {
3190                         vmx->nested.apic_access_page = page;
3191                         hpa = page_to_phys(vmx->nested.apic_access_page);
3192                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3193                 } else {
3194                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3195                                              __func__);
3196                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3197                         vcpu->run->internal.suberror =
3198                                 KVM_INTERNAL_ERROR_EMULATION;
3199                         vcpu->run->internal.ndata = 0;
3200                         return false;
3201                 }
3202         }
3203
3204         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3205                 map = &vmx->nested.virtual_apic_map;
3206
3207                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3208                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3209                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3210                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3211                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3212                         /*
3213                          * The processor will never use the TPR shadow, simply
3214                          * clear the bit from the execution control.  Such a
3215                          * configuration is useless, but it happens in tests.
3216                          * For any other configuration, failing the vm entry is
3217                          * _not_ what the processor does but it's basically the
3218                          * only possibility we have.
3219                          */
3220                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3221                 } else {
3222                         /*
3223                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3224                          * force VM-Entry to fail.
3225                          */
3226                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3227                 }
3228         }
3229
3230         if (nested_cpu_has_posted_intr(vmcs12)) {
3231                 map = &vmx->nested.pi_desc_map;
3232
3233                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3234                         vmx->nested.pi_desc =
3235                                 (struct pi_desc *)(((void *)map->hva) +
3236                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3237                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3238                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3239                 } else {
3240                         /*
3241                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3242                          * access the contents of the VMCS12 posted interrupt
3243                          * descriptor. (Note that KVM may do this when it
3244                          * should not, per the architectural specification.)
3245                          */
3246                         vmx->nested.pi_desc = NULL;
3247                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3248                 }
3249         }
3250         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3251                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3252         else
3253                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3254
3255         return true;
3256 }
3257
3258 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3259 {
3260         if (!nested_get_evmcs_page(vcpu)) {
3261                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3262                                      __func__);
3263                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3264                 vcpu->run->internal.suberror =
3265                         KVM_INTERNAL_ERROR_EMULATION;
3266                 vcpu->run->internal.ndata = 0;
3267
3268                 return false;
3269         }
3270
3271         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3272                 return false;
3273
3274         return true;
3275 }
3276
3277 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3278 {
3279         struct vmcs12 *vmcs12;
3280         struct vcpu_vmx *vmx = to_vmx(vcpu);
3281         gpa_t dst;
3282
3283         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3284                 return 0;
3285
3286         if (WARN_ON_ONCE(vmx->nested.pml_full))
3287                 return 1;
3288
3289         /*
3290          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3291          * set is already checked as part of A/D emulation.
3292          */
3293         vmcs12 = get_vmcs12(vcpu);
3294         if (!nested_cpu_has_pml(vmcs12))
3295                 return 0;
3296
3297         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3298                 vmx->nested.pml_full = true;
3299                 return 1;
3300         }
3301
3302         gpa &= ~0xFFFull;
3303         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3304
3305         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3306                                  offset_in_page(dst), sizeof(gpa)))
3307                 return 0;
3308
3309         vmcs12->guest_pml_index--;
3310
3311         return 0;
3312 }
3313
3314 /*
3315  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3316  * for running VMX instructions (except VMXON, whose prerequisites are
3317  * slightly different). It also specifies what exception to inject otherwise.
3318  * Note that many of these exceptions have priority over VM exits, so they
3319  * don't have to be checked again here.
3320  */
3321 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3322 {
3323         if (!to_vmx(vcpu)->nested.vmxon) {
3324                 kvm_queue_exception(vcpu, UD_VECTOR);
3325                 return 0;
3326         }
3327
3328         if (vmx_get_cpl(vcpu)) {
3329                 kvm_inject_gp(vcpu, 0);
3330                 return 0;
3331         }
3332
3333         return 1;
3334 }
3335
3336 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3337 {
3338         u8 rvi = vmx_get_rvi();
3339         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3340
3341         return ((rvi & 0xf0) > (vppr & 0xf0));
3342 }
3343
3344 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3345                                    struct vmcs12 *vmcs12);
3346
3347 /*
3348  * If from_vmentry is false, this is being called from state restore (either RSM
3349  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3350  *
3351  * Returns:
3352  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3353  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3354  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3355  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3356  */
3357 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3358                                                         bool from_vmentry)
3359 {
3360         struct vcpu_vmx *vmx = to_vmx(vcpu);
3361         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3362         enum vm_entry_failure_code entry_failure_code;
3363         bool evaluate_pending_interrupts;
3364         union vmx_exit_reason exit_reason = {
3365                 .basic = EXIT_REASON_INVALID_STATE,
3366                 .failed_vmentry = 1,
3367         };
3368         u32 failed_index;
3369
3370         kvm_service_local_tlb_flush_requests(vcpu);
3371
3372         evaluate_pending_interrupts = exec_controls_get(vmx) &
3373                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3374         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3375                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3376
3377         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3378                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3379         if (kvm_mpx_supported() &&
3380                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3381                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3382
3383         /*
3384          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3385          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3386          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3387          * software model to the pre-VMEntry host state.  When EPT is disabled,
3388          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3389          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3390          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3391          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3392          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3393          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3394          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3395          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3396          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3397          * path would need to manually save/restore vmcs01.GUEST_CR3.
3398          */
3399         if (!enable_ept && !nested_early_check)
3400                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3401
3402         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3403
3404         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3405
3406         if (from_vmentry) {
3407                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3408                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3409                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3410                 }
3411
3412                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3413                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3414                         return NVMX_VMENTRY_VMFAIL;
3415                 }
3416
3417                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3418                                                  &entry_failure_code)) {
3419                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3420                         vmcs12->exit_qualification = entry_failure_code;
3421                         goto vmentry_fail_vmexit;
3422                 }
3423         }
3424
3425         enter_guest_mode(vcpu);
3426
3427         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3428                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3429                 vmcs12->exit_qualification = entry_failure_code;
3430                 goto vmentry_fail_vmexit_guest_mode;
3431         }
3432
3433         if (from_vmentry) {
3434                 failed_index = nested_vmx_load_msr(vcpu,
3435                                                    vmcs12->vm_entry_msr_load_addr,
3436                                                    vmcs12->vm_entry_msr_load_count);
3437                 if (failed_index) {
3438                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3439                         vmcs12->exit_qualification = failed_index;
3440                         goto vmentry_fail_vmexit_guest_mode;
3441                 }
3442         } else {
3443                 /*
3444                  * The MMU is not initialized to point at the right entities yet and
3445                  * "get pages" would need to read data from the guest (i.e. we will
3446                  * need to perform gpa to hpa translation). Request a call
3447                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3448                  * have already been set at vmentry time and should not be reset.
3449                  */
3450                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3451         }
3452
3453         /*
3454          * If L1 had a pending IRQ/NMI until it executed
3455          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3456          * disallowed (e.g. interrupts disabled), L0 needs to
3457          * evaluate if this pending event should cause an exit from L2
3458          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3459          * intercept EXTERNAL_INTERRUPT).
3460          *
3461          * Usually this would be handled by the processor noticing an
3462          * IRQ/NMI window request, or checking RVI during evaluation of
3463          * pending virtual interrupts.  However, this setting was done
3464          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3465          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3466          */
3467         if (unlikely(evaluate_pending_interrupts))
3468                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3469
3470         /*
3471          * Do not start the preemption timer hrtimer until after we know
3472          * we are successful, so that only nested_vmx_vmexit needs to cancel
3473          * the timer.
3474          */
3475         vmx->nested.preemption_timer_expired = false;
3476         if (nested_cpu_has_preemption_timer(vmcs12)) {
3477                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3478                 vmx_start_preemption_timer(vcpu, timer_value);
3479         }
3480
3481         /*
3482          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3483          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3484          * returned as far as L1 is concerned. It will only return (and set
3485          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3486          */
3487         return NVMX_VMENTRY_SUCCESS;
3488
3489         /*
3490          * A failed consistency check that leads to a VMExit during L1's
3491          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3492          * 26.7 "VM-entry failures during or after loading guest state".
3493          */
3494 vmentry_fail_vmexit_guest_mode:
3495         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3496                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3497         leave_guest_mode(vcpu);
3498
3499 vmentry_fail_vmexit:
3500         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3501
3502         if (!from_vmentry)
3503                 return NVMX_VMENTRY_VMEXIT;
3504
3505         load_vmcs12_host_state(vcpu, vmcs12);
3506         vmcs12->vm_exit_reason = exit_reason.full;
3507         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3508                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3509         return NVMX_VMENTRY_VMEXIT;
3510 }
3511
3512 /*
3513  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3514  * for running an L2 nested guest.
3515  */
3516 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3517 {
3518         struct vmcs12 *vmcs12;
3519         enum nvmx_vmentry_status status;
3520         struct vcpu_vmx *vmx = to_vmx(vcpu);
3521         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3522         enum nested_evmptrld_status evmptrld_status;
3523
3524         if (!nested_vmx_check_permission(vcpu))
3525                 return 1;
3526
3527         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3528         if (evmptrld_status == EVMPTRLD_ERROR) {
3529                 kvm_queue_exception(vcpu, UD_VECTOR);
3530                 return 1;
3531         }
3532
3533         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3534
3535         if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3536                 return nested_vmx_failInvalid(vcpu);
3537
3538         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3539                vmx->nested.current_vmptr == INVALID_GPA))
3540                 return nested_vmx_failInvalid(vcpu);
3541
3542         vmcs12 = get_vmcs12(vcpu);
3543
3544         /*
3545          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3546          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3547          * rather than RFLAGS.ZF, and no error number is stored to the
3548          * VM-instruction error field.
3549          */
3550         if (CC(vmcs12->hdr.shadow_vmcs))
3551                 return nested_vmx_failInvalid(vcpu);
3552
3553         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3554                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3555                 /* Enlightened VMCS doesn't have launch state */
3556                 vmcs12->launch_state = !launch;
3557         } else if (enable_shadow_vmcs) {
3558                 copy_shadow_to_vmcs12(vmx);
3559         }
3560
3561         /*
3562          * The nested entry process starts with enforcing various prerequisites
3563          * on vmcs12 as required by the Intel SDM, and act appropriately when
3564          * they fail: As the SDM explains, some conditions should cause the
3565          * instruction to fail, while others will cause the instruction to seem
3566          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3567          * To speed up the normal (success) code path, we should avoid checking
3568          * for misconfigurations which will anyway be caught by the processor
3569          * when using the merged vmcs02.
3570          */
3571         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3572                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3573
3574         if (CC(vmcs12->launch_state == launch))
3575                 return nested_vmx_fail(vcpu,
3576                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3577                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3578
3579         if (nested_vmx_check_controls(vcpu, vmcs12))
3580                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3581
3582         if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3583                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3584
3585         if (nested_vmx_check_host_state(vcpu, vmcs12))
3586                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3587
3588         /*
3589          * We're finally done with prerequisite checking, and can start with
3590          * the nested entry.
3591          */
3592         vmx->nested.nested_run_pending = 1;
3593         vmx->nested.has_preemption_timer_deadline = false;
3594         status = nested_vmx_enter_non_root_mode(vcpu, true);
3595         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3596                 goto vmentry_failed;
3597
3598         /* Emulate processing of posted interrupts on VM-Enter. */
3599         if (nested_cpu_has_posted_intr(vmcs12) &&
3600             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3601                 vmx->nested.pi_pending = true;
3602                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3603                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3604         }
3605
3606         /* Hide L1D cache contents from the nested guest.  */
3607         vmx->vcpu.arch.l1tf_flush_l1d = true;
3608
3609         /*
3610          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3611          * also be used as part of restoring nVMX state for
3612          * snapshot restore (migration).
3613          *
3614          * In this flow, it is assumed that vmcs12 cache was
3615          * transferred as part of captured nVMX state and should
3616          * therefore not be read from guest memory (which may not
3617          * exist on destination host yet).
3618          */
3619         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3620
3621         switch (vmcs12->guest_activity_state) {
3622         case GUEST_ACTIVITY_HLT:
3623                 /*
3624                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3625                  * awakened by event injection or by an NMI-window VM-exit or
3626                  * by an interrupt-window VM-exit, halt the vcpu.
3627                  */
3628                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3629                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3630                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3631                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3632                         vmx->nested.nested_run_pending = 0;
3633                         return kvm_emulate_halt_noskip(vcpu);
3634                 }
3635                 break;
3636         case GUEST_ACTIVITY_WAIT_SIPI:
3637                 vmx->nested.nested_run_pending = 0;
3638                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3639                 break;
3640         default:
3641                 break;
3642         }
3643
3644         return 1;
3645
3646 vmentry_failed:
3647         vmx->nested.nested_run_pending = 0;
3648         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3649                 return 0;
3650         if (status == NVMX_VMENTRY_VMEXIT)
3651                 return 1;
3652         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3653         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3654 }
3655
3656 /*
3657  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3658  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3659  * This function returns the new value we should put in vmcs12.guest_cr0.
