GNU Linux-libre 5.15.137-gnu
[releases.git] / arch / x86 / kvm / mmu.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8
9 #define PT64_PT_BITS 9
10 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
11 #define PT32_PT_BITS 10
12 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13
14 #define PT_WRITABLE_SHIFT 1
15 #define PT_USER_SHIFT 2
16
17 #define PT_PRESENT_MASK (1ULL << 0)
18 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
20 #define PT_PWT_MASK (1ULL << 3)
21 #define PT_PCD_MASK (1ULL << 4)
22 #define PT_ACCESSED_SHIFT 5
23 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
24 #define PT_DIRTY_SHIFT 6
25 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
26 #define PT_PAGE_SIZE_SHIFT 7
27 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
28 #define PT_PAT_MASK (1ULL << 7)
29 #define PT_GLOBAL_MASK (1ULL << 8)
30 #define PT64_NX_SHIFT 63
31 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32
33 #define PT_PAT_SHIFT 7
34 #define PT_DIR_PAT_SHIFT 12
35 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36
37 #define PT32_DIR_PSE36_SIZE 4
38 #define PT32_DIR_PSE36_SHIFT 13
39 #define PT32_DIR_PSE36_MASK \
40         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41
42 #define PT64_ROOT_5LEVEL 5
43 #define PT64_ROOT_4LEVEL 4
44 #define PT32_ROOT_LEVEL 2
45 #define PT32E_ROOT_LEVEL 3
46
47 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | \
48                                X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
49                                X86_CR4_LA57)
50
51 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
52 #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
53
54 static __always_inline u64 rsvd_bits(int s, int e)
55 {
56         BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
57
58         if (__builtin_constant_p(e))
59                 BUILD_BUG_ON(e > 63);
60         else
61                 e &= 63;
62
63         if (e < s)
64                 return 0;
65
66         return ((2ULL << (e - s)) - 1) << s;
67 }
68
69 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
70 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
71
72 void kvm_init_mmu(struct kvm_vcpu *vcpu);
73 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
74                              unsigned long cr4, u64 efer, gpa_t nested_cr3);
75 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
76                              bool accessed_dirty, gpa_t new_eptp);
77 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
78 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
79                                 u64 fault_address, char *insn, int insn_len);
80
81 int kvm_mmu_load(struct kvm_vcpu *vcpu);
82 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
83 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
84
85 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
86 {
87         if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
88                 return 0;
89
90         return kvm_mmu_load(vcpu);
91 }
92
93 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
94 {
95         BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
96
97         return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
98                ? cr3 & X86_CR3_PCID_MASK
99                : 0;
100 }
101
102 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
103 {
104         return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
105 }
106
107 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
108 {
109         u64 root_hpa = vcpu->arch.mmu->root_hpa;
110
111         if (!VALID_PAGE(root_hpa))
112                 return;
113
114         static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
115                                           vcpu->arch.mmu->shadow_root_level);
116 }
117
118 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
119                        bool prefault);
120
121 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
122                                         u32 err, bool prefault)
123 {
124 #ifdef CONFIG_RETPOLINE
125         if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
126                 return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
127 #endif
128         return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
129 }
130
131 /*
132  * Currently, we have two sorts of write-protection, a) the first one
133  * write-protects guest page to sync the guest modification, b) another one is
134  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
135  * between these two sorts are:
136  * 1) the first case clears MMU-writable bit.
137  * 2) the first case requires flushing tlb immediately avoiding corrupting
138  *    shadow page table between all vcpus so it should be in the protection of
139  *    mmu-lock. And the another case does not need to flush tlb until returning
140  *    the dirty bitmap to userspace since it only write-protects the page
141  *    logged in the bitmap, that means the page in the dirty bitmap is not
142  *    missed, so it can flush tlb out of mmu-lock.
