GNU Linux-libre 4.14.290-gnu1
[releases.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43 #include <linux/kthread.h>
44
45 #include <asm/page.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 extern bool itlb_multihit_kvm_mitigation;
53
54 static int __read_mostly nx_huge_pages = -1;
55 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
56
57 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
58 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
59
60 static struct kernel_param_ops nx_huge_pages_ops = {
61         .set = set_nx_huge_pages,
62         .get = param_get_bool,
63 };
64
65 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
66         .set = set_nx_huge_pages_recovery_ratio,
67         .get = param_get_uint,
68 };
69
70 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
71 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
72 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
73                 &nx_huge_pages_recovery_ratio, 0644);
74 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
75
76 /*
77  * When setting this variable to true it enables Two-Dimensional-Paging
78  * where the hardware walks 2 page tables:
79  * 1. the guest-virtual to guest-physical
80  * 2. while doing 1. it walks guest-physical to host-physical
81  * If the hardware supports that we don't need to do shadow paging.
82  */
83 bool tdp_enabled = false;
84
85 enum {
86         AUDIT_PRE_PAGE_FAULT,
87         AUDIT_POST_PAGE_FAULT,
88         AUDIT_PRE_PTE_WRITE,
89         AUDIT_POST_PTE_WRITE,
90         AUDIT_PRE_SYNC,
91         AUDIT_POST_SYNC
92 };
93
94 #undef MMU_DEBUG
95
96 #ifdef MMU_DEBUG
97 static bool dbg = 0;
98 module_param(dbg, bool, 0644);
99
100 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
101 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
102 #define MMU_WARN_ON(x) WARN_ON(x)
103 #else
104 #define pgprintk(x...) do { } while (0)
105 #define rmap_printk(x...) do { } while (0)
106 #define MMU_WARN_ON(x) do { } while (0)
107 #endif
108
109 #define PTE_PREFETCH_NUM                8
110
111 #define PT_FIRST_AVAIL_BITS_SHIFT 10
112 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
113
114 #define PT64_LEVEL_BITS 9
115
116 #define PT64_LEVEL_SHIFT(level) \
117                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
118
119 #define PT64_INDEX(address, level)\
120         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
121
122
123 #define PT32_LEVEL_BITS 10
124
125 #define PT32_LEVEL_SHIFT(level) \
126                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
127
128 #define PT32_LVL_OFFSET_MASK(level) \
129         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130                                                 * PT32_LEVEL_BITS))) - 1))
131
132 #define PT32_INDEX(address, level)\
133         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134
135
136 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
137 #define PT64_DIR_BASE_ADDR_MASK \
138         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139 #define PT64_LVL_ADDR_MASK(level) \
140         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141                                                 * PT64_LEVEL_BITS))) - 1))
142 #define PT64_LVL_OFFSET_MASK(level) \
143         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144                                                 * PT64_LEVEL_BITS))) - 1))
145
146 #define PT32_BASE_ADDR_MASK PAGE_MASK
147 #define PT32_DIR_BASE_ADDR_MASK \
148         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT32_LVL_ADDR_MASK(level) \
150         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151                                             * PT32_LEVEL_BITS))) - 1))
152
153 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
154                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
155
156 #define ACC_EXEC_MASK    1
157 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
158 #define ACC_USER_MASK    PT_USER_MASK
159 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
160
161 /* The mask for the R/X bits in EPT PTEs */
162 #define PT64_EPT_READABLE_MASK                  0x1ull
163 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
164
165 #include <trace/events/kvm.h>
166
167 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
168 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
169
170 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
171
172 /* make pte_list_desc fit well in cache line */
173 #define PTE_LIST_EXT 3
174
175 /*
176  * Return values of handle_mmio_page_fault and mmu.page_fault:
177  * RET_PF_RETRY: let CPU fault again on the address.
