GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "vmx.h"
16 #include "x86.h"
17
18 static bool __read_mostly enable_shadow_vmcs = 1;
19 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
20
21 static bool __read_mostly nested_early_check = 0;
22 module_param(nested_early_check, bool, S_IRUGO);
23
24 #define CC(consistency_check)                                           \
25 ({                                                                      \
26         bool failed = (consistency_check);                              \
27         if (failed)                                                     \
28                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
29         failed;                                                         \
30 })
31
32 /*
33  * Hyper-V requires all of these, so mark them as supported even though
34  * they are just treated the same as all-context.
35  */
36 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
37         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
38         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
40         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
41
42 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
43
44 enum {
45         VMX_VMREAD_BITMAP,
46         VMX_VMWRITE_BITMAP,
47         VMX_BITMAP_NR
48 };
49 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
50
51 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
52 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
53
54 struct shadow_vmcs_field {
55         u16     encoding;
56         u16     offset;
57 };
58 static struct shadow_vmcs_field shadow_read_only_fields[] = {
59 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
60 #include "vmcs_shadow_fields.h"
61 };
62 static int max_shadow_read_only_fields =
63         ARRAY_SIZE(shadow_read_only_fields);
64
65 static struct shadow_vmcs_field shadow_read_write_fields[] = {
66 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
67 #include "vmcs_shadow_fields.h"
68 };
69 static int max_shadow_read_write_fields =
70         ARRAY_SIZE(shadow_read_write_fields);
71
72 static void init_vmcs_shadow_fields(void)
73 {
74         int i, j;
75
76         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
77         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
78
79         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
80                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
81                 u16 field = entry.encoding;
82
83                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
84                     (i + 1 == max_shadow_read_only_fields ||
85                      shadow_read_only_fields[i + 1].encoding != field + 1))
86                         pr_err("Missing field from shadow_read_only_field %x\n",
87                                field + 1);
88
89                 clear_bit(field, vmx_vmread_bitmap);
90                 if (field & 1)
91 #ifdef CONFIG_X86_64
92                         continue;
93 #else
94                         entry.offset += sizeof(u32);
95 #endif
96                 shadow_read_only_fields[j++] = entry;
97         }
98         max_shadow_read_only_fields = j;
99
100         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
101                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
102                 u16 field = entry.encoding;
103
104                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
105                     (i + 1 == max_shadow_read_write_fields ||
106                      shadow_read_write_fields[i + 1].encoding != field + 1))
107                         pr_err("Missing field from shadow_read_write_field %x\n",
108                                field + 1);
109
110                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
111                           field <= GUEST_TR_AR_BYTES,
112                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
113
114                 /*
115                  * PML and the preemption timer can be emulated, but the
116                  * processor cannot vmwrite to fields that don't exist
117                  * on bare metal.
118                  */
119                 switch (field) {
120                 case GUEST_PML_INDEX:
121                         if (!cpu_has_vmx_pml())
122                                 continue;
123                         break;
124                 case VMX_PREEMPTION_TIMER_VALUE:
125                         if (!cpu_has_vmx_preemption_timer())
126                                 continue;
127                         break;
128                 case GUEST_INTR_STATUS:
129                         if (!cpu_has_vmx_apicv())
130                                 continue;
131                         break;
132                 default:
133                         break;
134                 }
135
136                 clear_bit(field, vmx_vmwrite_bitmap);
137                 clear_bit(field, vmx_vmread_bitmap);
138                 if (field & 1)
139 #ifdef CONFIG_X86_64
140                         continue;
141 #else
142                         entry.offset += sizeof(u32);
143 #endif
144                 shadow_read_write_fields[j++] = entry;
145         }
146         max_shadow_read_write_fields = j;
147 }
148
149 /*
150  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
151  * set the success or error code of an emulated VMX instruction (as specified
152  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
153  * instruction.
154  */
155 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
156 {
157         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
158                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
159                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
160         return kvm_skip_emulated_instruction(vcpu);
161 }
162
163 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
164 {
165         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
166                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
167                             X86_EFLAGS_SF | X86_EFLAGS_OF))
168                         | X86_EFLAGS_CF);
169         return kvm_skip_emulated_instruction(vcpu);
170 }
171
172 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
173                                 u32 vm_instruction_error)
174 {
175         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
176                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
177                             X86_EFLAGS_SF | X86_EFLAGS_OF))
178                         | X86_EFLAGS_ZF);
179         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
180         /*
181          * We don't need to force a shadow sync because
182          * VM_INSTRUCTION_ERROR is not shadowed
183          */
184         return kvm_skip_emulated_instruction(vcpu);
185 }
186
187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189         struct vcpu_vmx *vmx = to_vmx(vcpu);
190
191         /*
192          * failValid writes the error number to the current VMCS, which
193          * can't be done if there isn't a current VMCS.
194          */
195         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
196                 return nested_vmx_failInvalid(vcpu);
197
198         return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203         /* TODO: not to reset guest simply here. */
204         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210         return fixed_bits_valid(control, low, high);
211 }
212
213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215         return low | ((u64)high << 32);
216 }
217
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221         vmcs_write64(VMCS_LINK_POINTER, -1ull);
222         vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227         struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229         if (!vmx->nested.hv_evmcs)
230                 return;
231
232         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
233         vmx->nested.hv_evmcs_vmptr = 0;
234         vmx->nested.hv_evmcs = NULL;
235 }
236
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238                                      struct loaded_vmcs *prev)
239 {
240         struct vmcs_host_state *dest, *src;
241
242         if (unlikely(!vmx->guest_state_loaded))
243                 return;
244
245         src = &prev->host_state;
246         dest = &vmx->loaded_vmcs->host_state;
247
248         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249         dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251         dest->ds_sel = src->ds_sel;
252         dest->es_sel = src->es_sel;
253 #endif
254 }
255
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258         struct vcpu_vmx *vmx = to_vmx(vcpu);
259         struct loaded_vmcs *prev;
260         int cpu;
261
262         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263                 return;
264
265         cpu = get_cpu();
266         prev = vmx->loaded_vmcs;
267         vmx->loaded_vmcs = vmcs;
268         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269         vmx_sync_vmcs_host_state(vmx, prev);
270         put_cpu();
271
272         vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281         struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287                 return;
288
289         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291         vmx->nested.vmxon = false;
292         vmx->nested.smm.vmxon = false;
293         free_vpid(vmx->nested.vpid02);
294         vmx->nested.posted_intr_nv = -1;
295         vmx->nested.current_vmptr = -1ull;
296         if (enable_shadow_vmcs) {
297                 vmx_disable_shadow_vmcs(vmx);
298                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299                 free_vmcs(vmx->vmcs01.shadow_vmcs);
300                 vmx->vmcs01.shadow_vmcs = NULL;
301         }
302         kfree(vmx->nested.cached_vmcs12);
303         vmx->nested.cached_vmcs12 = NULL;
304         kfree(vmx->nested.cached_shadow_vmcs12);
305         vmx->nested.cached_shadow_vmcs12 = NULL;
306         /* Unpin physical memory we referred to in the vmcs02 */
307         if (vmx->nested.apic_access_page) {
308                 kvm_release_page_clean(vmx->nested.apic_access_page);
309                 vmx->nested.apic_access_page = NULL;
310         }
311         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313         vmx->nested.pi_desc = NULL;
314
315         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317         nested_release_evmcs(vcpu);
318
319         free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328         vcpu_load(vcpu);
329         vmx_leave_nested(vcpu);
330         vcpu_put(vcpu);
331 }
332
333 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
334                 struct x86_exception *fault)
335 {
336         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
337         struct vcpu_vmx *vmx = to_vmx(vcpu);
338         u32 vm_exit_reason;
339         unsigned long exit_qualification = vcpu->arch.exit_qualification;
340
341         if (vmx->nested.pml_full) {
342                 vm_exit_reason = EXIT_REASON_PML_FULL;
343                 vmx->nested.pml_full = false;
344                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
345         } else if (fault->error_code & PFERR_RSVD_MASK)
346                 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
347         else
348                 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
349
350         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
351         vmcs12->guest_physical_address = fault->address;
352 }
353
354 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
355 {
356         WARN_ON(mmu_is_nested(vcpu));
357
358         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
359         kvm_init_shadow_ept_mmu(vcpu,
360                         to_vmx(vcpu)->nested.msrs.ept_caps &
361                         VMX_EPT_EXECUTE_ONLY_BIT,
362                         nested_ept_ad_enabled(vcpu),
363                         nested_ept_get_eptp(vcpu));
364         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
365         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
366         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
367
368         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
369 }
370
371 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
372 {
373         vcpu->arch.mmu = &vcpu->arch.root_mmu;
374         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
375 }
376
377 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
378                                             u16 error_code)
379 {
380         bool inequality, bit;
381
382         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
383         inequality =
384                 (error_code & vmcs12->page_fault_error_code_mask) !=
385                  vmcs12->page_fault_error_code_match;
386         return inequality ^ bit;
387 }
388
389
390 /*
391  * KVM wants to inject page-faults which it got to the guest. This function
392  * checks whether in a nested guest, we need to inject them to L1 or L2.
393  */
394 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
395 {
396         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
397         unsigned int nr = vcpu->arch.exception.nr;
398         bool has_payload = vcpu->arch.exception.has_payload;
399         unsigned long payload = vcpu->arch.exception.payload;
400
401         if (nr == PF_VECTOR) {
402                 if (vcpu->arch.exception.nested_apf) {
403                         *exit_qual = vcpu->arch.apf.nested_apf_token;
404                         return 1;
405                 }
406                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
407                                                     vcpu->arch.exception.error_code)) {
408                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
409                         return 1;
410                 }
411         } else if (vmcs12->exception_bitmap & (1u << nr)) {
412                 if (nr == DB_VECTOR) {
413                         if (!has_payload) {
414                                 payload = vcpu->arch.dr6;
415                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
416                                 payload ^= DR6_RTM;
417                         }
418                         *exit_qual = payload;
419                 } else
420                         *exit_qual = 0;
421                 return 1;
422         }
423
424         return 0;
425 }
426
427
428 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
429                 struct x86_exception *fault)
430 {
431         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
432
433         WARN_ON(!is_guest_mode(vcpu));
434
435         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
436                 !to_vmx(vcpu)->nested.nested_run_pending) {
437                 vmcs12->vm_exit_intr_error_code = fault->error_code;
438                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
439                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
440                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
441                                   fault->address);
442         } else {
443                 kvm_inject_page_fault(vcpu, fault);
444         }
445 }
446
447 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
448                                                struct vmcs12 *vmcs12)
449 {
450         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
451                 return 0;
452
453         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
454             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
455                 return -EINVAL;
456
457         return 0;
458 }
459
460 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
461                                                 struct vmcs12 *vmcs12)
462 {
463         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
464                 return 0;
465
466         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
467                 return -EINVAL;
468
469         return 0;
470 }
471
472 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
473                                                 struct vmcs12 *vmcs12)
474 {
475         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
476                 return 0;
477
478         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
479                 return -EINVAL;
480
481         return 0;
482 }
483
484 /*
485  * Check if MSR is intercepted for L01 MSR bitmap.
486  */
487 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
488 {
489         unsigned long *msr_bitmap;
490         int f = sizeof(unsigned long);
491
492         if (!cpu_has_vmx_msr_bitmap())
493                 return true;
494
495         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
496
497         if (msr <= 0x1fff) {
498                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
499         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
500                 msr &= 0x1fff;
501                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
502         }
503
504         return true;
505 }
506
507 /*
508  * If a msr is allowed by L0, we should check whether it is allowed by L1.
509  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
510  */
511 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
512                                                unsigned long *msr_bitmap_nested,
513                                                u32 msr, int type)
514 {
515         int f = sizeof(unsigned long);
516
517         /*
518          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
519          * have the write-low and read-high bitmap offsets the wrong way round.
520          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
521          */
522         if (msr <= 0x1fff) {
523                 if (type & MSR_TYPE_R &&
524                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
525                         /* read-low */
526                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
527
528                 if (type & MSR_TYPE_W &&
529                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
530                         /* write-low */
531                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
532
533         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
534                 msr &= 0x1fff;
535                 if (type & MSR_TYPE_R &&
536                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
537                         /* read-high */
538                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
539
540                 if (type & MSR_TYPE_W &&
541                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
542                         /* write-high */
543                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
544
545         }
546 }
547
548 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
549 {
550         int msr;
551
552         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
553                 unsigned word = msr / BITS_PER_LONG;
554
555                 msr_bitmap[word] = ~0;
556                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
557         }
558 }
559
560 /*
561  * Merge L0's and L1's MSR bitmap, return false to indicate that
562  * we do not use the hardware.
563  */
564 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
565                                                  struct vmcs12 *vmcs12)
566 {
567         int msr;
568         unsigned long *msr_bitmap_l1;
569         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
570         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
571
572         /* Nothing to do if the MSR bitmap is not in use.  */
573         if (!cpu_has_vmx_msr_bitmap() ||
574             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
575                 return false;
576
577         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
578                 return false;
579
580         msr_bitmap_l1 = (unsigned long *)map->hva;
581
582         /*
583          * To keep the control flow simple, pay eight 8-byte writes (sixteen
584          * 4-byte writes on 32-bit systems) up front to enable intercepts for
585          * the x2APIC MSR range and selectively disable them below.
586          */
587         enable_x2apic_msr_intercepts(msr_bitmap_l0);
588
589         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
590                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
591                         /*
592                          * L0 need not intercept reads for MSRs between 0x800
593                          * and 0x8ff, it just lets the processor take the value
594                          * from the virtual-APIC page; take those 256 bits
595                          * directly from the L1 bitmap.
596                          */
597                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
598                                 unsigned word = msr / BITS_PER_LONG;
599
600                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
601                         }
602                 }
603
604                 nested_vmx_disable_intercept_for_msr(
605                         msr_bitmap_l1, msr_bitmap_l0,
606                         X2APIC_MSR(APIC_TASKPRI),
607                         MSR_TYPE_R | MSR_TYPE_W);
608
609                 if (nested_cpu_has_vid(vmcs12)) {
610                         nested_vmx_disable_intercept_for_msr(
611                                 msr_bitmap_l1, msr_bitmap_l0,
612                                 X2APIC_MSR(APIC_EOI),
613                                 MSR_TYPE_W);
614                         nested_vmx_disable_intercept_for_msr(
615                                 msr_bitmap_l1, msr_bitmap_l0,
616                                 X2APIC_MSR(APIC_SELF_IPI),
617                                 MSR_TYPE_W);
618                 }
619         }
620
621         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
622 #ifdef CONFIG_X86_64
623         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624                                              MSR_FS_BASE, MSR_TYPE_RW);
625
626         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627                                              MSR_GS_BASE, MSR_TYPE_RW);
628
629         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
630                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
631 #endif
632
633         /*
634          * Checking the L0->L1 bitmap is trying to verify two things:
635          *
636          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
637          *    ensures that we do not accidentally generate an L02 MSR bitmap
638          *    from the L12 MSR bitmap that is too permissive.
639          * 2. That L1 or L2s have actually used the MSR. This avoids
640          *    unnecessarily merging of the bitmap if the MSR is unused. This
641          *    works properly because we only update the L01 MSR bitmap lazily.
642          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
643          *    updated to reflect this when L1 (or its L2s) actually write to
644          *    the MSR.
645          */
646         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
647                 nested_vmx_disable_intercept_for_msr(
648                                         msr_bitmap_l1, msr_bitmap_l0,
649                                         MSR_IA32_SPEC_CTRL,
650                                         MSR_TYPE_R | MSR_TYPE_W);
651
652         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
653                 nested_vmx_disable_intercept_for_msr(
654                                         msr_bitmap_l1, msr_bitmap_l0,
655                                         MSR_IA32_PRED_CMD,
656                                         MSR_TYPE_W);
657
658         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
659
660         return true;
661 }
662
663 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
664                                        struct vmcs12 *vmcs12)
665 {
666         struct kvm_host_map map;
667         struct vmcs12 *shadow;
668
669         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
670             vmcs12->vmcs_link_pointer == -1ull)
671                 return;
672
673         shadow = get_shadow_vmcs12(vcpu);
674
675         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
676                 return;
677
678         memcpy(shadow, map.hva, VMCS12_SIZE);
679         kvm_vcpu_unmap(vcpu, &map, false);
680 }
681
682 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
683                                               struct vmcs12 *vmcs12)
684 {
685         struct vcpu_vmx *vmx = to_vmx(vcpu);
686
687         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
688             vmcs12->vmcs_link_pointer == -1ull)
689                 return;
690
691         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
692                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
693 }
694
695 /*
696  * In nested virtualization, check if L1 has set
697  * VM_EXIT_ACK_INTR_ON_EXIT
698  */
699 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
700 {
701         return get_vmcs12(vcpu)->vm_exit_controls &
702                 VM_EXIT_ACK_INTR_ON_EXIT;
703 }
704
705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706                                           struct vmcs12 *vmcs12)
707 {
708         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710                 return -EINVAL;
711         else
712                 return 0;
713 }
714
715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716                                            struct vmcs12 *vmcs12)
717 {
718         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719             !nested_cpu_has_apic_reg_virt(vmcs12) &&
720             !nested_cpu_has_vid(vmcs12) &&
721             !nested_cpu_has_posted_intr(vmcs12))
722                 return 0;
723
724         /*
725          * If virtualize x2apic mode is enabled,
726          * virtualize apic access must be disabled.
727          */
728         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730                 return -EINVAL;
731
732         /*
733          * If virtual interrupt delivery is enabled,
734          * we must exit on external interrupts.
735          */
736         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737                 return -EINVAL;
738
739         /*
740          * bits 15:8 should be zero in posted_intr_nv,
741          * the descriptor address has been already checked
742          * in nested_get_vmcs12_pages.
743          *
744          * bits 5:0 of posted_intr_desc_addr should be zero.
745          */
746         if (nested_cpu_has_posted_intr(vmcs12) &&
747            (CC(!nested_cpu_has_vid(vmcs12)) ||
748             CC(!nested_exit_intr_ack_set(vcpu)) ||
749             CC((vmcs12->posted_intr_nv & 0xff00)) ||
750             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752                 return -EINVAL;
753
754         /* tpr shadow is needed by all apicv features. */
755         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756                 return -EINVAL;
757
758         return 0;
759 }
760
761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762                                        u32 count, u64 addr)
763 {
764         int maxphyaddr;
765
766         if (count == 0)
767                 return 0;
768         maxphyaddr = cpuid_maxphyaddr(vcpu);
769         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771                 return -EINVAL;
772
773         return 0;
774 }
775
776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777                                                      struct vmcs12 *vmcs12)
778 {
779         if (CC(nested_vmx_check_msr_switch(vcpu,
780                                            vmcs12->vm_exit_msr_load_count,
781                                            vmcs12->vm_exit_msr_load_addr)) ||
782             CC(nested_vmx_check_msr_switch(vcpu,
783                                            vmcs12->vm_exit_msr_store_count,
784                                            vmcs12->vm_exit_msr_store_addr)))
785                 return -EINVAL;
786
787         return 0;
788 }
789
790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793         if (CC(nested_vmx_check_msr_switch(vcpu,
794                                            vmcs12->vm_entry_msr_load_count,
795                                            vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802                                          struct vmcs12 *vmcs12)
803 {
804         if (!nested_cpu_has_pml(vmcs12))
805                 return 0;
806
807         if (CC(!nested_cpu_has_ept(vmcs12)) ||
808             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809                 return -EINVAL;
810
811         return 0;
812 }
813
814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815                                                         struct vmcs12 *vmcs12)
816 {
817         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818                !nested_cpu_has_ept(vmcs12)))
819                 return -EINVAL;
820         return 0;
821 }
822
823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824                                                          struct vmcs12 *vmcs12)
825 {
826         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827                !nested_cpu_has_ept(vmcs12)))
828                 return -EINVAL;
829         return 0;
830 }
831
832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833                                                  struct vmcs12 *vmcs12)
834 {
835         if (!nested_cpu_has_shadow_vmcs(vmcs12))
836                 return 0;
837
838         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840                 return -EINVAL;
841
842         return 0;
843 }
844
845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846                                        struct vmx_msr_entry *e)
847 {
848         /* x2APIC MSR accesses are not allowed */
849         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850                 return -EINVAL;
851         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852             CC(e->index == MSR_IA32_UCODE_REV))
853                 return -EINVAL;
854         if (CC(e->reserved != 0))
855                 return -EINVAL;
856         return 0;
857 }
858
859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860                                      struct vmx_msr_entry *e)
861 {
862         if (CC(e->index == MSR_FS_BASE) ||
863             CC(e->index == MSR_GS_BASE) ||
864             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865             nested_vmx_msr_check_common(vcpu, e))
866                 return -EINVAL;
867         return 0;
868 }
869
870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871                                       struct vmx_msr_entry *e)
872 {
873         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874             nested_vmx_msr_check_common(vcpu, e))
875                 return -EINVAL;
876         return 0;
877 }
878
879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881         struct vcpu_vmx *vmx = to_vmx(vcpu);
882         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883                                        vmx->nested.msrs.misc_high);
884
885         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899         u32 i;
900         struct vmx_msr_entry e;
901         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902
903         for (i = 0; i < count; i++) {
904                 if (unlikely(i >= max_msr_list_size))
905                         goto fail;
906
907                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908                                         &e, sizeof(e))) {
909                         pr_debug_ratelimited(
910                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911                                 __func__, i, gpa + i * sizeof(e));
912                         goto fail;
913                 }
914                 if (nested_vmx_load_msr_check(vcpu, &e)) {
915                         pr_debug_ratelimited(
916                                 "%s check failed (%u, 0x%x, 0x%x)\n",
917                                 __func__, i, e.index, e.reserved);
918                         goto fail;
919                 }
920                 if (kvm_set_msr(vcpu, e.index, e.value)) {
921                         pr_debug_ratelimited(
922                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923                                 __func__, i, e.index, e.value);
924                         goto fail;
925                 }
926         }
927         return 0;
928 fail:
929         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
930         return i + 1;
931 }
932
933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934                                             u32 msr_index,
935                                             u64 *data)
936 {
937         struct vcpu_vmx *vmx = to_vmx(vcpu);
938
939         /*
940          * If the L0 hypervisor stored a more accurate value for the TSC that
941          * does not include the time taken for emulation of the L2->L1
942          * VM-exit in L0, use the more accurate value.
