GNU Linux-libre 6.8.7-gnu
[releases.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36         /* Instruction-Accurate PDIR (PDIR++) */
37         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38         {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44         {}
45 };
46
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func)                                         \
78         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
79                                 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97 {
98         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99         bool skip_pmi = false;
100
101         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102                 if (!in_pmi) {
103                         /*
104                          * TODO: KVM is currently _choosing_ to not generate records
105                          * for emulated instructions, avoiding BUFFER_OVF PMI when
106                          * there are no records. Strictly speaking, it should be done
107                          * as well in the right context to improve sampling accuracy.
108                          */
109                         skip_pmi = true;
110                 } else {
111                         /* Indicate PEBS overflow PMI to guest. */
112                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113                                                       (unsigned long *)&pmu->global_status);
114                 }
115         } else {
116                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117         }
118
119         if (pmc->intr && !skip_pmi)
120                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121 }
122
123 static void kvm_perf_overflow(struct perf_event *perf_event,
124                               struct perf_sample_data *data,
125                               struct pt_regs *regs)
126 {
127         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128
129         /*
130          * Ignore asynchronous overflow events for counters that are scheduled
131          * to be reprogrammed, e.g. if a PMI for the previous event races with
132          * KVM's handling of a related guest WRMSR.
133          */
134         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135                 return;
136
137         __kvm_perf_overflow(pmc, true);
138
139         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140 }
141
142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143 {
144         /*
145          * For some model specific pebs counters with special capabilities
146          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147          * level to the maximum value (currently 3, backwards compatible)
148          * so that the perf subsystem would assign specific hardware counter
149          * with that capability for vPMC.
150          */
151         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153                 return 3;
154
155         /*
156          * The non-zero precision level of guest event makes the ordinary
157          * guest event becomes a guest PEBS event and triggers the host
158          * PEBS PMI handler to determine whether the PEBS overflow PMI
159          * comes from the host counters or the guest.
160          */
161         return 1;
162 }
163
164 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
165 {
166         u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
167
168         if (!sample_period)
169                 sample_period = pmc_bitmask(pmc) + 1;
170         return sample_period;
171 }
172
173 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
174                                  bool exclude_user, bool exclude_kernel,
175                                  bool intr)
176 {
177         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
178         struct perf_event *event;
179         struct perf_event_attr attr = {
180                 .type = type,
181                 .size = sizeof(attr),
182                 .pinned = true,
183                 .exclude_idle = true,
184                 .exclude_host = 1,
185                 .exclude_user = exclude_user,
186                 .exclude_kernel = exclude_kernel,
187                 .config = config,
188         };
189         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
190
191         attr.sample_period = get_sample_period(pmc, pmc->counter);
192
193         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
194             guest_cpuid_is_intel(pmc->vcpu)) {
195                 /*
196                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
197                  * period. Just clear the sample period so at least
198                  * allocating the counter doesn't fail.
199                  */
200                 attr.sample_period = 0;
201         }
202         if (pebs) {
203                 /*
204                  * For most PEBS hardware events, the difference in the software
205                  * precision levels of guest and host PEBS events will not affect
206                  * the accuracy of the PEBS profiling result, because the "event IP"
207                  * in the PEBS record is calibrated on the guest side.
208                  */
209                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
210         }
211
212         event = perf_event_create_kernel_counter(&attr, -1, current,
213                                                  kvm_perf_overflow, pmc);
214         if (IS_ERR(event)) {
215                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
216                             PTR_ERR(event), pmc->idx);
217                 return PTR_ERR(event);
218         }
219
220         pmc->perf_event = event;
221         pmc_to_pmu(pmc)->event_count++;
222         pmc->is_paused = false;
223         pmc->intr = intr || pebs;
224         return 0;
225 }
226
227 static bool pmc_pause_counter(struct kvm_pmc *pmc)
228 {
229         u64 counter = pmc->counter;
230         u64 prev_counter;
231
232         /* update counter, reset event value to avoid redundant accumulation */
233         if (pmc->perf_event && !pmc->is_paused)
234                 counter += perf_event_pause(pmc->perf_event, true);
235
236         /*
237          * Snapshot the previous counter *after* accumulating state from perf.
238          * If overflow already happened, hardware (via perf) is responsible for
239          * generating a PMI.  KVM just needs to detect overflow on emulated
240          * counter events that haven't yet been processed.