178  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
179  *
180  * For handle_mmio_page_fault only:
181  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
182  */
183 enum {
184         RET_PF_RETRY = 0,
185         RET_PF_EMULATE = 1,
186         RET_PF_INVALID = 2,
187 };
188
189 struct pte_list_desc {
190         u64 *sptes[PTE_LIST_EXT];
191         struct pte_list_desc *more;
192 };
193
194 struct kvm_shadow_walk_iterator {
195         u64 addr;
196         hpa_t shadow_addr;
197         u64 *sptep;
198         int level;
199         unsigned index;
200 };
201
202 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
203         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
204              shadow_walk_okay(&(_walker));                      \
205              shadow_walk_next(&(_walker)))
206
207 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
208         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
209              shadow_walk_okay(&(_walker)) &&                            \
210                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
211              __shadow_walk_next(&(_walker), spte))
212
213 static struct kmem_cache *pte_list_desc_cache;
214 static struct kmem_cache *mmu_page_header_cache;
215 static struct percpu_counter kvm_total_used_mmu_pages;
216
217 static u64 __read_mostly shadow_nx_mask;
218 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
219 static u64 __read_mostly shadow_user_mask;
220 static u64 __read_mostly shadow_accessed_mask;
221 static u64 __read_mostly shadow_dirty_mask;
222 static u64 __read_mostly shadow_mmio_mask;
223 static u64 __read_mostly shadow_mmio_value;
224 static u64 __read_mostly shadow_present_mask;
225 static u64 __read_mostly shadow_me_mask;
226
227 /*
228  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
229  * Non-present SPTEs with shadow_acc_track_value set are in place for access
230  * tracking.
231  */
232 static u64 __read_mostly shadow_acc_track_mask;
233 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
234
235 /*
236  * The mask/shift to use for saving the original R/X bits when marking the PTE
237  * as not-present for access tracking purposes. We do not save the W bit as the
238  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
239  * restored only when a write is attempted to the page.
240  */
241 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
242                                                     PT64_EPT_EXECUTABLE_MASK;
243 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
244
245 /*
246  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
247  * to guard against L1TF attacks.
248  */
249 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
250
251 /*
252  * The number of high-order 1 bits to use in the mask above.
253  */
254 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
255
256 /*
257  * In some cases, we need to preserve the GFN of a non-present or reserved
258  * SPTE when we usurp the upper five bits of the physical address space to
259  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
260  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
261  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
262  * high and low parts.  This mask covers the lower bits of the GFN.
263  */
264 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
265
266 /*
267  * The number of non-reserved physical address bits irrespective of features
268  * that repurpose legal bits, e.g. MKTME.
269  */
270 static u8 __read_mostly shadow_phys_bits;
271
272 static void mmu_spte_set(u64 *sptep, u64 spte);
273 static void mmu_free_roots(struct kvm_vcpu *vcpu);
274 static bool is_executable_pte(u64 spte);
275
276 #define CREATE_TRACE_POINTS
277 #include "mmutrace.h"
278
279
280 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
281 {
282         BUG_ON((mmio_mask & mmio_value) != mmio_value);
283         WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
284         WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
285         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
286         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
287 }
288 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
289
290 static bool is_mmio_spte(u64 spte)
291 {
292         return (spte & shadow_mmio_mask) == shadow_mmio_value;
293 }
294
295 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
296 {
297         return sp->role.ad_disabled;
298 }
299
300 static inline bool spte_ad_enabled(u64 spte)
301 {
302         MMU_WARN_ON(is_mmio_spte(spte));
303         return !(spte & shadow_acc_track_value);
304 }
305
306 static bool is_nx_huge_page_enabled(void)
307 {
308         return READ_ONCE(nx_huge_pages);
309 }
310
311 static inline u64 spte_shadow_accessed_mask(u64 spte)
312 {
313         MMU_WARN_ON(is_mmio_spte(spte));
314         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
315 }
316
317 static inline u64 spte_shadow_dirty_mask(u64 spte)
318 {
319         MMU_WARN_ON(is_mmio_spte(spte));
320         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
321 }
322
323 static inline bool is_access_track_spte(u64 spte)
324 {
325         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
326 }
327
328 /*
329  * the low bit of the generation number is always presumed to be zero.
330  * This disables mmio caching during memslot updates.  The concept is
331  * similar to a seqcount but instead of retrying the access we just punt
332  * and ignore the cache.
333  *
334  * spte bits 3-11 are used as bits 1-9 of the generation number,
335  * the bits 52-61 are used as bits 10-19 of the generation number.