943          */
944         if (msr_index == MSR_IA32_TSC) {
945                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
946                                                     MSR_IA32_TSC);
947
948                 if (i >= 0) {
949                         u64 val = vmx->msr_autostore.guest.val[i].value;
950
951                         *data = kvm_read_l1_tsc(vcpu, val);
952                         return true;
953                 }
954         }
955
956         if (kvm_get_msr(vcpu, msr_index, data)) {
957                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958                         msr_index);
959                 return false;
960         }
961         return true;
962 }
963
964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965                                      struct vmx_msr_entry *e)
966 {
967         if (kvm_vcpu_read_guest(vcpu,
968                                 gpa + i * sizeof(*e),
969                                 e, 2 * sizeof(u32))) {
970                 pr_debug_ratelimited(
971                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
972                         __func__, i, gpa + i * sizeof(*e));
973                 return false;
974         }
975         if (nested_vmx_store_msr_check(vcpu, e)) {
976                 pr_debug_ratelimited(
977                         "%s check failed (%u, 0x%x, 0x%x)\n",
978                         __func__, i, e->index, e->reserved);
979                 return false;
980         }
981         return true;
982 }
983
984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986         u64 data;
987         u32 i;
988         struct vmx_msr_entry e;
989         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990
991         for (i = 0; i < count; i++) {
992                 if (unlikely(i >= max_msr_list_size))
993                         return -EINVAL;
994
995                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996                         return -EINVAL;
997
998                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999                         return -EINVAL;
1000
1001                 if (kvm_vcpu_write_guest(vcpu,
1002                                          gpa + i * sizeof(e) +
1003                                              offsetof(struct vmx_msr_entry, value),
1004                                          &data, sizeof(data))) {
1005                         pr_debug_ratelimited(
1006                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007                                 __func__, i, e.index, data);
1008                         return -EINVAL;
1009                 }
1010         }
1011         return 0;
1012 }
1013
1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017         u32 count = vmcs12->vm_exit_msr_store_count;
1018         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019         struct vmx_msr_entry e;
1020         u32 i;
1021
1022         for (i = 0; i < count; i++) {
1023                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024                         return false;
1025
1026                 if (e.index == msr_index)
1027                         return true;
1028         }
1029         return false;
1030 }
1031
1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033                                            u32 msr_index)
1034 {
1035         struct vcpu_vmx *vmx = to_vmx(vcpu);
1036         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037         bool in_vmcs12_store_list;
1038         int msr_autostore_slot;
1039         bool in_autostore_list;
1040         int last;
1041
1042         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1043         in_autostore_list = msr_autostore_slot >= 0;
1044         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045
1046         if (in_vmcs12_store_list && !in_autostore_list) {
1047                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1048                         /*
1049                          * Emulated VMEntry does not fail here.  Instead a less
1050                          * accurate value will be returned by
1051                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052                          * instead of reading the value from the vmcs02 VMExit
1053                          * MSR-store area.
1054                          */
1055                         pr_warn_ratelimited(
1056                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1057                                 msr_index);
1058                         return;
1059                 }
1060                 last = autostore->nr++;
1061                 autostore->val[last].index = msr_index;
1062         } else if (!in_vmcs12_store_list && in_autostore_list) {
1063                 last = --autostore->nr;
1064                 autostore->val[msr_autostore_slot] = autostore->val[last];
1065         }
1066 }
1067
1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070         unsigned long invalid_mask;
1071
1072         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073         return (val & invalid_mask) == 0;
1074 }
1075
1076 /*
1077  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1078  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1079  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1080  * Here's why.
1081  *
1082  * If EPT is enabled by L0 a sync is never needed:
1083  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1084  *   cannot be unsync'd SPTEs for either L1 or L2.
1085  *
1086  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1087  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1088  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1089  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1090  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1091  *
1092  * If EPT is disabled by L0:
1093  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1094  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1095  *   required to invalidate linear mappings (EPT is disabled so there are
1096  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1097  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1098  *
1099  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1100  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1101  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1102  *
1103  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1104  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1105  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1106  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1107  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1108  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1109  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1110  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1111  * stale TLB entries, at which point L0 will sync L2's MMU.
1112  */
1113 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1114 {
1115         return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1116 }
1117
1118 /*
1119  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1120  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1121  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1122  * @entry_failure_code.
1123  */
1124 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1125                                enum vm_entry_failure_code *entry_failure_code)
1126 {
1127         if (CC(!nested_cr3_valid(vcpu, cr3))) {
1128                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1129                 return -EINVAL;
1130         }
1131
1132         /*
1133          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1134          * must not be dereferenced.
1135          */
1136         if (!nested_ept && is_pae_paging(vcpu) &&
1137             (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1138                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1139                         *entry_failure_code = ENTRY_FAIL_PDPTE;
1140                         return -EINVAL;
1141                 }
1142         }
1143
1144         /*
1145          * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1146          * flushes are handled by nested_vmx_transition_tlb_flush().
1147          */
1148         if (!nested_ept) {
1149                 kvm_mmu_new_pgd(vcpu, cr3, true, true);
1150
1151                 /*
1152                  * A TLB flush on VM-Enter/VM-Exit flushes all linear mappings
1153                  * across all PCIDs, i.e. all PGDs need to be synchronized.
1154                  * See nested_vmx_transition_mmu_sync() for more details.
1155                  */
1156                 if (nested_vmx_transition_mmu_sync(vcpu))
1157                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158         }
1159
1160         vcpu->arch.cr3 = cr3;
1161         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1162
1163         kvm_init_mmu(vcpu, false);
1164
1165         return 0;
1166 }
1167
1168 /*
1169  * Returns if KVM is able to config CPU to tag TLB entries
1170  * populated by L2 differently than TLB entries populated
1171  * by L1.
1172  *
1173  * If L0 uses EPT, L1 and L2 run with different EPTP because
1174  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1175  * are tagged with different EPTP.
1176  *
1177  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1178  * with different VPID (L1 entries are tagged with vmx->vpid
1179  * while L2 entries are tagged with vmx->nested.vpid02).
1180  */
1181 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1182 {
1183         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1184
1185         return enable_ept ||
1186                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1187 }
1188
1189 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1190                                             struct vmcs12 *vmcs12,
1191                                             bool is_vmenter)
1192 {
1193         struct vcpu_vmx *vmx = to_vmx(vcpu);
1194
1195         /*
1196          * If VPID is disabled, linear and combined mappings are flushed on
1197          * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1198          * their associated EPTP.
1199          */
1200         if (!enable_vpid)
1201                 return;
1202
1203         /*
1204          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1205          * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1206          *
1207          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1208          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1209          * a VPID for L2, flush the current context as the effective ASID is
1210          * common to both L1 and L2.
1211          *
1212          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1213          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1214          * redundant flushes further down the nested pipeline.
1215          *
1216          * If a TLB flush isn't required due to any of the above, and vpid12 is
1217          * changing then the new "virtual" VPID (vpid12) will reuse the same
1218          * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1219          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1220          * all nested vCPUs.
1221          */
1222         if (!nested_cpu_has_vpid(vmcs12)) {
1223                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1224         } else if (!nested_has_guest_tlb_tag(vcpu)) {
1225                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1226         } else if (is_vmenter &&
1227                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1228                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1229                 vpid_sync_context(nested_get_vpid02(vcpu));
1230         }
1231 }
1232
1233 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1234 {
1235         superset &= mask;
1236         subset &= mask;
1237
1238         return (superset | subset) == superset;
1239 }
1240
1241 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1242 {
1243         const u64 feature_and_reserved =
1244                 /* feature (except bit 48; see below) */
1245                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1246                 /* reserved */
1247                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1248         u64 vmx_basic = vmcs_config.nested.basic;
1249
1250         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1251                 return -EINVAL;
1252
1253         /*
1254          * KVM does not emulate a version of VMX that constrains physical
1255          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1256          */
1257         if (data & BIT_ULL(48))
1258                 return -EINVAL;
1259
1260         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1261             vmx_basic_vmcs_revision_id(data))
1262                 return -EINVAL;
1263
1264         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1265                 return -EINVAL;
1266
1267         vmx->nested.msrs.basic = data;
1268         return 0;
1269 }
1270
1271 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1272                                 u32 **low, u32 **high)
1273 {
1274         switch (msr_index) {
1275         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1276                 *low = &msrs->pinbased_ctls_low;
1277                 *high = &msrs->pinbased_ctls_high;
1278                 break;
1279         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1280                 *low = &msrs->procbased_ctls_low;
1281                 *high = &msrs->procbased_ctls_high;
1282                 break;
1283         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1284                 *low = &msrs->exit_ctls_low;
1285                 *high = &msrs->exit_ctls_high;
1286                 break;
1287         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1288                 *low = &msrs->entry_ctls_low;
1289                 *high = &msrs->entry_ctls_high;
1290                 break;
1291         case MSR_IA32_VMX_PROCBASED_CTLS2:
1292                 *low = &msrs->secondary_ctls_low;
1293                 *high = &msrs->secondary_ctls_high;
1294                 break;
1295         default:
1296                 BUG();
1297         }
1298 }
1299
1300 static int
1301 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1302 {
1303         u32 *lowp, *highp;
1304         u64 supported;
1305
1306         vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1307
1308         supported = vmx_control_msr(*lowp, *highp);
1309
1310         /* Check must-be-1 bits are still 1. */
1311         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1312                 return -EINVAL;
1313
1314         /* Check must-be-0 bits are still 0. */
1315         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1316                 return -EINVAL;
1317
1318         vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1319         *lowp = data;
1320         *highp = data >> 32;
1321         return 0;
1322 }
1323
1324 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1325 {
1326         const u64 feature_and_reserved_bits =
1327                 /* feature */
1328                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1329                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1330                 /* reserved */
1331                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1332         u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1333                                        vmcs_config.nested.misc_high);
1334
1335         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1336                 return -EINVAL;
1337
1338         if ((vmx->nested.msrs.pinbased_ctls_high &
1339              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1340             vmx_misc_preemption_timer_rate(data) !=
1341             vmx_misc_preemption_timer_rate(vmx_misc))
1342                 return -EINVAL;
1343
1344         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1345                 return -EINVAL;
1346
1347         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1348                 return -EINVAL;
1349
1350         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1351                 return -EINVAL;
1352
1353         vmx->nested.msrs.misc_low = data;
1354         vmx->nested.msrs.misc_high = data >> 32;
1355
1356         return 0;
1357 }
1358
1359 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1360 {
1361         u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1362                                                vmcs_config.nested.vpid_caps);
1363
1364         /* Every bit is either reserved or a feature bit. */
1365         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1366                 return -EINVAL;
1367
1368         vmx->nested.msrs.ept_caps = data;
1369         vmx->nested.msrs.vpid_caps = data >> 32;
1370         return 0;
1371 }
1372
1373 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1374 {
1375         switch (msr_index) {
1376         case MSR_IA32_VMX_CR0_FIXED0:
1377                 return &msrs->cr0_fixed0;
1378         case MSR_IA32_VMX_CR4_FIXED0:
1379                 return &msrs->cr4_fixed0;
1380         default:
1381                 BUG();
1382         }
1383 }
1384
1385 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1386 {
1387         const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1388
1389         /*
1390          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1391          * must be 1 in the restored value.
1392          */
1393         if (!is_bitwise_subset(data, *msr, -1ULL))
1394                 return -EINVAL;
1395
1396         *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1397         return 0;
1398 }
1399
1400 /*
1401  * Called when userspace is restoring VMX MSRs.
1402  *
1403  * Returns 0 on success, non-0 otherwise.
1404  */
1405 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1406 {
1407         struct vcpu_vmx *vmx = to_vmx(vcpu);
1408
1409         /*
1410          * Don't allow changes to the VMX capability MSRs while the vCPU
1411          * is in VMX operation.
1412          */
1413         if (vmx->nested.vmxon)
1414                 return -EBUSY;
1415
1416         switch (msr_index) {
1417         case MSR_IA32_VMX_BASIC:
1418                 return vmx_restore_vmx_basic(vmx, data);
1419         case MSR_IA32_VMX_PINBASED_CTLS:
1420         case MSR_IA32_VMX_PROCBASED_CTLS:
1421         case MSR_IA32_VMX_EXIT_CTLS:
1422         case MSR_IA32_VMX_ENTRY_CTLS:
1423                 /*
1424                  * The "non-true" VMX capability MSRs are generated from the
1425                  * "true" MSRs, so we do not support restoring them directly.
1426                  *
1427                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1428                  * should restore the "true" MSRs with the must-be-1 bits
1429                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1430                  * DEFAULT SETTINGS".
1431                  */
1432                 return -EINVAL;
1433         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1434         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1435         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1436         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1437         case MSR_IA32_VMX_PROCBASED_CTLS2:
1438                 return vmx_restore_control_msr(vmx, msr_index, data);
1439         case MSR_IA32_VMX_MISC:
1440                 return vmx_restore_vmx_misc(vmx, data);
1441         case MSR_IA32_VMX_CR0_FIXED0:
1442         case MSR_IA32_VMX_CR4_FIXED0:
1443                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1444         case MSR_IA32_VMX_CR0_FIXED1:
1445         case MSR_IA32_VMX_CR4_FIXED1:
1446                 /*
1447                  * These MSRs are generated based on the vCPU's CPUID, so we
1448                  * do not support restoring them directly.
1449                  */
1450                 return -EINVAL;
1451         case MSR_IA32_VMX_EPT_VPID_CAP:
1452                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1453         case MSR_IA32_VMX_VMCS_ENUM:
1454                 vmx->nested.msrs.vmcs_enum = data;
1455                 return 0;
1456         case MSR_IA32_VMX_VMFUNC:
1457                 if (data & ~vmcs_config.nested.vmfunc_controls)
1458                         return -EINVAL;
1459                 vmx->nested.msrs.vmfunc_controls = data;
1460                 return 0;
1461         default:
1462                 /*
1463                  * The rest of the VMX capability MSRs do not support restore.
1464                  */
1465                 return -EINVAL;
1466         }
1467 }
1468
1469 /* Returns 0 on success, non-0 otherwise. */
1470 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1471 {
1472         switch (msr_index) {
1473         case MSR_IA32_VMX_BASIC:
1474                 *pdata = msrs->basic;
1475                 break;
1476         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1477         case MSR_IA32_VMX_PINBASED_CTLS:
1478                 *pdata = vmx_control_msr(
1479                         msrs->pinbased_ctls_low,
1480                         msrs->pinbased_ctls_high);
1481                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1482                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1483                 break;
1484         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1485         case MSR_IA32_VMX_PROCBASED_CTLS:
1486                 *pdata = vmx_control_msr(
1487                         msrs->procbased_ctls_low,
1488                         msrs->procbased_ctls_high);
1489                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1490                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1491                 break;
1492         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1493         case MSR_IA32_VMX_EXIT_CTLS:
1494                 *pdata = vmx_control_msr(
1495                         msrs->exit_ctls_low,
1496                         msrs->exit_ctls_high);
1497                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1498                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1499                 break;
1500         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1501         case MSR_IA32_VMX_ENTRY_CTLS:
1502                 *pdata = vmx_control_msr(
1503                         msrs->entry_ctls_low,
1504                         msrs->entry_ctls_high);
1505                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1506                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1507                 break;
1508         case MSR_IA32_VMX_MISC:
1509                 *pdata = vmx_control_msr(
1510                         msrs->misc_low,
1511                         msrs->misc_high);
1512                 break;
1513         case MSR_IA32_VMX_CR0_FIXED0:
1514                 *pdata = msrs->cr0_fixed0;
1515                 break;
1516         case MSR_IA32_VMX_CR0_FIXED1:
1517                 *pdata = msrs->cr0_fixed1;
1518                 break;
1519         case MSR_IA32_VMX_CR4_FIXED0:
1520                 *pdata = msrs->cr4_fixed0;
1521                 break;
1522         case MSR_IA32_VMX_CR4_FIXED1:
1523                 *pdata = msrs->cr4_fixed1;
1524                 break;
1525         case MSR_IA32_VMX_VMCS_ENUM:
1526                 *pdata = msrs->vmcs_enum;
1527                 break;
1528         case MSR_IA32_VMX_PROCBASED_CTLS2:
1529                 *pdata = vmx_control_msr(
1530                         msrs->secondary_ctls_low,
1531                         msrs->secondary_ctls_high);
1532                 break;
1533         case MSR_IA32_VMX_EPT_VPID_CAP:
1534                 *pdata = msrs->ept_caps |
1535                         ((u64)msrs->vpid_caps << 32);
1536                 break;
1537         case MSR_IA32_VMX_VMFUNC:
1538                 *pdata = msrs->vmfunc_controls;
1539                 break;
1540         default:
1541                 return 1;
1542         }
1543
1544         return 0;
1545 }
1546
1547 /*
1548  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1549  * been modified by the L1 guest.  Note, "writable" in this context means
1550  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1551  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1552  * VM-exit information fields (which are actually writable if the vCPU is
1553  * configured to support "VMWRITE to any supported field in the VMCS").
1554  */
1555 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1556 {
1557         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1558         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1559         struct shadow_vmcs_field field;
1560         unsigned long val;
1561         int i;
1562
1563         if (WARN_ON(!shadow_vmcs))
1564                 return;
1565
1566         preempt_disable();
1567
1568         vmcs_load(shadow_vmcs);
1569
1570         for (i = 0; i < max_shadow_read_write_fields; i++) {
1571                 field = shadow_read_write_fields[i];
1572                 val = __vmcs_readl(field.encoding);
1573                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1574         }
1575
1576         vmcs_clear(shadow_vmcs);
1577         vmcs_load(vmx->loaded_vmcs->vmcs);
1578
1579         preempt_enable();
1580 }
1581
1582 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1583 {
1584         const struct shadow_vmcs_field *fields[] = {
1585                 shadow_read_write_fields,
1586                 shadow_read_only_fields
1587         };
1588         const int max_fields[] = {
1589                 max_shadow_read_write_fields,
1590                 max_shadow_read_only_fields
1591         };
1592         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1593         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1594         struct shadow_vmcs_field field;
1595         unsigned long val;
1596         int i, q;
1597
1598         if (WARN_ON(!shadow_vmcs))
1599                 return;
1600
1601         vmcs_load(shadow_vmcs);
1602
1603         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1604                 for (i = 0; i < max_fields[q]; i++) {
1605                         field = fields[q][i];
1606                         val = vmcs12_read_any(vmcs12, field.encoding,
1607                                               field.offset);
1608                         __vmcs_writel(field.encoding, val);
1609                 }
1610         }
1611
1612         vmcs_clear(shadow_vmcs);
1613         vmcs_load(vmx->loaded_vmcs->vmcs);
1614 }
1615
1616 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1617 {
1618         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1619         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1620
1621         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1622         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1623         vmcs12->guest_rip = evmcs->guest_rip;
1624
1625         if (unlikely(!(evmcs->hv_clean_fields &
1626                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1627                 vmcs12->guest_rsp = evmcs->guest_rsp;
1628                 vmcs12->guest_rflags = evmcs->guest_rflags;
1629                 vmcs12->guest_interruptibility_info =
1630                         evmcs->guest_interruptibility_info;
1631         }
1632
1633         if (unlikely(!(evmcs->hv_clean_fields &
1634                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1635                 vmcs12->cpu_based_vm_exec_control =
1636                         evmcs->cpu_based_vm_exec_control;
1637         }
1638
1639         if (unlikely(!(evmcs->hv_clean_fields &
1640                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1641                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1642         }
1643
1644         if (unlikely(!(evmcs->hv_clean_fields &
1645                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1646                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1647         }
1648
1649         if (unlikely(!(evmcs->hv_clean_fields &
1650                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1651                 vmcs12->vm_entry_intr_info_field =
1652                         evmcs->vm_entry_intr_info_field;
1653                 vmcs12->vm_entry_exception_error_code =
1654                         evmcs->vm_entry_exception_error_code;
1655                 vmcs12->vm_entry_instruction_len =
1656                         evmcs->vm_entry_instruction_len;
1657         }
1658
1659         if (unlikely(!(evmcs->hv_clean_fields &
1660                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1661                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1662                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1663                 vmcs12->host_cr0 = evmcs->host_cr0;
1664                 vmcs12->host_cr3 = evmcs->host_cr3;
1665                 vmcs12->host_cr4 = evmcs->host_cr4;
1666                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1667                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1668                 vmcs12->host_rip = evmcs->host_rip;
1669                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1670                 vmcs12->host_es_selector = evmcs->host_es_selector;
1671                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1672                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1673                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1674                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1675                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1676                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1677         }
1678
1679         if (unlikely(!(evmcs->hv_clean_fields &
1680                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1681                 vmcs12->pin_based_vm_exec_control =
1682                         evmcs->pin_based_vm_exec_control;
1683                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1684                 vmcs12->secondary_vm_exec_control =
1685                         evmcs->secondary_vm_exec_control;
1686         }
1687
1688         if (unlikely(!(evmcs->hv_clean_fields &
1689                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1690                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1691                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1692         }
1693
1694         if (unlikely(!(evmcs->hv_clean_fields &
1695                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1696                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1697         }
1698
1699         if (unlikely(!(evmcs->hv_clean_fields &
1700                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1701                 vmcs12->guest_es_base = evmcs->guest_es_base;
1702                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1703                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1704                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1705                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1706                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1707                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1708                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1709                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1710                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1711                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1712                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1713                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1714                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1715                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1716                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1717                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1718                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1719                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1720                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1721                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1722                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1723                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1724                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1725                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1726                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1727                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1728                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1729                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1730                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1731                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1732                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1733                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1734                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1735                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1736                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1737         }
1738
1739         if (unlikely(!(evmcs->hv_clean_fields &
1740                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1741                 vmcs12->tsc_offset = evmcs->tsc_offset;
1742                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1743                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1744         }
1745
1746         if (unlikely(!(evmcs->hv_clean_fields &
1747                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1748                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1749                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1750                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1751                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1752                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1753                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1754                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1755                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1756         }
1757
1758         if (unlikely(!(evmcs->hv_clean_fields &
1759                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1760                 vmcs12->host_fs_base = evmcs->host_fs_base;
1761                 vmcs12->host_gs_base = evmcs->host_gs_base;
1762                 vmcs12->host_tr_base = evmcs->host_tr_base;
1763                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1764                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1765                 vmcs12->host_rsp = evmcs->host_rsp;
1766         }
1767
1768         if (unlikely(!(evmcs->hv_clean_fields &
1769                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1770                 vmcs12->ept_pointer = evmcs->ept_pointer;
1771                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1772         }
1773
1774         if (unlikely(!(evmcs->hv_clean_fields &
1775                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1776                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1777                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1778                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1779                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1780                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1781                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1782                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1783                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1784                 vmcs12->guest_pending_dbg_exceptions =
1785                         evmcs->guest_pending_dbg_exceptions;
1786                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1787                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1788                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1789                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1790                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1791         }
1792
1793         /*
1794          * Not used?