241          */
242         prev_counter = counter & pmc_bitmask(pmc);
243
244         counter += pmc->emulated_counter;
245         pmc->counter = counter & pmc_bitmask(pmc);
246
247         pmc->emulated_counter = 0;
248         pmc->is_paused = true;
249
250         return pmc->counter < prev_counter;
251 }
252
253 static bool pmc_resume_counter(struct kvm_pmc *pmc)
254 {
255         if (!pmc->perf_event)
256                 return false;
257
258         /* recalibrate sample period and check if it's accepted by perf core */
259         if (is_sampling_event(pmc->perf_event) &&
260             perf_event_period(pmc->perf_event,
261                               get_sample_period(pmc, pmc->counter)))
262                 return false;
263
264         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
265             (!!pmc->perf_event->attr.precise_ip))
266                 return false;
267
268         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
269         perf_event_enable(pmc->perf_event);
270         pmc->is_paused = false;
271
272         return true;
273 }
274
275 static void pmc_release_perf_event(struct kvm_pmc *pmc)
276 {
277         if (pmc->perf_event) {
278                 perf_event_release_kernel(pmc->perf_event);
279                 pmc->perf_event = NULL;
280                 pmc->current_config = 0;
281                 pmc_to_pmu(pmc)->event_count--;
282         }
283 }
284
285 static void pmc_stop_counter(struct kvm_pmc *pmc)
286 {
287         if (pmc->perf_event) {
288                 pmc->counter = pmc_read_counter(pmc);
289                 pmc_release_perf_event(pmc);
290         }
291 }
292
293 static void pmc_update_sample_period(struct kvm_pmc *pmc)
294 {
295         if (!pmc->perf_event || pmc->is_paused ||
296             !is_sampling_event(pmc->perf_event))
297                 return;
298
299         perf_event_period(pmc->perf_event,
300                           get_sample_period(pmc, pmc->counter));
301 }
302
303 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
304 {
305         /*
306          * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
307          * read-modify-write.  Adjust the counter value so that its value is
308          * relative to the current count, as reading the current count from
309          * perf is faster than pausing and repgrogramming the event in order to
310          * reset it to '0'.  Note, this very sneakily offsets the accumulated
311          * emulated count too, by using pmc_read_counter()!
312          */
313         pmc->emulated_counter = 0;
314         pmc->counter += val - pmc_read_counter(pmc);
315         pmc->counter &= pmc_bitmask(pmc);
316         pmc_update_sample_period(pmc);
317 }
318 EXPORT_SYMBOL_GPL(pmc_write_counter);
319
320 static int filter_cmp(const void *pa, const void *pb, u64 mask)
321 {
322         u64 a = *(u64 *)pa & mask;
323         u64 b = *(u64 *)pb & mask;
324
325         return (a > b) - (a < b);
326 }
327
328
329 static int filter_sort_cmp(const void *pa, const void *pb)
330 {
331         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
332                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
333 }
334
335 /*
336  * For the event filter, searching is done on the 'includes' list and
337  * 'excludes' list separately rather than on the 'events' list (which
338  * has both).  As a result the exclude bit can be ignored.
339  */
340 static int filter_event_cmp(const void *pa, const void *pb)
341 {
342         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
343 }
344
345 static int find_filter_index(u64 *events, u64 nevents, u64 key)
346 {
347         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
348                           filter_event_cmp);
349
350         if (!fe)
351                 return -1;
352
353         return fe - events;
354 }
355
356 static bool is_filter_entry_match(u64 filter_event, u64 umask)
357 {
358         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
359         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
360
361         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
362                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
363                      ARCH_PERFMON_EVENTSEL_UMASK);
364
365         return (umask & mask) == match;
366 }
367
368 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
369 {
370         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
371         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
372         int i, index;
373
374         index = find_filter_index(events, nevents, event_select);
375         if (index < 0)
376                 return false;
377
378         /*
379          * Entries are sorted by the event select.  Walk the list in both
380          * directions to process all entries with the targeted event select.