336  */
337 #define MMIO_SPTE_GEN_LOW_SHIFT         2
338 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
339
340 #define MMIO_GEN_SHIFT                  20
341 #define MMIO_GEN_LOW_SHIFT              10
342 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
343 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
344
345 static u64 generation_mmio_spte_mask(unsigned int gen)
346 {
347         u64 mask;
348
349         WARN_ON(gen & ~MMIO_GEN_MASK);
350
351         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
352         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
353         return mask;
354 }
355
356 static unsigned int get_mmio_spte_generation(u64 spte)
357 {
358         unsigned int gen;
359
360         spte &= ~shadow_mmio_mask;
361
362         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
363         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
364         return gen;
365 }
366
367 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
368 {
369         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
370 }
371
372 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
373                            unsigned access)
374 {
375         unsigned int gen = kvm_current_mmio_generation(vcpu);
376         u64 mask = generation_mmio_spte_mask(gen);
377         u64 gpa = gfn << PAGE_SHIFT;
378
379         access &= ACC_WRITE_MASK | ACC_USER_MASK;
380         mask |= shadow_mmio_value | access;
381         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
382         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
383                 << shadow_nonpresent_or_rsvd_mask_len;
384
385         trace_mark_mmio_spte(sptep, gfn, access, gen);
386         mmu_spte_set(sptep, mask);
387 }
388
389 static gfn_t get_mmio_spte_gfn(u64 spte)
390 {
391         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
392
393         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
394                & shadow_nonpresent_or_rsvd_mask;
395
396         return gpa >> PAGE_SHIFT;
397 }
398
399 static unsigned get_mmio_spte_access(u64 spte)
400 {
401         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
402         return (spte & ~mask) & ~PAGE_MASK;
403 }
404
405 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
406                           kvm_pfn_t pfn, unsigned access)
407 {
408         if (unlikely(is_noslot_pfn(pfn))) {
409                 mark_mmio_spte(vcpu, sptep, gfn, access);
410                 return true;
411         }
412
413         return false;
414 }
415
416 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
417 {
418         unsigned int kvm_gen, spte_gen;
419
420         kvm_gen = kvm_current_mmio_generation(vcpu);
421         spte_gen = get_mmio_spte_generation(spte);
422
423         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
424         return likely(kvm_gen == spte_gen);
425 }
426
427 /*
428  * Sets the shadow PTE masks used by the MMU.
429  *
430  * Assumptions:
431  *  - Setting either @accessed_mask or @dirty_mask requires setting both
432  *  - At least one of @accessed_mask or @acc_track_mask must be set
433  */
434 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
435                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
436                 u64 acc_track_mask, u64 me_mask)
437 {
438         BUG_ON(!dirty_mask != !accessed_mask);
439         BUG_ON(!accessed_mask && !acc_track_mask);
440         BUG_ON(acc_track_mask & shadow_acc_track_value);
441
442         shadow_user_mask = user_mask;
443         shadow_accessed_mask = accessed_mask;
444         shadow_dirty_mask = dirty_mask;
445         shadow_nx_mask = nx_mask;
446         shadow_x_mask = x_mask;
447         shadow_present_mask = p_mask;
448         shadow_acc_track_mask = acc_track_mask;
449         shadow_me_mask = me_mask;
450 }
451 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
452
453 static u8 kvm_get_shadow_phys_bits(void)
454 {
455         /*
456          * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
457          * in CPU detection code, but MKTME treats those reduced bits as
458          * 'keyID' thus they are not reserved bits. Therefore for MKTME
459          * we should still return physical address bits reported by CPUID.
460          */
461         if (!boot_cpu_has(X86_FEATURE_TME) ||
462             WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
463                 return boot_cpu_data.x86_phys_bits;
464
465         return cpuid_eax(0x80000008) & 0xff;
466 }
467
468 static void kvm_mmu_reset_all_pte_masks(void)
469 {
470         u8 low_phys_bits;
471
472         shadow_user_mask = 0;
473         shadow_accessed_mask = 0;
474         shadow_dirty_mask = 0;
475         shadow_nx_mask = 0;
476         shadow_x_mask = 0;
477         shadow_mmio_mask = 0;
478         shadow_present_mask = 0;
479         shadow_acc_track_mask = 0;
480
481         shadow_phys_bits = kvm_get_shadow_phys_bits();
482
483         /*
484          * If the CPU has 46 or less physical address bits, then set an
485          * appropriate mask to guard against L1TF attacks. Otherwise, it is
486          * assumed that the CPU is not vulnerable to L1TF.