3660  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3661  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3662  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3663  *     didn't trap the bit, because if L1 did, so would L0).
3664  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3665  *     been modified by L2, and L1 knows it. So just leave the old value of
3666  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3667  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3668  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3669  *     changed these bits, and therefore they need to be updated, but L0
3670  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3671  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3672  */
3673 static inline unsigned long
3674 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3675 {
3676         return
3677         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3678         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3679         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3680                         vcpu->arch.cr0_guest_owned_bits));
3681 }
3682
3683 static inline unsigned long
3684 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3685 {
3686         return
3687         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3688         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3689         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3690                         vcpu->arch.cr4_guest_owned_bits));
3691 }
3692
3693 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3694                                       struct vmcs12 *vmcs12,
3695                                       u32 vm_exit_reason, u32 exit_intr_info)
3696 {
3697         u32 idt_vectoring;
3698         unsigned int nr;
3699
3700         /*
3701          * Per the SDM, VM-Exits due to double and triple faults are never
3702          * considered to occur during event delivery, even if the double/triple
3703          * fault is the result of an escalating vectoring issue.
3704          *
3705          * Note, the SDM qualifies the double fault behavior with "The original
3706          * event results in a double-fault exception".  It's unclear why the
3707          * qualification exists since exits due to double fault can occur only
3708          * while vectoring a different exception (injected events are never
3709          * subject to interception), i.e. there's _always_ an original event.
3710          *
3711          * The SDM also uses NMI as a confusing example for the "original event
3712          * causes the VM exit directly" clause.  NMI isn't special in any way,
3713          * the same rule applies to all events that cause an exit directly.
3714          * NMI is an odd choice for the example because NMIs can only occur on
3715          * instruction boundaries, i.e. they _can't_ occur during vectoring.
3716          */
3717         if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3718             ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3719              is_double_fault(exit_intr_info))) {
3720                 vmcs12->idt_vectoring_info_field = 0;
3721         } else if (vcpu->arch.exception.injected) {
3722                 nr = vcpu->arch.exception.nr;
3723                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3724
3725                 if (kvm_exception_is_soft(nr)) {
3726                         vmcs12->vm_exit_instruction_len =
3727                                 vcpu->arch.event_exit_inst_len;
3728                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3729                 } else
3730                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3731
3732                 if (vcpu->arch.exception.has_error_code) {
3733                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3734                         vmcs12->idt_vectoring_error_code =
3735                                 vcpu->arch.exception.error_code;
3736                 }
3737
3738                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3739         } else if (vcpu->arch.nmi_injected) {
3740                 vmcs12->idt_vectoring_info_field =
3741                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3742         } else if (vcpu->arch.interrupt.injected) {
3743                 nr = vcpu->arch.interrupt.nr;
3744                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3745
3746                 if (vcpu->arch.interrupt.soft) {
3747                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3748                         vmcs12->vm_entry_instruction_len =
3749                                 vcpu->arch.event_exit_inst_len;
3750                 } else
3751                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3752
3753                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3754         } else {
3755                 vmcs12->idt_vectoring_info_field = 0;
3756         }
3757 }
3758
3759
3760 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3761 {
3762         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3763         gfn_t gfn;
3764
3765         /*
3766          * Don't need to mark the APIC access page dirty; it is never
3767          * written to by the CPU during APIC virtualization.
3768          */
3769
3770         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3771                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3772                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3773         }
3774
3775         if (nested_cpu_has_posted_intr(vmcs12)) {
3776                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3777                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3778         }
3779 }
3780
3781 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3782 {
3783         struct vcpu_vmx *vmx = to_vmx(vcpu);
3784         int max_irr;
3785         void *vapic_page;
3786         u16 status;
3787
3788         if (!vmx->nested.pi_pending)
3789                 return 0;
3790
3791         if (!vmx->nested.pi_desc)
3792                 goto mmio_needed;
3793
3794         vmx->nested.pi_pending = false;
3795
3796         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3797                 return 0;
3798
3799         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3800         if (max_irr != 256) {
3801                 vapic_page = vmx->nested.virtual_apic_map.hva;
3802                 if (!vapic_page)
3803                         goto mmio_needed;
3804
3805                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3806                         vapic_page, &max_irr);
3807                 status = vmcs_read16(GUEST_INTR_STATUS);
3808                 if ((u8)max_irr > ((u8)status & 0xff)) {
3809                         status &= ~0xff;
3810                         status |= (u8)max_irr;
3811                         vmcs_write16(GUEST_INTR_STATUS, status);
3812                 }
3813         }
3814
3815         nested_mark_vmcs12_pages_dirty(vcpu);
3816         return 0;
3817
3818 mmio_needed:
3819         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3820         return -ENXIO;
3821 }
3822
3823 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3824                                                unsigned long exit_qual)
3825 {
3826         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3827         unsigned int nr = vcpu->arch.exception.nr;
3828         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3829
3830         if (vcpu->arch.exception.has_error_code) {
3831                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3832                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3833         }
3834
3835         if (kvm_exception_is_soft(nr))
3836                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3837         else
3838                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3839
3840         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3841             vmx_get_nmi_mask(vcpu))
3842                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3843
3844         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3845 }
3846
3847 /*
3848  * Returns true if a debug trap is pending delivery.
3849  *
3850  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3851  * exception may be inferred from the presence of an exception payload.
3852  */
3853 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3854 {
3855         return vcpu->arch.exception.pending &&
3856                         vcpu->arch.exception.nr == DB_VECTOR &&
3857                         vcpu->arch.exception.payload;
3858 }
3859
3860 /*
3861  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3862  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3863  * represents these debug traps with a payload that is said to be compatible
3864  * with the 'pending debug exceptions' field, write the payload to the VMCS
3865  * field if a VM-exit is delivered before the debug trap.
3866  */
3867 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3868 {
3869         if (vmx_pending_dbg_trap(vcpu))
3870                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3871                             vcpu->arch.exception.payload);
3872 }
3873
3874 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3875 {
3876         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3877                to_vmx(vcpu)->nested.preemption_timer_expired;
3878 }
3879
3880 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3881 {
3882         struct vcpu_vmx *vmx = to_vmx(vcpu);
3883         unsigned long exit_qual;
3884         bool block_nested_events =
3885             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3886         bool mtf_pending = vmx->nested.mtf_pending;
3887         struct kvm_lapic *apic = vcpu->arch.apic;
3888
3889         /*
3890          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3891          * this state is discarded.
3892          */
3893         if (!block_nested_events)
3894                 vmx->nested.mtf_pending = false;
3895
3896         if (lapic_in_kernel(vcpu) &&
3897                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3898                 if (block_nested_events)
3899                         return -EBUSY;
3900                 nested_vmx_update_pending_dbg(vcpu);
3901                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3902                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3903                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3904                 return 0;
3905         }
3906
3907         if (lapic_in_kernel(vcpu) &&
3908             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3909                 if (block_nested_events)
3910                         return -EBUSY;
3911
3912                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3913                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3914                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3915                                                 apic->sipi_vector & 0xFFUL);
3916                 return 0;
3917         }
3918
3919         /*
3920          * Process any exceptions that are not debug traps before MTF.
3921          *
3922          * Note that only a pending nested run can block a pending exception.
3923          * Otherwise an injected NMI/interrupt should either be
3924          * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3925          * while delivering the pending exception.
3926          */
3927
3928         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3929                 if (vmx->nested.nested_run_pending)
3930                         return -EBUSY;
3931                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3932                         goto no_vmexit;
3933                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3934                 return 0;
3935         }
3936
3937         if (mtf_pending) {
3938                 if (block_nested_events)
3939                         return -EBUSY;
3940                 nested_vmx_update_pending_dbg(vcpu);
3941                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3942                 return 0;
3943         }
3944
3945         if (vcpu->arch.exception.pending) {
3946                 if (vmx->nested.nested_run_pending)
3947                         return -EBUSY;
3948                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3949                         goto no_vmexit;
3950                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3951                 return 0;
3952         }
3953
3954         if (nested_vmx_preemption_timer_pending(vcpu)) {
3955                 if (block_nested_events)
3956                         return -EBUSY;
3957                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3958                 return 0;
3959         }
3960
3961         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3962                 if (block_nested_events)
3963                         return -EBUSY;
3964                 goto no_vmexit;
3965         }
3966
3967         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3968                 if (block_nested_events)
3969                         return -EBUSY;
3970                 if (!nested_exit_on_nmi(vcpu))
3971                         goto no_vmexit;
3972
3973                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3974                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3975                                   INTR_INFO_VALID_MASK, 0);
3976                 /*
3977                  * The NMI-triggered VM exit counts as injection:
3978                  * clear this one and block further NMIs.
3979                  */
3980                 vcpu->arch.nmi_pending = 0;
3981                 vmx_set_nmi_mask(vcpu, true);
3982                 return 0;
3983         }
3984
3985         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3986                 if (block_nested_events)
3987                         return -EBUSY;
3988                 if (!nested_exit_on_intr(vcpu))
3989                         goto no_vmexit;
3990                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3991                 return 0;
3992         }
3993
3994 no_vmexit:
3995         return vmx_complete_nested_posted_interrupt(vcpu);
3996 }
3997
3998 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3999 {
4000         ktime_t remaining =
4001                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4002         u64 value;
4003
4004         if (ktime_to_ns(remaining) <= 0)
4005                 return 0;
4006
4007         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4008         do_div(value, 1000000);
4009         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4010 }
4011
4012 static bool is_vmcs12_ext_field(unsigned long field)
4013 {
4014         switch (field) {
4015         case GUEST_ES_SELECTOR:
4016         case GUEST_CS_SELECTOR:
4017         case GUEST_SS_SELECTOR:
4018         case GUEST_DS_SELECTOR:
4019         case GUEST_FS_SELECTOR:
4020         case GUEST_GS_SELECTOR:
4021         case GUEST_LDTR_SELECTOR:
4022         case GUEST_TR_SELECTOR:
4023         case GUEST_ES_LIMIT:
4024         case GUEST_CS_LIMIT:
4025         case GUEST_SS_LIMIT:
4026         case GUEST_DS_LIMIT:
4027         case GUEST_FS_LIMIT:
4028         case GUEST_GS_LIMIT:
4029         case GUEST_LDTR_LIMIT:
4030         case GUEST_TR_LIMIT:
4031         case GUEST_GDTR_LIMIT:
4032         case GUEST_IDTR_LIMIT:
4033         case GUEST_ES_AR_BYTES:
4034         case GUEST_DS_AR_BYTES:
4035         case GUEST_FS_AR_BYTES:
4036         case GUEST_GS_AR_BYTES:
4037         case GUEST_LDTR_AR_BYTES:
4038         case GUEST_TR_AR_BYTES:
4039         case GUEST_ES_BASE:
4040         case GUEST_CS_BASE:
4041         case GUEST_SS_BASE:
4042         case GUEST_DS_BASE:
4043         case GUEST_FS_BASE:
4044         case GUEST_GS_BASE:
4045         case GUEST_LDTR_BASE:
4046         case GUEST_TR_BASE:
4047         case GUEST_GDTR_BASE:
4048         case GUEST_IDTR_BASE:
4049         case GUEST_PENDING_DBG_EXCEPTIONS:
4050         case GUEST_BNDCFGS:
4051                 return true;
4052         default:
4053                 break;
4054         }
4055
4056         return false;
4057 }
4058
4059 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4060                                        struct vmcs12 *vmcs12)
4061 {
4062         struct vcpu_vmx *vmx = to_vmx(vcpu);
4063
4064         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4065         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4066         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4067         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4068         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4069         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4070         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4071         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4072         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4073         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4074         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4075         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4076         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4077         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4078         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4079         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4080         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4081         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4082         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4083         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4084         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4085         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4086         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4087         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4088         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4089         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4090         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4091         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4092         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4093         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4094         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4095         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4096         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4097         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4098         vmcs12->guest_pending_dbg_exceptions =
4099                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4100         if (kvm_mpx_supported())
4101                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4102
4103         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4104 }
4105
4106 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4107                                        struct vmcs12 *vmcs12)
4108 {
4109         struct vcpu_vmx *vmx = to_vmx(vcpu);
4110         int cpu;
4111
4112         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4113                 return;
4114
4115
4116         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4117
4118         cpu = get_cpu();
4119         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4120         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4121
4122         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4123
4124         vmx->loaded_vmcs = &vmx->vmcs01;
4125         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4126         put_cpu();
4127 }
4128
4129 /*
4130  * Update the guest state fields of vmcs12 to reflect changes that
4131  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4132  * VM-entry controls is also updated, since this is really a guest
4133  * state bit.)