143  *
144  * So, there is the problem: the first case can meet the corrupted tlb caused
145  * by another case which write-protects pages but without flush tlb
146  * immediately. In order to making the first case be aware this problem we let
147  * it flush tlb if we try to write-protect a spte whose MMU-writable bit
148  * is set, it works since another case never touches MMU-writable bit.
149  *
150  * Anyway, whenever a spte is updated (only permission and status bits are
151  * changed) we need to check whether the spte with MMU-writable becomes
152  * readonly, if that happens, we need to flush tlb. Fortunately,
153  * mmu_spte_update() has already handled it perfectly.
154  *
155  * The rules to use MMU-writable and PT_WRITABLE_MASK:
156  * - if we want to see if it has writable tlb entry or if the spte can be
157  *   writable on the mmu mapping, check MMU-writable, this is the most
158  *   case, otherwise
159  * - if we fix page fault on the spte or do write-protection by dirty logging,
160  *   check PT_WRITABLE_MASK.
161  *
162  * TODO: introduce APIs to split these two cases.
163  */
164 static inline bool is_writable_pte(unsigned long pte)
165 {
166         return pte & PT_WRITABLE_MASK;
167 }
168
169 /*
170  * Check if a given access (described through the I/D, W/R and U/S bits of a
171  * page fault error code pfec) causes a permission fault with the given PTE
172  * access rights (in ACC_* format).
173  *
174  * Return zero if the access does not fault; return the page fault error code
175  * if the access faults.
176  */
177 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
178                                   unsigned pte_access, unsigned pte_pkey,
179                                   unsigned pfec)
180 {
181         int cpl = static_call(kvm_x86_get_cpl)(vcpu);
182         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
183
184         /*
185          * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
186          *
187          * If CPL = 3, SMAP applies to all supervisor-mode data accesses
188          * (these are implicit supervisor accesses) regardless of the value
189          * of EFLAGS.AC.
190          *
191          * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
192          * the result in X86_EFLAGS_AC. We then insert it in place of
193          * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
194          * but it will be one in index if SMAP checks are being overridden.
195          * It is important to keep this branchless.
196          */
197         unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
198         int index = (pfec >> 1) +
199                     (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
200         bool fault = (mmu->permissions[index] >> pte_access) & 1;
201         u32 errcode = PFERR_PRESENT_MASK;
202
203         WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
204         if (unlikely(mmu->pkru_mask)) {
205                 u32 pkru_bits, offset;
206
207                 /*
208                 * PKRU defines 32 bits, there are 16 domains and 2
209                 * attribute bits per domain in pkru.  pte_pkey is the
210                 * index of the protection domain, so pte_pkey * 2 is
211                 * is the index of the first bit for the domain.
212                 */
213                 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
214
215                 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
216                 offset = (pfec & ~1) +
217                         ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
218
219                 pkru_bits &= mmu->pkru_mask >> offset;
220                 errcode |= -pkru_bits & PFERR_PK_MASK;
221                 fault |= (pkru_bits != 0);
222         }
223
224         return -(u32)fault & errcode;
225 }
226
227 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
228
229 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
230
231 int kvm_mmu_post_init_vm(struct kvm *kvm);
232 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
233
234 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
235 {
236         /*
237          * Read memslot_have_rmaps before rmap pointers.  Hence, threads reading
238          * memslots_have_rmaps in any lock context are guaranteed to see the
239          * pointers.  Pairs with smp_store_release in alloc_all_memslots_rmaps.
240          */
241         return smp_load_acquire(&kvm->arch.memslots_have_rmaps);
242 }
243
244 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
245 {
246         /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
247         return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
248                 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
249 }
250
251 static inline unsigned long
252 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
253                       int level)
254 {
255         return gfn_to_index(slot->base_gfn + npages - 1,
256                             slot->base_gfn, level) + 1;
257 }
258
259 static inline unsigned long
260 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
261 {
262         return __kvm_mmu_slot_lpages(slot, slot->npages, level);
263 }
264
265 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
266 {
267         atomic64_add(count, &kvm->stat.pages[level - 1]);
268 }
269 #endif