487          *
488          * Some Intel CPUs address the L1 cache using more PA bits than are
489          * reported by CPUID. Use the PA width of the L1 cache when possible
490          * to achieve more effective mitigation, e.g. if system RAM overlaps
491          * the most significant bits of legal physical address space.
492          */
493         shadow_nonpresent_or_rsvd_mask = 0;
494         low_phys_bits = boot_cpu_data.x86_phys_bits;
495         if (boot_cpu_has_bug(X86_BUG_L1TF) &&
496             !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
497                           52 - shadow_nonpresent_or_rsvd_mask_len)) {
498                 low_phys_bits = boot_cpu_data.x86_cache_bits
499                         - shadow_nonpresent_or_rsvd_mask_len;
500                 shadow_nonpresent_or_rsvd_mask =
501                         rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
502         }
503
504         shadow_nonpresent_or_rsvd_lower_gfn_mask =
505                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
506 }
507
508 static int is_cpuid_PSE36(void)
509 {
510         return 1;
511 }
512
513 static int is_nx(struct kvm_vcpu *vcpu)
514 {
515         return vcpu->arch.efer & EFER_NX;
516 }
517
518 static int is_shadow_present_pte(u64 pte)
519 {
520         return (pte != 0) && !is_mmio_spte(pte);
521 }
522
523 static int is_large_pte(u64 pte)
524 {
525         return pte & PT_PAGE_SIZE_MASK;
526 }
527
528 static int is_last_spte(u64 pte, int level)
529 {
530         if (level == PT_PAGE_TABLE_LEVEL)
531                 return 1;
532         if (is_large_pte(pte))
533                 return 1;
534         return 0;
535 }
536
537 static bool is_executable_pte(u64 spte)
538 {
539         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
540 }
541
542 static kvm_pfn_t spte_to_pfn(u64 pte)
543 {
544         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
545 }
546
547 static gfn_t pse36_gfn_delta(u32 gpte)
548 {
549         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
550
551         return (gpte & PT32_DIR_PSE36_MASK) << shift;
552 }
553
554 #ifdef CONFIG_X86_64
555 static void __set_spte(u64 *sptep, u64 spte)
556 {
557         WRITE_ONCE(*sptep, spte);
558 }
559
560 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
561 {
562         WRITE_ONCE(*sptep, spte);
563 }
564
565 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
566 {
567         return xchg(sptep, spte);
568 }
569
570 static u64 __get_spte_lockless(u64 *sptep)
571 {
572         return ACCESS_ONCE(*sptep);
573 }
574 #else
575 union split_spte {
576         struct {
577                 u32 spte_low;
578                 u32 spte_high;
579         };
580         u64 spte;
581 };
582
583 static void count_spte_clear(u64 *sptep, u64 spte)
584 {
585         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
586
587         if (is_shadow_present_pte(spte))
588                 return;
589
590         /* Ensure the spte is completely set before we increase the count */
591         smp_wmb();
592         sp->clear_spte_count++;
593 }
594
595 static void __set_spte(u64 *sptep, u64 spte)
596 {
597         union split_spte *ssptep, sspte;
598
599         ssptep = (union split_spte *)sptep;
600         sspte = (union split_spte)spte;
601
602         ssptep->spte_high = sspte.spte_high;
603
604         /*
605          * If we map the spte from nonpresent to present, We should store
606          * the high bits firstly, then set present bit, so cpu can not
607          * fetch this spte while we are setting the spte.
608          */
609         smp_wmb();
610
611         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
612 }
613
614 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
615 {
616         union split_spte *ssptep, sspte;
617
618         ssptep = (union split_spte *)sptep;
619         sspte = (union split_spte)spte;
620
621         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
622
623         /*
624          * If we map the spte from present to nonpresent, we should clear
625          * present bit firstly to avoid vcpu fetch the old high bits.
