GNU Linux-libre 6.1.24-gnu
[releases.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <linux/bsearch.h>
17 #include <linux/sort.h>
18 #include <asm/perf_event.h>
19 #include <asm/cpu_device_id.h>
20 #include "x86.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "pmu.h"
24
25 /* This is enough to filter the vast majority of currently defined events. */
26 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
27
28 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
29 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
30
31 static const struct x86_cpu_id vmx_icl_pebs_cpu[] = {
32         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
33         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
34         {}
35 };
36
37 /* NOTE:
38  * - Each perf counter is defined as "struct kvm_pmc";
39  * - There are two types of perf counters: general purpose (gp) and fixed.
40  *   gp counters are stored in gp_counters[] and fixed counters are stored
41  *   in fixed_counters[] respectively. Both of them are part of "struct
42  *   kvm_pmu";
43  * - pmu.c understands the difference between gp counters and fixed counters.
44  *   However AMD doesn't support fixed-counters;
45  * - There are three types of index to access perf counters (PMC):
46  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
47  *        has MSR_K7_PERFCTRn and, for families 15H and later,
48  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
49  *        aliased to MSR_K7_PERFCTRn.
50  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
51  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
52  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
53  *        that it also supports fixed counters. idx can be used to as index to
54  *        gp and fixed counters.
55  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
56  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
57  *        all perf counters (both gp and fixed). The mapping relationship
58  *        between pmc and perf counters is as the following:
59  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
60  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
61  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
62  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
63  */
64
65 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
66
67 #define KVM_X86_PMU_OP(func)                                         \
68         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
69                                 *(((struct kvm_pmu_ops *)0)->func));
70 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
71 #include <asm/kvm-x86-pmu-ops.h>
72
73 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
74 {
75         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
76
77 #define __KVM_X86_PMU_OP(func) \
78         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
79 #define KVM_X86_PMU_OP(func) \
80         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
81 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
82 #include <asm/kvm-x86-pmu-ops.h>
83 #undef __KVM_X86_PMU_OP
84 }
85
86 static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
87 {
88         return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
89 }
90
91 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
92 {
93         struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
94         struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
95
96         kvm_pmu_deliver_pmi(vcpu);
97 }
98
99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
100 {
101         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
102         bool skip_pmi = false;
103
104         /* Ignore counters that have been reprogrammed already. */
105         if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi))
106                 return;
107
108         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
109                 if (!in_pmi) {
110                         /*
111                          * TODO: KVM is currently _choosing_ to not generate records
112                          * for emulated instructions, avoiding BUFFER_OVF PMI when
113                          * there are no records. Strictly speaking, it should be done
114                          * as well in the right context to improve sampling accuracy.
115                          */
116                         skip_pmi = true;
117                 } else {
118                         /* Indicate PEBS overflow PMI to guest. */
119                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
120                                                       (unsigned long *)&pmu->global_status);
121                 }
122         } else {
123                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
124         }
125         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
126
127         if (!pmc->intr || skip_pmi)
128                 return;
129
130         /*
131          * Inject PMI. If vcpu was in a guest mode during NMI PMI
132          * can be ejected on a guest mode re-entry. Otherwise we can't
133          * be sure that vcpu wasn't executing hlt instruction at the
134          * time of vmexit and is not going to re-enter guest mode until
135          * woken up. So we should wake it, but this is impossible from
136          * NMI context. Do it from irq work instead.