381          */
382         for (i = index; i < nevents; i++) {
383                 if (filter_event_cmp(&events[i], &event_select))
384                         break;
385
386                 if (is_filter_entry_match(events[i], umask))
387                         return true;
388         }
389
390         for (i = index - 1; i >= 0; i--) {
391                 if (filter_event_cmp(&events[i], &event_select))
392                         break;
393
394                 if (is_filter_entry_match(events[i], umask))
395                         return true;
396         }
397
398         return false;
399 }
400
401 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
402                                 u64 eventsel)
403 {
404         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
405             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
406                 return f->action == KVM_PMU_EVENT_ALLOW;
407
408         return f->action == KVM_PMU_EVENT_DENY;
409 }
410
411 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
412                                    int idx)
413 {
414         int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
415
416         if (filter->action == KVM_PMU_EVENT_DENY &&
417             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
418                 return false;
419         if (filter->action == KVM_PMU_EVENT_ALLOW &&
420             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421                 return false;
422
423         return true;
424 }
425
426 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
427 {
428         struct kvm_x86_pmu_event_filter *filter;
429         struct kvm *kvm = pmc->vcpu->kvm;
430
431         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
432         if (!filter)
433                 return true;
434
435         if (pmc_is_gp(pmc))
436                 return is_gp_event_allowed(filter, pmc->eventsel);
437
438         return is_fixed_event_allowed(filter, pmc->idx);
439 }
440
441 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
442 {
443         return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
444                static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
445                check_pmu_event_filter(pmc);
446 }
447
448 static void reprogram_counter(struct kvm_pmc *pmc)
449 {
450         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
451         u64 eventsel = pmc->eventsel;
452         u64 new_config = eventsel;
453         bool emulate_overflow;
454         u8 fixed_ctr_ctrl;
455
456         emulate_overflow = pmc_pause_counter(pmc);
457
458         if (!pmc_event_is_allowed(pmc))
459                 goto reprogram_complete;
460
461         if (emulate_overflow)
462                 __kvm_perf_overflow(pmc, false);
463
464         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
465                 printk_once("kvm pmu: pin control bit is ignored\n");
466
467         if (pmc_is_fixed(pmc)) {
468                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
469                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
470                 if (fixed_ctr_ctrl & 0x1)
471                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
472                 if (fixed_ctr_ctrl & 0x2)
473                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
474                 if (fixed_ctr_ctrl & 0x8)
475                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
476                 new_config = (u64)fixed_ctr_ctrl;
477         }
478
479         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
480                 goto reprogram_complete;
481
482         pmc_release_perf_event(pmc);
483
484         pmc->current_config = new_config;
485
486         /*
487          * If reprogramming fails, e.g. due to contention, leave the counter's
488          * regprogram bit set, i.e. opportunistically try again on the next PMU
489          * refresh.  Don't make a new request as doing so can stall the guest
490          * if reprogramming repeatedly fails.
491          */
492         if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
493                                   (eventsel & pmu->raw_event_mask),
494                                   !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
495                                   !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
496                                   eventsel & ARCH_PERFMON_EVENTSEL_INT))
497                 return;
498
499 reprogram_complete:
500         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
501 }
502
503 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
504 {
505         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
506         int bit;
507
508         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
509                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
510
511                 if (unlikely(!pmc)) {
512                         clear_bit(bit, pmu->reprogram_pmi);
513                         continue;
514                 }
515
516                 reprogram_counter(pmc);
517         }
518
519         /*
520          * Unused perf_events are only released if the corresponding MSRs
521          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
522          * triggers KVM_REQ_PMU if cleanup is needed.
523          */
524         if (unlikely(pmu->need_cleanup))
525                 kvm_pmu_cleanup(vcpu);
526 }
527
528 /* check if idx is a valid index to access PMU */
529 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
530 {
531         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
532 }
533
534 bool is_vmware_backdoor_pmc(u32 pmc_idx)
535 {
536         switch (pmc_idx) {
537         case VMWARE_BACKDOOR_PMC_HOST_TSC:
538         case VMWARE_BACKDOOR_PMC_REAL_TIME:
539         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
540                 return true;
541         }
542         return false;
543 }
544
545 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
546 {
547         u64 ctr_val;
548
549         switch (idx) {
550         case VMWARE_BACKDOOR_PMC_HOST_TSC:
551                 ctr_val = rdtsc();
552                 break;
553         case VMWARE_BACKDOOR_PMC_REAL_TIME:
554                 ctr_val = ktime_get_boottime_ns();
555                 break;
556         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
557                 ctr_val = ktime_get_boottime_ns() +
558                         vcpu->kvm->arch.kvmclock_offset;
559                 break;
560         default:
561                 return 1;
562         }
563