626          */
627         smp_wmb();
628
629         ssptep->spte_high = sspte.spte_high;
630         count_spte_clear(sptep, spte);
631 }
632
633 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
634 {
635         union split_spte *ssptep, sspte, orig;
636
637         ssptep = (union split_spte *)sptep;
638         sspte = (union split_spte)spte;
639
640         /* xchg acts as a barrier before the setting of the high bits */
641         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
642         orig.spte_high = ssptep->spte_high;
643         ssptep->spte_high = sspte.spte_high;
644         count_spte_clear(sptep, spte);
645
646         return orig.spte;
647 }
648
649 /*
650  * The idea using the light way get the spte on x86_32 guest is from
651  * gup_get_pte(arch/x86/mm/gup.c).
652  *
653  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
654  * coalesces them and we are running out of the MMU lock.  Therefore
655  * we need to protect against in-progress updates of the spte.
656  *
657  * Reading the spte while an update is in progress may get the old value
658  * for the high part of the spte.  The race is fine for a present->non-present
659  * change (because the high part of the spte is ignored for non-present spte),
660  * but for a present->present change we must reread the spte.
661  *
662  * All such changes are done in two steps (present->non-present and
663  * non-present->present), hence it is enough to count the number of
664  * present->non-present updates: if it changed while reading the spte,
665  * we might have hit the race.  This is done using clear_spte_count.
666  */
667 static u64 __get_spte_lockless(u64 *sptep)
668 {
669         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
670         union split_spte spte, *orig = (union split_spte *)sptep;
671         int count;
672
673 retry:
674         count = sp->clear_spte_count;
675         smp_rmb();
676
677         spte.spte_low = orig->spte_low;
678         smp_rmb();
679
680         spte.spte_high = orig->spte_high;
681         smp_rmb();
682
683         if (unlikely(spte.spte_low != orig->spte_low ||
684               count != sp->clear_spte_count))
685                 goto retry;
686
687         return spte.spte;
688 }
689 #endif
690
691 static bool spte_can_locklessly_be_made_writable(u64 spte)
692 {
693         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
694                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
695 }
696
697 static bool spte_has_volatile_bits(u64 spte)
698 {
699         if (!is_shadow_present_pte(spte))
700                 return false;
701
702         /*
703          * Always atomically update spte if it can be updated
704          * out of mmu-lock, it can ensure dirty bit is not lost,
705          * also, it can help us to get a stable is_writable_pte()
706          * to ensure tlb flush is not missed.
707          */
708         if (spte_can_locklessly_be_made_writable(spte) ||
709             is_access_track_spte(spte))
710                 return true;
711
712         if (spte_ad_enabled(spte)) {
713                 if ((spte & shadow_accessed_mask) == 0 ||
714                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
715                         return true;
716         }
717
718         return false;
719 }
720
721 static bool is_accessed_spte(u64 spte)
722 {
723         u64 accessed_mask = spte_shadow_accessed_mask(spte);
724
725         return accessed_mask ? spte & accessed_mask
726                              : !is_access_track_spte(spte);
727 }
728
729 static bool is_dirty_spte(u64 spte)
730 {
731         u64 dirty_mask = spte_shadow_dirty_mask(spte);
732
733         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
734 }
735
736 /* Rules for using mmu_spte_set:
737  * Set the sptep from nonpresent to present.
738  * Note: the sptep being assigned *must* be either not present
739  * or in a state where the hardware will not attempt to update
740  * the spte.
741  */
742 static void mmu_spte_set(u64 *sptep, u64 new_spte)
743 {
744         WARN_ON(is_shadow_present_pte(*sptep));
745         __set_spte(sptep, new_spte);
746 }
747
748 /*
749  * Update the SPTE (excluding the PFN), but do not track changes in its
750  * accessed/dirty status.
751  */
752 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
753 {
754         u64 old_spte = *sptep;
755
756         WARN_ON(!is_shadow_present_pte(new_spte));
757
758         if (!is_shadow_present_pte(old_spte)) {
759                 mmu_spte_set(sptep, new_spte);
760                 return old_spte;
761         }
762
763         if (!spte_has_volatile_bits(old_spte))
764                 __update_clear_spte_fast(sptep, new_spte);
765         else
766                 old_spte = __update_clear_spte_slow(sptep, new_spte);
767
768         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
769
770         return old_spte;
771 }
772
773 /* Rules for using mmu_spte_update:
774  * Update the state bits, it means the mapped pfn is not changed.