4134  */
4135 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4136 {
4137         struct vcpu_vmx *vmx = to_vmx(vcpu);
4138
4139         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4140                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4141
4142         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4143                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4144
4145         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4146         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4147
4148         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4149         vmcs12->guest_rip = kvm_rip_read(vcpu);
4150         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4151
4152         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4153         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4154
4155         vmcs12->guest_interruptibility_info =
4156                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4157
4158         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4159                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4160         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4161                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4162         else
4163                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4164
4165         if (nested_cpu_has_preemption_timer(vmcs12) &&
4166             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4167             !vmx->nested.nested_run_pending)
4168                 vmcs12->vmx_preemption_timer_value =
4169                         vmx_get_preemption_timer_value(vcpu);
4170
4171         /*
4172          * In some cases (usually, nested EPT), L2 is allowed to change its
4173          * own CR3 without exiting. If it has changed it, we must keep it.
4174          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4175          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4176          *
4177          * Additionally, restore L2's PDPTR to vmcs12.
4178          */
4179         if (enable_ept) {
4180                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4181                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4182                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4183                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4184                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4185                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4186                 }
4187         }
4188
4189         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4190
4191         if (nested_cpu_has_vid(vmcs12))
4192                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4193
4194         vmcs12->vm_entry_controls =
4195                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4196                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4197
4198         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4199                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4200
4201         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4202                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4203 }
4204
4205 /*
4206  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4207  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4208  * and this function updates it to reflect the changes to the guest state while
4209  * L2 was running (and perhaps made some exits which were handled directly by L0
4210  * without going back to L1), and to reflect the exit reason.
4211  * Note that we do not have to copy here all VMCS fields, just those that
4212  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4213  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4214  * which already writes to vmcs12 directly.
4215  */
4216 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4217                            u32 vm_exit_reason, u32 exit_intr_info,
4218                            unsigned long exit_qualification)
4219 {
4220         /* update exit information fields: */
4221         vmcs12->vm_exit_reason = vm_exit_reason;
4222         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4223                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4224         vmcs12->exit_qualification = exit_qualification;
4225
4226         /*
4227          * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4228          * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4229          * exit info fields are unmodified.
4230          */
4231         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4232                 vmcs12->launch_state = 1;
4233
4234                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4235                  * instead of reading the real value. */
4236                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4237
4238                 /*
4239                  * Transfer the event that L0 or L1 may wanted to inject into
4240                  * L2 to IDT_VECTORING_INFO_FIELD.
4241                  */
4242                 vmcs12_save_pending_event(vcpu, vmcs12,
4243                                           vm_exit_reason, exit_intr_info);
4244
4245                 vmcs12->vm_exit_intr_info = exit_intr_info;
4246                 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4247                 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4248
4249                 /*
4250                  * According to spec, there's no need to store the guest's
4251                  * MSRs if the exit is due to a VM-entry failure that occurs
4252                  * during or after loading the guest state. Since this exit
4253                  * does not fall in that category, we need to save the MSRs.
4254                  */
4255                 if (nested_vmx_store_msr(vcpu,
4256                                          vmcs12->vm_exit_msr_store_addr,
4257                                          vmcs12->vm_exit_msr_store_count))
4258                         nested_vmx_abort(vcpu,
4259                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4260         }
4261
4262         /*
4263          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4264          * preserved above and would only end up incorrectly in L1.
4265          */
4266         vcpu->arch.nmi_injected = false;
4267         kvm_clear_exception_queue(vcpu);
4268         kvm_clear_interrupt_queue(vcpu);
4269 }
4270
4271 /*
4272  * A part of what we need to when the nested L2 guest exits and we want to
4273  * run its L1 parent, is to reset L1's guest state to the host state specified
4274  * in vmcs12.
4275  * This function is to be called not only on normal nested exit, but also on
4276  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4277  * Failures During or After Loading Guest State").
4278  * This function should be called when the active VMCS is L1's (vmcs01).
4279  */
4280 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4281                                    struct vmcs12 *vmcs12)
4282 {
4283         enum vm_entry_failure_code ignored;
4284         struct kvm_segment seg;
4285
4286         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4287                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4288         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4289                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4290         else
4291                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4292         vmx_set_efer(vcpu, vcpu->arch.efer);
4293
4294         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4295         kvm_rip_write(vcpu, vmcs12->host_rip);
4296         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4297         vmx_set_interrupt_shadow(vcpu, 0);
4298
4299         /*
4300          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4301          * actually changed, because vmx_set_cr0 refers to efer set above.
4302          *
4303          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4304          * (KVM doesn't change it);
4305          */
4306         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4307         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4308
4309         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4310         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4311         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4312
4313         nested_ept_uninit_mmu_context(vcpu);
4314
4315         /*
4316          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4317          * couldn't have changed.
4318          */
4319         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4320                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4321
4322         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4323
4324         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4325         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4326         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4327         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4328         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4329         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4330         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4331
4332         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4333         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4334                 vmcs_write64(GUEST_BNDCFGS, 0);
4335
4336         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4337                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4338                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4339         }
4340         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4341                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4342                                          vmcs12->host_ia32_perf_global_ctrl));
4343
4344         /* Set L1 segment info according to Intel SDM
4345             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4346         seg = (struct kvm_segment) {
4347                 .base = 0,
4348                 .limit = 0xFFFFFFFF,
4349                 .selector = vmcs12->host_cs_selector,
4350                 .type = 11,
4351                 .present = 1,
4352                 .s = 1,
4353                 .g = 1
4354         };
4355         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4356                 seg.l = 1;
4357         else
4358                 seg.db = 1;
4359         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4360         seg = (struct kvm_segment) {
4361                 .base = 0,
4362                 .limit = 0xFFFFFFFF,
4363                 .type = 3,
4364                 .present = 1,
4365                 .s = 1,
4366                 .db = 1,
4367                 .g = 1
4368         };
4369         seg.selector = vmcs12->host_ds_selector;
4370         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4371         seg.selector = vmcs12->host_es_selector;
4372         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4373         seg.selector = vmcs12->host_ss_selector;
4374         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4375         seg.selector = vmcs12->host_fs_selector;
4376         seg.base = vmcs12->host_fs_base;
4377         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4378         seg.selector = vmcs12->host_gs_selector;
4379         seg.base = vmcs12->host_gs_base;
4380         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4381         seg = (struct kvm_segment) {
4382                 .base = vmcs12->host_tr_base,
4383                 .limit = 0x67,
4384                 .selector = vmcs12->host_tr_selector,
4385                 .type = 11,
4386                 .present = 1
4387         };
4388         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4389
4390         memset(&seg, 0, sizeof(seg));
4391         seg.unusable = 1;
4392         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4393
4394         kvm_set_dr(vcpu, 7, 0x400);
4395         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4396
4397         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4398                                 vmcs12->vm_exit_msr_load_count))
4399                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4400
4401         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4402 }
4403
4404 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4405 {
4406         struct vmx_uret_msr *efer_msr;
4407         unsigned int i;
4408
4409         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4410                 return vmcs_read64(GUEST_IA32_EFER);
4411
4412         if (cpu_has_load_ia32_efer())
4413                 return host_efer;
4414
4415         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4416                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4417                         return vmx->msr_autoload.guest.val[i].value;
4418         }
4419
4420         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4421         if (efer_msr)
4422                 return efer_msr->data;
4423
4424         return host_efer;
4425 }
4426
4427 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4428 {
4429         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4430         struct vcpu_vmx *vmx = to_vmx(vcpu);
4431         struct vmx_msr_entry g, h;
4432         gpa_t gpa;
4433         u32 i, j;
4434
4435         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4436
4437         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4438                 /*
4439                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4440                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4441                  * and vcpu->arch.dr7 is not squirreled away before the
4442                  * nested VMENTER (not worth adding a variable in nested_vmx).
4443                  */
4444                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4445                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4446                 else
4447                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4448         }
4449
4450         /*
4451          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4452          * handle a variety of side effects to KVM's software model.
4453          */
4454         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4455
4456         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4457         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4458
4459         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4460         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4461
4462         nested_ept_uninit_mmu_context(vcpu);
4463         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4464         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4465
4466         /*
4467          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4468          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4469          * VMFail, like everything else we just need to ensure our
4470          * software model is up-to-date.
4471          */
4472         if (enable_ept && is_pae_paging(vcpu))
4473                 ept_save_pdptrs(vcpu);
4474
4475         kvm_mmu_reset_context(vcpu);
4476
4477         /*
4478          * This nasty bit of open coding is a compromise between blindly
4479          * loading L1's MSRs using the exit load lists (incorrect emulation
4480          * of VMFail), leaving the nested VM's MSRs in the software model
4481          * (incorrect behavior) and snapshotting the modified MSRs (too
4482          * expensive since the lists are unbound by hardware).  For each
4483          * MSR that was (prematurely) loaded from the nested VMEntry load
4484          * list, reload it from the exit load list if it exists and differs
4485          * from the guest value.  The intent is to stuff host state as
4486          * silently as possible, not to fully process the exit load list.
4487          */
4488         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4489                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4490                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4491                         pr_debug_ratelimited(
4492                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4493                                 __func__, i, gpa);
4494                         goto vmabort;
4495                 }
4496
4497                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4498                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4499                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4500                                 pr_debug_ratelimited(
4501                                         "%s read MSR failed (%u, 0x%08llx)\n",
4502                                         __func__, j, gpa);
4503                                 goto vmabort;
4504                         }
4505                         if (h.index != g.index)
4506                                 continue;
4507                         if (h.value == g.value)
4508                                 break;
4509
4510                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4511                                 pr_debug_ratelimited(
4512                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4513                                         __func__, j, h.index, h.reserved);
4514                                 goto vmabort;
4515                         }
4516
4517                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4518                                 pr_debug_ratelimited(
4519                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4520                                         __func__, j, h.index, h.value);
4521                                 goto vmabort;
4522                         }
4523                 }
4524         }
4525
4526         return;
4527
4528 vmabort:
4529         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4530 }
4531
4532 /*
4533  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4534  * and modify vmcs12 to make it see what it would expect to see there if
4535  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4536  */
4537 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4538                        u32 exit_intr_info, unsigned long exit_qualification)
4539 {
4540         struct vcpu_vmx *vmx = to_vmx(vcpu);
4541         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4542
4543         /* trying to cancel vmlaunch/vmresume is a bug */
4544         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4545
4546         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4547                 /*
4548                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4549                  * Enlightened VMCS after migration and we still need to
4550                  * do that when something is forcing L2->L1 exit prior to
4551                  * the first L2 run.
4552                  */
4553                 (void)nested_get_evmcs_page(vcpu);
4554         }
4555
4556         /* Service pending TLB flush requests for L2 before switching to L1. */
4557         kvm_service_local_tlb_flush_requests(vcpu);
4558
4559         /*
4560          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4561          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4562          * up-to-date before switching to L1.
4563          */
4564         if (enable_ept && is_pae_paging(vcpu))
4565                 vmx_ept_load_pdptrs(vcpu);
4566
4567         leave_guest_mode(vcpu);
4568
4569         if (nested_cpu_has_preemption_timer(vmcs12))
4570                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4571
4572         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4573                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4574                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4575                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4576         }
4577
4578         if (likely(!vmx->fail)) {
4579                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4580
4581                 if (vm_exit_reason != -1)
4582                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4583                                        exit_intr_info, exit_qualification);
4584
4585                 /*
4586                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4587                  * also be used to capture vmcs12 cache as part of
4588                  * capturing nVMX state for snapshot (migration).
4589                  *
4590                  * Otherwise, this flush will dirty guest memory at a
4591                  * point it is already assumed by user-space to be
4592                  * immutable.
4593                  */
4594                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4595         } else {
4596                 /*
4597                  * The only expected VM-instruction error is "VM entry with
4598                  * invalid control field(s)." Anything else indicates a
4599                  * problem with L0.  And we should never get here with a
4600                  * VMFail of any type if early consistency checks are enabled.