137          */
138         if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
139                 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
140         else
141                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
142 }
143
144 static void kvm_perf_overflow(struct perf_event *perf_event,
145                               struct perf_sample_data *data,
146                               struct pt_regs *regs)
147 {
148         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
149
150         __kvm_perf_overflow(pmc, true);
151 }
152
153 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
154                                   u64 config, bool exclude_user,
155                                   bool exclude_kernel, bool intr)
156 {
157         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
158         struct perf_event *event;
159         struct perf_event_attr attr = {
160                 .type = type,
161                 .size = sizeof(attr),
162                 .pinned = true,
163                 .exclude_idle = true,
164                 .exclude_host = 1,
165                 .exclude_user = exclude_user,
166                 .exclude_kernel = exclude_kernel,
167                 .config = config,
168         };
169         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
170
171         attr.sample_period = get_sample_period(pmc, pmc->counter);
172
173         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
174             guest_cpuid_is_intel(pmc->vcpu)) {
175                 /*
176                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
177                  * period. Just clear the sample period so at least
178                  * allocating the counter doesn't fail.
179                  */
180                 attr.sample_period = 0;
181         }
182         if (pebs) {
183                 /*
184                  * The non-zero precision level of guest event makes the ordinary
185                  * guest event becomes a guest PEBS event and triggers the host
186                  * PEBS PMI handler to determine whether the PEBS overflow PMI
187                  * comes from the host counters or the guest.
188                  *
189                  * For most PEBS hardware events, the difference in the software
190                  * precision levels of guest and host PEBS events will not affect
191                  * the accuracy of the PEBS profiling result, because the "event IP"
192                  * in the PEBS record is calibrated on the guest side.
193                  *
194                  * On Icelake everything is fine. Other hardware (GLC+, TNT+) that
195                  * could possibly care here is unsupported and needs changes.
196                  */
197                 attr.precise_ip = 1;
198                 if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32)
199                         attr.precise_ip = 3;
200         }
201
202         event = perf_event_create_kernel_counter(&attr, -1, current,
203                                                  kvm_perf_overflow, pmc);
204         if (IS_ERR(event)) {
205                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
206                             PTR_ERR(event), pmc->idx);
207                 return;
208         }
209
210         pmc->perf_event = event;
211         pmc_to_pmu(pmc)->event_count++;
212         clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
213         pmc->is_paused = false;
214         pmc->intr = intr || pebs;
215 }
216
217 static void pmc_pause_counter(struct kvm_pmc *pmc)
218 {
219         u64 counter = pmc->counter;
220
221         if (!pmc->perf_event || pmc->is_paused)
222                 return;
223
224         /* update counter, reset event value to avoid redundant accumulation */
225         counter += perf_event_pause(pmc->perf_event, true);
226         pmc->counter = counter & pmc_bitmask(pmc);
227         pmc->is_paused = true;
228 }
229
230 static bool pmc_resume_counter(struct kvm_pmc *pmc)
231 {
232         if (!pmc->perf_event)
233                 return false;
234
235         /* recalibrate sample period and check if it's accepted by perf core */
236         if (perf_event_period(pmc->perf_event,
237                               get_sample_period(pmc, pmc->counter)))
238                 return false;
239
240         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
241             (!!pmc->perf_event->attr.precise_ip))
242                 return false;
243
244         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
245         perf_event_enable(pmc->perf_event);
246         pmc->is_paused = false;
247
248         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
249         return true;
250 }
251
252 static int cmp_u64(const void *pa, const void *pb)
253 {
254         u64 a = *(u64 *)pa;
255         u64 b = *(u64 *)pb;
256
257         return (a > b) - (a < b);
258 }
259
260 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
261 {
262         struct kvm_pmu_event_filter *filter;
263         struct kvm *kvm = pmc->vcpu->kvm;
264         bool allow_event = true;
265         __u64 key;
266         int idx;
267
268         if (!static_call(kvm_x86_pmu_hw_event_available)(pmc))
269                 return false;
270
271         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
272         if (!filter)
273                 goto out;
274
275         if (pmc_is_gp(pmc)) {
276                 key = pmc->eventsel & AMD64_RAW_EVENT_MASK_NB;
277                 if (bsearch(&key, filter->events, filter->nevents,
278                             sizeof(__u64), cmp_u64))
279                         allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
280                 else
281                         allow_event = filter->action == KVM_PMU_EVENT_DENY;
282         } else {
283                 idx = pmc->idx - INTEL_PMC_IDX_FIXED;
284                 if (filter->action == KVM_PMU_EVENT_DENY &&
285                     test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
286                         allow_event = false;
287                 if (filter->action == KVM_PMU_EVENT_ALLOW &&
288                     !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