1795          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1796          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1797          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1798          * vmcs12->page_fault_error_code_mask =
1799          *              evmcs->page_fault_error_code_mask;
1800          * vmcs12->page_fault_error_code_match =
1801          *              evmcs->page_fault_error_code_match;
1802          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1803          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1804          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1805          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1806          */
1807
1808         /*
1809          * Read only fields:
1810          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1811          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1812          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1813          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1814          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1815          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1816          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1817          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1818          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1819          * vmcs12->exit_qualification = evmcs->exit_qualification;
1820          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1821          *
1822          * Not present in struct vmcs12:
1823          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1824          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1825          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1826          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1827          */
1828
1829         return 0;
1830 }
1831
1832 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1833 {
1834         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1835         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1836
1837         /*
1838          * Should not be changed by KVM:
1839          *
1840          * evmcs->host_es_selector = vmcs12->host_es_selector;
1841          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1842          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1843          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1844          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1845          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1846          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1847          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1848          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1849          * evmcs->host_cr0 = vmcs12->host_cr0;
1850          * evmcs->host_cr3 = vmcs12->host_cr3;
1851          * evmcs->host_cr4 = vmcs12->host_cr4;
1852          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1853          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1854          * evmcs->host_rip = vmcs12->host_rip;
1855          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1856          * evmcs->host_fs_base = vmcs12->host_fs_base;
1857          * evmcs->host_gs_base = vmcs12->host_gs_base;
1858          * evmcs->host_tr_base = vmcs12->host_tr_base;
1859          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1860          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1861          * evmcs->host_rsp = vmcs12->host_rsp;
1862          * sync_vmcs02_to_vmcs12() doesn't read these:
1863          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1864          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1865          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1866          * evmcs->ept_pointer = vmcs12->ept_pointer;
1867          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1868          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1869          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1870          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1871          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1872          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1873          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1874          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1875          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1876          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1877          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1878          * evmcs->page_fault_error_code_mask =
1879          *              vmcs12->page_fault_error_code_mask;
1880          * evmcs->page_fault_error_code_match =
1881          *              vmcs12->page_fault_error_code_match;
1882          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1883          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1884          * evmcs->tsc_offset = vmcs12->tsc_offset;
1885          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1886          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1887          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1888          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1889          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1890          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1891          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1892          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1893          *
1894          * Not present in struct vmcs12:
1895          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1896          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1897          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1898          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1899          */
1900
1901         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1902         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1903         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1904         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1905         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1906         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1907         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1908         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1909
1910         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1911         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1912         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1913         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1914         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1915         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1916         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1917         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1918         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1919         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1920
1921         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1922         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1923         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1924         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1925         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1926         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1927         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1928         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1929
1930         evmcs->guest_es_base = vmcs12->guest_es_base;
1931         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1932         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1933         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1934         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1935         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1936         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1937         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1938         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1939         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1940
1941         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1942         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1943
1944         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1945         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1946         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1947         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1948
1949         evmcs->guest_pending_dbg_exceptions =
1950                 vmcs12->guest_pending_dbg_exceptions;
1951         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1952         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1953
1954         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1955         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1956
1957         evmcs->guest_cr0 = vmcs12->guest_cr0;
1958         evmcs->guest_cr3 = vmcs12->guest_cr3;
1959         evmcs->guest_cr4 = vmcs12->guest_cr4;
1960         evmcs->guest_dr7 = vmcs12->guest_dr7;
1961
1962         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1963
1964         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1965         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1966         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1967         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1968         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1969         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1970         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1971         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1972
1973         evmcs->exit_qualification = vmcs12->exit_qualification;
1974
1975         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1976         evmcs->guest_rsp = vmcs12->guest_rsp;
1977         evmcs->guest_rflags = vmcs12->guest_rflags;
1978
1979         evmcs->guest_interruptibility_info =
1980                 vmcs12->guest_interruptibility_info;
1981         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1982         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1983         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1984         evmcs->vm_entry_exception_error_code =
1985                 vmcs12->vm_entry_exception_error_code;
1986         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1987
1988         evmcs->guest_rip = vmcs12->guest_rip;
1989
1990         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1991
1992         return 0;
1993 }
1994
1995 /*
1996  * This is an equivalent of the nested hypervisor executing the vmptrld
1997  * instruction.
1998  */
1999 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2000         struct kvm_vcpu *vcpu, bool from_launch)
2001 {
2002         struct vcpu_vmx *vmx = to_vmx(vcpu);
2003         bool evmcs_gpa_changed = false;
2004         u64 evmcs_gpa;
2005
2006         if (likely(!vmx->nested.enlightened_vmcs_enabled))
2007                 return EVMPTRLD_DISABLED;
2008
2009         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
2010                 return EVMPTRLD_DISABLED;
2011
2012         if (unlikely(!vmx->nested.hv_evmcs ||
2013                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2014                 if (!vmx->nested.hv_evmcs)
2015                         vmx->nested.current_vmptr = -1ull;
2016
2017                 nested_release_evmcs(vcpu);
2018
2019                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2020                                  &vmx->nested.hv_evmcs_map))
2021                         return EVMPTRLD_ERROR;
2022
2023                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2024
2025                 /*
2026                  * Currently, KVM only supports eVMCS version 1
2027                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2028                  * value to first u32 field of eVMCS which should specify eVMCS
2029                  * VersionNumber.
2030                  *
2031                  * Guest should be aware of supported eVMCS versions by host by
2032                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2033                  * expected to set this CPUID leaf according to the value
2034                  * returned in vmcs_version from nested_enable_evmcs().
2035                  *
2036                  * However, it turns out that Microsoft Hyper-V fails to comply
2037                  * to their own invented interface: When Hyper-V use eVMCS, it
2038                  * just sets first u32 field of eVMCS to revision_id specified
2039                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2040                  * which is one of the supported versions specified in
2041                  * CPUID.0x4000000A.EAX[0:15].
2042                  *
2043                  * To overcome Hyper-V bug, we accept here either a supported
2044                  * eVMCS version or VMCS12 revision_id as valid values for first
2045                  * u32 field of eVMCS.
2046                  */
2047                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2048                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2049                         nested_release_evmcs(vcpu);
2050                         return EVMPTRLD_VMFAIL;
2051                 }
2052
2053                 vmx->nested.dirty_vmcs12 = true;
2054                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2055
2056                 evmcs_gpa_changed = true;
2057                 /*
2058                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2059                  * reloaded from guest's memory (read only fields, fields not
2060                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2061                  * are no leftovers.
2062                  */
2063                 if (from_launch) {
2064                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2065                         memset(vmcs12, 0, sizeof(*vmcs12));
2066                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2067                 }
2068
2069         }
2070
2071         /*
2072          * Clean fields data can't be used on VMLAUNCH and when we switch
2073          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2074          */
2075         if (from_launch || evmcs_gpa_changed)
2076                 vmx->nested.hv_evmcs->hv_clean_fields &=
2077                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2078
2079         return EVMPTRLD_SUCCEEDED;
2080 }
2081
2082 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2083 {
2084         struct vcpu_vmx *vmx = to_vmx(vcpu);
2085
2086         if (vmx->nested.hv_evmcs) {
2087                 copy_vmcs12_to_enlightened(vmx);
2088                 /* All fields are clean */
2089                 vmx->nested.hv_evmcs->hv_clean_fields |=
2090                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2091         } else {
2092                 copy_vmcs12_to_shadow(vmx);
2093         }
2094
2095         vmx->nested.need_vmcs12_to_shadow_sync = false;
2096 }
2097
2098 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2099 {
2100         struct vcpu_vmx *vmx =
2101                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2102
2103         vmx->nested.preemption_timer_expired = true;
2104         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2105         kvm_vcpu_kick(&vmx->vcpu);
2106
2107         return HRTIMER_NORESTART;
2108 }
2109
2110 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2111 {
2112         struct vcpu_vmx *vmx = to_vmx(vcpu);
2113         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2114
2115         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2116                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2117
2118         if (!vmx->nested.has_preemption_timer_deadline) {
2119                 vmx->nested.preemption_timer_deadline =
2120                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2121                 vmx->nested.has_preemption_timer_deadline = true;
2122         }
2123         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2124 }
2125
2126 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2127                                         u64 preemption_timeout)
2128 {
2129         struct vcpu_vmx *vmx = to_vmx(vcpu);
2130
2131         /*
2132          * A timer value of zero is architecturally guaranteed to cause
2133          * a VMExit prior to executing any instructions in the guest.
2134          */
2135         if (preemption_timeout == 0) {
2136                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2137                 return;
2138         }
2139
2140         if (vcpu->arch.virtual_tsc_khz == 0)
2141                 return;
2142
2143         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2144         preemption_timeout *= 1000000;
2145         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2146         hrtimer_start(&vmx->nested.preemption_timer,
2147                       ktime_add_ns(ktime_get(), preemption_timeout),
2148                       HRTIMER_MODE_ABS_PINNED);
2149 }
2150
2151 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2152 {
2153         if (vmx->nested.nested_run_pending &&
2154             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2155                 return vmcs12->guest_ia32_efer;
2156         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2157                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2158         else
2159                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2160 }
2161
2162 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2163 {
2164         /*
2165          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2166          * according to L0's settings (vmcs12 is irrelevant here).  Host
2167          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2168          * will be set as needed prior to VMLAUNCH/VMRESUME.
2169          */
2170         if (vmx->nested.vmcs02_initialized)
2171                 return;
2172         vmx->nested.vmcs02_initialized = true;
2173
2174         /*
2175          * We don't care what the EPTP value is we just need to guarantee
2176          * it's valid so we don't get a false positive when doing early
2177          * consistency checks.
2178          */
2179         if (enable_ept && nested_early_check)
2180                 vmcs_write64(EPT_POINTER,
2181                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2182
2183         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2184         if (cpu_has_vmx_vmfunc())
2185                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2186
2187         if (cpu_has_vmx_posted_intr())
2188                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2189
2190         if (cpu_has_vmx_msr_bitmap())
2191                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2192
2193         /*
2194          * The PML address never changes, so it is constant in vmcs02.
2195          * Conceptually we want to copy the PML index from vmcs01 here,
2196          * and then back to vmcs01 on nested vmexit.  But since we flush
2197          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2198          * index is also effectively constant in vmcs02.
2199          */
2200         if (enable_pml) {
2201                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2202                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2203         }
2204
2205         if (cpu_has_vmx_encls_vmexit())
2206                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2207
2208         /*
2209          * Set the MSR load/store lists to match L0's settings.  Only the
2210          * addresses are constant (for vmcs02), the counts can change based
2211          * on L2's behavior, e.g. switching to/from long mode.
2212          */
2213         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2214         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2215         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2216
2217         vmx_set_constant_host_state(vmx);
2218 }
2219
2220 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2221                                       struct vmcs12 *vmcs12)
2222 {
2223         prepare_vmcs02_constant_state(vmx);
2224
2225         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2226
2227         if (enable_vpid) {
2228                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2229                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2230                 else
2231                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2232         }
2233 }
2234
2235 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2236                                  struct vmcs12 *vmcs12)
2237 {
2238         u32 exec_control, vmcs12_exec_ctrl;
2239         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2240
2241         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2242                 prepare_vmcs02_early_rare(vmx, vmcs12);
2243
2244         /*
2245          * PIN CONTROLS
2246          */
2247         exec_control = __pin_controls_get(vmcs01);
2248         exec_control |= (vmcs12->pin_based_vm_exec_control &
2249                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2250
2251         /* Posted interrupts setting is only taken from vmcs12.  */
2252         vmx->nested.pi_pending = false;
2253         if (nested_cpu_has_posted_intr(vmcs12))
2254                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2255         else
2256                 exec_control &= ~PIN_BASED_POSTED_INTR;
2257         pin_controls_set(vmx, exec_control);
2258
2259         /*
2260          * EXEC CONTROLS
2261          */
2262         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2263         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2264         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2265         exec_control &= ~CPU_BASED_TPR_SHADOW;
2266         exec_control |= vmcs12->cpu_based_vm_exec_control;
2267
2268         vmx->nested.l1_tpr_threshold = -1;
2269         if (exec_control & CPU_BASED_TPR_SHADOW)
2270                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2271 #ifdef CONFIG_X86_64
2272         else
2273                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2274                                 CPU_BASED_CR8_STORE_EXITING;
2275 #endif
2276
2277         /*
2278          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2279          * for I/O port accesses.
2280          */
2281         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2282         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2283
2284         /*
2285          * This bit will be computed in nested_get_vmcs12_pages, because
2286          * we do not have access to L1's MSR bitmap yet.  For now, keep
2287          * the same bit as before, hoping to avoid multiple VMWRITEs that
2288          * only set/clear this bit.
2289          */
2290         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2291         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2292
2293         exec_controls_set(vmx, exec_control);
2294
2295         /*
2296          * SECONDARY EXEC CONTROLS
2297          */
2298         if (cpu_has_secondary_exec_ctrls()) {
2299                 exec_control = __secondary_exec_controls_get(vmcs01);
2300
2301                 /* Take the following fields only from vmcs12 */
2302                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2303                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2304                                   SECONDARY_EXEC_ENABLE_INVPCID |
2305                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2306                                   SECONDARY_EXEC_XSAVES |
2307                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2308                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2309                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2310                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2311                                   SECONDARY_EXEC_DESC);
2312
2313                 if (nested_cpu_has(vmcs12,
2314                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2315                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2316                                 ~SECONDARY_EXEC_ENABLE_PML;
2317                         exec_control |= vmcs12_exec_ctrl;
2318                 }
2319
2320                 /* VMCS shadowing for L2 is emulated for now */
2321                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2322
2323                 /*
2324                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2325                  * will not have to rewrite the controls just for this bit.
2326                  */
2327                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2328                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2329                         exec_control |= SECONDARY_EXEC_DESC;
2330
2331                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2332                         vmcs_write16(GUEST_INTR_STATUS,
2333                                 vmcs12->guest_intr_status);
2334
2335                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2336                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2337
2338                 secondary_exec_controls_set(vmx, exec_control);
2339         }
2340
2341         /*
2342          * ENTRY CONTROLS
2343          *
2344          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2345          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2346          * on the related bits (if supported by the CPU) in the hope that
2347          * we can avoid VMWrites during vmx_set_efer().
2348          *
2349          * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2350          * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2351          * do the same for L2.
2352          */
2353         exec_control = __vm_entry_controls_get(vmcs01);
2354         exec_control |= (vmcs12->vm_entry_controls &
2355                          ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2356         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2357         if (cpu_has_load_ia32_efer()) {
2358                 if (guest_efer & EFER_LMA)
2359                         exec_control |= VM_ENTRY_IA32E_MODE;
2360                 if (guest_efer != host_efer)
2361                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2362         }
2363         vm_entry_controls_set(vmx, exec_control);
2364
2365         /*
2366          * EXIT CONTROLS
2367          *
2368          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2369          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2370          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2371          */
2372         exec_control = __vm_exit_controls_get(vmcs01);
2373         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2374                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2375         else
2376                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2377         vm_exit_controls_set(vmx, exec_control);
2378
2379         /*
2380          * Interrupt/Exception Fields
2381          */
2382         if (vmx->nested.nested_run_pending) {
2383                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2384                              vmcs12->vm_entry_intr_info_field);
2385                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2386                              vmcs12->vm_entry_exception_error_code);
2387                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2388                              vmcs12->vm_entry_instruction_len);
2389                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2390                              vmcs12->guest_interruptibility_info);
2391                 vmx->loaded_vmcs->nmi_known_unmasked =
2392                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2393         } else {
2394                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2395         }
2396 }
2397
2398 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2399 {
2400         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2401
2402         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2403                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2404                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2405                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2406                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2407                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2408                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2409                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2410                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2411                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2412                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2413                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2414                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2415                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2416                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2417                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2418                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2419                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2420                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2421                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2422                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2423                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2424                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2425                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2426                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2427                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2428                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2429                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2430                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2431                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2432                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2433                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2434                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2435                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2436                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2437                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2438                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2439                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2440
2441                 vmx->segment_cache.bitmask = 0;
2442         }
2443
2444         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2445                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2446                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2447                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2448                             vmcs12->guest_pending_dbg_exceptions);
2449                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2450                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2451
2452                 /*
2453                  * L1 may access the L2's PDPTR, so save them to construct
2454                  * vmcs12
2455                  */
2456                 if (enable_ept) {
2457                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2458                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2459                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2460                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2461                 }
2462
2463                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2464                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2465                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2466         }
2467
2468         if (nested_cpu_has_xsaves(vmcs12))
2469                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2470
2471         /*
2472          * Whether page-faults are trapped is determined by a combination of
2473          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2474          * doesn't care about page faults then we should set all of these to
2475          * L1's desires. However, if L0 does care about (some) page faults, it
2476          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2477          * simply ask to exit on each and every L2 page fault. This is done by
2478          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2479          * Note that below we don't need special code to set EB.PF beyond the
2480          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2481          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2482          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2483          */
2484         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2485                 /*
2486                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2487                  * go ahead and use it?
2488                  */
2489                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2490                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2491         } else {
2492                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2493                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2494         }
2495
2496         if (cpu_has_vmx_apicv()) {
2497                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2498                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2499                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2500                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2501         }
2502
2503         /*
2504          * Make sure the msr_autostore list is up to date before we set the
2505          * count in the vmcs02.
2506          */
2507         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2508
2509         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2510         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2511         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2512
2513         set_cr4_guest_host_mask(vmx);
2514 }
2515
2516 /*
2517  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2518  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2519  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2520  * guest in a way that will both be appropriate to L1's requests, and our
2521  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2522  * function also has additional necessary side-effects, like setting various
2523  * vcpu->arch fields.
2524  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2525  * is assigned to entry_failure_code on failure.
2526  */
2527 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2528                           enum vm_entry_failure_code *entry_failure_code)
2529 {
2530         struct vcpu_vmx *vmx = to_vmx(vcpu);
2531         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2532         bool load_guest_pdptrs_vmcs12 = false;
2533
2534         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2535                 prepare_vmcs02_rare(vmx, vmcs12);
2536                 vmx->nested.dirty_vmcs12 = false;
2537
2538                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2539                         !(hv_evmcs->hv_clean_fields &
2540                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2541         }
2542
2543         if (vmx->nested.nested_run_pending &&
2544             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2545                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2546                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2547         } else {
2548                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2549                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2550         }
2551         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2552             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2553                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2554         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2555
2556         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2557          * bitwise-or of what L1 wants to trap for L2, and what we want to
2558          * trap. Note that CR0.TS also needs updating - we do this later.
2559          */
2560         update_exception_bitmap(vcpu);
2561         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2562         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2563
2564         if (vmx->nested.nested_run_pending &&
2565             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2566                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2567                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2568         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2569                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2570         }
2571
2572         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2573
2574         if (kvm_has_tsc_control)
2575                 decache_tsc_multiplier(vmx);
2576
2577         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2578
2579         if (nested_cpu_has_ept(vmcs12))
2580                 nested_ept_init_mmu_context(vcpu);
2581
2582         /*
2583          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2584          * bits which we consider mandatory enabled.
2585          * The CR0_READ_SHADOW is what L2 should have expected to read given
2586          * the specifications by L1; It's not enough to take
2587          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2588          * have more bits than L1 expected.
2589          */
2590         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2591         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2592
2593         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2594         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2595
2596         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2597         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2598         vmx_set_efer(vcpu, vcpu->arch.efer);
2599
2600         /*
2601          * Guest state is invalid and unrestricted guest is disabled,
2602          * which means L1 attempted VMEntry to L2 with invalid state.
2603          * Fail the VMEntry.
2604          */
2605         if (CC(!vmx_guest_state_valid(vcpu))) {
2606                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2607                 return -EINVAL;
2608         }
2609
2610         /* Shadow page tables on either EPT or shadow page tables. */
2611         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2612                                 entry_failure_code))
2613                 return -EINVAL;
2614
2615         /*
2616          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2617          * on nested VM-Exit, which can occur without actually running L2 and
2618          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2619          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2620          * transition to HLT instead of running L2.