775  *
776  * Whenever we overwrite a writable spte with a read-only one we
777  * should flush remote TLBs. Otherwise rmap_write_protect
778  * will find a read-only spte, even though the writable spte
779  * might be cached on a CPU's TLB, the return value indicates this
780  * case.
781  *
782  * Returns true if the TLB needs to be flushed
783  */
784 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
785 {
786         bool flush = false;
787         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
788
789         if (!is_shadow_present_pte(old_spte))
790                 return false;
791
792         /*
793          * For the spte updated out of mmu-lock is safe, since
794          * we always atomically update it, see the comments in
795          * spte_has_volatile_bits().
796          */
797         if (spte_can_locklessly_be_made_writable(old_spte) &&
798               !is_writable_pte(new_spte))
799                 flush = true;
800
801         /*
802          * Flush TLB when accessed/dirty states are changed in the page tables,
803          * to guarantee consistency between TLB and page tables.
804          */
805
806         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
807                 flush = true;
808                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
809         }
810
811         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
812                 flush = true;
813                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
814         }
815
816         return flush;
817 }
818
819 /*
820  * Rules for using mmu_spte_clear_track_bits:
821  * It sets the sptep from present to nonpresent, and track the
822  * state bits, it is used to clear the last level sptep.
823  * Returns non-zero if the PTE was previously valid.
824  */
825 static int mmu_spte_clear_track_bits(u64 *sptep)
826 {
827         kvm_pfn_t pfn;
828         u64 old_spte = *sptep;
829
830         if (!spte_has_volatile_bits(old_spte))
831                 __update_clear_spte_fast(sptep, 0ull);
832         else
833                 old_spte = __update_clear_spte_slow(sptep, 0ull);
834
835         if (!is_shadow_present_pte(old_spte))
836                 return 0;
837
838         pfn = spte_to_pfn(old_spte);
839
840         /*
841          * KVM does not hold the refcount of the page used by
842          * kvm mmu, before reclaiming the page, we should
843          * unmap it from mmu first.
844          */
845         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
846
847         if (is_accessed_spte(old_spte))
848                 kvm_set_pfn_accessed(pfn);
849
850         if (is_dirty_spte(old_spte))
851                 kvm_set_pfn_dirty(pfn);
852
853         return 1;
854 }
855
856 /*
857  * Rules for using mmu_spte_clear_no_track:
858  * Directly clear spte without caring the state bits of sptep,
859  * it is used to set the upper level spte.
860  */
861 static void mmu_spte_clear_no_track(u64 *sptep)
862 {
863         __update_clear_spte_fast(sptep, 0ull);
864 }
865
866 static u64 mmu_spte_get_lockless(u64 *sptep)
867 {
868         return __get_spte_lockless(sptep);
869 }
870
871 static u64 mark_spte_for_access_track(u64 spte)
872 {
873         if (spte_ad_enabled(spte))
874                 return spte & ~shadow_accessed_mask;
875
876         if (is_access_track_spte(spte))
877                 return spte;
878
879         /*
880          * Making an Access Tracking PTE will result in removal of write access
881          * from the PTE. So, verify that we will be able to restore the write
882          * access in the fast page fault path later on.