289                         allow_event = false;
290         }
291
292 out:
293         return allow_event;
294 }
295
296 void reprogram_counter(struct kvm_pmc *pmc)
297 {
298         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
299         u64 eventsel = pmc->eventsel;
300         u64 new_config = eventsel;
301         u8 fixed_ctr_ctrl;
302
303         pmc_pause_counter(pmc);
304
305         if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc))
306                 return;
307
308         if (!check_pmu_event_filter(pmc))
309                 return;
310
311         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
312                 printk_once("kvm pmu: pin control bit is ignored\n");
313
314         if (pmc_is_fixed(pmc)) {
315                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
316                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
317                 if (fixed_ctr_ctrl & 0x1)
318                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
319                 if (fixed_ctr_ctrl & 0x2)
320                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
321                 if (fixed_ctr_ctrl & 0x8)
322                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
323                 new_config = (u64)fixed_ctr_ctrl;
324         }
325
326         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
327                 return;
328
329         pmc_release_perf_event(pmc);
330
331         pmc->current_config = new_config;
332         pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
333                               (eventsel & pmu->raw_event_mask),
334                               !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
335                               !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
336                               eventsel & ARCH_PERFMON_EVENTSEL_INT);
337 }
338 EXPORT_SYMBOL_GPL(reprogram_counter);
339
340 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
341 {
342         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
343         int bit;
344
345         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
346                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
347
348                 if (unlikely(!pmc || !pmc->perf_event)) {
349                         clear_bit(bit, pmu->reprogram_pmi);
350                         continue;
351                 }
352                 reprogram_counter(pmc);
353         }
354
355         /*
356          * Unused perf_events are only released if the corresponding MSRs
357          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
358          * triggers KVM_REQ_PMU if cleanup is needed.
359          */
360         if (unlikely(pmu->need_cleanup))
361                 kvm_pmu_cleanup(vcpu);
362 }
363
364 /* check if idx is a valid index to access PMU */
365 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
366 {
367         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
368 }
369
370 bool is_vmware_backdoor_pmc(u32 pmc_idx)
371 {
372         switch (pmc_idx) {
373         case VMWARE_BACKDOOR_PMC_HOST_TSC:
374         case VMWARE_BACKDOOR_PMC_REAL_TIME:
375         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
376                 return true;
377         }
378         return false;
379 }
380
381 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
382 {
383         u64 ctr_val;
384
385         switch (idx) {
386         case VMWARE_BACKDOOR_PMC_HOST_TSC:
387                 ctr_val = rdtsc();
388                 break;
389         case VMWARE_BACKDOOR_PMC_REAL_TIME:
390                 ctr_val = ktime_get_boottime_ns();
391                 break;
392         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
393                 ctr_val = ktime_get_boottime_ns() +
394                         vcpu->kvm->arch.kvmclock_offset;
395                 break;
396         default:
397                 return 1;
398         }
399
400         *data = ctr_val;
401         return 0;
402 }
403
404 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
405 {
406         bool fast_mode = idx & (1u << 31);
407         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
408         struct kvm_pmc *pmc;
409         u64 mask = fast_mode ? ~0u : ~0ull;
410
411         if (!pmu->version)
412                 return 1;
413
414         if (is_vmware_backdoor_pmc(idx))
415                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
416
417         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
418         if (!pmc)
419                 return 1;
420
421         if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
422             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
423             (kvm_read_cr0(vcpu) & X86_CR0_PE))
424                 return 1;
425
426         *data = pmc_read_counter(pmc) & mask;
427         return 0;
428 }
429
430 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
431 {
432         if (lapic_in_kernel(vcpu)) {
433                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
434                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
435         }
436 }
437
438 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
439 {
440         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
441                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
442 }
443
444 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
445 {
446         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
447         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
448
449         if (pmc)
450                 __set_bit(pmc->idx, pmu->pmc_in_use);
451 }
452
453 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
454 {
455         return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
456 }
457
458 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
459 {
460         kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
461         return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
462 }
463
464 /* refresh PMU settings. This function generally is called when underlying
465  * settings are changed (such as changes of PMU CPUID by guest VMs), which
466  * should rarely happen.