2621          */
2622         if (enable_ept)
2623                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2624
2625         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2626         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2627             is_pae_paging(vcpu)) {
2628                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2629                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2630                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2631                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2632         }
2633
2634         if (!enable_ept)
2635                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2636
2637         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2638             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2639                                      vmcs12->guest_ia32_perf_global_ctrl))) {
2640                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2641                 return -EINVAL;
2642         }
2643
2644         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2645         kvm_rip_write(vcpu, vmcs12->guest_rip);
2646         return 0;
2647 }
2648
2649 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2650 {
2651         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2652                nested_cpu_has_virtual_nmis(vmcs12)))
2653                 return -EINVAL;
2654
2655         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2656                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2657                 return -EINVAL;
2658
2659         return 0;
2660 }
2661
2662 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2663 {
2664         struct vcpu_vmx *vmx = to_vmx(vcpu);
2665         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2666
2667         /* Check for memory type validity */
2668         switch (new_eptp & VMX_EPTP_MT_MASK) {
2669         case VMX_EPTP_MT_UC:
2670                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2671                         return false;
2672                 break;
2673         case VMX_EPTP_MT_WB:
2674                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2675                         return false;
2676                 break;
2677         default:
2678                 return false;
2679         }
2680
2681         /* Page-walk levels validity. */
2682         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2683         case VMX_EPTP_PWL_5:
2684                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2685                         return false;
2686                 break;
2687         case VMX_EPTP_PWL_4:
2688                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2689                         return false;
2690                 break;
2691         default:
2692                 return false;
2693         }
2694
2695         /* Reserved bits should not be set */
2696         if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2697                 return false;
2698
2699         /* AD, if set, should be supported */
2700         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2701                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2702                         return false;
2703         }
2704
2705         return true;
2706 }
2707
2708 /*
2709  * Checks related to VM-Execution Control Fields
2710  */
2711 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2712                                               struct vmcs12 *vmcs12)
2713 {
2714         struct vcpu_vmx *vmx = to_vmx(vcpu);
2715
2716         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2717                                    vmx->nested.msrs.pinbased_ctls_low,
2718                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2719             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2720                                    vmx->nested.msrs.procbased_ctls_low,
2721                                    vmx->nested.msrs.procbased_ctls_high)))
2722                 return -EINVAL;
2723
2724         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2725             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2726                                    vmx->nested.msrs.secondary_ctls_low,
2727                                    vmx->nested.msrs.secondary_ctls_high)))
2728                 return -EINVAL;
2729
2730         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2731             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2732             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2733             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2734             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2735             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2736             nested_vmx_check_nmi_controls(vmcs12) ||
2737             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2738             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2739             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2740             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2741             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2742                 return -EINVAL;
2743
2744         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2745             nested_cpu_has_save_preemption_timer(vmcs12))
2746                 return -EINVAL;
2747
2748         if (nested_cpu_has_ept(vmcs12) &&
2749             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2750                 return -EINVAL;
2751
2752         if (nested_cpu_has_vmfunc(vmcs12)) {
2753                 if (CC(vmcs12->vm_function_control &
2754                        ~vmx->nested.msrs.vmfunc_controls))
2755                         return -EINVAL;
2756
2757                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2758                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2759                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2760                                 return -EINVAL;
2761                 }
2762         }
2763
2764         return 0;
2765 }
2766
2767 /*
2768  * Checks related to VM-Exit Control Fields
2769  */
2770 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2771                                          struct vmcs12 *vmcs12)
2772 {
2773         struct vcpu_vmx *vmx = to_vmx(vcpu);
2774
2775         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2776                                     vmx->nested.msrs.exit_ctls_low,
2777                                     vmx->nested.msrs.exit_ctls_high)) ||
2778             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2779                 return -EINVAL;
2780
2781         return 0;
2782 }
2783
2784 /*
2785  * Checks related to VM-Entry Control Fields
2786  */
2787 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2788                                           struct vmcs12 *vmcs12)
2789 {
2790         struct vcpu_vmx *vmx = to_vmx(vcpu);
2791
2792         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2793                                     vmx->nested.msrs.entry_ctls_low,
2794                                     vmx->nested.msrs.entry_ctls_high)))
2795                 return -EINVAL;
2796
2797         /*
2798          * From the Intel SDM, volume 3:
2799          * Fields relevant to VM-entry event injection must be set properly.
2800          * These fields are the VM-entry interruption-information field, the
2801          * VM-entry exception error code, and the VM-entry instruction length.
2802          */
2803         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2804                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2805                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2806                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2807                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2808                 bool should_have_error_code;
2809                 bool urg = nested_cpu_has2(vmcs12,
2810                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2811                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2812
2813                 /* VM-entry interruption-info field: interruption type */
2814                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2815                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2816                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2817                         return -EINVAL;
2818
2819                 /* VM-entry interruption-info field: vector */
2820                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2821                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2822                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2823                         return -EINVAL;
2824
2825                 /* VM-entry interruption-info field: deliver error code */
2826                 should_have_error_code =
2827                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2828                         x86_exception_has_error_code(vector);
2829                 if (CC(has_error_code != should_have_error_code))
2830                         return -EINVAL;
2831
2832                 /* VM-entry exception error code */
2833                 if (CC(has_error_code &&
2834                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2835                         return -EINVAL;
2836
2837                 /* VM-entry interruption-info field: reserved bits */
2838                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2839                         return -EINVAL;
2840
2841                 /* VM-entry instruction length */
2842                 switch (intr_type) {
2843                 case INTR_TYPE_SOFT_EXCEPTION:
2844                 case INTR_TYPE_SOFT_INTR:
2845                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2846                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2847                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2848                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2849                                 return -EINVAL;
2850                 }
2851         }
2852
2853         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2854                 return -EINVAL;
2855
2856         return 0;
2857 }
2858
2859 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2860                                      struct vmcs12 *vmcs12)
2861 {
2862         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2863             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2864             nested_check_vm_entry_controls(vcpu, vmcs12))
2865                 return -EINVAL;
2866
2867         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2868                 return nested_evmcs_check_controls(vmcs12);
2869
2870         return 0;
2871 }
2872
2873 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2874                                        struct vmcs12 *vmcs12)
2875 {
2876 #ifdef CONFIG_X86_64
2877         if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2878                 !!(vcpu->arch.efer & EFER_LMA)))
2879                 return -EINVAL;
2880 #endif
2881         return 0;
2882 }
2883
2884 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2885                                        struct vmcs12 *vmcs12)
2886 {
2887         bool ia32e;
2888
2889         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2890             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2891             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2892                 return -EINVAL;
2893
2894         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2895             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2896                 return -EINVAL;
2897
2898         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2899             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2900                 return -EINVAL;
2901
2902         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2903             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2904                                            vmcs12->host_ia32_perf_global_ctrl)))
2905                 return -EINVAL;
2906
2907 #ifdef CONFIG_X86_64
2908         ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2909 #else
2910         ia32e = false;
2911 #endif
2912
2913         if (ia32e) {
2914                 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2915                         return -EINVAL;
2916         } else {
2917                 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2918                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2919                     CC((vmcs12->host_rip) >> 32))
2920                         return -EINVAL;
2921         }
2922
2923         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2924             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2925             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2926             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2927             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2928             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2929             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2930             CC(vmcs12->host_cs_selector == 0) ||
2931             CC(vmcs12->host_tr_selector == 0) ||
2932             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2933                 return -EINVAL;
2934
2935         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2936             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2937             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2938             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2939             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2940             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2941                 return -EINVAL;
2942
2943         /*
2944          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2945          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2946          * the values of the LMA and LME bits in the field must each be that of
2947          * the host address-space size VM-exit control.
2948          */
2949         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2950                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2951                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2952                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2953                         return -EINVAL;
2954         }
2955
2956         return 0;
2957 }
2958
2959 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2960                                           struct vmcs12 *vmcs12)
2961 {
2962         int r = 0;
2963         struct vmcs12 *shadow;
2964         struct kvm_host_map map;
2965
2966         if (vmcs12->vmcs_link_pointer == -1ull)
2967                 return 0;
2968
2969         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2970                 return -EINVAL;
2971
2972         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2973                 return -EINVAL;
2974
2975         shadow = map.hva;
2976
2977         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2978             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2979                 r = -EINVAL;
2980
2981         kvm_vcpu_unmap(vcpu, &map, false);
2982         return r;
2983 }
2984
2985 /*
2986  * Checks related to Guest Non-register State
2987  */
2988 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2989 {
2990         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2991                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2992                 return -EINVAL;
2993
2994         return 0;
2995 }
2996
2997 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2998                                         struct vmcs12 *vmcs12,
2999                                         enum vm_entry_failure_code *entry_failure_code)
3000 {
3001         bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3002
3003         *entry_failure_code = ENTRY_FAIL_DEFAULT;
3004
3005         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3006             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3007                 return -EINVAL;
3008
3009         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3010             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3011                 return -EINVAL;
3012
3013         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3014             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3015                 return -EINVAL;
3016
3017         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3018                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3019                 return -EINVAL;
3020         }
3021
3022         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3023             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3024                                            vmcs12->guest_ia32_perf_global_ctrl)))
3025                 return -EINVAL;
3026
3027         if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3028                 return -EINVAL;
3029
3030         if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3031             CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3032                 return -EINVAL;
3033
3034         /*
3035          * If the load IA32_EFER VM-entry control is 1, the following checks
3036          * are performed on the field for the IA32_EFER MSR:
3037          * - Bits reserved in the IA32_EFER MSR must be 0.
3038          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3039          *   the IA-32e mode guest VM-exit control. It must also be identical
3040          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3041          *   CR0.PG) is 1.
3042          */
3043         if (to_vmx(vcpu)->nested.nested_run_pending &&
3044             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3045                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3046                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3047                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3048                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3049                         return -EINVAL;
3050         }
3051
3052         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3053             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3054              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3055                 return -EINVAL;
3056
3057         if (nested_check_guest_non_reg_state(vmcs12))
3058                 return -EINVAL;
3059
3060         return 0;
3061 }
3062
3063 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3064 {
3065         struct vcpu_vmx *vmx = to_vmx(vcpu);
3066         unsigned long cr3, cr4;
3067         bool vm_fail;
3068
3069         if (!nested_early_check)
3070                 return 0;
3071
3072         if (vmx->msr_autoload.host.nr)
3073                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3074         if (vmx->msr_autoload.guest.nr)
3075                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3076
3077         preempt_disable();
3078
3079         vmx_prepare_switch_to_guest(vcpu);
3080
3081         /*
3082          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3083          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3084          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3085          * there is no need to preserve other bits or save/restore the field.
3086          */
3087         vmcs_writel(GUEST_RFLAGS, 0);
3088
3089         cr3 = __get_current_cr3_fast();
3090         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3091                 vmcs_writel(HOST_CR3, cr3);
3092                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3093         }
3094
3095         cr4 = cr4_read_shadow();
3096         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3097                 vmcs_writel(HOST_CR4, cr4);
3098                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3099         }
3100
3101         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3102                                  __vmx_vcpu_run_flags(vmx));
3103
3104         if (vmx->msr_autoload.host.nr)
3105                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3106         if (vmx->msr_autoload.guest.nr)
3107                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3108
3109         if (vm_fail) {
3110                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3111
3112                 preempt_enable();
3113
3114                 trace_kvm_nested_vmenter_failed(
3115                         "early hardware check VM-instruction error: ", error);
3116                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3117                 return 1;
3118         }
3119
3120         /*
3121          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3122          */
3123         if (hw_breakpoint_active())
3124                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3125         local_irq_enable();
3126         preempt_enable();
3127
3128         /*
3129          * A non-failing VMEntry means we somehow entered guest mode with
3130          * an illegal RIP, and that's just the tip of the iceberg.  There
3131          * is no telling what memory has been modified or what state has
3132          * been exposed to unknown code.  Hitting this all but guarantees
3133          * a (very critical) hardware issue.
3134          */
3135         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3136                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3137
3138         return 0;
3139 }
3140
3141 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3142 {
3143         struct vcpu_vmx *vmx = to_vmx(vcpu);
3144
3145         /*
3146          * hv_evmcs may end up being not mapped after migration (when
3147          * L2 was running), map it here to make sure vmcs12 changes are
3148          * properly reflected.
3149          */
3150         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3151                 enum nested_evmptrld_status evmptrld_status =
3152                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3153
3154                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3155                     evmptrld_status == EVMPTRLD_ERROR)
3156                         return false;
3157         }
3158
3159         return true;
3160 }
3161
3162 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3163 {
3164         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3165         struct vcpu_vmx *vmx = to_vmx(vcpu);
3166         struct kvm_host_map *map;
3167         struct page *page;
3168         u64 hpa;
3169
3170         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3171                 /*
3172                  * Translate L1 physical address to host physical
3173                  * address for vmcs02. Keep the page pinned, so this
3174                  * physical address remains valid. We keep a reference
3175                  * to it so we can release it later.
3176                  */
3177                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3178                         kvm_release_page_clean(vmx->nested.apic_access_page);
3179                         vmx->nested.apic_access_page = NULL;
3180                 }
3181                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3182                 if (!is_error_page(page)) {
3183                         vmx->nested.apic_access_page = page;
3184                         hpa = page_to_phys(vmx->nested.apic_access_page);
3185                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3186                 } else {
3187                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3188                                              __func__);
3189                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3190                         vcpu->run->internal.suberror =
3191                                 KVM_INTERNAL_ERROR_EMULATION;
3192                         vcpu->run->internal.ndata = 0;
3193                         return false;
3194                 }
3195         }
3196
3197         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3198                 map = &vmx->nested.virtual_apic_map;
3199
3200                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3201                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3202                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3203                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3204                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3205                         /*
3206                          * The processor will never use the TPR shadow, simply
3207                          * clear the bit from the execution control.  Such a
3208                          * configuration is useless, but it happens in tests.
3209                          * For any other configuration, failing the vm entry is
3210                          * _not_ what the processor does but it's basically the
3211                          * only possibility we have.
3212                          */
3213                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3214                 } else {
3215                         /*
3216                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3217                          * force VM-Entry to fail.
3218                          */
3219                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3220                 }
3221         }
3222
3223         if (nested_cpu_has_posted_intr(vmcs12)) {
3224                 map = &vmx->nested.pi_desc_map;
3225
3226                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3227                         vmx->nested.pi_desc =
3228                                 (struct pi_desc *)(((void *)map->hva) +
3229                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3230                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3231                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3232                 }
3233         }
3234         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3235                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3236         else
3237                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3238
3239         return true;
3240 }
3241
3242 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3243 {
3244         if (!nested_get_evmcs_page(vcpu)) {
3245                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3246                                      __func__);
3247                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3248                 vcpu->run->internal.suberror =
3249                         KVM_INTERNAL_ERROR_EMULATION;
3250                 vcpu->run->internal.ndata = 0;
3251
3252                 return false;
3253         }
3254
3255         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3256                 return false;
3257
3258         return true;
3259 }
3260
3261 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3262 {
3263         struct vmcs12 *vmcs12;
3264         struct vcpu_vmx *vmx = to_vmx(vcpu);
3265         gpa_t dst;
3266
3267         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3268                 return 0;
3269
3270         if (WARN_ON_ONCE(vmx->nested.pml_full))
3271                 return 1;
3272
3273         /*
3274          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3275          * set is already checked as part of A/D emulation.
3276          */
3277         vmcs12 = get_vmcs12(vcpu);
3278         if (!nested_cpu_has_pml(vmcs12))
3279                 return 0;
3280
3281         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3282                 vmx->nested.pml_full = true;
3283                 return 1;
3284         }
3285
3286         gpa &= ~0xFFFull;
3287         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3288
3289         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3290                                  offset_in_page(dst), sizeof(gpa)))
3291                 return 0;
3292
3293         vmcs12->guest_pml_index--;
3294
3295         return 0;
3296 }
3297
3298 /*
3299  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3300  * for running VMX instructions (except VMXON, whose prerequisites are
3301  * slightly different). It also specifies what exception to inject otherwise.
3302  * Note that many of these exceptions have priority over VM exits, so they
3303  * don't have to be checked again here.
3304  */
3305 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3306 {
3307         if (!to_vmx(vcpu)->nested.vmxon) {
3308                 kvm_queue_exception(vcpu, UD_VECTOR);
3309                 return 0;
3310         }
3311
3312         if (vmx_get_cpl(vcpu)) {
3313                 kvm_inject_gp(vcpu, 0);
3314                 return 0;
3315         }
3316
3317         return 1;
3318 }
3319
3320 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3321 {
3322         u8 rvi = vmx_get_rvi();
3323         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3324
3325         return ((rvi & 0xf0) > (vppr & 0xf0));
3326 }
3327
3328 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3329                                    struct vmcs12 *vmcs12);
3330
3331 /*
3332  * If from_vmentry is false, this is being called from state restore (either RSM
3333  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3334  *
3335  * Returns:
3336  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3337  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3338  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3339  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3340  */
3341 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3342                                                         bool from_vmentry)
3343 {
3344         struct vcpu_vmx *vmx = to_vmx(vcpu);
3345         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3346         enum vm_entry_failure_code entry_failure_code;
3347         bool evaluate_pending_interrupts;
3348         union vmx_exit_reason exit_reason = {
3349                 .basic = EXIT_REASON_INVALID_STATE,
3350                 .failed_vmentry = 1,
3351         };
3352         u32 failed_index;
3353
3354         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3355                 kvm_vcpu_flush_tlb_current(vcpu);
3356
3357         evaluate_pending_interrupts = exec_controls_get(vmx) &
3358                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3359         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3360                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3361
3362         if (!vmx->nested.nested_run_pending ||
3363             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3364                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3365         if (kvm_mpx_supported() &&
3366             (!vmx->nested.nested_run_pending ||
3367              !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3368                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3369
3370         /*
3371          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3372          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3373          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3374          * software model to the pre-VMEntry host state.  When EPT is disabled,
3375          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3376          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3377          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3378          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3379          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3380          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3381          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3382          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3383          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3384          * path would need to manually save/restore vmcs01.GUEST_CR3.
3385          */
3386         if (!enable_ept && !nested_early_check)
3387                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3388
3389         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3390
3391         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3392
3393         if (from_vmentry) {
3394                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3395                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3396                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3397                 }
3398
3399                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3400                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3401                         return NVMX_VMENTRY_VMFAIL;
3402                 }
3403
3404                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3405                                                  &entry_failure_code)) {
3406                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3407                         vmcs12->exit_qualification = entry_failure_code;
3408                         goto vmentry_fail_vmexit;
3409                 }
3410         }
3411
3412         enter_guest_mode(vcpu);
3413         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3414                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3415
3416         if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3417                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3418                 vmcs12->exit_qualification = entry_failure_code;
3419                 goto vmentry_fail_vmexit_guest_mode;
3420         }
3421
3422         if (from_vmentry) {
3423                 failed_index = nested_vmx_load_msr(vcpu,
3424                                                    vmcs12->vm_entry_msr_load_addr,
3425                                                    vmcs12->vm_entry_msr_load_count);
3426                 if (failed_index) {
3427                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3428                         vmcs12->exit_qualification = failed_index;
3429                         goto vmentry_fail_vmexit_guest_mode;
3430                 }
3431         } else {
3432                 /*
3433                  * The MMU is not initialized to point at the right entities yet and
3434                  * "get pages" would need to read data from the guest (i.e. we will
3435                  * need to perform gpa to hpa translation). Request a call
3436                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3437                  * have already been set at vmentry time and should not be reset.
3438                  */
3439                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3440         }
3441
3442         /*
3443          * If L1 had a pending IRQ/NMI until it executed
3444          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3445          * disallowed (e.g. interrupts disabled), L0 needs to
3446          * evaluate if this pending event should cause an exit from L2
3447          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3448          * intercept EXTERNAL_INTERRUPT).
3449          *
3450          * Usually this would be handled by the processor noticing an
3451          * IRQ/NMI window request, or checking RVI during evaluation of
3452          * pending virtual interrupts.  However, this setting was done
3453          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3454          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3455          */
3456         if (unlikely(evaluate_pending_interrupts))
3457                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3458
3459         /*
3460          * Do not start the preemption timer hrtimer until after we know
3461          * we are successful, so that only nested_vmx_vmexit needs to cancel
3462          * the timer.
3463          */
3464         vmx->nested.preemption_timer_expired = false;
3465         if (nested_cpu_has_preemption_timer(vmcs12)) {
3466                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3467                 vmx_start_preemption_timer(vcpu, timer_value);
3468         }
3469
3470         /*
3471          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3472          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3473          * returned as far as L1 is concerned. It will only return (and set
3474          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3475          */
3476         return NVMX_VMENTRY_SUCCESS;
3477
3478         /*
3479          * A failed consistency check that leads to a VMExit during L1's
3480          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3481          * 26.7 "VM-entry failures during or after loading guest state".
3482          */
3483 vmentry_fail_vmexit_guest_mode:
3484         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3485                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3486         leave_guest_mode(vcpu);
3487
3488 vmentry_fail_vmexit:
3489         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3490
3491         if (!from_vmentry)
3492                 return NVMX_VMENTRY_VMEXIT;
3493
3494         load_vmcs12_host_state(vcpu, vmcs12);
3495         vmcs12->vm_exit_reason = exit_reason.full;
3496         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3497                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3498         return NVMX_VMENTRY_VMEXIT;
3499 }
3500
3501 /*
3502  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3503  * for running an L2 nested guest.
3504  */
3505 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3506 {
3507         struct vmcs12 *vmcs12;
3508         enum nvmx_vmentry_status status;
3509         struct vcpu_vmx *vmx = to_vmx(vcpu);
3510         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3511         enum nested_evmptrld_status evmptrld_status;
3512
3513         if (!nested_vmx_check_permission(vcpu))
3514                 return 1;
3515
3516         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3517         if (evmptrld_status == EVMPTRLD_ERROR) {
3518                 kvm_queue_exception(vcpu, UD_VECTOR);
3519                 return 1;
3520         } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3521                 return nested_vmx_failInvalid(vcpu);
3522         }
3523
3524         if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3525                 return nested_vmx_failInvalid(vcpu);
3526
3527         vmcs12 = get_vmcs12(vcpu);
3528
3529         /*
3530          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3531          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3532          * rather than RFLAGS.ZF, and no error number is stored to the
3533          * VM-instruction error field.
3534          */
3535         if (CC(vmcs12->hdr.shadow_vmcs))
3536                 return nested_vmx_failInvalid(vcpu);
3537
3538         if (vmx->nested.hv_evmcs) {
3539                 copy_enlightened_to_vmcs12(vmx);
3540                 /* Enlightened VMCS doesn't have launch state */
3541                 vmcs12->launch_state = !launch;
3542         } else if (enable_shadow_vmcs) {
3543                 copy_shadow_to_vmcs12(vmx);
3544         }
3545
3546         /*
3547          * The nested entry process starts with enforcing various prerequisites
3548          * on vmcs12 as required by the Intel SDM, and act appropriately when
3549          * they fail: As the SDM explains, some conditions should cause the
3550          * instruction to fail, while others will cause the instruction to seem
3551          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3552          * To speed up the normal (success) code path, we should avoid checking
3553          * for misconfigurations which will anyway be caught by the processor
3554          * when using the merged vmcs02.
3555          */
3556         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3557                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3558
3559         if (CC(vmcs12->launch_state == launch))
3560                 return nested_vmx_fail(vcpu,
3561                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3562                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3563
3564         if (nested_vmx_check_controls(vcpu, vmcs12))
3565                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3566
3567         if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3568                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3569
3570         if (nested_vmx_check_host_state(vcpu, vmcs12))
3571                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3572
3573         /*
3574          * We're finally done with prerequisite checking, and can start with
3575          * the nested entry.