564         *data = ctr_val;
565         return 0;
566 }
567
568 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
569 {
570         bool fast_mode = idx & (1u << 31);
571         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
572         struct kvm_pmc *pmc;
573         u64 mask = fast_mode ? ~0u : ~0ull;
574
575         if (!pmu->version)
576                 return 1;
577
578         if (is_vmware_backdoor_pmc(idx))
579                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
580
581         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
582         if (!pmc)
583                 return 1;
584
585         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
586             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
587             kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
588                 return 1;
589
590         *data = pmc_read_counter(pmc) & mask;
591         return 0;
592 }
593
594 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
595 {
596         if (lapic_in_kernel(vcpu)) {
597                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
598                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
599         }
600 }
601
602 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
603 {
604         switch (msr) {
605         case MSR_CORE_PERF_GLOBAL_STATUS:
606         case MSR_CORE_PERF_GLOBAL_CTRL:
607         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
608                 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
609         default:
610                 break;
611         }
612         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
613                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
614 }
615
616 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
617 {
618         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
619         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
620
621         if (pmc)
622                 __set_bit(pmc->idx, pmu->pmc_in_use);
623 }
624
625 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
626 {
627         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
628         u32 msr = msr_info->index;
629
630         switch (msr) {
631         case MSR_CORE_PERF_GLOBAL_STATUS:
632         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
633                 msr_info->data = pmu->global_status;
634                 break;
635         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
636         case MSR_CORE_PERF_GLOBAL_CTRL:
637                 msr_info->data = pmu->global_ctrl;
638                 break;
639         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
640         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
641                 msr_info->data = 0;
642                 break;
643         default:
644                 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
645         }
646
647         return 0;
648 }
649
650 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
651 {
652         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
653         u32 msr = msr_info->index;
654         u64 data = msr_info->data;
655         u64 diff;
656
657         /*
658          * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
659          * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
660          */
661         switch (msr) {
662         case MSR_CORE_PERF_GLOBAL_STATUS:
663                 if (!msr_info->host_initiated)
664                         return 1; /* RO MSR */
665                 fallthrough;
666         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
667                 /* Per PPR, Read-only MSR. Writes are ignored. */
668                 if (!msr_info->host_initiated)
669                         break;
670
671                 if (data & pmu->global_status_mask)
672                         return 1;
673
674                 pmu->global_status = data;
675                 break;
676         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
677                 data &= ~pmu->global_ctrl_mask;
678                 fallthrough;
679         case MSR_CORE_PERF_GLOBAL_CTRL:
680                 if (!kvm_valid_perf_global_ctrl(pmu, data))
681                         return 1;
682
683                 if (pmu->global_ctrl != data) {
684                         diff = pmu->global_ctrl ^ data;
685                         pmu->global_ctrl = data;
686                         reprogram_counters(pmu, diff);
687                 }
688                 break;
689         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
690                 /*
691                  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
692                  * GLOBAL_STATUS, and so the set of reserved bits is the same.
693                  */
694                 if (data & pmu->global_status_mask)
695                         return 1;
696                 fallthrough;
697         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
698                 if (!msr_info->host_initiated)
699                         pmu->global_status &= ~data;
700                 break;
701         default:
702                 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
703                 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
704         }
705
706         return 0;
707 }
708
709 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
710 {
711         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
712         struct kvm_pmc *pmc;
713         int i;
714
715         pmu->need_cleanup = false;
716
717         bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
718
719         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
720                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
721                 if (!pmc)
722                         continue;
723
724                 pmc_stop_counter(pmc);
725                 pmc->counter = 0;
726                 pmc->emulated_counter = 0;
727
728                 if (pmc_is_gp(pmc))
729                         pmc->eventsel = 0;
730         }
731
732         pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
733
734         static_call_cond(kvm_x86_pmu_reset)(vcpu);
735 }
736
737
738 /*
739  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
740  * and/or PERF_CAPABILITIES.
741  */
742 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
743 {
744         if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
745                 return;
746
747         /*
748          * Stop/release all existing counters/events before realizing the new
749          * vPMU model.