4601                  */
4602                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4603                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4604                 WARN_ON_ONCE(nested_early_check);
4605         }
4606
4607         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4608
4609         /* Update any VMCS fields that might have changed while L2 ran */
4610         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4611         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4612         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4613         if (kvm_has_tsc_control)
4614                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4615
4616         if (vmx->nested.l1_tpr_threshold != -1)
4617                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4618
4619         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4620                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4621                 vmx_set_virtual_apic_mode(vcpu);
4622         }
4623
4624         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4625                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4626                 vmx_update_cpu_dirty_logging(vcpu);
4627         }
4628
4629         /* Unpin physical memory we referred to in vmcs02 */
4630         if (vmx->nested.apic_access_page) {
4631                 kvm_release_page_clean(vmx->nested.apic_access_page);
4632                 vmx->nested.apic_access_page = NULL;
4633         }
4634         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4635         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4636         vmx->nested.pi_desc = NULL;
4637
4638         if (vmx->nested.reload_vmcs01_apic_access_page) {
4639                 vmx->nested.reload_vmcs01_apic_access_page = false;
4640                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4641         }
4642
4643         if (vmx->nested.update_vmcs01_apicv_status) {
4644                 vmx->nested.update_vmcs01_apicv_status = false;
4645                 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4646         }
4647
4648         if ((vm_exit_reason != -1) &&
4649             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4650                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4651
4652         /* in case we halted in L2 */
4653         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4654
4655         if (likely(!vmx->fail)) {
4656                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4657                     nested_exit_intr_ack_set(vcpu)) {
4658                         int irq = kvm_cpu_get_interrupt(vcpu);
4659                         WARN_ON(irq < 0);
4660                         vmcs12->vm_exit_intr_info = irq |
4661                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4662                 }
4663
4664                 if (vm_exit_reason != -1)
4665                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4666                                                        vmcs12->exit_qualification,
4667                                                        vmcs12->idt_vectoring_info_field,
4668                                                        vmcs12->vm_exit_intr_info,
4669                                                        vmcs12->vm_exit_intr_error_code,
4670                                                        KVM_ISA_VMX);
4671
4672                 load_vmcs12_host_state(vcpu, vmcs12);
4673
4674                 return;
4675         }
4676
4677         /*
4678          * After an early L2 VM-entry failure, we're now back
4679          * in L1 which thinks it just finished a VMLAUNCH or
4680          * VMRESUME instruction, so we need to set the failure
4681          * flag and the VM-instruction error field of the VMCS
4682          * accordingly, and skip the emulated instruction.
4683          */
4684         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4685
4686         /*
4687          * Restore L1's host state to KVM's software model.  We're here
4688          * because a consistency check was caught by hardware, which
4689          * means some amount of guest state has been propagated to KVM's
4690          * model and needs to be unwound to the host's state.
4691          */
4692         nested_vmx_restore_host_state(vcpu);
4693
4694         vmx->fail = 0;
4695 }
4696
4697 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4698 {
4699         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4700 }
4701
4702 /*
4703  * Decode the memory-address operand of a vmx instruction, as recorded on an
4704  * exit caused by such an instruction (run by a guest hypervisor).
4705  * On success, returns 0. When the operand is invalid, returns 1 and throws
4706  * #UD, #GP, or #SS.
4707  */
4708 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4709                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4710 {
4711         gva_t off;
4712         bool exn;
4713         struct kvm_segment s;
4714
4715         /*
4716          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4717          * Execution", on an exit, vmx_instruction_info holds most of the
4718          * addressing components of the operand. Only the displacement part
4719          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4720          * For how an actual address is calculated from all these components,
4721          * refer to Vol. 1, "Operand Addressing".
4722          */
4723         int  scaling = vmx_instruction_info & 3;
4724         int  addr_size = (vmx_instruction_info >> 7) & 7;
4725         bool is_reg = vmx_instruction_info & (1u << 10);
4726         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4727         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4728         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4729         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4730         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4731
4732         if (is_reg) {
4733                 kvm_queue_exception(vcpu, UD_VECTOR);
4734                 return 1;
4735         }
4736
4737         /* Addr = segment_base + offset */
4738         /* offset = base + [index * scale] + displacement */
4739         off = exit_qualification; /* holds the displacement */
4740         if (addr_size == 1)
4741                 off = (gva_t)sign_extend64(off, 31);
4742         else if (addr_size == 0)
4743                 off = (gva_t)sign_extend64(off, 15);
4744         if (base_is_valid)
4745                 off += kvm_register_read(vcpu, base_reg);
4746         if (index_is_valid)
4747                 off += kvm_register_read(vcpu, index_reg) << scaling;
4748         vmx_get_segment(vcpu, &s, seg_reg);
4749
4750         /*
4751          * The effective address, i.e. @off, of a memory operand is truncated
4752          * based on the address size of the instruction.  Note that this is
4753          * the *effective address*, i.e. the address prior to accounting for
4754          * the segment's base.
4755          */
4756         if (addr_size == 1) /* 32 bit */
4757                 off &= 0xffffffff;
4758         else if (addr_size == 0) /* 16 bit */
4759                 off &= 0xffff;
4760
4761         /* Checks for #GP/#SS exceptions. */
4762         exn = false;
4763         if (is_long_mode(vcpu)) {
4764                 /*
4765                  * The virtual/linear address is never truncated in 64-bit
4766                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4767                  * address when using FS/GS with a non-zero base.
4768                  */
4769                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4770                         *ret = s.base + off;
4771                 else
4772                         *ret = off;
4773
4774                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4775                  * non-canonical form. This is the only check on the memory
4776                  * destination for long mode!
4777                  */
4778                 exn = is_noncanonical_address(*ret, vcpu);
4779         } else {
4780                 /*
4781                  * When not in long mode, the virtual/linear address is
4782                  * unconditionally truncated to 32 bits regardless of the
4783                  * address size.
4784                  */
4785                 *ret = (s.base + off) & 0xffffffff;
4786
4787                 /* Protected mode: apply checks for segment validity in the
4788                  * following order:
4789                  * - segment type check (#GP(0) may be thrown)
4790                  * - usability check (#GP(0)/#SS(0))
4791                  * - limit check (#GP(0)/#SS(0))
4792                  */
4793                 if (wr)
4794                         /* #GP(0) if the destination operand is located in a
4795                          * read-only data segment or any code segment.
4796                          */
4797                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4798                 else
4799                         /* #GP(0) if the source operand is located in an
4800                          * execute-only code segment
4801                          */
4802                         exn = ((s.type & 0xa) == 8);
4803                 if (exn) {
4804                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4805                         return 1;
4806                 }
4807                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4808                  */
4809                 exn = (s.unusable != 0);
4810
4811                 /*
4812                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4813                  * outside the segment limit.  All CPUs that support VMX ignore
4814                  * limit checks for flat segments, i.e. segments with base==0,
4815                  * limit==0xffffffff and of type expand-up data or code.
4816                  */
4817                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4818                      ((s.type & 8) || !(s.type & 4))))
4819                         exn = exn || ((u64)off + len - 1 > s.limit);
4820         }
4821         if (exn) {
4822                 kvm_queue_exception_e(vcpu,
4823                                       seg_reg == VCPU_SREG_SS ?
4824                                                 SS_VECTOR : GP_VECTOR,
4825                                       0);
4826                 return 1;
4827         }
4828
4829         return 0;
4830 }
4831
4832 void nested_vmx_pmu_refresh(struct kvm_vcpu *vcpu,
4833                             bool vcpu_has_perf_global_ctrl)
4834 {
4835         struct vcpu_vmx *vmx;
4836
4837         if (!nested_vmx_allowed(vcpu))
4838                 return;
4839
4840         vmx = to_vmx(vcpu);
4841         if (vcpu_has_perf_global_ctrl) {
4842                 vmx->nested.msrs.entry_ctls_high |=
4843                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4844                 vmx->nested.msrs.exit_ctls_high |=
4845                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4846         } else {
4847                 vmx->nested.msrs.entry_ctls_high &=
4848                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4849                 vmx->nested.msrs.exit_ctls_high &=
4850                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4851         }
4852 }
4853
4854 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4855                                 int *ret)
4856 {
4857         gva_t gva;
4858         struct x86_exception e;
4859         int r;
4860
4861         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4862                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4863                                 sizeof(*vmpointer), &gva)) {
4864                 *ret = 1;
4865                 return -EINVAL;
4866         }
4867
4868         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4869         if (r != X86EMUL_CONTINUE) {
4870                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4871                 return -EINVAL;
4872         }
4873
4874         return 0;
4875 }
4876
4877 /*
4878  * Allocate a shadow VMCS and associate it with the currently loaded
4879  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4880  * VMCS is also VMCLEARed, so that it is ready for use.
4881  */
4882 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4883 {
4884         struct vcpu_vmx *vmx = to_vmx(vcpu);
4885         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4886
4887         /*
4888          * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
4889          * when L1 executes VMXOFF or the vCPU is forced out of nested
4890          * operation.  VMXON faults if the CPU is already post-VMXON, so it
4891          * should be impossible to already have an allocated shadow VMCS.  KVM
4892          * doesn't support virtualization of VMCS shadowing, so vmcs01 should
4893          * always be the loaded VMCS.
4894          */
4895         if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
4896                 return loaded_vmcs->shadow_vmcs;
4897
4898         loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4899         if (loaded_vmcs->shadow_vmcs)
4900                 vmcs_clear(loaded_vmcs->shadow_vmcs);
4901
4902         return loaded_vmcs->shadow_vmcs;
4903 }
4904
4905 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4906 {
4907         struct vcpu_vmx *vmx = to_vmx(vcpu);
4908         int r;
4909
4910         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4911         if (r < 0)
4912                 goto out_vmcs02;
4913
4914         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4915         if (!vmx->nested.cached_vmcs12)
4916                 goto out_cached_vmcs12;
4917
4918         vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4919         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4920         if (!vmx->nested.cached_shadow_vmcs12)
4921                 goto out_cached_shadow_vmcs12;
4922
4923         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4924                 goto out_shadow_vmcs;
4925
4926         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4927                      HRTIMER_MODE_ABS_PINNED);
4928         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4929
4930         vmx->nested.vpid02 = allocate_vpid();
4931
4932         vmx->nested.vmcs02_initialized = false;
4933         vmx->nested.vmxon = true;
4934
4935         if (vmx_pt_mode_is_host_guest()) {
4936                 vmx->pt_desc.guest.ctl = 0;
4937                 pt_update_intercept_for_msr(vcpu);
4938         }
4939
4940         return 0;
4941
4942 out_shadow_vmcs:
4943         kfree(vmx->nested.cached_shadow_vmcs12);
4944
4945 out_cached_shadow_vmcs12:
4946         kfree(vmx->nested.cached_vmcs12);
4947
4948 out_cached_vmcs12:
4949         free_loaded_vmcs(&vmx->nested.vmcs02);
4950
4951 out_vmcs02:
4952         return -ENOMEM;
4953 }
4954
4955 /* Emulate the VMXON instruction. */
4956 static int handle_vmon(struct kvm_vcpu *vcpu)
4957 {
4958         int ret;
4959         gpa_t vmptr;
4960         uint32_t revision;
4961         struct vcpu_vmx *vmx = to_vmx(vcpu);
4962         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4963                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4964
4965         /*
4966          * The Intel VMX Instruction Reference lists a bunch of bits that are
4967          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4968          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4969          * Otherwise, we should fail with #UD.  But most faulting conditions
4970          * have already been checked by hardware, prior to the VM-exit for
4971          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4972          * that bit set to 1 in non-root mode.