3576          */
3577         vmx->nested.nested_run_pending = 1;
3578         vmx->nested.has_preemption_timer_deadline = false;
3579         status = nested_vmx_enter_non_root_mode(vcpu, true);
3580         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3581                 goto vmentry_failed;
3582
3583         /* Emulate processing of posted interrupts on VM-Enter. */
3584         if (nested_cpu_has_posted_intr(vmcs12) &&
3585             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3586                 vmx->nested.pi_pending = true;
3587                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3588                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3589         }
3590
3591         /* Hide L1D cache contents from the nested guest.  */
3592         vmx->vcpu.arch.l1tf_flush_l1d = true;
3593
3594         /*
3595          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3596          * also be used as part of restoring nVMX state for
3597          * snapshot restore (migration).
3598          *
3599          * In this flow, it is assumed that vmcs12 cache was
3600          * trasferred as part of captured nVMX state and should
3601          * therefore not be read from guest memory (which may not
3602          * exist on destination host yet).
3603          */
3604         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3605
3606         /*
3607          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3608          * awakened by event injection or by an NMI-window VM-exit or
3609          * by an interrupt-window VM-exit, halt the vcpu.
3610          */
3611         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3612             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3613             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3614             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3615               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3616                 vmx->nested.nested_run_pending = 0;
3617                 return kvm_vcpu_halt(vcpu);
3618         }
3619         return 1;
3620
3621 vmentry_failed:
3622         vmx->nested.nested_run_pending = 0;
3623         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3624                 return 0;
3625         if (status == NVMX_VMENTRY_VMEXIT)
3626                 return 1;
3627         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3628         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3629 }
3630
3631 /*
3632  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3633  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3634  * This function returns the new value we should put in vmcs12.guest_cr0.
3635  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3636  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3637  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3638  *     didn't trap the bit, because if L1 did, so would L0).
3639  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3640  *     been modified by L2, and L1 knows it. So just leave the old value of
3641  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3642  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3643  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3644  *     changed these bits, and therefore they need to be updated, but L0
3645  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3646  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3647  */
3648 static inline unsigned long
3649 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3650 {
3651         return
3652         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3653         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3654         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3655                         vcpu->arch.cr0_guest_owned_bits));
3656 }
3657
3658 static inline unsigned long
3659 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3660 {
3661         return
3662         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3663         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3664         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3665                         vcpu->arch.cr4_guest_owned_bits));
3666 }
3667
3668 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3669                                       struct vmcs12 *vmcs12,
3670                                       u32 vm_exit_reason, u32 exit_intr_info)
3671 {
3672         u32 idt_vectoring;
3673         unsigned int nr;
3674
3675         /*
3676          * Per the SDM, VM-Exits due to double and triple faults are never
3677          * considered to occur during event delivery, even if the double/triple
3678          * fault is the result of an escalating vectoring issue.
3679          *
3680          * Note, the SDM qualifies the double fault behavior with "The original
3681          * event results in a double-fault exception".  It's unclear why the
3682          * qualification exists since exits due to double fault can occur only
3683          * while vectoring a different exception (injected events are never
3684          * subject to interception), i.e. there's _always_ an original event.
3685          *
3686          * The SDM also uses NMI as a confusing example for the "original event
3687          * causes the VM exit directly" clause.  NMI isn't special in any way,
3688          * the same rule applies to all events that cause an exit directly.
3689          * NMI is an odd choice for the example because NMIs can only occur on
3690          * instruction boundaries, i.e. they _can't_ occur during vectoring.
3691          */
3692         if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3693             ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3694              is_double_fault(exit_intr_info))) {
3695                 vmcs12->idt_vectoring_info_field = 0;
3696         } else if (vcpu->arch.exception.injected) {
3697                 nr = vcpu->arch.exception.nr;
3698                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3699
3700                 if (kvm_exception_is_soft(nr)) {
3701                         vmcs12->vm_exit_instruction_len =
3702                                 vcpu->arch.event_exit_inst_len;
3703                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3704                 } else
3705                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3706
3707                 if (vcpu->arch.exception.has_error_code) {
3708                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3709                         vmcs12->idt_vectoring_error_code =
3710                                 vcpu->arch.exception.error_code;
3711                 }
3712
3713                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3714         } else if (vcpu->arch.nmi_injected) {
3715                 vmcs12->idt_vectoring_info_field =
3716                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3717         } else if (vcpu->arch.interrupt.injected) {
3718                 nr = vcpu->arch.interrupt.nr;
3719                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3720
3721                 if (vcpu->arch.interrupt.soft) {
3722                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3723                         vmcs12->vm_entry_instruction_len =
3724                                 vcpu->arch.event_exit_inst_len;
3725                 } else
3726                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3727
3728                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3729         } else {
3730                 vmcs12->idt_vectoring_info_field = 0;
3731         }
3732 }
3733
3734
3735 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3736 {
3737         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3738         gfn_t gfn;
3739
3740         /*
3741          * Don't need to mark the APIC access page dirty; it is never
3742          * written to by the CPU during APIC virtualization.
3743          */
3744
3745         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3746                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3747                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3748         }
3749
3750         if (nested_cpu_has_posted_intr(vmcs12)) {
3751                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3752                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3753         }
3754 }
3755
3756 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3757 {
3758         struct vcpu_vmx *vmx = to_vmx(vcpu);
3759         int max_irr;
3760         void *vapic_page;
3761         u16 status;
3762
3763         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3764                 return;
3765
3766         vmx->nested.pi_pending = false;
3767         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3768                 return;
3769
3770         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3771         if (max_irr != 256) {
3772                 vapic_page = vmx->nested.virtual_apic_map.hva;
3773                 if (!vapic_page)
3774                         return;
3775
3776                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3777                         vapic_page, &max_irr);
3778                 status = vmcs_read16(GUEST_INTR_STATUS);
3779                 if ((u8)max_irr > ((u8)status & 0xff)) {
3780                         status &= ~0xff;
3781                         status |= (u8)max_irr;
3782                         vmcs_write16(GUEST_INTR_STATUS, status);
3783                 }
3784         }
3785
3786         nested_mark_vmcs12_pages_dirty(vcpu);
3787 }
3788
3789 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3790                                                unsigned long exit_qual)
3791 {
3792         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3793         unsigned int nr = vcpu->arch.exception.nr;
3794         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3795
3796         if (vcpu->arch.exception.has_error_code) {
3797                 /*
3798                  * Intel CPUs do not generate error codes with bits 31:16 set,
3799                  * and more importantly VMX disallows setting bits 31:16 in the
3800                  * injected error code for VM-Entry.  Drop the bits to mimic
3801                  * hardware and avoid inducing failure on nested VM-Entry if L1
3802                  * chooses to inject the exception back to L2.  AMD CPUs _do_
3803                  * generate "full" 32-bit error codes, so KVM allows userspace
3804                  * to inject exception error codes with bits 31:16 set.
3805                  */
3806                 vmcs12->vm_exit_intr_error_code = (u16)vcpu->arch.exception.error_code;
3807                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3808         }
3809
3810         if (kvm_exception_is_soft(nr))
3811                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3812         else
3813                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3814
3815         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3816             vmx_get_nmi_mask(vcpu))
3817                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3818
3819         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3820 }
3821
3822 /*
3823  * Returns true if a debug trap is pending delivery.
3824  *
3825  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3826  * exception may be inferred from the presence of an exception payload.
3827  */
3828 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3829 {
3830         return vcpu->arch.exception.pending &&
3831                         vcpu->arch.exception.nr == DB_VECTOR &&
3832                         vcpu->arch.exception.payload;
3833 }
3834
3835 /*
3836  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3837  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3838  * represents these debug traps with a payload that is said to be compatible
3839  * with the 'pending debug exceptions' field, write the payload to the VMCS
3840  * field if a VM-exit is delivered before the debug trap.
3841  */
3842 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3843 {
3844         if (vmx_pending_dbg_trap(vcpu))
3845                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3846                             vcpu->arch.exception.payload);
3847 }
3848
3849 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3850 {
3851         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3852                to_vmx(vcpu)->nested.preemption_timer_expired;
3853 }
3854
3855 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3856 {
3857         struct vcpu_vmx *vmx = to_vmx(vcpu);
3858         unsigned long exit_qual;
3859         bool block_nested_events =
3860             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3861         bool mtf_pending = vmx->nested.mtf_pending;
3862         struct kvm_lapic *apic = vcpu->arch.apic;
3863
3864         /*
3865          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3866          * this state is discarded.
3867          */
3868         if (!block_nested_events)
3869                 vmx->nested.mtf_pending = false;
3870
3871         if (lapic_in_kernel(vcpu) &&
3872                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3873                 if (block_nested_events)
3874                         return -EBUSY;
3875                 nested_vmx_update_pending_dbg(vcpu);
3876                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3877                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3878                 return 0;
3879         }
3880
3881         /*
3882          * Process any exceptions that are not debug traps before MTF.
3883          */
3884         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3885                 if (block_nested_events)
3886                         return -EBUSY;
3887                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3888                         goto no_vmexit;
3889                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3890                 return 0;
3891         }
3892
3893         if (mtf_pending) {
3894                 if (block_nested_events)
3895                         return -EBUSY;
3896                 nested_vmx_update_pending_dbg(vcpu);
3897                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3898                 return 0;
3899         }
3900
3901         if (vcpu->arch.exception.pending) {
3902                 if (block_nested_events)
3903                         return -EBUSY;
3904                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3905                         goto no_vmexit;
3906                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3907                 return 0;
3908         }
3909
3910         if (nested_vmx_preemption_timer_pending(vcpu)) {
3911                 if (block_nested_events)
3912                         return -EBUSY;
3913                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3914                 return 0;
3915         }
3916
3917         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3918                 if (block_nested_events)
3919                         return -EBUSY;
3920                 goto no_vmexit;
3921         }
3922
3923         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3924                 if (block_nested_events)
3925                         return -EBUSY;
3926                 if (!nested_exit_on_nmi(vcpu))
3927                         goto no_vmexit;
3928
3929                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3930                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3931                                   INTR_INFO_VALID_MASK, 0);
3932                 /*
3933                  * The NMI-triggered VM exit counts as injection:
3934                  * clear this one and block further NMIs.
3935                  */
3936                 vcpu->arch.nmi_pending = 0;
3937                 vmx_set_nmi_mask(vcpu, true);
3938                 return 0;
3939         }
3940
3941         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3942                 if (block_nested_events)
3943                         return -EBUSY;
3944                 if (!nested_exit_on_intr(vcpu))
3945                         goto no_vmexit;
3946                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3947                 return 0;
3948         }
3949
3950 no_vmexit:
3951         vmx_complete_nested_posted_interrupt(vcpu);
3952         return 0;
3953 }
3954
3955 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3956 {
3957         ktime_t remaining =
3958                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3959         u64 value;
3960
3961         if (ktime_to_ns(remaining) <= 0)
3962                 return 0;
3963
3964         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3965         do_div(value, 1000000);
3966         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3967 }
3968
3969 static bool is_vmcs12_ext_field(unsigned long field)
3970 {
3971         switch (field) {
3972         case GUEST_ES_SELECTOR:
3973         case GUEST_CS_SELECTOR:
3974         case GUEST_SS_SELECTOR:
3975         case GUEST_DS_SELECTOR:
3976         case GUEST_FS_SELECTOR:
3977         case GUEST_GS_SELECTOR:
3978         case GUEST_LDTR_SELECTOR:
3979         case GUEST_TR_SELECTOR:
3980         case GUEST_ES_LIMIT:
3981         case GUEST_CS_LIMIT:
3982         case GUEST_SS_LIMIT:
3983         case GUEST_DS_LIMIT:
3984         case GUEST_FS_LIMIT:
3985         case GUEST_GS_LIMIT:
3986         case GUEST_LDTR_LIMIT:
3987         case GUEST_TR_LIMIT:
3988         case GUEST_GDTR_LIMIT:
3989         case GUEST_IDTR_LIMIT:
3990         case GUEST_ES_AR_BYTES:
3991         case GUEST_DS_AR_BYTES:
3992         case GUEST_FS_AR_BYTES:
3993         case GUEST_GS_AR_BYTES:
3994         case GUEST_LDTR_AR_BYTES:
3995         case GUEST_TR_AR_BYTES:
3996         case GUEST_ES_BASE:
3997         case GUEST_CS_BASE:
3998         case GUEST_SS_BASE:
3999         case GUEST_DS_BASE:
4000         case GUEST_FS_BASE:
4001         case GUEST_GS_BASE:
4002         case GUEST_LDTR_BASE:
4003         case GUEST_TR_BASE:
4004         case GUEST_GDTR_BASE:
4005         case GUEST_IDTR_BASE:
4006         case GUEST_PENDING_DBG_EXCEPTIONS:
4007         case GUEST_BNDCFGS:
4008                 return true;
4009         default:
4010                 break;
4011         }
4012
4013         return false;
4014 }
4015
4016 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4017                                        struct vmcs12 *vmcs12)
4018 {
4019         struct vcpu_vmx *vmx = to_vmx(vcpu);
4020
4021         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4022         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4023         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4024         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4025         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4026         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4027         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4028         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4029         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4030         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4031         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4032         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4033         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4034         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4035         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4036         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4037         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4038         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4039         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4040         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4041         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4042         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4043         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4044         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4045         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4046         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4047         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4048         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4049         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4050         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4051         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4052         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4053         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4054         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4055         vmcs12->guest_pending_dbg_exceptions =
4056                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4057         if (kvm_mpx_supported())
4058                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4059
4060         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4061 }
4062
4063 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4064                                        struct vmcs12 *vmcs12)
4065 {
4066         struct vcpu_vmx *vmx = to_vmx(vcpu);
4067         int cpu;
4068
4069         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4070                 return;
4071
4072
4073         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4074
4075         cpu = get_cpu();
4076         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4077         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4078
4079         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4080
4081         vmx->loaded_vmcs = &vmx->vmcs01;
4082         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4083         put_cpu();
4084 }
4085
4086 /*
4087  * Update the guest state fields of vmcs12 to reflect changes that
4088  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4089  * VM-entry controls is also updated, since this is really a guest
4090  * state bit.)
4091  */
4092 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4093 {
4094         struct vcpu_vmx *vmx = to_vmx(vcpu);
4095
4096         if (vmx->nested.hv_evmcs)
4097                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4098
4099         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4100
4101         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4102         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4103
4104         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4105         vmcs12->guest_rip = kvm_rip_read(vcpu);
4106         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4107
4108         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4109         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4110
4111         vmcs12->guest_interruptibility_info =
4112                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4113
4114         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4115                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4116         else
4117                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4118
4119         if (nested_cpu_has_preemption_timer(vmcs12) &&
4120             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4121             !vmx->nested.nested_run_pending)
4122                 vmcs12->vmx_preemption_timer_value =
4123                         vmx_get_preemption_timer_value(vcpu);
4124
4125         /*
4126          * In some cases (usually, nested EPT), L2 is allowed to change its
4127          * own CR3 without exiting. If it has changed it, we must keep it.
4128          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4129          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4130          *
4131          * Additionally, restore L2's PDPTR to vmcs12.
4132          */
4133         if (enable_ept) {
4134                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4135                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4136                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4137                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4138                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4139                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4140                 }
4141         }
4142
4143         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4144
4145         if (nested_cpu_has_vid(vmcs12))
4146                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4147
4148         vmcs12->vm_entry_controls =
4149                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4150                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4151
4152         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4153                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4154
4155         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4156                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4157 }
4158
4159 /*
4160  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4161  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4162  * and this function updates it to reflect the changes to the guest state while
4163  * L2 was running (and perhaps made some exits which were handled directly by L0
4164  * without going back to L1), and to reflect the exit reason.
4165  * Note that we do not have to copy here all VMCS fields, just those that
4166  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4167  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4168  * which already writes to vmcs12 directly.
4169  */
4170 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4171                            u32 vm_exit_reason, u32 exit_intr_info,
4172                            unsigned long exit_qualification)
4173 {
4174         /* update exit information fields: */
4175         vmcs12->vm_exit_reason = vm_exit_reason;
4176         vmcs12->exit_qualification = exit_qualification;
4177
4178         /*
4179          * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4180          * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4181          * exit info fields are unmodified.
4182          */
4183         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4184                 vmcs12->launch_state = 1;
4185
4186                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4187                  * instead of reading the real value. */
4188                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4189
4190                 /*
4191                  * Transfer the event that L0 or L1 may wanted to inject into
4192                  * L2 to IDT_VECTORING_INFO_FIELD.
4193                  */
4194                 vmcs12_save_pending_event(vcpu, vmcs12,
4195                                           vm_exit_reason, exit_intr_info);
4196
4197                 vmcs12->vm_exit_intr_info = exit_intr_info;
4198                 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4199                 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4200
4201                 /*
4202                  * According to spec, there's no need to store the guest's
4203                  * MSRs if the exit is due to a VM-entry failure that occurs
4204                  * during or after loading the guest state. Since this exit
4205                  * does not fall in that category, we need to save the MSRs.
4206                  */
4207                 if (nested_vmx_store_msr(vcpu,
4208                                          vmcs12->vm_exit_msr_store_addr,
4209                                          vmcs12->vm_exit_msr_store_count))
4210                         nested_vmx_abort(vcpu,
4211                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4212         }
4213 }
4214
4215 /*
4216  * A part of what we need to when the nested L2 guest exits and we want to
4217  * run its L1 parent, is to reset L1's guest state to the host state specified
4218  * in vmcs12.
4219  * This function is to be called not only on normal nested exit, but also on
4220  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4221  * Failures During or After Loading Guest State").
4222  * This function should be called when the active VMCS is L1's (vmcs01).
4223  */
4224 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4225                                    struct vmcs12 *vmcs12)
4226 {
4227         enum vm_entry_failure_code ignored;
4228         struct kvm_segment seg;
4229
4230         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4231                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4232         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4233                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4234         else
4235                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4236         vmx_set_efer(vcpu, vcpu->arch.efer);
4237
4238         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4239         kvm_rip_write(vcpu, vmcs12->host_rip);
4240         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4241         vmx_set_interrupt_shadow(vcpu, 0);
4242
4243         /*
4244          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4245          * actually changed, because vmx_set_cr0 refers to efer set above.
4246          *
4247          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4248          * (KVM doesn't change it);
4249          */
4250         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4251         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4252
4253         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4254         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4255         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4256
4257         nested_ept_uninit_mmu_context(vcpu);
4258
4259         /*
4260          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4261          * couldn't have changed.
4262          */
4263         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4264                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4265
4266         if (!enable_ept)
4267                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4268
4269         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4270
4271         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4272         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4273         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4274         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4275         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4276         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4277         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4278
4279         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4280         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4281                 vmcs_write64(GUEST_BNDCFGS, 0);
4282
4283         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4284                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4285                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4286         }
4287         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4288                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4289                                          vmcs12->host_ia32_perf_global_ctrl));
4290
4291         /* Set L1 segment info according to Intel SDM
4292             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4293         seg = (struct kvm_segment) {
4294                 .base = 0,
4295                 .limit = 0xFFFFFFFF,
4296                 .selector = vmcs12->host_cs_selector,
4297                 .type = 11,
4298                 .present = 1,
4299                 .s = 1,
4300                 .g = 1
4301         };
4302         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4303                 seg.l = 1;
4304         else
4305                 seg.db = 1;
4306         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4307         seg = (struct kvm_segment) {
4308                 .base = 0,
4309                 .limit = 0xFFFFFFFF,
4310                 .type = 3,
4311                 .present = 1,
4312                 .s = 1,
4313                 .db = 1,
4314                 .g = 1
4315         };
4316         seg.selector = vmcs12->host_ds_selector;
4317         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4318         seg.selector = vmcs12->host_es_selector;
4319         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4320         seg.selector = vmcs12->host_ss_selector;
4321         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4322         seg.selector = vmcs12->host_fs_selector;
4323         seg.base = vmcs12->host_fs_base;
4324         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4325         seg.selector = vmcs12->host_gs_selector;
4326         seg.base = vmcs12->host_gs_base;
4327         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4328         seg = (struct kvm_segment) {
4329                 .base = vmcs12->host_tr_base,
4330                 .limit = 0x67,
4331                 .selector = vmcs12->host_tr_selector,
4332                 .type = 11,
4333                 .present = 1
4334         };
4335         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4336
4337         kvm_set_dr(vcpu, 7, 0x400);
4338         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4339
4340         if (cpu_has_vmx_msr_bitmap())
4341                 vmx_update_msr_bitmap(vcpu);
4342
4343         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4344                                 vmcs12->vm_exit_msr_load_count))
4345                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4346 }
4347
4348 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4349 {
4350         struct vmx_uret_msr *efer_msr;
4351         unsigned int i;
4352
4353         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4354                 return vmcs_read64(GUEST_IA32_EFER);
4355
4356         if (cpu_has_load_ia32_efer())
4357                 return host_efer;
4358
4359         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4360                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4361                         return vmx->msr_autoload.guest.val[i].value;
4362         }
4363
4364         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4365         if (efer_msr)
4366                 return efer_msr->data;
4367
4368         return host_efer;
4369 }
4370
4371 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4372 {
4373         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4374         struct vcpu_vmx *vmx = to_vmx(vcpu);
4375         struct vmx_msr_entry g, h;
4376         gpa_t gpa;
4377         u32 i, j;
4378
4379         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4380
4381         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4382                 /*
4383                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4384                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4385                  * and vcpu->arch.dr7 is not squirreled away before the
4386                  * nested VMENTER (not worth adding a variable in nested_vmx).
4387                  */
4388                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4389                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4390                 else
4391                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4392         }
4393
4394         /*
4395          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4396          * handle a variety of side effects to KVM's software model.
4397          */
4398         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4399
4400         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4401         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4402
4403         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4404         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4405
4406         nested_ept_uninit_mmu_context(vcpu);
4407         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4408         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4409
4410         /*
4411          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4412          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4413          * VMFail, like everything else we just need to ensure our
4414          * software model is up-to-date.