750          */
751         kvm_pmu_reset(vcpu);
752
753         bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
754         static_call(kvm_x86_pmu_refresh)(vcpu);
755 }
756
757 void kvm_pmu_init(struct kvm_vcpu *vcpu)
758 {
759         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
760
761         memset(pmu, 0, sizeof(*pmu));
762         static_call(kvm_x86_pmu_init)(vcpu);
763         kvm_pmu_refresh(vcpu);
764 }
765
766 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
767 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
768 {
769         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
770         struct kvm_pmc *pmc = NULL;
771         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
772         int i;
773
774         pmu->need_cleanup = false;
775
776         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
777                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
778
779         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
780                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
781
782                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
783                         pmc_stop_counter(pmc);
784         }
785
786         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
787
788         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
789 }
790
791 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
792 {
793         kvm_pmu_reset(vcpu);
794 }
795
796 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
797 {
798         pmc->emulated_counter++;
799         kvm_pmu_request_counter_reprogram(pmc);
800 }
801
802 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
803         unsigned int perf_hw_id)
804 {
805         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
806                 AMD64_RAW_EVENT_MASK_NB);
807 }
808
809 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
810 {
811         bool select_os, select_user;
812         u64 config;
813
814         if (pmc_is_gp(pmc)) {
815                 config = pmc->eventsel;
816                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
817                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
818         } else {
819                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
820                                           pmc->idx - INTEL_PMC_IDX_FIXED);
821                 select_os = config & 0x1;
822                 select_user = config & 0x2;
823         }
824
825         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
826 }
827
828 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
829 {
830         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
831         struct kvm_pmc *pmc;
832         int i;
833
834         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
835                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
836
837                 if (!pmc || !pmc_event_is_allowed(pmc))
838                         continue;
839
840                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
841                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
842                         kvm_pmu_incr_counter(pmc);
843         }
844 }
845 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
846
847 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
848 {
849         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
850                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
851                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
852                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
853         int i;
854
855         for (i = 0; i < filter->nevents; i++) {
856                 if (filter->events[i] & ~mask)
857                         return false;
858         }
859
860         return true;
861 }
862
863 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
864 {
865         int i, j;
866
867         for (i = 0, j = 0; i < filter->nevents; i++) {
868                 /*
869                  * Skip events that are impossible to match against a guest
870                  * event.  When filtering, only the event select + unit mask
871                  * of the guest event is used.  To maintain backwards
872                  * compatibility, impossible filters can't be rejected :-(
873                  */
874                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
875                                           ARCH_PERFMON_EVENTSEL_UMASK))
876                         continue;
877                 /*
878                  * Convert userspace events to a common in-kernel event so
879                  * only one code path is needed to support both events.  For
880                  * the in-kernel events use masked events because they are
881                  * flexible enough to handle both cases.  To convert to masked
882                  * events all that's needed is to add an "all ones" umask_mask,
883                  * (unmasked filter events don't support EXCLUDE).
884                  */
885                 filter->events[j++] = filter->events[i] |
886                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
887         }
888
889         filter->nevents = j;
890 }
891
892 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
893 {
894         int i;
895
896         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
897                 convert_to_masked_filter(filter);
898         else if (!is_masked_filter_valid(filter))
899                 return -EINVAL;
900
901         /*
902          * Sort entries by event select and includes vs. excludes so that all
903          * entries for a given event select can be processed efficiently during
904          * filtering.  The EXCLUDE flag uses a more significant bit than the
905          * event select, and so the sorted list is also effectively split into
906          * includes and excludes sub-lists.
907          */
908         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
909              filter_sort_cmp, NULL);
910
911         i = filter->nevents;
912         /* Find the first EXCLUDE event (only supported for masked events). */
913         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
914                 for (i = 0; i < filter->nevents; i++) {
915                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
916                                 break;
917                 }
918         }
919
920         filter->nr_includes = i;
921         filter->nr_excludes = filter->nevents - filter->nr_includes;
922         filter->includes = filter->events;
923         filter->excludes = filter->events + filter->nr_includes;
924
925         return 0;
926 }
927
928 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
929 {
930         struct kvm_pmu_event_filter __user *user_filter = argp;
931         struct kvm_x86_pmu_event_filter *filter;
932         struct kvm_pmu_event_filter tmp;
933         struct kvm_vcpu *vcpu;
934         unsigned long i;
935         size_t size;
936         int r;
937
938         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
939                 return -EFAULT;
940
941         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
942             tmp.action != KVM_PMU_EVENT_DENY)
943                 return -EINVAL;
944
945         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
946                 return -EINVAL;
947
948         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
949                 return -E2BIG;
950
951         size = struct_size(filter, events, tmp.nevents);
952         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
953         if (!filter)
954                 return -ENOMEM;
955
956         filter->action = tmp.action;
957         filter->nevents = tmp.nevents;
958         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
959         filter->flags = tmp.flags;
960
961         r = -EFAULT;
962         if (copy_from_user(filter->events, user_filter->events,
963                            sizeof(filter->events[0]) * filter->nevents))
964                 goto cleanup;
965
966         r = prepare_filter_lists(filter);
967         if (r)
968                 goto cleanup;
969
970         mutex_lock(&kvm->lock);
971         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
972                                      mutex_is_locked(&kvm->lock));
973         mutex_unlock(&kvm->lock);
974         synchronize_srcu_expedited(&kvm->srcu);
975
976         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
977                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
978
979         kvm_for_each_vcpu(i, vcpu, kvm)
980                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
981
982         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
983
984         r = 0;
985 cleanup:
986         kfree(filter);
987         return r;
988 }