883          */
884         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
885                   !spte_can_locklessly_be_made_writable(spte),
886                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
887
888         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
889                           shadow_acc_track_saved_bits_shift),
890                   "kvm: Access Tracking saved bit locations are not zero\n");
891
892         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
893                 shadow_acc_track_saved_bits_shift;
894         spte &= ~shadow_acc_track_mask;
895
896         return spte;
897 }
898
899 /* Restore an acc-track PTE back to a regular PTE */
900 static u64 restore_acc_track_spte(u64 spte)
901 {
902         u64 new_spte = spte;
903         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
904                          & shadow_acc_track_saved_bits_mask;
905
906         WARN_ON_ONCE(spte_ad_enabled(spte));
907         WARN_ON_ONCE(!is_access_track_spte(spte));
908
909         new_spte &= ~shadow_acc_track_mask;
910         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
911                       shadow_acc_track_saved_bits_shift);
912         new_spte |= saved_bits;
913
914         return new_spte;
915 }
916
917 /* Returns the Accessed status of the PTE and resets it at the same time. */
918 static bool mmu_spte_age(u64 *sptep)
919 {
920         u64 spte = mmu_spte_get_lockless(sptep);
921
922         if (!is_accessed_spte(spte))
923                 return false;
924
925         if (spte_ad_enabled(spte)) {
926                 clear_bit((ffs(shadow_accessed_mask) - 1),
927                           (unsigned long *)sptep);
928         } else {
929                 /*
930                  * Capture the dirty status of the page, so that it doesn't get
931                  * lost when the SPTE is marked for access tracking.
932                  */
933                 if (is_writable_pte(spte))
934                         kvm_set_pfn_dirty(spte_to_pfn(spte));
935
936                 spte = mark_spte_for_access_track(spte);
937                 mmu_spte_update_no_track(sptep, spte);
938         }
939
940         return true;
941 }
942
943 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
944 {
945         /*
946          * Prevent page table teardown by making any free-er wait during
947          * kvm_flush_remote_tlbs() IPI to all active vcpus.
948          */
949         local_irq_disable();
950
951         /*
952          * Make sure a following spte read is not reordered ahead of the write
953          * to vcpu->mode.
954          */
955         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
956 }
957
958 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
959 {
960         /*
961          * Make sure the write to vcpu->mode is not reordered in front of
962          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
963          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
964          */
965         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
966         local_irq_enable();
967 }
968
969 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
970                                   struct kmem_cache *base_cache, int min)
971 {
972         void *obj;
973
974         if (cache->nobjs >= min)
975                 return 0;
976         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
977                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
978                 if (!obj)
979                         return -ENOMEM;
980                 cache->objects[cache->nobjs++] = obj;
981         }
982         return 0;
983 }
984
985 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
986 {
987         return cache->nobjs;
988 }
989
990 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
991                                   struct kmem_cache *cache)
992 {
993         while (mc->nobjs)
994                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
995 }
996
997 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
998                                        int min)
999 {
1000         void *page;
1001
1002         if (cache->nobjs >= min)
1003                 return 0;
1004         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1005                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1006                 if (!page)
1007                         return -ENOMEM;
1008                 cache->objects[cache->nobjs++] = page;
1009         }
1010         return 0;
1011 }
1012
1013 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1014 {
1015         while (mc->nobjs)
1016                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1017 }
1018
1019 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1020 {
1021         int r;
1022
1023         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1024                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1025         if (r)
1026                 goto out;
1027         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1028         if (r)
1029                 goto out;
1030         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1031                                    mmu_page_header_cache, 4);
1032 out:
1033         return r;
1034 }
1035
1036 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1037 {
1038         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1039                                 pte_list_desc_cache);
1040         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1041         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1042                                 mmu_page_header_cache);
1043 }
1044
1045 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1046 {
1047         void *p;
1048
1049         BUG_ON(!mc->nobjs);
1050         p = mc->objects[--mc->nobjs];
1051         return p;
1052 }
1053
1054 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1055 {
1056         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1057 }
1058
1059 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1060 {
1061         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1062 }
1063
1064 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1065 {
1066         if (!sp->role.direct)
1067                 return sp->gfns[index];
1068
1069         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1070 }
1071
1072 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1073 {
1074         if (!sp->role.direct) {
1075                 sp->gfns[index] = gfn;
1076                 return;
1077         }
1078
1079         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1080                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1081                                    "(expected %llx, got %llx)\n",
1082                                    sp->gfn,
1083                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1084 }
1085
1086 /*
1087  * Return the pointer to the large page information for a given gfn,
1088  * handling slots that are not large page aligned.