4415          */
4416         if (enable_ept && is_pae_paging(vcpu))
4417                 ept_save_pdptrs(vcpu);
4418
4419         kvm_mmu_reset_context(vcpu);
4420
4421         if (cpu_has_vmx_msr_bitmap())
4422                 vmx_update_msr_bitmap(vcpu);
4423
4424         /*
4425          * This nasty bit of open coding is a compromise between blindly
4426          * loading L1's MSRs using the exit load lists (incorrect emulation
4427          * of VMFail), leaving the nested VM's MSRs in the software model
4428          * (incorrect behavior) and snapshotting the modified MSRs (too
4429          * expensive since the lists are unbound by hardware).  For each
4430          * MSR that was (prematurely) loaded from the nested VMEntry load
4431          * list, reload it from the exit load list if it exists and differs
4432          * from the guest value.  The intent is to stuff host state as
4433          * silently as possible, not to fully process the exit load list.
4434          */
4435         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4436                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4437                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4438                         pr_debug_ratelimited(
4439                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4440                                 __func__, i, gpa);
4441                         goto vmabort;
4442                 }
4443
4444                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4445                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4446                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4447                                 pr_debug_ratelimited(
4448                                         "%s read MSR failed (%u, 0x%08llx)\n",
4449                                         __func__, j, gpa);
4450                                 goto vmabort;
4451                         }
4452                         if (h.index != g.index)
4453                                 continue;
4454                         if (h.value == g.value)
4455                                 break;
4456
4457                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4458                                 pr_debug_ratelimited(
4459                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4460                                         __func__, j, h.index, h.reserved);
4461                                 goto vmabort;
4462                         }
4463
4464                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4465                                 pr_debug_ratelimited(
4466                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4467                                         __func__, j, h.index, h.value);
4468                                 goto vmabort;
4469                         }
4470                 }
4471         }
4472
4473         return;
4474
4475 vmabort:
4476         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4477 }
4478
4479 /*
4480  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4481  * and modify vmcs12 to make it see what it would expect to see there if
4482  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4483  */
4484 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4485                        u32 exit_intr_info, unsigned long exit_qualification)
4486 {
4487         struct vcpu_vmx *vmx = to_vmx(vcpu);
4488         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4489
4490         /* trying to cancel vmlaunch/vmresume is a bug */
4491         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4492
4493         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4494                 /*
4495                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4496                  * Enlightened VMCS after migration and we still need to
4497                  * do that when something is forcing L2->L1 exit prior to
4498                  * the first L2 run.
4499                  */
4500                 (void)nested_get_evmcs_page(vcpu);
4501         }
4502
4503         /* Service the TLB flush request for L2 before switching to L1. */
4504         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4505                 kvm_vcpu_flush_tlb_current(vcpu);
4506
4507         /*
4508          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4509          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4510          * up-to-date before switching to L1.
4511          */
4512         if (enable_ept && is_pae_paging(vcpu))
4513                 vmx_ept_load_pdptrs(vcpu);
4514
4515         leave_guest_mode(vcpu);
4516
4517         if (nested_cpu_has_preemption_timer(vmcs12))
4518                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4519
4520         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4521                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4522
4523         if (likely(!vmx->fail)) {
4524                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4525
4526                 if (vm_exit_reason != -1)
4527                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4528                                        exit_intr_info, exit_qualification);
4529
4530                 /*
4531                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4532                  * also be used to capture vmcs12 cache as part of
4533                  * capturing nVMX state for snapshot (migration).
4534                  *
4535                  * Otherwise, this flush will dirty guest memory at a
4536                  * point it is already assumed by user-space to be
4537                  * immutable.
4538                  */
4539                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4540         } else {
4541                 /*
4542                  * The only expected VM-instruction error is "VM entry with
4543                  * invalid control field(s)." Anything else indicates a
4544                  * problem with L0.  And we should never get here with a
4545                  * VMFail of any type if early consistency checks are enabled.
4546                  */
4547                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4548                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4549                 WARN_ON_ONCE(nested_early_check);
4550         }
4551
4552         /*
4553          * Drop events/exceptions that were queued for re-injection to L2
4554          * (picked up via vmx_complete_interrupts()), as well as exceptions
4555          * that were pending for L2.  Note, this must NOT be hoisted above
4556          * prepare_vmcs12(), events/exceptions queued for re-injection need to
4557          * be captured in vmcs12 (see vmcs12_save_pending_event()).
4558          */
4559         vcpu->arch.nmi_injected = false;
4560         kvm_clear_exception_queue(vcpu);
4561         kvm_clear_interrupt_queue(vcpu);
4562
4563         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4564
4565         /*
4566          * If IBRS is advertised to the vCPU, KVM must flush the indirect
4567          * branch predictors when transitioning from L2 to L1, as L1 expects
4568          * hardware (KVM in this case) to provide separate predictor modes.
4569          * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4570          * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4571          * separate modes for L2 vs L1.
4572          */
4573         if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4574                 indirect_branch_prediction_barrier();
4575
4576         /* Update any VMCS fields that might have changed while L2 ran */
4577         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4578         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4579         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4580         if (vmx->nested.l1_tpr_threshold != -1)
4581                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4582
4583         if (kvm_has_tsc_control)
4584                 decache_tsc_multiplier(vmx);
4585
4586         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4587                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4588                 vmx_set_virtual_apic_mode(vcpu);
4589         }
4590
4591         /* Unpin physical memory we referred to in vmcs02 */
4592         if (vmx->nested.apic_access_page) {
4593                 kvm_release_page_clean(vmx->nested.apic_access_page);
4594                 vmx->nested.apic_access_page = NULL;
4595         }
4596         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4597         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4598         vmx->nested.pi_desc = NULL;
4599
4600         if (vmx->nested.reload_vmcs01_apic_access_page) {
4601                 vmx->nested.reload_vmcs01_apic_access_page = false;
4602                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4603         }
4604
4605         if ((vm_exit_reason != -1) &&
4606             (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4607                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4608
4609         /* in case we halted in L2 */
4610         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4611
4612         if (likely(!vmx->fail)) {
4613                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4614                     nested_exit_intr_ack_set(vcpu)) {
4615                         int irq = kvm_cpu_get_interrupt(vcpu);
4616                         WARN_ON(irq < 0);
4617                         vmcs12->vm_exit_intr_info = irq |
4618                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4619                 }
4620
4621                 if (vm_exit_reason != -1)
4622                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4623                                                        vmcs12->exit_qualification,
4624                                                        vmcs12->idt_vectoring_info_field,
4625                                                        vmcs12->vm_exit_intr_info,
4626                                                        vmcs12->vm_exit_intr_error_code,
4627                                                        KVM_ISA_VMX);
4628
4629                 load_vmcs12_host_state(vcpu, vmcs12);
4630
4631                 return;
4632         }
4633
4634         /*
4635          * After an early L2 VM-entry failure, we're now back
4636          * in L1 which thinks it just finished a VMLAUNCH or
4637          * VMRESUME instruction, so we need to set the failure
4638          * flag and the VM-instruction error field of the VMCS
4639          * accordingly, and skip the emulated instruction.
4640          */
4641         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4642
4643         /*
4644          * Restore L1's host state to KVM's software model.  We're here
4645          * because a consistency check was caught by hardware, which
4646          * means some amount of guest state has been propagated to KVM's
4647          * model and needs to be unwound to the host's state.
4648          */
4649         nested_vmx_restore_host_state(vcpu);
4650
4651         vmx->fail = 0;
4652 }
4653
4654 /*
4655  * Decode the memory-address operand of a vmx instruction, as recorded on an
4656  * exit caused by such an instruction (run by a guest hypervisor).
4657  * On success, returns 0. When the operand is invalid, returns 1 and throws
4658  * #UD, #GP, or #SS.
4659  */
4660 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4661                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4662 {
4663         gva_t off;
4664         bool exn;
4665         struct kvm_segment s;
4666
4667         /*
4668          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4669          * Execution", on an exit, vmx_instruction_info holds most of the
4670          * addressing components of the operand. Only the displacement part
4671          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4672          * For how an actual address is calculated from all these components,
4673          * refer to Vol. 1, "Operand Addressing".
4674          */
4675         int  scaling = vmx_instruction_info & 3;
4676         int  addr_size = (vmx_instruction_info >> 7) & 7;
4677         bool is_reg = vmx_instruction_info & (1u << 10);
4678         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4679         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4680         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4681         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4682         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4683
4684         if (is_reg) {
4685                 kvm_queue_exception(vcpu, UD_VECTOR);
4686                 return 1;
4687         }
4688
4689         /* Addr = segment_base + offset */
4690         /* offset = base + [index * scale] + displacement */
4691         off = exit_qualification; /* holds the displacement */
4692         if (addr_size == 1)
4693                 off = (gva_t)sign_extend64(off, 31);
4694         else if (addr_size == 0)
4695                 off = (gva_t)sign_extend64(off, 15);
4696         if (base_is_valid)
4697                 off += kvm_register_readl(vcpu, base_reg);
4698         if (index_is_valid)
4699                 off += kvm_register_readl(vcpu, index_reg) << scaling;
4700         vmx_get_segment(vcpu, &s, seg_reg);
4701
4702         /*
4703          * The effective address, i.e. @off, of a memory operand is truncated
4704          * based on the address size of the instruction.  Note that this is
4705          * the *effective address*, i.e. the address prior to accounting for
4706          * the segment's base.
4707          */
4708         if (addr_size == 1) /* 32 bit */
4709                 off &= 0xffffffff;
4710         else if (addr_size == 0) /* 16 bit */
4711                 off &= 0xffff;
4712
4713         /* Checks for #GP/#SS exceptions. */
4714         exn = false;
4715         if (is_long_mode(vcpu)) {
4716                 /*
4717                  * The virtual/linear address is never truncated in 64-bit
4718                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4719                  * address when using FS/GS with a non-zero base.
4720                  */
4721                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4722                         *ret = s.base + off;
4723                 else
4724                         *ret = off;
4725
4726                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4727                  * non-canonical form. This is the only check on the memory
4728                  * destination for long mode!
4729                  */
4730                 exn = is_noncanonical_address(*ret, vcpu);
4731         } else {
4732                 /*
4733                  * When not in long mode, the virtual/linear address is
4734                  * unconditionally truncated to 32 bits regardless of the
4735                  * address size.
4736                  */
4737                 *ret = (s.base + off) & 0xffffffff;
4738
4739                 /* Protected mode: apply checks for segment validity in the
4740                  * following order:
4741                  * - segment type check (#GP(0) may be thrown)
4742                  * - usability check (#GP(0)/#SS(0))
4743                  * - limit check (#GP(0)/#SS(0))
4744                  */
4745                 if (wr)
4746                         /* #GP(0) if the destination operand is located in a
4747                          * read-only data segment or any code segment.
4748                          */
4749                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4750                 else
4751                         /* #GP(0) if the source operand is located in an
4752                          * execute-only code segment
4753                          */
4754                         exn = ((s.type & 0xa) == 8);
4755                 if (exn) {
4756                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4757                         return 1;
4758                 }
4759                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4760                  */
4761                 exn = (s.unusable != 0);
4762
4763                 /*
4764                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4765                  * outside the segment limit.  All CPUs that support VMX ignore
4766                  * limit checks for flat segments, i.e. segments with base==0,
4767                  * limit==0xffffffff and of type expand-up data or code.
4768                  */
4769                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4770                      ((s.type & 8) || !(s.type & 4))))
4771                         exn = exn || ((u64)off + len - 1 > s.limit);
4772         }
4773         if (exn) {
4774                 kvm_queue_exception_e(vcpu,
4775                                       seg_reg == VCPU_SREG_SS ?
4776                                                 SS_VECTOR : GP_VECTOR,
4777                                       0);
4778                 return 1;
4779         }
4780
4781         return 0;
4782 }
4783
4784 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4785 {
4786         struct vcpu_vmx *vmx;
4787
4788         if (!nested_vmx_allowed(vcpu))
4789                 return;
4790
4791         vmx = to_vmx(vcpu);
4792         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4793                 vmx->nested.msrs.entry_ctls_high |=
4794                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4795                 vmx->nested.msrs.exit_ctls_high |=
4796                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4797         } else {
4798                 vmx->nested.msrs.entry_ctls_high &=
4799                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4800                 vmx->nested.msrs.exit_ctls_high &=
4801                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4802         }
4803 }
4804
4805 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4806                                 int *ret)
4807 {
4808         gva_t gva;
4809         struct x86_exception e;
4810         int r;
4811
4812         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4813                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4814                                 sizeof(*vmpointer), &gva)) {
4815                 *ret = 1;
4816                 return -EINVAL;
4817         }
4818
4819         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4820         if (r != X86EMUL_CONTINUE) {
4821                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4822                 return -EINVAL;
4823         }
4824
4825         return 0;
4826 }
4827
4828 /*
4829  * Allocate a shadow VMCS and associate it with the currently loaded
4830  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4831  * VMCS is also VMCLEARed, so that it is ready for use.
4832  */
4833 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4834 {
4835         struct vcpu_vmx *vmx = to_vmx(vcpu);
4836         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4837
4838         /*
4839          * We should allocate a shadow vmcs for vmcs01 only when L1
4840          * executes VMXON and free it when L1 executes VMXOFF.
4841          * As it is invalid to execute VMXON twice, we shouldn't reach
4842          * here when vmcs01 already have an allocated shadow vmcs.
4843          */
4844         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4845
4846         if (!loaded_vmcs->shadow_vmcs) {
4847                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4848                 if (loaded_vmcs->shadow_vmcs)
4849                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4850         }
4851         return loaded_vmcs->shadow_vmcs;
4852 }
4853
4854 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4855 {
4856         struct vcpu_vmx *vmx = to_vmx(vcpu);
4857         int r;
4858
4859         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4860         if (r < 0)
4861                 goto out_vmcs02;
4862
4863         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4864         if (!vmx->nested.cached_vmcs12)
4865                 goto out_cached_vmcs12;
4866
4867         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4868         if (!vmx->nested.cached_shadow_vmcs12)
4869                 goto out_cached_shadow_vmcs12;
4870
4871         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4872                 goto out_shadow_vmcs;
4873
4874         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4875                      HRTIMER_MODE_ABS_PINNED);
4876         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4877
4878         vmx->nested.vpid02 = allocate_vpid();
4879
4880         vmx->nested.vmcs02_initialized = false;
4881         vmx->nested.vmxon = true;
4882
4883         if (vmx_pt_mode_is_host_guest()) {
4884                 vmx->pt_desc.guest.ctl = 0;
4885                 pt_update_intercept_for_msr(vcpu);
4886         }
4887
4888         return 0;
4889
4890 out_shadow_vmcs:
4891         kfree(vmx->nested.cached_shadow_vmcs12);
4892
4893 out_cached_shadow_vmcs12:
4894         kfree(vmx->nested.cached_vmcs12);
4895
4896 out_cached_vmcs12:
4897         free_loaded_vmcs(&vmx->nested.vmcs02);
4898
4899 out_vmcs02:
4900         return -ENOMEM;
4901 }
4902
4903 /*
4904  * Emulate the VMXON instruction.
4905  * Currently, we just remember that VMX is active, and do not save or even
4906  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4907  * do not currently need to store anything in that guest-allocated memory
4908  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4909  * argument is different from the VMXON pointer (which the spec says they do).
4910  */
4911 static int handle_vmon(struct kvm_vcpu *vcpu)
4912 {
4913         int ret;
4914         gpa_t vmptr;
4915         uint32_t revision;
4916         struct vcpu_vmx *vmx = to_vmx(vcpu);
4917         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4918                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4919
4920         /*
4921          * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
4922          * the guest and so cannot rely on hardware to perform the check,
4923          * which has higher priority than VM-Exit (see Intel SDM's pseudocode
4924          * for VMXON).
4925          *
4926          * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
4927          * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
4928          * force any of the relevant guest state.  For a restricted guest, KVM
4929          * does force CR0.PE=1, but only to also force VM86 in order to emulate
4930          * Real Mode, and so there's no need to check CR0.PE manually.
4931          */
4932         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4933                 kvm_queue_exception(vcpu, UD_VECTOR);
4934                 return 1;
4935         }
4936
4937         /*
4938          * The CPL is checked for "not in VMX operation" and for "in VMX root",
4939          * and has higher priority than the VM-Fail due to being post-VMXON,
4940          * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
4941          * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
4942          * from L2 to L1, i.e. there's no need to check for the vCPU being in
4943          * VMX non-root.
4944          *
4945          * Forwarding the VM-Exit unconditionally, i.e. without performing the
4946          * #UD checks (see above), is functionally ok because KVM doesn't allow
4947          * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
4948          * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
4949          * missed by hardware due to shadowing CR0 and/or CR4.
4950          */
4951         if (vmx_get_cpl(vcpu)) {
4952                 kvm_inject_gp(vcpu, 0);
4953                 return 1;
4954         }
4955
4956         if (vmx->nested.vmxon)
4957                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4958
4959         /*
4960          * Invalid CR0/CR4 generates #GP.  These checks are performed if and
4961          * only if the vCPU isn't already in VMX operation, i.e. effectively
4962          * have lower priority than the VM-Fail above.
4963          */
4964         if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
4965             !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
4966                 kvm_inject_gp(vcpu, 0);
4967                 return 1;
4968         }
4969
4970         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4971                         != VMXON_NEEDED_FEATURES) {
4972                 kvm_inject_gp(vcpu, 0);
4973                 return 1;
4974         }
4975
4976         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4977                 return ret;
4978
4979         /*
4980          * SDM 3: 24.11.5
4981          * The first 4 bytes of VMXON region contain the supported
4982          * VMCS revision identifier
4983          *
4984          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4985          * which replaces physical address width with 32
4986          */
4987         if (!page_address_valid(vcpu, vmptr))
4988                 return nested_vmx_failInvalid(vcpu);
4989
4990         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4991             revision != VMCS12_REVISION)
4992                 return nested_vmx_failInvalid(vcpu);
4993
4994         vmx->nested.vmxon_ptr = vmptr;
4995         ret = enter_vmx_operation(vcpu);
4996         if (ret)
4997                 return ret;
4998
4999         return nested_vmx_succeed(vcpu);
5000 }
5001
5002 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5003 {
5004         struct vcpu_vmx *vmx = to_vmx(vcpu);
5005
5006         if (vmx->nested.current_vmptr == -1ull)
5007                 return;
5008
5009         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5010
5011         if (enable_shadow_vmcs) {
5012                 /* copy to memory all shadowed fields in case
5013                    they were modified */
5014                 copy_shadow_to_vmcs12(vmx);
5015                 vmx_disable_shadow_vmcs(vmx);
5016         }
5017         vmx->nested.posted_intr_nv = -1;
5018
5019         /* Flush VMCS12 to guest memory */
5020         kvm_vcpu_write_guest_page(vcpu,
5021                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
5022                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5023
5024         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5025
5026         vmx->nested.current_vmptr = -1ull;
5027 }
5028
5029 /* Emulate the VMXOFF instruction */
5030 static int handle_vmoff(struct kvm_vcpu *vcpu)
5031 {
5032         if (!nested_vmx_check_permission(vcpu))
5033                 return 1;
5034
5035         free_nested(vcpu);
5036
5037         /* Process a latched INIT during time CPU was in VMX operation */
5038         kvm_make_request(KVM_REQ_EVENT, vcpu);
5039
5040         return nested_vmx_succeed(vcpu);
5041 }
5042
5043 /* Emulate the VMCLEAR instruction */
5044 static int handle_vmclear(struct kvm_vcpu *vcpu)
5045 {
5046         struct vcpu_vmx *vmx = to_vmx(vcpu);
5047         u32 zero = 0;
5048         gpa_t vmptr;
5049         u64 evmcs_gpa;
5050         int r;
5051
5052         if (!nested_vmx_check_permission(vcpu))
5053                 return 1;
5054
5055         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5056                 return r;
5057
5058         if (!page_address_valid(vcpu, vmptr))
5059                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5060
5061         if (vmptr == vmx->nested.vmxon_ptr)
5062                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5063
5064         /*
5065          * When Enlightened VMEntry is enabled on the calling CPU we treat
5066          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5067          * way to distinguish it from VMCS12) and we must not corrupt it by
5068          * writing to the non-existent 'launch_state' field. The area doesn't
5069          * have to be the currently active EVMCS on the calling CPU and there's
5070          * nothing KVM has to do to transition it from 'active' to 'non-active'
5071          * state. It is possible that the area will stay mapped as
5072          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5073          */
5074         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5075                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5076                 if (vmptr == vmx->nested.current_vmptr)
5077                         nested_release_vmcs12(vcpu);
5078
5079                 kvm_vcpu_write_guest(vcpu,
5080                                      vmptr + offsetof(struct vmcs12,
5081                                                       launch_state),
5082                                      &zero, sizeof(zero));
5083         }
5084
5085         return nested_vmx_succeed(vcpu);
5086 }
5087
5088 /* Emulate the VMLAUNCH instruction */
5089 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5090 {
5091         return nested_vmx_run(vcpu, true);
5092 }
5093
5094 /* Emulate the VMRESUME instruction */
5095 static int handle_vmresume(struct kvm_vcpu *vcpu)
5096 {
5097
5098         return nested_vmx_run(vcpu, false);
5099 }
5100
5101 static int handle_vmread(struct kvm_vcpu *vcpu)
5102 {
5103         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5104                                                     : get_vmcs12(vcpu);
5105         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5106         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5107         struct vcpu_vmx *vmx = to_vmx(vcpu);
5108         struct x86_exception e;
5109         unsigned long field;
5110         u64 value;
5111         gva_t gva = 0;
5112         short offset;
5113         int len, r;
5114
5115         if (!nested_vmx_check_permission(vcpu))
5116                 return 1;
5117
5118         /*
5119          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5120          * any VMREAD sets the ALU flags for VMfailInvalid.
5121          */
5122         if (vmx->nested.current_vmptr == -1ull ||
5123             (is_guest_mode(vcpu) &&
5124              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5125                 return nested_vmx_failInvalid(vcpu);
5126
5127         /* Decode instruction info and find the field to read */
5128         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5129
5130         offset = vmcs_field_to_offset(field);
5131         if (offset < 0)
5132                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5133
5134         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5135                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5136
5137         /* Read the field, zero-extended to a u64 value */
5138         value = vmcs12_read_any(vmcs12, field, offset);
5139
5140         /*
5141          * Now copy part of this value to register or memory, as requested.
5142          * Note that the number of bits actually copied is 32 or 64 depending
5143          * on the guest's mode (32 or 64 bit), not on the given field's length.