4973          */
4974         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4975                 kvm_queue_exception(vcpu, UD_VECTOR);
4976                 return 1;
4977         }
4978
4979         /* CPL=0 must be checked manually. */
4980         if (vmx_get_cpl(vcpu)) {
4981                 kvm_inject_gp(vcpu, 0);
4982                 return 1;
4983         }
4984
4985         if (vmx->nested.vmxon)
4986                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4987
4988         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4989                         != VMXON_NEEDED_FEATURES) {
4990                 kvm_inject_gp(vcpu, 0);
4991                 return 1;
4992         }
4993
4994         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4995                 return ret;
4996
4997         /*
4998          * SDM 3: 24.11.5
4999          * The first 4 bytes of VMXON region contain the supported
5000          * VMCS revision identifier
5001          *
5002          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5003          * which replaces physical address width with 32
5004          */
5005         if (!page_address_valid(vcpu, vmptr))
5006                 return nested_vmx_failInvalid(vcpu);
5007
5008         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5009             revision != VMCS12_REVISION)
5010                 return nested_vmx_failInvalid(vcpu);
5011
5012         vmx->nested.vmxon_ptr = vmptr;
5013         ret = enter_vmx_operation(vcpu);
5014         if (ret)
5015                 return ret;
5016
5017         return nested_vmx_succeed(vcpu);
5018 }
5019
5020 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5021 {
5022         struct vcpu_vmx *vmx = to_vmx(vcpu);
5023
5024         if (vmx->nested.current_vmptr == INVALID_GPA)
5025                 return;
5026
5027         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5028
5029         if (enable_shadow_vmcs) {
5030                 /* copy to memory all shadowed fields in case
5031                    they were modified */
5032                 copy_shadow_to_vmcs12(vmx);
5033                 vmx_disable_shadow_vmcs(vmx);
5034         }
5035         vmx->nested.posted_intr_nv = -1;
5036
5037         /* Flush VMCS12 to guest memory */
5038         kvm_vcpu_write_guest_page(vcpu,
5039                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
5040                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5041
5042         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5043
5044         vmx->nested.current_vmptr = INVALID_GPA;
5045 }
5046
5047 /* Emulate the VMXOFF instruction */
5048 static int handle_vmoff(struct kvm_vcpu *vcpu)
5049 {
5050         if (!nested_vmx_check_permission(vcpu))
5051                 return 1;
5052
5053         free_nested(vcpu);
5054
5055         /* Process a latched INIT during time CPU was in VMX operation */
5056         kvm_make_request(KVM_REQ_EVENT, vcpu);
5057
5058         return nested_vmx_succeed(vcpu);
5059 }
5060
5061 /* Emulate the VMCLEAR instruction */
5062 static int handle_vmclear(struct kvm_vcpu *vcpu)
5063 {
5064         struct vcpu_vmx *vmx = to_vmx(vcpu);
5065         u32 zero = 0;
5066         gpa_t vmptr;
5067         u64 evmcs_gpa;
5068         int r;
5069
5070         if (!nested_vmx_check_permission(vcpu))
5071                 return 1;
5072
5073         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5074                 return r;
5075
5076         if (!page_address_valid(vcpu, vmptr))
5077                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5078
5079         if (vmptr == vmx->nested.vmxon_ptr)
5080                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5081
5082         /*
5083          * When Enlightened VMEntry is enabled on the calling CPU we treat
5084          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5085          * way to distinguish it from VMCS12) and we must not corrupt it by
5086          * writing to the non-existent 'launch_state' field. The area doesn't
5087          * have to be the currently active EVMCS on the calling CPU and there's
5088          * nothing KVM has to do to transition it from 'active' to 'non-active'
5089          * state. It is possible that the area will stay mapped as
5090          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5091          */
5092         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5093                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5094                 if (vmptr == vmx->nested.current_vmptr)
5095                         nested_release_vmcs12(vcpu);
5096
5097                 kvm_vcpu_write_guest(vcpu,
5098                                      vmptr + offsetof(struct vmcs12,
5099                                                       launch_state),
5100                                      &zero, sizeof(zero));
5101         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5102                 nested_release_evmcs(vcpu);
5103         }
5104
5105         return nested_vmx_succeed(vcpu);
5106 }
5107
5108 /* Emulate the VMLAUNCH instruction */
5109 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5110 {
5111         return nested_vmx_run(vcpu, true);
5112 }
5113
5114 /* Emulate the VMRESUME instruction */
5115 static int handle_vmresume(struct kvm_vcpu *vcpu)
5116 {
5117
5118         return nested_vmx_run(vcpu, false);
5119 }
5120
5121 static int handle_vmread(struct kvm_vcpu *vcpu)
5122 {
5123         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5124                                                     : get_vmcs12(vcpu);
5125         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5126         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5127         struct vcpu_vmx *vmx = to_vmx(vcpu);
5128         struct x86_exception e;
5129         unsigned long field;
5130         u64 value;
5131         gva_t gva = 0;
5132         short offset;
5133         int len, r;
5134
5135         if (!nested_vmx_check_permission(vcpu))
5136                 return 1;
5137
5138         /* Decode instruction info and find the field to read */
5139         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5140
5141         if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5142                 /*
5143                  * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5144                  * any VMREAD sets the ALU flags for VMfailInvalid.
5145                  */
5146                 if (vmx->nested.current_vmptr == INVALID_GPA ||
5147                     (is_guest_mode(vcpu) &&
5148                      get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5149                         return nested_vmx_failInvalid(vcpu);
5150
5151                 offset = get_vmcs12_field_offset(field);
5152                 if (offset < 0)
5153                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5154
5155                 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5156                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5157
5158                 /* Read the field, zero-extended to a u64 value */
5159                 value = vmcs12_read_any(vmcs12, field, offset);
5160         } else {
5161                 /*
5162                  * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5163                  * enlightened VMCS is active VMREAD/VMWRITE instructions are
5164                  * unsupported. Unfortunately, certain versions of Windows 11
5165                  * don't comply with this requirement which is not enforced in
5166                  * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5167                  * workaround, as misbehaving guests will panic on VM-Fail.
5168                  * Note, enlightened VMCS is incompatible with shadow VMCS so
5169                  * all VMREADs from L2 should go to L1.
5170                  */
5171                 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5172                         return nested_vmx_failInvalid(vcpu);
5173
5174                 offset = evmcs_field_offset(field, NULL);
5175                 if (offset < 0)
5176                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5177
5178                 /* Read the field, zero-extended to a u64 value */
5179                 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5180         }
5181
5182         /*
5183          * Now copy part of this value to register or memory, as requested.
5184          * Note that the number of bits actually copied is 32 or 64 depending
5185          * on the guest's mode (32 or 64 bit), not on the given field's length.
5186          */
5187         if (instr_info & BIT(10)) {
5188                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5189         } else {
5190                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5191                 if (get_vmx_mem_address(vcpu, exit_qualification,
5192                                         instr_info, true, len, &gva))
5193                         return 1;
5194                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5195                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5196                 if (r != X86EMUL_CONTINUE)
5197                         return kvm_handle_memory_failure(vcpu, r, &e);
5198         }
5199
5200         return nested_vmx_succeed(vcpu);
5201 }
5202
5203 static bool is_shadow_field_rw(unsigned long field)
5204 {
5205         switch (field) {
5206 #define SHADOW_FIELD_RW(x, y) case x:
5207 #include "vmcs_shadow_fields.h"
5208                 return true;
5209         default:
5210                 break;
5211         }
5212         return false;
5213 }
5214
5215 static bool is_shadow_field_ro(unsigned long field)
5216 {
5217         switch (field) {
5218 #define SHADOW_FIELD_RO(x, y) case x:
5219 #include "vmcs_shadow_fields.h"
5220                 return true;
5221         default:
5222                 break;
5223         }
5224         return false;
5225 }
5226
5227 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5228 {
5229         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5230                                                     : get_vmcs12(vcpu);
5231         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5232         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5233         struct vcpu_vmx *vmx = to_vmx(vcpu);
5234         struct x86_exception e;
5235         unsigned long field;
5236         short offset;
5237         gva_t gva;
5238         int len, r;
5239
5240         /*
5241          * The value to write might be 32 or 64 bits, depending on L1's long
5242          * mode, and eventually we need to write that into a field of several
5243          * possible lengths. The code below first zero-extends the value to 64
5244          * bit (value), and then copies only the appropriate number of
5245          * bits into the vmcs12 field.
5246          */
5247         u64 value = 0;
5248
5249         if (!nested_vmx_check_permission(vcpu))
5250                 return 1;
5251
5252         /*
5253          * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5254          * any VMWRITE sets the ALU flags for VMfailInvalid.
5255          */
5256         if (vmx->nested.current_vmptr == INVALID_GPA ||
5257             (is_guest_mode(vcpu) &&
5258              get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5259                 return nested_vmx_failInvalid(vcpu);
5260
5261         if (instr_info & BIT(10))
5262                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5263         else {
5264                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5265                 if (get_vmx_mem_address(vcpu, exit_qualification,
5266                                         instr_info, false, len, &gva))
5267                         return 1;
5268                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5269                 if (r != X86EMUL_CONTINUE)
5270                         return kvm_handle_memory_failure(vcpu, r, &e);
5271         }
5272
5273         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5274
5275         offset = get_vmcs12_field_offset(field);
5276         if (offset < 0)
5277                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5278
5279         /*
5280          * If the vCPU supports "VMWRITE to any supported field in the
5281          * VMCS," then the "read-only" fields are actually read/write.
5282          */
5283         if (vmcs_field_readonly(field) &&
5284             !nested_cpu_has_vmwrite_any_field(vcpu))
5285                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5286
5287         /*
5288          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5289          * vmcs12, else we may crush a field or consume a stale value.
5290          */
5291         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5292                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5293
5294         /*
5295          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5296          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5297          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5298          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5299          * from L1 will return a different value than VMREAD from L2 (L1 sees
5300          * the stripped down value, L2 sees the full value as stored by KVM).
5301          */
5302         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5303                 value &= 0x1f0ff;
5304
5305         vmcs12_write_any(vmcs12, field, offset, value);
5306
5307         /*
5308          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5309          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5310          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5311          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5312          */
5313         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5314                 /*
5315                  * L1 can read these fields without exiting, ensure the
5316                  * shadow VMCS is up-to-date.
5317                  */
5318                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5319                         preempt_disable();
5320                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5321
5322                         __vmcs_writel(field, value);
5323
5324                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5325                         vmcs_load(vmx->loaded_vmcs->vmcs);
5326                         preempt_enable();
5327                 }
5328                 vmx->nested.dirty_vmcs12 = true;
5329         }
5330
5331         return nested_vmx_succeed(vcpu);
5332 }
5333
5334 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5335 {
5336         vmx->nested.current_vmptr = vmptr;
5337         if (enable_shadow_vmcs) {
5338                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5339                 vmcs_write64(VMCS_LINK_POINTER,
5340                              __pa(vmx->vmcs01.shadow_vmcs));
5341                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5342         }
5343         vmx->nested.dirty_vmcs12 = true;
5344         vmx->nested.force_msr_bitmap_recalc = true;
5345 }
5346
5347 /* Emulate the VMPTRLD instruction */
5348 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5349 {
5350         struct vcpu_vmx *vmx = to_vmx(vcpu);
5351         gpa_t vmptr;
5352         int r;
5353
5354         if (!nested_vmx_check_permission(vcpu))
5355                 return 1;
5356
5357         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5358                 return r;
5359
5360         if (!page_address_valid(vcpu, vmptr))
5361                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5362
5363         if (vmptr == vmx->nested.vmxon_ptr)
5364                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5365
5366         /* Forbid normal VMPTRLD if Enlightened version was used */
5367         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5368                 return 1;
5369
5370         if (vmx->nested.current_vmptr != vmptr) {
5371                 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5372                 struct vmcs_hdr hdr;
5373
5374                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5375                         /*
5376                          * Reads from an unbacked page return all 1s,
5377                          * which means that the 32 bits located at the
5378                          * given physical address won't match the required
5379                          * VMCS12_REVISION identifier.
5380                          */
5381                         return nested_vmx_fail(vcpu,
5382                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5383                 }
5384
5385                 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5386                                                  offsetof(struct vmcs12, hdr),
5387                                                  sizeof(hdr))) {
5388                         return nested_vmx_fail(vcpu,
5389                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5390                 }
5391
5392                 if (hdr.revision_id != VMCS12_REVISION ||
5393                     (hdr.shadow_vmcs &&
5394                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5395                         return nested_vmx_fail(vcpu,
5396                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5397                 }
5398
5399                 nested_release_vmcs12(vcpu);
5400
5401                 /*
5402                  * Load VMCS12 from guest memory since it is not already
5403                  * cached.
5404                  */
5405                 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5406                                           VMCS12_SIZE)) {
5407                         return nested_vmx_fail(vcpu,
5408                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5409                 }
5410
5411                 set_current_vmptr(vmx, vmptr);
5412         }
5413
5414         return nested_vmx_succeed(vcpu);
5415 }
5416
5417 /* Emulate the VMPTRST instruction */
5418 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5419 {
5420         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5421         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5422         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5423         struct x86_exception e;
5424         gva_t gva;
5425         int r;
5426
5427         if (!nested_vmx_check_permission(vcpu))
5428                 return 1;
5429
5430         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5431                 return 1;
5432
5433         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5434                                 true, sizeof(gpa_t), &gva))
5435                 return 1;
5436         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5437         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5438                                         sizeof(gpa_t), &e);
5439         if (r != X86EMUL_CONTINUE)
5440                 return kvm_handle_memory_failure(vcpu, r, &e);
5441
5442         return nested_vmx_succeed(vcpu);
5443 }
5444
5445 /* Emulate the INVEPT instruction */
5446 static int handle_invept(struct kvm_vcpu *vcpu)
5447 {
5448         struct vcpu_vmx *vmx = to_vmx(vcpu);
5449         u32 vmx_instruction_info, types;
5450         unsigned long type, roots_to_free;
5451         struct kvm_mmu *mmu;
5452         gva_t gva;
5453         struct x86_exception e;
5454         struct {
5455                 u64 eptp, gpa;
5456         } operand;
5457         int i, r, gpr_index;
5458
5459         if (!(vmx->nested.msrs.secondary_ctls_high &
5460               SECONDARY_EXEC_ENABLE_EPT) ||
5461             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5462                 kvm_queue_exception(vcpu, UD_VECTOR);
5463                 return 1;
5464         }
5465
5466         if (!nested_vmx_check_permission(vcpu))
5467                 return 1;
5468
5469         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5470         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5471         type = kvm_register_read(vcpu, gpr_index);
5472
5473         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5474
5475         if (type >= 32 || !(types & (1 << type)))
5476                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5477
5478         /* According to the Intel VMX instruction reference, the memory
5479          * operand is read even if it isn't needed (e.g., for type==global)
5480          */
5481         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5482                         vmx_instruction_info, false, sizeof(operand), &gva))
5483                 return 1;
5484         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5485         if (r != X86EMUL_CONTINUE)
5486                 return kvm_handle_memory_failure(vcpu, r, &e);
5487
5488         /*
5489          * Nested EPT roots are always held through guest_mmu,
5490          * not root_mmu.