467  */
468 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
469 {
470         static_call(kvm_x86_pmu_refresh)(vcpu);
471 }
472
473 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
474 {
475         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
476
477         irq_work_sync(&pmu->irq_work);
478         static_call(kvm_x86_pmu_reset)(vcpu);
479 }
480
481 void kvm_pmu_init(struct kvm_vcpu *vcpu)
482 {
483         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
484
485         memset(pmu, 0, sizeof(*pmu));
486         static_call(kvm_x86_pmu_init)(vcpu);
487         init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
488         pmu->event_count = 0;
489         pmu->need_cleanup = false;
490         kvm_pmu_refresh(vcpu);
491 }
492
493 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
494 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
495 {
496         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
497         struct kvm_pmc *pmc = NULL;
498         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
499         int i;
500
501         pmu->need_cleanup = false;
502
503         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
504                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
505
506         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
507                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
508
509                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
510                         pmc_stop_counter(pmc);
511         }
512
513         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
514
515         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
516 }
517
518 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
519 {
520         kvm_pmu_reset(vcpu);
521 }
522
523 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
524 {
525         u64 prev_count;
526
527         prev_count = pmc->counter;
528         pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
529
530         reprogram_counter(pmc);
531         if (pmc->counter < prev_count)
532                 __kvm_perf_overflow(pmc, false);
533 }
534
535 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
536         unsigned int perf_hw_id)
537 {
538         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
539                 AMD64_RAW_EVENT_MASK_NB);
540 }
541
542 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
543 {
544         bool select_os, select_user;
545         u64 config = pmc->current_config;
546
547         if (pmc_is_gp(pmc)) {
548                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
549                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
550         } else {
551                 select_os = config & 0x1;
552                 select_user = config & 0x2;
553         }
554
555         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
556 }
557
558 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
559 {
560         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
561         struct kvm_pmc *pmc;
562         int i;
563
564         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
565                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
566
567                 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
568                         continue;
569
570                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
571                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
572                         kvm_pmu_incr_counter(pmc);
573         }
574 }
575 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
576
577 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
578 {
579         struct kvm_pmu_event_filter tmp, *filter;
580         size_t size;
581         int r;
582
583         if (copy_from_user(&tmp, argp, sizeof(tmp)))
584                 return -EFAULT;
585
586         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
587             tmp.action != KVM_PMU_EVENT_DENY)
588                 return -EINVAL;
589
590         if (tmp.flags != 0)
591                 return -EINVAL;
592
593         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
594                 return -E2BIG;
595
596         size = struct_size(filter, events, tmp.nevents);
597         filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
598         if (!filter)
599                 return -ENOMEM;
600
601         r = -EFAULT;
602         if (copy_from_user(filter, argp, size))
603                 goto cleanup;
604
605         /* Ensure nevents can't be changed between the user copies. */
606         *filter = tmp;
607
608         /*
609          * Sort the in-kernel list so that we can search it with bsearch.
610          */
611         sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
612
613         mutex_lock(&kvm->lock);
614         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
615                                      mutex_is_locked(&kvm->lock));
616         mutex_unlock(&kvm->lock);
617
618         synchronize_srcu_expedited(&kvm->srcu);
619         r = 0;
620 cleanup:
621         kfree(filter);
622         return r;
623 }