5144          */
5145         if (instr_info & BIT(10)) {
5146                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5147         } else {
5148                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5149                 if (get_vmx_mem_address(vcpu, exit_qualification,
5150                                         instr_info, true, len, &gva))
5151                         return 1;
5152                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5153                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5154                 if (r != X86EMUL_CONTINUE)
5155                         return kvm_handle_memory_failure(vcpu, r, &e);
5156         }
5157
5158         return nested_vmx_succeed(vcpu);
5159 }
5160
5161 static bool is_shadow_field_rw(unsigned long field)
5162 {
5163         switch (field) {
5164 #define SHADOW_FIELD_RW(x, y) case x:
5165 #include "vmcs_shadow_fields.h"
5166                 return true;
5167         default:
5168                 break;
5169         }
5170         return false;
5171 }
5172
5173 static bool is_shadow_field_ro(unsigned long field)
5174 {
5175         switch (field) {
5176 #define SHADOW_FIELD_RO(x, y) case x:
5177 #include "vmcs_shadow_fields.h"
5178                 return true;
5179         default:
5180                 break;
5181         }
5182         return false;
5183 }
5184
5185 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5186 {
5187         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5188                                                     : get_vmcs12(vcpu);
5189         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5190         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5191         struct vcpu_vmx *vmx = to_vmx(vcpu);
5192         struct x86_exception e;
5193         unsigned long field;
5194         short offset;
5195         gva_t gva;
5196         int len, r;
5197
5198         /*
5199          * The value to write might be 32 or 64 bits, depending on L1's long
5200          * mode, and eventually we need to write that into a field of several
5201          * possible lengths. The code below first zero-extends the value to 64
5202          * bit (value), and then copies only the appropriate number of
5203          * bits into the vmcs12 field.
5204          */
5205         u64 value = 0;
5206
5207         if (!nested_vmx_check_permission(vcpu))
5208                 return 1;
5209
5210         /*
5211          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5212          * any VMWRITE sets the ALU flags for VMfailInvalid.
5213          */
5214         if (vmx->nested.current_vmptr == -1ull ||
5215             (is_guest_mode(vcpu) &&
5216              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5217                 return nested_vmx_failInvalid(vcpu);
5218
5219         if (instr_info & BIT(10))
5220                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5221         else {
5222                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5223                 if (get_vmx_mem_address(vcpu, exit_qualification,
5224                                         instr_info, false, len, &gva))
5225                         return 1;
5226                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5227                 if (r != X86EMUL_CONTINUE)
5228                         return kvm_handle_memory_failure(vcpu, r, &e);
5229         }
5230
5231         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5232
5233         offset = vmcs_field_to_offset(field);
5234         if (offset < 0)
5235                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5236
5237         /*
5238          * If the vCPU supports "VMWRITE to any supported field in the
5239          * VMCS," then the "read-only" fields are actually read/write.
5240          */
5241         if (vmcs_field_readonly(field) &&
5242             !nested_cpu_has_vmwrite_any_field(vcpu))
5243                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5244
5245         /*
5246          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5247          * vmcs12, else we may crush a field or consume a stale value.
5248          */
5249         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5250                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5251
5252         /*
5253          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5254          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5255          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5256          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5257          * from L1 will return a different value than VMREAD from L2 (L1 sees
5258          * the stripped down value, L2 sees the full value as stored by KVM).
5259          */
5260         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5261                 value &= 0x1f0ff;
5262
5263         vmcs12_write_any(vmcs12, field, offset, value);
5264
5265         /*
5266          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5267          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5268          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5269          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5270          */
5271         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5272                 /*
5273                  * L1 can read these fields without exiting, ensure the
5274                  * shadow VMCS is up-to-date.
5275                  */
5276                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5277                         preempt_disable();
5278                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5279
5280                         __vmcs_writel(field, value);
5281
5282                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5283                         vmcs_load(vmx->loaded_vmcs->vmcs);
5284                         preempt_enable();
5285                 }
5286                 vmx->nested.dirty_vmcs12 = true;
5287         }
5288
5289         return nested_vmx_succeed(vcpu);
5290 }
5291
5292 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5293 {
5294         vmx->nested.current_vmptr = vmptr;
5295         if (enable_shadow_vmcs) {
5296                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5297                 vmcs_write64(VMCS_LINK_POINTER,
5298                              __pa(vmx->vmcs01.shadow_vmcs));
5299                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5300         }
5301         vmx->nested.dirty_vmcs12 = true;
5302 }
5303
5304 /* Emulate the VMPTRLD instruction */
5305 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5306 {
5307         struct vcpu_vmx *vmx = to_vmx(vcpu);
5308         gpa_t vmptr;
5309         int r;
5310
5311         if (!nested_vmx_check_permission(vcpu))
5312                 return 1;
5313
5314         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5315                 return r;
5316
5317         if (!page_address_valid(vcpu, vmptr))
5318                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5319
5320         if (vmptr == vmx->nested.vmxon_ptr)
5321                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5322
5323         /* Forbid normal VMPTRLD if Enlightened version was used */
5324         if (vmx->nested.hv_evmcs)
5325                 return 1;
5326
5327         if (vmx->nested.current_vmptr != vmptr) {
5328                 struct kvm_host_map map;
5329                 struct vmcs12 *new_vmcs12;
5330
5331                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5332                         /*
5333                          * Reads from an unbacked page return all 1s,
5334                          * which means that the 32 bits located at the
5335                          * given physical address won't match the required
5336                          * VMCS12_REVISION identifier.
5337                          */
5338                         return nested_vmx_fail(vcpu,
5339                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5340                 }
5341
5342                 new_vmcs12 = map.hva;
5343
5344                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5345                     (new_vmcs12->hdr.shadow_vmcs &&
5346                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5347                         kvm_vcpu_unmap(vcpu, &map, false);
5348                         return nested_vmx_fail(vcpu,
5349                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5350                 }
5351
5352                 nested_release_vmcs12(vcpu);
5353
5354                 /*
5355                  * Load VMCS12 from guest memory since it is not already
5356                  * cached.
5357                  */
5358                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5359                 kvm_vcpu_unmap(vcpu, &map, false);
5360
5361                 set_current_vmptr(vmx, vmptr);
5362         }
5363
5364         return nested_vmx_succeed(vcpu);
5365 }
5366
5367 /* Emulate the VMPTRST instruction */
5368 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5369 {
5370         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5371         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5372         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5373         struct x86_exception e;
5374         gva_t gva;
5375         int r;
5376
5377         if (!nested_vmx_check_permission(vcpu))
5378                 return 1;
5379
5380         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5381                 return 1;
5382
5383         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5384                                 true, sizeof(gpa_t), &gva))
5385                 return 1;
5386         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5387         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5388                                         sizeof(gpa_t), &e);
5389         if (r != X86EMUL_CONTINUE)
5390                 return kvm_handle_memory_failure(vcpu, r, &e);
5391
5392         return nested_vmx_succeed(vcpu);
5393 }
5394
5395 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5396
5397 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5398 {
5399         return VALID_PAGE(root_hpa) &&
5400                 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5401 }
5402
5403 /* Emulate the INVEPT instruction */
5404 static int handle_invept(struct kvm_vcpu *vcpu)
5405 {
5406         struct vcpu_vmx *vmx = to_vmx(vcpu);
5407         u32 vmx_instruction_info, types;
5408         unsigned long type, roots_to_free;
5409         struct kvm_mmu *mmu;
5410         gva_t gva;
5411         struct x86_exception e;
5412         struct {
5413                 u64 eptp, gpa;
5414         } operand;
5415         int i, r;
5416
5417         if (!(vmx->nested.msrs.secondary_ctls_high &
5418               SECONDARY_EXEC_ENABLE_EPT) ||
5419             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5420                 kvm_queue_exception(vcpu, UD_VECTOR);
5421                 return 1;
5422         }
5423
5424         if (!nested_vmx_check_permission(vcpu))
5425                 return 1;
5426
5427         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5428         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5429
5430         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5431
5432         if (type >= 32 || !(types & (1 << type)))
5433                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5434
5435         /* According to the Intel VMX instruction reference, the memory
5436          * operand is read even if it isn't needed (e.g., for type==global)
5437          */
5438         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5439                         vmx_instruction_info, false, sizeof(operand), &gva))
5440                 return 1;
5441         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5442         if (r != X86EMUL_CONTINUE)
5443                 return kvm_handle_memory_failure(vcpu, r, &e);
5444
5445         /*
5446          * Nested EPT roots are always held through guest_mmu,
5447          * not root_mmu.
5448          */
5449         mmu = &vcpu->arch.guest_mmu;
5450
5451         switch (type) {
5452         case VMX_EPT_EXTENT_CONTEXT:
5453                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5454                         return nested_vmx_fail(vcpu,
5455                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5456
5457                 roots_to_free = 0;
5458                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5459                                             operand.eptp))
5460                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5461
5462                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5463                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5464                                                     mmu->prev_roots[i].pgd,
5465                                                     operand.eptp))
5466                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5467                 }
5468                 break;
5469         case VMX_EPT_EXTENT_GLOBAL:
5470                 roots_to_free = KVM_MMU_ROOTS_ALL;
5471                 break;
5472         default:
5473                 BUG();
5474                 break;
5475         }
5476
5477         if (roots_to_free)
5478                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5479
5480         return nested_vmx_succeed(vcpu);
5481 }
5482
5483 static int handle_invvpid(struct kvm_vcpu *vcpu)
5484 {
5485         struct vcpu_vmx *vmx = to_vmx(vcpu);
5486         u32 vmx_instruction_info;
5487         unsigned long type, types;
5488         gva_t gva;
5489         struct x86_exception e;
5490         struct {
5491                 u64 vpid;
5492                 u64 gla;
5493         } operand;
5494         u16 vpid02;
5495         int r;
5496
5497         if (!(vmx->nested.msrs.secondary_ctls_high &
5498               SECONDARY_EXEC_ENABLE_VPID) ||
5499                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5500                 kvm_queue_exception(vcpu, UD_VECTOR);
5501                 return 1;
5502         }
5503
5504         if (!nested_vmx_check_permission(vcpu))
5505                 return 1;
5506
5507         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5508         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5509
5510         types = (vmx->nested.msrs.vpid_caps &
5511                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5512
5513         if (type >= 32 || !(types & (1 << type)))
5514                 return nested_vmx_fail(vcpu,
5515                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5516
5517         /* according to the intel vmx instruction reference, the memory
5518          * operand is read even if it isn't needed (e.g., for type==global)
5519          */
5520         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5521                         vmx_instruction_info, false, sizeof(operand), &gva))
5522                 return 1;
5523         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5524         if (r != X86EMUL_CONTINUE)
5525                 return kvm_handle_memory_failure(vcpu, r, &e);
5526
5527         if (operand.vpid >> 16)
5528                 return nested_vmx_fail(vcpu,
5529                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5530
5531         vpid02 = nested_get_vpid02(vcpu);
5532         switch (type) {
5533         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5534                 if (!operand.vpid ||
5535                     is_noncanonical_address(operand.gla, vcpu))
5536                         return nested_vmx_fail(vcpu,
5537                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5538                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5539                 break;
5540         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5541         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5542                 if (!operand.vpid)
5543                         return nested_vmx_fail(vcpu,
5544                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5545                 vpid_sync_context(vpid02);
5546                 break;
5547         case VMX_VPID_EXTENT_ALL_CONTEXT:
5548                 vpid_sync_context(vpid02);
5549                 break;
5550         default:
5551                 WARN_ON_ONCE(1);
5552                 return kvm_skip_emulated_instruction(vcpu);
5553         }
5554
5555         /*
5556          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5557          * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5558          * VPIDs are not tracked in the MMU role.
5559          *
5560          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5561          * an MMU when EPT is disabled.
5562          *
5563          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5564          */
5565         if (!enable_ept)
5566                 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5567                                    KVM_MMU_ROOTS_ALL);
5568
5569         return nested_vmx_succeed(vcpu);
5570 }
5571
5572 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5573                                      struct vmcs12 *vmcs12)
5574 {
5575         u32 index = kvm_rcx_read(vcpu);
5576         u64 new_eptp;
5577
5578         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5579             !nested_cpu_has_ept(vmcs12))
5580                 return 1;
5581
5582         if (index >= VMFUNC_EPTP_ENTRIES)
5583                 return 1;
5584
5585         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5586                                      &new_eptp, index * 8, 8))
5587                 return 1;
5588
5589         /*
5590          * If the (L2) guest does a vmfunc to the currently
5591          * active ept pointer, we don't have to do anything else
5592          */
5593         if (vmcs12->ept_pointer != new_eptp) {
5594                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5595                         return 1;
5596
5597                 vmcs12->ept_pointer = new_eptp;
5598
5599                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
5600         }
5601
5602         return 0;
5603 }
5604
5605 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5606 {
5607         struct vcpu_vmx *vmx = to_vmx(vcpu);
5608         struct vmcs12 *vmcs12;
5609         u32 function = kvm_rax_read(vcpu);
5610
5611         /*
5612          * VMFUNC is only supported for nested guests, but we always enable the
5613          * secondary control for simplicity; for non-nested mode, fake that we
5614          * didn't by injecting #UD.
5615          */
5616         if (!is_guest_mode(vcpu)) {
5617                 kvm_queue_exception(vcpu, UD_VECTOR);
5618                 return 1;
5619         }
5620
5621         vmcs12 = get_vmcs12(vcpu);
5622         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5623                 goto fail;
5624
5625         switch (function) {
5626         case 0:
5627                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5628                         goto fail;
5629                 break;
5630         default:
5631                 goto fail;
5632         }
5633         return kvm_skip_emulated_instruction(vcpu);
5634
5635 fail:
5636         /*
5637          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5638          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5639          * EXIT_REASON_VMFUNC as the exit reason.
5640          */
5641         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5642                           vmx_get_intr_info(vcpu),
5643                           vmx_get_exit_qual(vcpu));
5644         return 1;
5645 }
5646
5647 /*
5648  * Return true if an IO instruction with the specified port and size should cause
5649  * a VM-exit into L1.
5650  */
5651 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5652                                  int size)
5653 {
5654         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5655         gpa_t bitmap, last_bitmap;
5656         u8 b;
5657
5658         last_bitmap = (gpa_t)-1;
5659         b = -1;
5660
5661         while (size > 0) {
5662                 if (port < 0x8000)
5663                         bitmap = vmcs12->io_bitmap_a;
5664                 else if (port < 0x10000)
5665                         bitmap = vmcs12->io_bitmap_b;
5666                 else
5667                         return true;
5668                 bitmap += (port & 0x7fff) / 8;
5669
5670                 if (last_bitmap != bitmap)
5671                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5672                                 return true;
5673                 if (b & (1 << (port & 7)))
5674                         return true;
5675
5676                 port++;
5677                 size--;
5678                 last_bitmap = bitmap;
5679         }
5680
5681         return false;
5682 }
5683
5684 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5685                                        struct vmcs12 *vmcs12)
5686 {
5687         unsigned long exit_qualification;
5688         unsigned short port;
5689         int size;
5690
5691         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5692                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5693
5694         exit_qualification = vmx_get_exit_qual(vcpu);
5695
5696         port = exit_qualification >> 16;
5697         size = (exit_qualification & 7) + 1;
5698
5699         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5700 }
5701
5702 /*
5703  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5704  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5705  * disinterest in the current event (read or write a specific MSR) by using an
5706  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5707  */
5708 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5709                                         struct vmcs12 *vmcs12,
5710                                         union vmx_exit_reason exit_reason)
5711 {
5712         u32 msr_index = kvm_rcx_read(vcpu);
5713         gpa_t bitmap;
5714
5715         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5716                 return true;
5717
5718         /*
5719          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5720          * for the four combinations of read/write and low/high MSR numbers.
5721          * First we need to figure out which of the four to use:
5722          */
5723         bitmap = vmcs12->msr_bitmap;
5724         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5725                 bitmap += 2048;
5726         if (msr_index >= 0xc0000000) {
5727                 msr_index -= 0xc0000000;
5728                 bitmap += 1024;
5729         }
5730
5731         /* Then read the msr_index'th bit from this bitmap: */
5732         if (msr_index < 1024*8) {
5733                 unsigned char b;
5734                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5735                         return true;
5736                 return 1 & (b >> (msr_index & 7));
5737         } else
5738                 return true; /* let L1 handle the wrong parameter */
5739 }
5740
5741 /*
5742  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5743  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5744  * intercept (via guest_host_mask etc.) the current event.
5745  */
5746 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5747         struct vmcs12 *vmcs12)
5748 {
5749         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5750         int cr = exit_qualification & 15;
5751         int reg;
5752         unsigned long val;
5753
5754         switch ((exit_qualification >> 4) & 3) {
5755         case 0: /* mov to cr */
5756                 reg = (exit_qualification >> 8) & 15;
5757                 val = kvm_register_readl(vcpu, reg);
5758                 switch (cr) {
5759                 case 0:
5760                         if (vmcs12->cr0_guest_host_mask &
5761                             (val ^ vmcs12->cr0_read_shadow))
5762                                 return true;
5763                         break;
5764                 case 3:
5765                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5766                                 return true;
5767                         break;
5768                 case 4:
5769                         if (vmcs12->cr4_guest_host_mask &
5770                             (vmcs12->cr4_read_shadow ^ val))
5771                                 return true;
5772                         break;
5773                 case 8:
5774                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5775                                 return true;
5776                         break;
5777                 }
5778                 break;
5779         case 2: /* clts */
5780                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5781                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5782                         return true;
5783                 break;
5784         case 1: /* mov from cr */
5785                 switch (cr) {
5786                 case 3:
5787                         if (vmcs12->cpu_based_vm_exec_control &
5788                             CPU_BASED_CR3_STORE_EXITING)
5789                                 return true;
5790                         break;
5791                 case 8:
5792                         if (vmcs12->cpu_based_vm_exec_control &
5793                             CPU_BASED_CR8_STORE_EXITING)
5794                                 return true;
5795                         break;
5796                 }
5797                 break;
5798         case 3: /* lmsw */
5799                 /*
5800                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5801                  * cr0. Other attempted changes are ignored, with no exit.
5802                  */
5803                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5804                 if (vmcs12->cr0_guest_host_mask & 0xe &
5805                     (val ^ vmcs12->cr0_read_shadow))
5806                         return true;
5807                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5808                     !(vmcs12->cr0_read_shadow & 0x1) &&
5809                     (val & 0x1))
5810                         return true;
5811                 break;
5812         }
5813         return false;
5814 }
5815
5816 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5817         struct vmcs12 *vmcs12, gpa_t bitmap)
5818 {
5819         u32 vmx_instruction_info;
5820         unsigned long field;
5821         u8 b;
5822
5823         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5824                 return true;
5825
5826         /* Decode instruction info and find the field to access */
5827         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5828         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5829
5830         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5831         if (field >> 15)
5832                 return true;
5833
5834         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5835                 return true;
5836
5837         return 1 & (b >> (field & 7));
5838 }
5839
5840 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5841 {
5842         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5843
5844         if (nested_cpu_has_mtf(vmcs12))
5845                 return true;
5846
5847         /*
5848          * An MTF VM-exit may be injected into the guest by setting the
5849          * interruption-type to 7 (other event) and the vector field to 0. Such
5850          * is the case regardless of the 'monitor trap flag' VM-execution
5851          * control.
5852          */
5853         return entry_intr_info == (INTR_INFO_VALID_MASK
5854                                    | INTR_TYPE_OTHER_EVENT);
5855 }
5856
5857 /*
5858  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5859  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5860  */
5861 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5862                                      union vmx_exit_reason exit_reason)
5863 {
5864         u32 intr_info;
5865
5866         switch ((u16)exit_reason.basic) {
5867         case EXIT_REASON_EXCEPTION_NMI:
5868                 intr_info = vmx_get_intr_info(vcpu);
5869                 if (is_nmi(intr_info))
5870                         return true;
5871                 else if (is_page_fault(intr_info))
5872                         return vcpu->arch.apf.host_apf_flags ||
5873                                vmx_need_pf_intercept(vcpu);
5874                 else if (is_debug(intr_info) &&
5875                          vcpu->guest_debug &
5876                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5877                         return true;
5878                 else if (is_breakpoint(intr_info) &&
5879                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5880                         return true;
5881                 else if (is_alignment_check(intr_info) &&
5882                          !vmx_guest_inject_ac(vcpu))
5883                         return true;
5884                 return false;
5885         case EXIT_REASON_EXTERNAL_INTERRUPT:
5886                 return true;
5887         case EXIT_REASON_MCE_DURING_VMENTRY:
5888                 return true;
5889         case EXIT_REASON_EPT_VIOLATION:
5890                 /*
5891                  * L0 always deals with the EPT violation. If nested EPT is
5892                  * used, and the nested mmu code discovers that the address is
5893                  * missing in the guest EPT table (EPT12), the EPT violation
5894                  * will be injected with nested_ept_inject_page_fault()
5895                  */
5896                 return true;
5897         case EXIT_REASON_EPT_MISCONFIG:
5898                 /*
5899                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5900                  * table (shadow on EPT) or a merged EPT table that L0 built
5901                  * (EPT on EPT). So any problems with the structure of the
5902                  * table is L0's fault.
5903                  */
5904                 return true;
5905         case EXIT_REASON_PREEMPTION_TIMER:
5906                 return true;
5907         case EXIT_REASON_PML_FULL:
5908                 /* We emulate PML support to L1. */
5909                 return true;
5910         case EXIT_REASON_VMFUNC:
5911                 /* VM functions are emulated through L2->L0 vmexits. */
5912                 return true;
5913         case EXIT_REASON_ENCLS:
5914                 /* SGX is never exposed to L1 */
5915                 return true;
5916         default:
5917                 break;
5918         }
5919         return false;
5920 }
5921
5922 /*
5923  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5924  * is_guest_mode (L2).