5491          */
5492         mmu = &vcpu->arch.guest_mmu;
5493
5494         switch (type) {
5495         case VMX_EPT_EXTENT_CONTEXT:
5496                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5497                         return nested_vmx_fail(vcpu,
5498                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5499
5500                 roots_to_free = 0;
5501                 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5502                                             operand.eptp))
5503                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5504
5505                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5506                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5507                                                     mmu->prev_roots[i].pgd,
5508                                                     operand.eptp))
5509                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5510                 }
5511                 break;
5512         case VMX_EPT_EXTENT_GLOBAL:
5513                 roots_to_free = KVM_MMU_ROOTS_ALL;
5514                 break;
5515         default:
5516                 BUG();
5517                 break;
5518         }
5519
5520         if (roots_to_free)
5521                 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5522
5523         return nested_vmx_succeed(vcpu);
5524 }
5525
5526 static int handle_invvpid(struct kvm_vcpu *vcpu)
5527 {
5528         struct vcpu_vmx *vmx = to_vmx(vcpu);
5529         u32 vmx_instruction_info;
5530         unsigned long type, types;
5531         gva_t gva;
5532         struct x86_exception e;
5533         struct {
5534                 u64 vpid;
5535                 u64 gla;
5536         } operand;
5537         u16 vpid02;
5538         int r, gpr_index;
5539
5540         if (!(vmx->nested.msrs.secondary_ctls_high &
5541               SECONDARY_EXEC_ENABLE_VPID) ||
5542                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5543                 kvm_queue_exception(vcpu, UD_VECTOR);
5544                 return 1;
5545         }
5546
5547         if (!nested_vmx_check_permission(vcpu))
5548                 return 1;
5549
5550         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5551         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5552         type = kvm_register_read(vcpu, gpr_index);
5553
5554         types = (vmx->nested.msrs.vpid_caps &
5555                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5556
5557         if (type >= 32 || !(types & (1 << type)))
5558                 return nested_vmx_fail(vcpu,
5559                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5560
5561         /* according to the intel vmx instruction reference, the memory
5562          * operand is read even if it isn't needed (e.g., for type==global)
5563          */
5564         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5565                         vmx_instruction_info, false, sizeof(operand), &gva))
5566                 return 1;
5567         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5568         if (r != X86EMUL_CONTINUE)
5569                 return kvm_handle_memory_failure(vcpu, r, &e);
5570
5571         if (operand.vpid >> 16)
5572                 return nested_vmx_fail(vcpu,
5573                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5574
5575         vpid02 = nested_get_vpid02(vcpu);
5576         switch (type) {
5577         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5578                 if (!operand.vpid ||
5579                     is_noncanonical_address(operand.gla, vcpu))
5580                         return nested_vmx_fail(vcpu,
5581                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5582                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5583                 break;
5584         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5585         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5586                 if (!operand.vpid)
5587                         return nested_vmx_fail(vcpu,
5588                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5589                 vpid_sync_context(vpid02);
5590                 break;
5591         case VMX_VPID_EXTENT_ALL_CONTEXT:
5592                 vpid_sync_context(vpid02);
5593                 break;
5594         default:
5595                 WARN_ON_ONCE(1);
5596                 return kvm_skip_emulated_instruction(vcpu);
5597         }
5598
5599         /*
5600          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5601          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5602          * roots as VPIDs are not tracked in the MMU role.
5603          *
5604          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5605          * an MMU when EPT is disabled.
5606          *
5607          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5608          */
5609         if (!enable_ept)
5610                 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5611
5612         return nested_vmx_succeed(vcpu);
5613 }
5614
5615 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5616                                      struct vmcs12 *vmcs12)
5617 {
5618         u32 index = kvm_rcx_read(vcpu);
5619         u64 new_eptp;
5620
5621         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5622                 return 1;
5623         if (index >= VMFUNC_EPTP_ENTRIES)
5624                 return 1;
5625
5626         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5627                                      &new_eptp, index * 8, 8))
5628                 return 1;
5629
5630         /*
5631          * If the (L2) guest does a vmfunc to the currently
5632          * active ept pointer, we don't have to do anything else
5633          */
5634         if (vmcs12->ept_pointer != new_eptp) {
5635                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5636                         return 1;
5637
5638                 vmcs12->ept_pointer = new_eptp;
5639                 nested_ept_new_eptp(vcpu);
5640
5641                 if (!nested_cpu_has_vpid(vmcs12))
5642                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5643         }
5644
5645         return 0;
5646 }
5647
5648 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5649 {
5650         struct vcpu_vmx *vmx = to_vmx(vcpu);
5651         struct vmcs12 *vmcs12;
5652         u32 function = kvm_rax_read(vcpu);
5653
5654         /*
5655          * VMFUNC is only supported for nested guests, but we always enable the
5656          * secondary control for simplicity; for non-nested mode, fake that we
5657          * didn't by injecting #UD.
5658          */
5659         if (!is_guest_mode(vcpu)) {
5660                 kvm_queue_exception(vcpu, UD_VECTOR);
5661                 return 1;
5662         }
5663
5664         vmcs12 = get_vmcs12(vcpu);
5665
5666         /*
5667          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5668          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5669          */
5670         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5671                 kvm_queue_exception(vcpu, UD_VECTOR);
5672                 return 1;
5673         }
5674
5675         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5676                 goto fail;
5677
5678         switch (function) {
5679         case 0:
5680                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5681                         goto fail;
5682                 break;
5683         default:
5684                 goto fail;
5685         }
5686         return kvm_skip_emulated_instruction(vcpu);
5687
5688 fail:
5689         /*
5690          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5691          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5692          * EXIT_REASON_VMFUNC as the exit reason.
5693          */
5694         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5695                           vmx_get_intr_info(vcpu),
5696                           vmx_get_exit_qual(vcpu));
5697         return 1;
5698 }
5699
5700 /*
5701  * Return true if an IO instruction with the specified port and size should cause
5702  * a VM-exit into L1.
5703  */
5704 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5705                                  int size)
5706 {
5707         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5708         gpa_t bitmap, last_bitmap;
5709         u8 b;
5710
5711         last_bitmap = INVALID_GPA;
5712         b = -1;
5713
5714         while (size > 0) {
5715                 if (port < 0x8000)
5716                         bitmap = vmcs12->io_bitmap_a;
5717                 else if (port < 0x10000)
5718                         bitmap = vmcs12->io_bitmap_b;
5719                 else
5720                         return true;
5721                 bitmap += (port & 0x7fff) / 8;
5722
5723                 if (last_bitmap != bitmap)
5724                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5725                                 return true;
5726                 if (b & (1 << (port & 7)))
5727                         return true;
5728
5729                 port++;
5730                 size--;
5731                 last_bitmap = bitmap;
5732         }
5733
5734         return false;
5735 }
5736
5737 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5738                                        struct vmcs12 *vmcs12)
5739 {
5740         unsigned long exit_qualification;
5741         unsigned short port;
5742         int size;
5743
5744         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5745                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5746
5747         exit_qualification = vmx_get_exit_qual(vcpu);
5748
5749         port = exit_qualification >> 16;
5750         size = (exit_qualification & 7) + 1;
5751
5752         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5753 }
5754
5755 /*
5756  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5757  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5758  * disinterest in the current event (read or write a specific MSR) by using an
5759  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5760  */
5761 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5762                                         struct vmcs12 *vmcs12,
5763                                         union vmx_exit_reason exit_reason)
5764 {
5765         u32 msr_index = kvm_rcx_read(vcpu);
5766         gpa_t bitmap;
5767
5768         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5769                 return true;
5770
5771         /*
5772          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5773          * for the four combinations of read/write and low/high MSR numbers.
5774          * First we need to figure out which of the four to use:
5775          */
5776         bitmap = vmcs12->msr_bitmap;
5777         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5778                 bitmap += 2048;
5779         if (msr_index >= 0xc0000000) {
5780                 msr_index -= 0xc0000000;
5781                 bitmap += 1024;
5782         }
5783
5784         /* Then read the msr_index'th bit from this bitmap: */
5785         if (msr_index < 1024*8) {
5786                 unsigned char b;
5787                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5788                         return true;
5789                 return 1 & (b >> (msr_index & 7));
5790         } else
5791                 return true; /* let L1 handle the wrong parameter */
5792 }
5793
5794 /*
5795  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5796  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5797  * intercept (via guest_host_mask etc.) the current event.
5798  */
5799 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5800         struct vmcs12 *vmcs12)
5801 {
5802         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5803         int cr = exit_qualification & 15;
5804         int reg;
5805         unsigned long val;
5806
5807         switch ((exit_qualification >> 4) & 3) {
5808         case 0: /* mov to cr */
5809                 reg = (exit_qualification >> 8) & 15;
5810                 val = kvm_register_read(vcpu, reg);
5811                 switch (cr) {
5812                 case 0:
5813                         if (vmcs12->cr0_guest_host_mask &
5814                             (val ^ vmcs12->cr0_read_shadow))
5815                                 return true;
5816                         break;
5817                 case 3:
5818                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5819                                 return true;
5820                         break;
5821                 case 4:
5822                         if (vmcs12->cr4_guest_host_mask &
5823                             (vmcs12->cr4_read_shadow ^ val))
5824                                 return true;
5825                         break;
5826                 case 8:
5827                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5828                                 return true;
5829                         break;
5830                 }
5831                 break;
5832         case 2: /* clts */
5833                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5834                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5835                         return true;
5836                 break;
5837         case 1: /* mov from cr */
5838                 switch (cr) {
5839                 case 3:
5840                         if (vmcs12->cpu_based_vm_exec_control &
5841                             CPU_BASED_CR3_STORE_EXITING)
5842                                 return true;
5843                         break;
5844                 case 8:
5845                         if (vmcs12->cpu_based_vm_exec_control &
5846                             CPU_BASED_CR8_STORE_EXITING)
5847                                 return true;
5848                         break;
5849                 }
5850                 break;
5851         case 3: /* lmsw */
5852                 /*
5853                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5854                  * cr0. Other attempted changes are ignored, with no exit.
5855                  */
5856                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5857                 if (vmcs12->cr0_guest_host_mask & 0xe &
5858                     (val ^ vmcs12->cr0_read_shadow))
5859                         return true;
5860                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5861                     !(vmcs12->cr0_read_shadow & 0x1) &&
5862                     (val & 0x1))
5863                         return true;
5864                 break;
5865         }
5866         return false;
5867 }
5868
5869 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5870                                           struct vmcs12 *vmcs12)
5871 {
5872         u32 encls_leaf;
5873
5874         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5875             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5876                 return false;
5877
5878         encls_leaf = kvm_rax_read(vcpu);
5879         if (encls_leaf > 62)
5880                 encls_leaf = 63;
5881         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5882 }
5883
5884 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5885         struct vmcs12 *vmcs12, gpa_t bitmap)
5886 {
5887         u32 vmx_instruction_info;
5888         unsigned long field;
5889         u8 b;
5890
5891         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5892                 return true;
5893
5894         /* Decode instruction info and find the field to access */
5895         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5896         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5897
5898         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5899         if (field >> 15)
5900                 return true;
5901
5902         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5903                 return true;
5904
5905         return 1 & (b >> (field & 7));
5906 }
5907
5908 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5909 {
5910         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5911
5912         if (nested_cpu_has_mtf(vmcs12))
5913                 return true;
5914
5915         /*
5916          * An MTF VM-exit may be injected into the guest by setting the
5917          * interruption-type to 7 (other event) and the vector field to 0. Such
5918          * is the case regardless of the 'monitor trap flag' VM-execution
5919          * control.
5920          */
5921         return entry_intr_info == (INTR_INFO_VALID_MASK
5922                                    | INTR_TYPE_OTHER_EVENT);
5923 }
5924
5925 /*
5926  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5927  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5928  */
5929 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5930                                      union vmx_exit_reason exit_reason)
5931 {
5932         u32 intr_info;
5933
5934         switch ((u16)exit_reason.basic) {
5935         case EXIT_REASON_EXCEPTION_NMI:
5936                 intr_info = vmx_get_intr_info(vcpu);
5937                 if (is_nmi(intr_info))
5938                         return true;
5939                 else if (is_page_fault(intr_info))
5940                         return vcpu->arch.apf.host_apf_flags ||
5941                                vmx_need_pf_intercept(vcpu);
5942                 else if (is_debug(intr_info) &&
5943                          vcpu->guest_debug &
5944                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5945                         return true;
5946                 else if (is_breakpoint(intr_info) &&
5947                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5948                         return true;
5949                 else if (is_alignment_check(intr_info) &&
5950                          !vmx_guest_inject_ac(vcpu))
5951                         return true;
5952                 return false;
5953         case EXIT_REASON_EXTERNAL_INTERRUPT:
5954                 return true;
5955         case EXIT_REASON_MCE_DURING_VMENTRY:
5956                 return true;
5957         case EXIT_REASON_EPT_VIOLATION:
5958                 /*
5959                  * L0 always deals with the EPT violation. If nested EPT is
5960                  * used, and the nested mmu code discovers that the address is
5961                  * missing in the guest EPT table (EPT12), the EPT violation
5962                  * will be injected with nested_ept_inject_page_fault()
5963                  */
5964                 return true;
5965         case EXIT_REASON_EPT_MISCONFIG:
5966                 /*
5967                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5968                  * table (shadow on EPT) or a merged EPT table that L0 built
5969                  * (EPT on EPT). So any problems with the structure of the
5970                  * table is L0's fault.