5925  */
5926 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5927                                      union vmx_exit_reason exit_reason)
5928 {
5929         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5930         u32 intr_info;
5931
5932         switch ((u16)exit_reason.basic) {
5933         case EXIT_REASON_EXCEPTION_NMI:
5934                 intr_info = vmx_get_intr_info(vcpu);
5935                 if (is_nmi(intr_info))
5936                         return true;
5937                 else if (is_page_fault(intr_info))
5938                         return true;
5939                 return vmcs12->exception_bitmap &
5940                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5941         case EXIT_REASON_EXTERNAL_INTERRUPT:
5942                 return nested_exit_on_intr(vcpu);
5943         case EXIT_REASON_TRIPLE_FAULT:
5944                 return true;
5945         case EXIT_REASON_INTERRUPT_WINDOW:
5946                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5947         case EXIT_REASON_NMI_WINDOW:
5948                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5949         case EXIT_REASON_TASK_SWITCH:
5950                 return true;
5951         case EXIT_REASON_CPUID:
5952                 return true;
5953         case EXIT_REASON_HLT:
5954                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5955         case EXIT_REASON_INVD:
5956                 return true;
5957         case EXIT_REASON_INVLPG:
5958                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5959         case EXIT_REASON_RDPMC:
5960                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5961         case EXIT_REASON_RDRAND:
5962                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5963         case EXIT_REASON_RDSEED:
5964                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5965         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5966                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5967         case EXIT_REASON_VMREAD:
5968                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5969                         vmcs12->vmread_bitmap);
5970         case EXIT_REASON_VMWRITE:
5971                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5972                         vmcs12->vmwrite_bitmap);
5973         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5974         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5975         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5976         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5977         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5978                 /*
5979                  * VMX instructions trap unconditionally. This allows L1 to
5980                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5981                  */
5982                 return true;
5983         case EXIT_REASON_CR_ACCESS:
5984                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5985         case EXIT_REASON_DR_ACCESS:
5986                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5987         case EXIT_REASON_IO_INSTRUCTION:
5988                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5989         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5990                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5991         case EXIT_REASON_MSR_READ:
5992         case EXIT_REASON_MSR_WRITE:
5993                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5994         case EXIT_REASON_INVALID_STATE:
5995                 return true;
5996         case EXIT_REASON_MWAIT_INSTRUCTION:
5997                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5998         case EXIT_REASON_MONITOR_TRAP_FLAG:
5999                 return nested_vmx_exit_handled_mtf(vmcs12);
6000         case EXIT_REASON_MONITOR_INSTRUCTION:
6001                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6002         case EXIT_REASON_PAUSE_INSTRUCTION:
6003                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6004                         nested_cpu_has2(vmcs12,
6005                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6006         case EXIT_REASON_MCE_DURING_VMENTRY:
6007                 return true;
6008         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6009                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6010         case EXIT_REASON_APIC_ACCESS:
6011         case EXIT_REASON_APIC_WRITE:
6012         case EXIT_REASON_EOI_INDUCED:
6013                 /*
6014                  * The controls for "virtualize APIC accesses," "APIC-
6015                  * register virtualization," and "virtual-interrupt
6016                  * delivery" only come from vmcs12.
6017                  */
6018                 return true;
6019         case EXIT_REASON_INVPCID:
6020                 return
6021                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6022                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6023         case EXIT_REASON_WBINVD:
6024                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6025         case EXIT_REASON_XSETBV:
6026                 return true;
6027         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6028                 /*
6029                  * This should never happen, since it is not possible to
6030                  * set XSS to a non-zero value---neither in L1 nor in L2.
6031                  * If if it were, XSS would have to be checked against
6032                  * the XSS exit bitmap in vmcs12.
6033                  */
6034                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6035         case EXIT_REASON_UMWAIT:
6036         case EXIT_REASON_TPAUSE:
6037                 return nested_cpu_has2(vmcs12,
6038                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6039         default:
6040                 return true;
6041         }
6042 }
6043
6044 /*
6045  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6046  * reflected into L1.
6047  */
6048 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6049 {
6050         struct vcpu_vmx *vmx = to_vmx(vcpu);
6051         union vmx_exit_reason exit_reason = vmx->exit_reason;
6052         unsigned long exit_qual;
6053         u32 exit_intr_info;
6054
6055         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6056
6057         /*
6058          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6059          * has already loaded L2's state.
6060          */
6061         if (unlikely(vmx->fail)) {
6062                 trace_kvm_nested_vmenter_failed(
6063                         "hardware VM-instruction error: ",
6064                         vmcs_read32(VM_INSTRUCTION_ERROR));
6065                 exit_intr_info = 0;
6066                 exit_qual = 0;
6067                 goto reflect_vmexit;
6068         }
6069
6070         trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6071
6072         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6073         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6074                 return false;
6075
6076         /* If L1 doesn't want the exit, handle it in L0. */
6077         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6078                 return false;
6079
6080         /*
6081          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6082          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6083          * need to be synthesized by querying the in-kernel LAPIC, but external
6084          * interrupts are never reflected to L1 so it's a non-issue.
6085          */
6086         exit_intr_info = vmx_get_intr_info(vcpu);
6087         if (is_exception_with_error_code(exit_intr_info)) {
6088                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6089
6090                 vmcs12->vm_exit_intr_error_code =
6091                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6092         }
6093         exit_qual = vmx_get_exit_qual(vcpu);
6094
6095 reflect_vmexit:
6096         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6097         return true;
6098 }
6099
6100 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6101                                 struct kvm_nested_state __user *user_kvm_nested_state,
6102                                 u32 user_data_size)
6103 {
6104         struct vcpu_vmx *vmx;
6105         struct vmcs12 *vmcs12;
6106         struct kvm_nested_state kvm_state = {
6107                 .flags = 0,
6108                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6109                 .size = sizeof(kvm_state),
6110                 .hdr.vmx.flags = 0,
6111                 .hdr.vmx.vmxon_pa = -1ull,
6112                 .hdr.vmx.vmcs12_pa = -1ull,
6113                 .hdr.vmx.preemption_timer_deadline = 0,
6114         };
6115         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6116                 &user_kvm_nested_state->data.vmx[0];
6117
6118         if (!vcpu)
6119                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6120
6121         vmx = to_vmx(vcpu);
6122         vmcs12 = get_vmcs12(vcpu);
6123
6124         if (nested_vmx_allowed(vcpu) &&
6125             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6126                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6127                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6128
6129                 if (vmx_has_valid_vmcs12(vcpu)) {
6130                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6131
6132                         if (vmx->nested.hv_evmcs)
6133                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6134
6135                         if (is_guest_mode(vcpu) &&
6136                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6137                             vmcs12->vmcs_link_pointer != -1ull)
6138                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6139                 }
6140
6141                 if (vmx->nested.smm.vmxon)
6142                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6143
6144                 if (vmx->nested.smm.guest_mode)
6145                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6146
6147                 if (is_guest_mode(vcpu)) {
6148                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6149
6150                         if (vmx->nested.nested_run_pending)
6151                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6152
6153                         if (vmx->nested.mtf_pending)
6154                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6155
6156                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6157                             vmx->nested.has_preemption_timer_deadline) {
6158                                 kvm_state.hdr.vmx.flags |=
6159                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6160                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6161                                         vmx->nested.preemption_timer_deadline;
6162                         }
6163                 }
6164         }
6165
6166         if (user_data_size < kvm_state.size)
6167                 goto out;
6168
6169         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6170                 return -EFAULT;
6171
6172         if (!vmx_has_valid_vmcs12(vcpu))
6173                 goto out;
6174
6175         /*
6176          * When running L2, the authoritative vmcs12 state is in the
6177          * vmcs02. When running L1, the authoritative vmcs12 state is
6178          * in the shadow or enlightened vmcs linked to vmcs01, unless
6179          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6180          * vmcs12 state is in the vmcs12 already.
6181          */
6182         if (is_guest_mode(vcpu)) {
6183                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6184                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6185         } else  {
6186                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6187                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6188                         if (vmx->nested.hv_evmcs)
6189                                 copy_enlightened_to_vmcs12(vmx);
6190                         else if (enable_shadow_vmcs)
6191                                 copy_shadow_to_vmcs12(vmx);
6192                 }
6193         }
6194
6195         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6196         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6197
6198         /*
6199          * Copy over the full allocated size of vmcs12 rather than just the size
6200          * of the struct.
6201          */
6202         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6203                 return -EFAULT;
6204
6205         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6206             vmcs12->vmcs_link_pointer != -1ull) {
6207                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6208                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6209                         return -EFAULT;
6210         }
6211 out:
6212         return kvm_state.size;
6213 }
6214
6215 /*
6216  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6217  */
6218 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6219 {
6220         if (is_guest_mode(vcpu)) {
6221                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6222                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6223         }
6224         free_nested(vcpu);
6225 }
6226
6227 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6228                                 struct kvm_nested_state __user *user_kvm_nested_state,
6229                                 struct kvm_nested_state *kvm_state)
6230 {
6231         struct vcpu_vmx *vmx = to_vmx(vcpu);
6232         struct vmcs12 *vmcs12;
6233         enum vm_entry_failure_code ignored;
6234         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6235                 &user_kvm_nested_state->data.vmx[0];
6236         int ret;
6237
6238         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6239                 return -EINVAL;
6240
6241         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6242                 if (kvm_state->hdr.vmx.smm.flags)
6243                         return -EINVAL;
6244
6245                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6246                         return -EINVAL;
6247
6248                 /*
6249                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6250                  * enable eVMCS capability on vCPU. However, since then
6251                  * code was changed such that flag signals vmcs12 should
6252                  * be copied into eVMCS in guest memory.
6253                  *
6254                  * To preserve backwards compatability, allow user
6255                  * to set this flag even when there is no VMXON region.
6256                  */
6257                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6258                         return -EINVAL;
6259         } else {
6260                 if (!nested_vmx_allowed(vcpu))
6261                         return -EINVAL;
6262
6263                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6264                         return -EINVAL;
6265         }
6266
6267         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6268             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6269                 return -EINVAL;
6270
6271         if (kvm_state->hdr.vmx.smm.flags &
6272             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6273                 return -EINVAL;
6274
6275         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6276                 return -EINVAL;
6277
6278         /*
6279          * SMM temporarily disables VMX, so we cannot be in guest mode,
6280          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6281          * must be zero.
6282          */
6283         if (is_smm(vcpu) ?
6284                 (kvm_state->flags &
6285                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6286                 : kvm_state->hdr.vmx.smm.flags)
6287                 return -EINVAL;
6288
6289         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6290             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6291                 return -EINVAL;
6292
6293         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6294                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6295                         return -EINVAL;
6296
6297         vmx_leave_nested(vcpu);
6298
6299         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6300                 return 0;
6301
6302         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6303         ret = enter_vmx_operation(vcpu);
6304         if (ret)
6305                 return ret;
6306
6307         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6308         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6309                 /* See vmx_has_valid_vmcs12.  */
6310                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6311                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6312                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6313                         return -EINVAL;
6314                 else
6315                         return 0;
6316         }
6317
6318         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6319                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6320                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6321                         return -EINVAL;
6322
6323                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6324         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6325                 /*
6326                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6327                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6328                  * restored yet. EVMCS will be mapped from
6329                  * nested_get_vmcs12_pages().
6330                  */
6331                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6332         } else {
6333                 return -EINVAL;
6334         }
6335
6336         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6337                 vmx->nested.smm.vmxon = true;
6338                 vmx->nested.vmxon = false;
6339
6340                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6341                         vmx->nested.smm.guest_mode = true;
6342         }
6343
6344         vmcs12 = get_vmcs12(vcpu);
6345         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6346                 return -EFAULT;
6347
6348         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6349                 return -EINVAL;
6350
6351         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6352                 return 0;
6353
6354         vmx->nested.nested_run_pending =
6355                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6356
6357         vmx->nested.mtf_pending =
6358                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6359
6360         ret = -EINVAL;
6361         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6362             vmcs12->vmcs_link_pointer != -1ull) {
6363                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6364
6365                 if (kvm_state->size <
6366                     sizeof(*kvm_state) +
6367                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6368                         goto error_guest_mode;
6369
6370                 if (copy_from_user(shadow_vmcs12,
6371                                    user_vmx_nested_state->shadow_vmcs12,
6372                                    sizeof(*shadow_vmcs12))) {
6373                         ret = -EFAULT;
6374                         goto error_guest_mode;
6375                 }
6376
6377                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6378                     !shadow_vmcs12->hdr.shadow_vmcs)
6379                         goto error_guest_mode;
6380         }
6381
6382         vmx->nested.has_preemption_timer_deadline = false;
6383         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6384                 vmx->nested.has_preemption_timer_deadline = true;
6385                 vmx->nested.preemption_timer_deadline =
6386                         kvm_state->hdr.vmx.preemption_timer_deadline;
6387         }
6388
6389         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6390             nested_vmx_check_host_state(vcpu, vmcs12) ||
6391             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6392                 goto error_guest_mode;
6393
6394         vmx->nested.dirty_vmcs12 = true;
6395         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6396         if (ret)
6397                 goto error_guest_mode;
6398
6399         return 0;
6400
6401 error_guest_mode:
6402         vmx->nested.nested_run_pending = 0;
6403         return ret;
6404 }
6405
6406 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6407 {
6408         if (enable_shadow_vmcs) {
6409                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6410                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6411         }
6412 }
6413
6414 /*
6415  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6416  * returned for the various VMX controls MSRs when nested VMX is enabled.
6417  * The same values should also be used to verify that vmcs12 control fields are
6418  * valid during nested entry from L1 to L2.
6419  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6420  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6421  * bit in the high half is on if the corresponding bit in the control field
6422  * may be on. See also vmx_control_verify().
6423  */
6424 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6425 {
6426         /*
6427          * Note that as a general rule, the high half of the MSRs (bits in
6428          * the control fields which may be 1) should be initialized by the
6429          * intersection of the underlying hardware's MSR (i.e., features which
6430          * can be supported) and the list of features we want to expose -
6431          * because they are known to be properly supported in our code.
6432          * Also, usually, the low half of the MSRs (bits which must be 1) can
6433          * be set to 0, meaning that L1 may turn off any of these bits. The
6434          * reason is that if one of these bits is necessary, it will appear
6435          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6436          * fields of vmcs01 and vmcs02, will turn these bits off - and
6437          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6438          * These rules have exceptions below.
6439          */
6440
6441         /* pin-based controls */
6442         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6443                 msrs->pinbased_ctls_low,
6444                 msrs->pinbased_ctls_high);
6445         msrs->pinbased_ctls_low |=
6446                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6447         msrs->pinbased_ctls_high &=
6448                 PIN_BASED_EXT_INTR_MASK |
6449                 PIN_BASED_NMI_EXITING |
6450                 PIN_BASED_VIRTUAL_NMIS |
6451                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6452         msrs->pinbased_ctls_high |=
6453                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6454                 PIN_BASED_VMX_PREEMPTION_TIMER;
6455
6456         /* exit controls */
6457         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6458                 msrs->exit_ctls_low,
6459                 msrs->exit_ctls_high);
6460         msrs->exit_ctls_low =
6461                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6462
6463         msrs->exit_ctls_high &=
6464 #ifdef CONFIG_X86_64
6465                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6466 #endif
6467                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6468                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6469         msrs->exit_ctls_high |=
6470                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6471                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6472                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6473
6474         /* We support free control of debug control saving. */
6475         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6476
6477         /* entry controls */
6478         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6479                 msrs->entry_ctls_low,
6480                 msrs->entry_ctls_high);
6481         msrs->entry_ctls_low =
6482                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6483         msrs->entry_ctls_high &=
6484 #ifdef CONFIG_X86_64
6485                 VM_ENTRY_IA32E_MODE |
6486 #endif
6487                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6488                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6489         msrs->entry_ctls_high |=
6490                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6491
6492         /* We support free control of debug control loading. */
6493         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6494
6495         /* cpu-based controls */
6496         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6497                 msrs->procbased_ctls_low,
6498                 msrs->procbased_ctls_high);
6499         msrs->procbased_ctls_low =
6500                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6501         msrs->procbased_ctls_high &=
6502                 CPU_BASED_INTR_WINDOW_EXITING |
6503                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6504                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6505                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6506                 CPU_BASED_CR3_STORE_EXITING |
6507 #ifdef CONFIG_X86_64
6508                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6509 #endif
6510                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6511                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6512                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6513                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6514                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6515         /*
6516          * We can allow some features even when not supported by the
6517          * hardware. For example, L1 can specify an MSR bitmap - and we
6518          * can use it to avoid exits to L1 - even when L0 runs L2
6519          * without MSR bitmaps.
6520          */
6521         msrs->procbased_ctls_high |=
6522                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6523                 CPU_BASED_USE_MSR_BITMAPS;
6524
6525         /* We support free control of CR3 access interception. */
6526         msrs->procbased_ctls_low &=
6527                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6528
6529         /*
6530          * secondary cpu-based controls.  Do not include those that
6531          * depend on CPUID bits, they are added later by
6532          * vmx_vcpu_after_set_cpuid.
6533          */
6534         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6535                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6536                       msrs->secondary_ctls_low,
6537                       msrs->secondary_ctls_high);
6538
6539         msrs->secondary_ctls_low = 0;
6540         msrs->secondary_ctls_high &=
6541                 SECONDARY_EXEC_DESC |
6542                 SECONDARY_EXEC_ENABLE_RDTSCP |
6543                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6544                 SECONDARY_EXEC_WBINVD_EXITING |
6545                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6546                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6547                 SECONDARY_EXEC_RDRAND_EXITING |
6548                 SECONDARY_EXEC_ENABLE_INVPCID |
6549                 SECONDARY_EXEC_RDSEED_EXITING |
6550                 SECONDARY_EXEC_XSAVES;
6551
6552         /*
6553          * We can emulate "VMCS shadowing," even if the hardware
6554          * doesn't support it.
6555          */
6556         msrs->secondary_ctls_high |=
6557                 SECONDARY_EXEC_SHADOW_VMCS;
6558
6559         if (enable_ept) {
6560                 /* nested EPT: emulate EPT also to L1 */
6561                 msrs->secondary_ctls_high |=
6562                         SECONDARY_EXEC_ENABLE_EPT;
6563                 msrs->ept_caps =
6564                         VMX_EPT_PAGE_WALK_4_BIT |
6565                         VMX_EPT_PAGE_WALK_5_BIT |
6566                         VMX_EPTP_WB_BIT |
6567                         VMX_EPT_INVEPT_BIT |
6568                         VMX_EPT_EXECUTE_ONLY_BIT;
6569
6570                 msrs->ept_caps &= ept_caps;
6571                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6572                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6573                         VMX_EPT_1GB_PAGE_BIT;
6574                 if (enable_ept_ad_bits) {
6575                         msrs->secondary_ctls_high |=
6576                                 SECONDARY_EXEC_ENABLE_PML;
6577                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6578                 }
6579         }
6580
6581         if (cpu_has_vmx_vmfunc()) {
6582                 msrs->secondary_ctls_high |=
6583                         SECONDARY_EXEC_ENABLE_VMFUNC;
6584                 /*
6585                  * Advertise EPTP switching unconditionally
6586                  * since we emulate it
6587                  */
6588                 if (enable_ept)
6589                         msrs->vmfunc_controls =
6590                                 VMX_VMFUNC_EPTP_SWITCHING;
6591         }
6592
6593         /*
6594          * Old versions of KVM use the single-context version without
6595          * checking for support, so declare that it is supported even
6596          * though it is treated as global context.  The alternative is
6597          * not failing the single-context invvpid, and it is worse.
6598          */
6599         if (enable_vpid) {
6600                 msrs->secondary_ctls_high |=
6601                         SECONDARY_EXEC_ENABLE_VPID;
6602                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6603                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6604         }
6605
6606         if (enable_unrestricted_guest)
6607                 msrs->secondary_ctls_high |=
6608                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6609
6610         if (flexpriority_enabled)
6611                 msrs->secondary_ctls_high |=
6612                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6613
6614         /* miscellaneous data */
6615         rdmsr(MSR_IA32_VMX_MISC,
6616                 msrs->misc_low,
6617                 msrs->misc_high);
6618         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6619         msrs->misc_low |=
6620                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6621                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6622                 VMX_MISC_ACTIVITY_HLT;
6623         msrs->misc_high = 0;
6624
6625         /*
6626          * This MSR reports some information about VMX support. We
6627          * should return information about the VMX we emulate for the
6628          * guest, and the VMCS structure we give it - not about the
6629          * VMX support of the underlying hardware.
6630          */
6631         msrs->basic =
6632                 VMCS12_REVISION |
6633                 VMX_BASIC_TRUE_CTLS |
6634                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6635                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6636
6637         if (cpu_has_vmx_basic_inout())
6638                 msrs->basic |= VMX_BASIC_INOUT;
6639
6640         /*
6641          * These MSRs specify bits which the guest must keep fixed on
6642          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6643          * We picked the standard core2 setting.
6644          */
6645 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6646 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6647         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6648         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6649
6650         /* These MSRs specify bits which the guest must keep fixed off. */
6651         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6652         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6653
6654         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6655         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6656 }
6657
6658 void nested_vmx_hardware_unsetup(void)
6659 {
6660         int i;
6661
6662         if (enable_shadow_vmcs) {
6663                 for (i = 0; i < VMX_BITMAP_NR; i++)
6664                         free_page((unsigned long)vmx_bitmap[i]);
6665         }
6666 }
6667
6668 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6669 {
6670         int i;
6671
6672         if (!cpu_has_vmx_shadow_vmcs())
6673                 enable_shadow_vmcs = 0;
6674         if (enable_shadow_vmcs) {
6675                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6676                         /*
6677                          * The vmx_bitmap is not tied to a VM and so should
6678                          * not be charged to a memcg.
6679                          */
6680                         vmx_bitmap[i] = (unsigned long *)
6681                                 __get_free_page(GFP_KERNEL);
6682                         if (!vmx_bitmap[i]) {
6683                                 nested_vmx_hardware_unsetup();
6684                                 return -ENOMEM;
6685                         }
6686                 }
6687
6688                 init_vmcs_shadow_fields();
6689         }
6690
6691         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6692         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6693         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6694         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6695         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6696         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6697         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6698         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6699         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6700         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6701         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6702         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6703
6704         return 0;
6705 }
6706
6707 struct kvm_x86_nested_ops vmx_nested_ops = {
6708         .leave_nested = vmx_leave_nested,
6709         .check_events = vmx_check_nested_events,
6710         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6711         .get_state = vmx_get_nested_state,
6712         .set_state = vmx_set_nested_state,
6713         .get_nested_state_pages = vmx_get_nested_state_pages,
6714         .write_log_dirty = nested_vmx_write_pml_buffer,
6715         .enable_evmcs = nested_enable_evmcs,
6716         .get_evmcs_version = nested_get_evmcs_version,
6717 };