5971                  */
5972                 return true;
5973         case EXIT_REASON_PREEMPTION_TIMER:
5974                 return true;
5975         case EXIT_REASON_PML_FULL:
5976                 /*
5977                  * PML is emulated for an L1 VMM and should never be enabled in
5978                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
5979                  */
5980                 return true;
5981         case EXIT_REASON_VMFUNC:
5982                 /* VM functions are emulated through L2->L0 vmexits. */
5983                 return true;
5984         case EXIT_REASON_BUS_LOCK:
5985                 /*
5986                  * At present, bus lock VM exit is never exposed to L1.
5987                  * Handle L2's bus locks in L0 directly.
5988                  */
5989                 return true;
5990         default:
5991                 break;
5992         }
5993         return false;
5994 }
5995
5996 /*
5997  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5998  * is_guest_mode (L2).
5999  */
6000 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6001                                      union vmx_exit_reason exit_reason)
6002 {
6003         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6004         u32 intr_info;
6005
6006         switch ((u16)exit_reason.basic) {
6007         case EXIT_REASON_EXCEPTION_NMI:
6008                 intr_info = vmx_get_intr_info(vcpu);
6009                 if (is_nmi(intr_info))
6010                         return true;
6011                 else if (is_page_fault(intr_info))
6012                         return true;
6013                 return vmcs12->exception_bitmap &
6014                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6015         case EXIT_REASON_EXTERNAL_INTERRUPT:
6016                 return nested_exit_on_intr(vcpu);
6017         case EXIT_REASON_TRIPLE_FAULT:
6018                 return true;
6019         case EXIT_REASON_INTERRUPT_WINDOW:
6020                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6021         case EXIT_REASON_NMI_WINDOW:
6022                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6023         case EXIT_REASON_TASK_SWITCH:
6024                 return true;
6025         case EXIT_REASON_CPUID:
6026                 return true;
6027         case EXIT_REASON_HLT:
6028                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6029         case EXIT_REASON_INVD:
6030                 return true;
6031         case EXIT_REASON_INVLPG:
6032                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6033         case EXIT_REASON_RDPMC:
6034                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6035         case EXIT_REASON_RDRAND:
6036                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6037         case EXIT_REASON_RDSEED:
6038                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6039         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6040                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6041         case EXIT_REASON_VMREAD:
6042                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6043                         vmcs12->vmread_bitmap);
6044         case EXIT_REASON_VMWRITE:
6045                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6046                         vmcs12->vmwrite_bitmap);
6047         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6048         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6049         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6050         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6051         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6052                 /*
6053                  * VMX instructions trap unconditionally. This allows L1 to
6054                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6055                  */
6056                 return true;
6057         case EXIT_REASON_CR_ACCESS:
6058                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6059         case EXIT_REASON_DR_ACCESS:
6060                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6061         case EXIT_REASON_IO_INSTRUCTION:
6062                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6063         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6064                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6065         case EXIT_REASON_MSR_READ:
6066         case EXIT_REASON_MSR_WRITE:
6067                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6068         case EXIT_REASON_INVALID_STATE:
6069                 return true;
6070         case EXIT_REASON_MWAIT_INSTRUCTION:
6071                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6072         case EXIT_REASON_MONITOR_TRAP_FLAG:
6073                 return nested_vmx_exit_handled_mtf(vmcs12);
6074         case EXIT_REASON_MONITOR_INSTRUCTION:
6075                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6076         case EXIT_REASON_PAUSE_INSTRUCTION:
6077                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6078                         nested_cpu_has2(vmcs12,
6079                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6080         case EXIT_REASON_MCE_DURING_VMENTRY:
6081                 return true;
6082         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6083                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6084         case EXIT_REASON_APIC_ACCESS:
6085         case EXIT_REASON_APIC_WRITE:
6086         case EXIT_REASON_EOI_INDUCED:
6087                 /*
6088                  * The controls for "virtualize APIC accesses," "APIC-
6089                  * register virtualization," and "virtual-interrupt
6090                  * delivery" only come from vmcs12.
6091                  */
6092                 return true;
6093         case EXIT_REASON_INVPCID:
6094                 return
6095                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6096                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6097         case EXIT_REASON_WBINVD:
6098                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6099         case EXIT_REASON_XSETBV:
6100                 return true;
6101         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6102                 /*
6103                  * This should never happen, since it is not possible to
6104                  * set XSS to a non-zero value---neither in L1 nor in L2.
6105                  * If if it were, XSS would have to be checked against
6106                  * the XSS exit bitmap in vmcs12.
6107                  */
6108                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6109         case EXIT_REASON_UMWAIT:
6110         case EXIT_REASON_TPAUSE:
6111                 return nested_cpu_has2(vmcs12,
6112                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6113         case EXIT_REASON_ENCLS:
6114                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6115         default:
6116                 return true;
6117         }
6118 }
6119
6120 /*
6121  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6122  * reflected into L1.
6123  */
6124 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6125 {
6126         struct vcpu_vmx *vmx = to_vmx(vcpu);
6127         union vmx_exit_reason exit_reason = vmx->exit_reason;
6128         unsigned long exit_qual;
6129         u32 exit_intr_info;
6130
6131         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6132
6133         /*
6134          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6135          * has already loaded L2's state.
6136          */
6137         if (unlikely(vmx->fail)) {
6138                 trace_kvm_nested_vmenter_failed(
6139                         "hardware VM-instruction error: ",
6140                         vmcs_read32(VM_INSTRUCTION_ERROR));
6141                 exit_intr_info = 0;
6142                 exit_qual = 0;
6143                 goto reflect_vmexit;
6144         }
6145
6146         trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6147
6148         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6149         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6150                 return false;
6151
6152         /* If L1 doesn't want the exit, handle it in L0. */
6153         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6154                 return false;
6155
6156         /*
6157          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6158          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6159          * need to be synthesized by querying the in-kernel LAPIC, but external
6160          * interrupts are never reflected to L1 so it's a non-issue.
6161          */
6162         exit_intr_info = vmx_get_intr_info(vcpu);
6163         if (is_exception_with_error_code(exit_intr_info)) {
6164                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6165
6166                 vmcs12->vm_exit_intr_error_code =
6167                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6168         }
6169         exit_qual = vmx_get_exit_qual(vcpu);
6170
6171 reflect_vmexit:
6172         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6173         return true;
6174 }
6175
6176 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6177                                 struct kvm_nested_state __user *user_kvm_nested_state,
6178                                 u32 user_data_size)
6179 {
6180         struct vcpu_vmx *vmx;
6181         struct vmcs12 *vmcs12;
6182         struct kvm_nested_state kvm_state = {
6183                 .flags = 0,
6184                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6185                 .size = sizeof(kvm_state),
6186                 .hdr.vmx.flags = 0,
6187                 .hdr.vmx.vmxon_pa = INVALID_GPA,
6188                 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6189                 .hdr.vmx.preemption_timer_deadline = 0,
6190         };
6191         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6192                 &user_kvm_nested_state->data.vmx[0];
6193
6194         if (!vcpu)
6195                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6196
6197         vmx = to_vmx(vcpu);
6198         vmcs12 = get_vmcs12(vcpu);
6199
6200         if (nested_vmx_allowed(vcpu) &&
6201             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6202                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6203                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6204
6205                 if (vmx_has_valid_vmcs12(vcpu)) {
6206                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6207
6208                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6209                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6210                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6211
6212                         if (is_guest_mode(vcpu) &&
6213                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6214                             vmcs12->vmcs_link_pointer != INVALID_GPA)
6215                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6216                 }
6217
6218                 if (vmx->nested.smm.vmxon)
6219                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6220
6221                 if (vmx->nested.smm.guest_mode)
6222                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6223
6224                 if (is_guest_mode(vcpu)) {
6225                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6226
6227                         if (vmx->nested.nested_run_pending)
6228                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6229
6230                         if (vmx->nested.mtf_pending)
6231                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6232
6233                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6234                             vmx->nested.has_preemption_timer_deadline) {
6235                                 kvm_state.hdr.vmx.flags |=
6236                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6237                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6238                                         vmx->nested.preemption_timer_deadline;
6239                         }
6240                 }
6241         }
6242
6243         if (user_data_size < kvm_state.size)
6244                 goto out;
6245
6246         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6247                 return -EFAULT;
6248
6249         if (!vmx_has_valid_vmcs12(vcpu))
6250                 goto out;
6251
6252         /*
6253          * When running L2, the authoritative vmcs12 state is in the
6254          * vmcs02. When running L1, the authoritative vmcs12 state is
6255          * in the shadow or enlightened vmcs linked to vmcs01, unless
6256          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6257          * vmcs12 state is in the vmcs12 already.
6258          */
6259         if (is_guest_mode(vcpu)) {
6260                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6261                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6262         } else  {
6263                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6264                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6265                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6266                                 /*
6267                                  * L1 hypervisor is not obliged to keep eVMCS
6268                                  * clean fields data always up-to-date while
6269                                  * not in guest mode, 'hv_clean_fields' is only
6270                                  * supposed to be actual upon vmentry so we need
6271                                  * to ignore it here and do full copy.
6272                                  */
6273                                 copy_enlightened_to_vmcs12(vmx, 0);
6274                         else if (enable_shadow_vmcs)
6275                                 copy_shadow_to_vmcs12(vmx);
6276                 }
6277         }
6278
6279         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6280         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6281
6282         /*
6283          * Copy over the full allocated size of vmcs12 rather than just the size
6284          * of the struct.
6285          */
6286         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6287                 return -EFAULT;
6288
6289         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6290             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6291                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6292                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6293                         return -EFAULT;
6294         }
6295 out:
6296         return kvm_state.size;
6297 }
6298
6299 /*
6300  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6301  */
6302 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6303 {
6304         if (is_guest_mode(vcpu)) {
6305                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6306                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6307         }
6308         free_nested(vcpu);
6309 }
6310
6311 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6312                                 struct kvm_nested_state __user *user_kvm_nested_state,
6313                                 struct kvm_nested_state *kvm_state)
6314 {
6315         struct vcpu_vmx *vmx = to_vmx(vcpu);
6316         struct vmcs12 *vmcs12;
6317         enum vm_entry_failure_code ignored;
6318         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6319                 &user_kvm_nested_state->data.vmx[0];
6320         int ret;
6321
6322         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6323                 return -EINVAL;
6324
6325         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6326                 if (kvm_state->hdr.vmx.smm.flags)
6327                         return -EINVAL;
6328
6329                 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6330                         return -EINVAL;
6331
6332                 /*
6333                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6334                  * enable eVMCS capability on vCPU. However, since then
6335                  * code was changed such that flag signals vmcs12 should
6336                  * be copied into eVMCS in guest memory.
6337                  *
6338                  * To preserve backwards compatability, allow user
6339                  * to set this flag even when there is no VMXON region.
6340                  */
6341                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6342                         return -EINVAL;
6343         } else {
6344                 if (!nested_vmx_allowed(vcpu))
6345                         return -EINVAL;
6346
6347                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6348                         return -EINVAL;
6349         }
6350
6351         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6352             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6353                 return -EINVAL;
6354
6355         if (kvm_state->hdr.vmx.smm.flags &
6356             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6357                 return -EINVAL;
6358
6359         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6360                 return -EINVAL;
6361
6362         /*
6363          * SMM temporarily disables VMX, so we cannot be in guest mode,
6364          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6365          * must be zero.
6366          */
6367         if (is_smm(vcpu) ?
6368                 (kvm_state->flags &
6369                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6370                 : kvm_state->hdr.vmx.smm.flags)
6371                 return -EINVAL;
6372
6373         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6374             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6375                 return -EINVAL;
6376
6377         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6378                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6379                         return -EINVAL;
6380
6381         vmx_leave_nested(vcpu);
6382
6383         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6384                 return 0;
6385
6386         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6387         ret = enter_vmx_operation(vcpu);
6388         if (ret)
6389                 return ret;
6390
6391         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6392         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6393                 /* See vmx_has_valid_vmcs12.  */
6394                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6395                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6396                     (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6397                         return -EINVAL;
6398                 else
6399                         return 0;
6400         }
6401
6402         if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6403                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6404                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6405                         return -EINVAL;
6406
6407                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6408         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6409                 /*
6410                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6411                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6412                  * restored yet. EVMCS will be mapped from
6413                  * nested_get_vmcs12_pages().
6414                  */
6415                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6416                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6417         } else {
6418                 return -EINVAL;
6419         }
6420
6421         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6422                 vmx->nested.smm.vmxon = true;
6423                 vmx->nested.vmxon = false;
6424
6425                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6426                         vmx->nested.smm.guest_mode = true;
6427         }
6428
6429         vmcs12 = get_vmcs12(vcpu);
6430         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6431                 return -EFAULT;
6432
6433         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6434                 return -EINVAL;
6435
6436         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6437                 return 0;
6438
6439         vmx->nested.nested_run_pending =
6440                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6441
6442         vmx->nested.mtf_pending =
6443                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6444
6445         ret = -EINVAL;
6446         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6447             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6448                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6449
6450                 if (kvm_state->size <
6451                     sizeof(*kvm_state) +
6452                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6453                         goto error_guest_mode;
6454
6455                 if (copy_from_user(shadow_vmcs12,
6456                                    user_vmx_nested_state->shadow_vmcs12,
6457                                    sizeof(*shadow_vmcs12))) {
6458                         ret = -EFAULT;
6459                         goto error_guest_mode;
6460                 }
6461
6462                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6463                     !shadow_vmcs12->hdr.shadow_vmcs)
6464                         goto error_guest_mode;
6465         }
6466
6467         vmx->nested.has_preemption_timer_deadline = false;
6468         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6469                 vmx->nested.has_preemption_timer_deadline = true;
6470                 vmx->nested.preemption_timer_deadline =
6471                         kvm_state->hdr.vmx.preemption_timer_deadline;
6472         }
6473
6474         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6475             nested_vmx_check_host_state(vcpu, vmcs12) ||
6476             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6477                 goto error_guest_mode;
6478
6479         vmx->nested.dirty_vmcs12 = true;
6480         vmx->nested.force_msr_bitmap_recalc = true;
6481         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6482         if (ret)
6483                 goto error_guest_mode;
6484
6485         return 0;
6486
6487 error_guest_mode:
6488         vmx->nested.nested_run_pending = 0;
6489         return ret;
6490 }
6491
6492 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6493 {
6494         if (enable_shadow_vmcs) {
6495                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6496                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6497         }
6498 }
6499
6500 /*
6501  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6502  * that madness to get the encoding for comparison.
6503  */
6504 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6505
6506 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6507 {
6508         /*
6509          * Note these are the so called "index" of the VMCS field encoding, not
6510          * the index into vmcs12.
6511          */
6512         unsigned int max_idx, idx;
6513         int i;
6514
6515         /*
6516          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6517          * vmcs12, regardless of whether or not the associated feature is
6518          * exposed to L1.  Simply find the field with the highest index.
6519          */
6520         max_idx = 0;
6521         for (i = 0; i < nr_vmcs12_fields; i++) {
6522                 /* The vmcs12 table is very, very sparsely populated. */
6523                 if (!vmcs12_field_offsets[i])
6524                         continue;
6525
6526                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6527                 if (idx > max_idx)
6528                         max_idx = idx;
6529         }
6530
6531         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6532 }
6533
6534 /*
6535  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6536  * returned for the various VMX controls MSRs when nested VMX is enabled.
6537  * The same values should also be used to verify that vmcs12 control fields are
6538  * valid during nested entry from L1 to L2.
6539  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6540  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6541  * bit in the high half is on if the corresponding bit in the control field
6542  * may be on. See also vmx_control_verify().
6543  */
6544 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6545 {
6546         /*
6547          * Note that as a general rule, the high half of the MSRs (bits in
6548          * the control fields which may be 1) should be initialized by the
6549          * intersection of the underlying hardware's MSR (i.e., features which
6550          * can be supported) and the list of features we want to expose -
6551          * because they are known to be properly supported in our code.
6552          * Also, usually, the low half of the MSRs (bits which must be 1) can
6553          * be set to 0, meaning that L1 may turn off any of these bits. The
6554          * reason is that if one of these bits is necessary, it will appear
6555          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6556          * fields of vmcs01 and vmcs02, will turn these bits off - and
6557          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6558          * These rules have exceptions below.
6559          */
6560
6561         /* pin-based controls */
6562         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6563                 msrs->pinbased_ctls_low,
6564                 msrs->pinbased_ctls_high);
6565         msrs->pinbased_ctls_low |=
6566                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6567         msrs->pinbased_ctls_high &=
6568                 PIN_BASED_EXT_INTR_MASK |
6569                 PIN_BASED_NMI_EXITING |
6570                 PIN_BASED_VIRTUAL_NMIS |
6571                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6572         msrs->pinbased_ctls_high |=
6573                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6574                 PIN_BASED_VMX_PREEMPTION_TIMER;
6575
6576         /* exit controls */
6577         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6578                 msrs->exit_ctls_low,
6579                 msrs->exit_ctls_high);
6580         msrs->exit_ctls_low =
6581                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6582
6583         msrs->exit_ctls_high &=
6584 #ifdef CONFIG_X86_64
6585                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6586 #endif
6587                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6588                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6589         msrs->exit_ctls_high |=
6590                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6591                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6592                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6593
6594         /* We support free control of debug control saving. */
6595         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6596
6597         /* entry controls */
6598         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6599                 msrs->entry_ctls_low,
6600                 msrs->entry_ctls_high);
6601         msrs->entry_ctls_low =
6602                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6603         msrs->entry_ctls_high &=
6604 #ifdef CONFIG_X86_64
6605                 VM_ENTRY_IA32E_MODE |
6606 #endif
6607                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6608                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6609         msrs->entry_ctls_high |=
6610                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6611
6612         /* We support free control of debug control loading. */
6613         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6614
6615         /* cpu-based controls */
6616         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6617                 msrs->procbased_ctls_low,
6618                 msrs->procbased_ctls_high);
6619         msrs->procbased_ctls_low =
6620                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6621         msrs->procbased_ctls_high &=
6622                 CPU_BASED_INTR_WINDOW_EXITING |
6623                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6624                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6625                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6626                 CPU_BASED_CR3_STORE_EXITING |
6627 #ifdef CONFIG_X86_64
6628                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6629 #endif
6630                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6631                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6632                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6633                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6634                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6635         /*
6636          * We can allow some features even when not supported by the
6637          * hardware. For example, L1 can specify an MSR bitmap - and we
6638          * can use it to avoid exits to L1 - even when L0 runs L2
6639          * without MSR bitmaps.
6640          */
6641         msrs->procbased_ctls_high |=
6642                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6643                 CPU_BASED_USE_MSR_BITMAPS;
6644
6645         /* We support free control of CR3 access interception. */
6646         msrs->procbased_ctls_low &=
6647                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6648
6649         /*
6650          * secondary cpu-based controls.  Do not include those that
6651          * depend on CPUID bits, they are added later by
6652          * vmx_vcpu_after_set_cpuid.
6653          */
6654         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6655                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6656                       msrs->secondary_ctls_low,
6657                       msrs->secondary_ctls_high);
6658
6659         msrs->secondary_ctls_low = 0;
6660         msrs->secondary_ctls_high &=
6661                 SECONDARY_EXEC_DESC |
6662                 SECONDARY_EXEC_ENABLE_RDTSCP |
6663                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6664                 SECONDARY_EXEC_WBINVD_EXITING |
6665                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6666                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6667                 SECONDARY_EXEC_RDRAND_EXITING |
6668                 SECONDARY_EXEC_ENABLE_INVPCID |
6669                 SECONDARY_EXEC_RDSEED_EXITING |
6670                 SECONDARY_EXEC_XSAVES |
6671                 SECONDARY_EXEC_TSC_SCALING;
6672
6673         /*
6674          * We can emulate "VMCS shadowing," even if the hardware
6675          * doesn't support it.
6676          */
6677         msrs->secondary_ctls_high |=
6678                 SECONDARY_EXEC_SHADOW_VMCS;
6679
6680         if (enable_ept) {
6681                 /* nested EPT: emulate EPT also to L1 */
6682                 msrs->secondary_ctls_high |=
6683                         SECONDARY_EXEC_ENABLE_EPT;
6684                 msrs->ept_caps =
6685                         VMX_EPT_PAGE_WALK_4_BIT |
6686                         VMX_EPT_PAGE_WALK_5_BIT |
6687                         VMX_EPTP_WB_BIT |
6688                         VMX_EPT_INVEPT_BIT |
6689                         VMX_EPT_EXECUTE_ONLY_BIT;
6690
6691                 msrs->ept_caps &= ept_caps;
6692                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6693                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6694                         VMX_EPT_1GB_PAGE_BIT;
6695                 if (enable_ept_ad_bits) {
6696                         msrs->secondary_ctls_high |=
6697                                 SECONDARY_EXEC_ENABLE_PML;
6698                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6699                 }
6700         }
6701
6702         if (cpu_has_vmx_vmfunc()) {
6703                 msrs->secondary_ctls_high |=
6704                         SECONDARY_EXEC_ENABLE_VMFUNC;
6705                 /*
6706                  * Advertise EPTP switching unconditionally
6707                  * since we emulate it
6708                  */
6709                 if (enable_ept)
6710                         msrs->vmfunc_controls =
6711                                 VMX_VMFUNC_EPTP_SWITCHING;
6712         }
6713
6714         /*
6715          * Old versions of KVM use the single-context version without
6716          * checking for support, so declare that it is supported even
6717          * though it is treated as global context.  The alternative is
6718          * not failing the single-context invvpid, and it is worse.
6719          */
6720         if (enable_vpid) {
6721                 msrs->secondary_ctls_high |=
6722                         SECONDARY_EXEC_ENABLE_VPID;
6723                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6724                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6725         }
6726
6727         if (enable_unrestricted_guest)
6728                 msrs->secondary_ctls_high |=
6729                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6730
6731         if (flexpriority_enabled)
6732                 msrs->secondary_ctls_high |=
6733                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6734
6735         if (enable_sgx)
6736                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6737
6738         /* miscellaneous data */
6739         rdmsr(MSR_IA32_VMX_MISC,
6740                 msrs->misc_low,
6741                 msrs->misc_high);
6742         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6743         msrs->misc_low |=
6744                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6745                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6746                 VMX_MISC_ACTIVITY_HLT |
6747                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6748         msrs->misc_high = 0;
6749
6750         /*
6751          * This MSR reports some information about VMX support. We
6752          * should return information about the VMX we emulate for the
6753          * guest, and the VMCS structure we give it - not about the
6754          * VMX support of the underlying hardware.
6755          */
6756         msrs->basic =
6757                 VMCS12_REVISION |
6758                 VMX_BASIC_TRUE_CTLS |
6759                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6760                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6761
6762         if (cpu_has_vmx_basic_inout())
6763                 msrs->basic |= VMX_BASIC_INOUT;
6764
6765         /*
6766          * These MSRs specify bits which the guest must keep fixed on
6767          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6768          * We picked the standard core2 setting.
6769          */
6770 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6771 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6772         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6773         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6774
6775         /* These MSRs specify bits which the guest must keep fixed off. */
6776         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6777         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6778
6779         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6780 }
6781
6782 void nested_vmx_hardware_unsetup(void)
6783 {
6784         int i;
6785
6786         if (enable_shadow_vmcs) {
6787                 for (i = 0; i < VMX_BITMAP_NR; i++)
6788                         free_page((unsigned long)vmx_bitmap[i]);
6789         }
6790 }
6791
6792 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6793 {
6794         int i;
6795
6796         if (!cpu_has_vmx_shadow_vmcs())
6797                 enable_shadow_vmcs = 0;
6798         if (enable_shadow_vmcs) {
6799                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6800                         /*
6801                          * The vmx_bitmap is not tied to a VM and so should
6802                          * not be charged to a memcg.
6803                          */
6804                         vmx_bitmap[i] = (unsigned long *)
6805                                 __get_free_page(GFP_KERNEL);
6806                         if (!vmx_bitmap[i]) {
6807                                 nested_vmx_hardware_unsetup();
6808                                 return -ENOMEM;
6809                         }
6810                 }
6811
6812                 init_vmcs_shadow_fields();
6813         }
6814
6815         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6816         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6817         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6818         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6819         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6820         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6821         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6822         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6823         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6824         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6825         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6826         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6827
6828         return 0;
6829 }
6830
6831 struct kvm_x86_nested_ops vmx_nested_ops = {
6832         .leave_nested = vmx_leave_nested,
6833         .check_events = vmx_check_nested_events,
6834         .handle_page_fault_workaround = nested_vmx_handle_page_fault_workaround,
6835         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6836         .triple_fault = nested_vmx_triple_fault,
6837         .get_state = vmx_get_nested_state,
6838         .set_state = vmx_set_nested_state,
6839         .get_nested_state_pages = vmx_get_nested_state_pages,
6840         .write_log_dirty = nested_vmx_write_pml_buffer,
6841         .enable_evmcs = nested_enable_evmcs,
6842         .get_evmcs_version = nested_get_evmcs_version,
6843 };