1089  */
1090 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1091                                               struct kvm_memory_slot *slot,
1092                                               int level)
1093 {
1094         unsigned long idx;
1095
1096         idx = gfn_to_index(gfn, slot->base_gfn, level);
1097         return &slot->arch.lpage_info[level - 2][idx];
1098 }
1099
1100 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1101                                             gfn_t gfn, int count)
1102 {
1103         struct kvm_lpage_info *linfo;
1104         int i;
1105
1106         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1107                 linfo = lpage_info_slot(gfn, slot, i);
1108                 linfo->disallow_lpage += count;
1109                 WARN_ON(linfo->disallow_lpage < 0);
1110         }
1111 }
1112
1113 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1114 {
1115         update_gfn_disallow_lpage_count(slot, gfn, 1);
1116 }
1117
1118 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1119 {
1120         update_gfn_disallow_lpage_count(slot, gfn, -1);
1121 }
1122
1123 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1124 {
1125         struct kvm_memslots *slots;
1126         struct kvm_memory_slot *slot;
1127         gfn_t gfn;
1128
1129         kvm->arch.indirect_shadow_pages++;
1130         gfn = sp->gfn;
1131         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1132         slot = __gfn_to_memslot(slots, gfn);
1133
1134         /* the non-leaf shadow pages are keeping readonly. */
1135         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1136                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1137                                                     KVM_PAGE_TRACK_WRITE);
1138
1139         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1140 }
1141
1142 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1143 {
1144         if (sp->lpage_disallowed)
1145                 return;
1146
1147         ++kvm->stat.nx_lpage_splits;
1148         list_add_tail(&sp->lpage_disallowed_link,
1149                       &kvm->arch.lpage_disallowed_mmu_pages);
1150         sp->lpage_disallowed = true;
1151 }
1152
1153 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1154 {
1155         struct kvm_memslots *slots;
1156         struct kvm_memory_slot *slot;
1157         gfn_t gfn;
1158
1159         kvm->arch.indirect_shadow_pages--;
1160         gfn = sp->gfn;
1161         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1162         slot = __gfn_to_memslot(slots, gfn);
1163         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1164                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1165                                                        KVM_PAGE_TRACK_WRITE);
1166
1167         kvm_mmu_gfn_allow_lpage(slot, gfn);
1168 }
1169
1170 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1171 {
1172         --kvm->stat.nx_lpage_splits;
1173         sp->lpage_disallowed = false;
1174         list_del(&sp->lpage_disallowed_link);
1175 }
1176
1177 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1178                                           struct kvm_memory_slot *slot)
1179 {
1180         struct kvm_lpage_info *linfo;
1181
1182         if (slot) {
1183                 linfo = lpage_info_slot(gfn, slot, level);
1184                 return !!linfo->disallow_lpage;
1185         }
1186
1187         return true;
1188 }
1189
1190 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1191                                         int level)
1192 {
1193         struct kvm_memory_slot *slot;
1194
1195         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1196         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1197 }
1198
1199 static int host_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn)
1200 {
1201         unsigned long page_size;
1202         int i, ret = 0;
1203
1204         page_size = kvm_host_page_size(vcpu, gfn);
1205
1206         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1207                 if (page_size >= KVM_HPAGE_SIZE(i))
1208                         ret = i;
1209                 else
1210                         break;
1211         }
1212
1213         return ret;
1214 }
1215
1216 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1217                                           bool no_dirty_log)
1218 {
1219         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1220                 return false;
1221         if (no_dirty_log && slot->dirty_bitmap)
1222                 return false;
1223
1224         return true;
1225 }
1226
1227 static struct kvm_memory_slot *
1228 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1229                             bool no_dirty_log)
1230 {
1231         struct kvm_memory_slot *slot;
1232
1233         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1234         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1235                 slot = NULL;
1236
1237         return slot;
1238 }
1239
1240 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1241                          bool *force_pt_level)
1242 {
1243         int host_level, level, max_level;
1244         struct kvm_memory_slot *slot;
1245
1246         if (unlikely(*force_pt_level))
1247                 return PT_PAGE_TABLE_LEVEL;
1248
1249         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1250         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1251         if (unlikely(*force_pt_level))
1252                 return PT_PAGE_TABLE_LEVEL;
1253
1254         host_level = host_mapping_level(vcpu, large_gfn);
1255
1256         if (host_level == PT_PAGE_TABLE_LEVEL)
1257                 return host_level;
1258
1259         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1260
1261         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1262                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1263                         break;
1264
1265         return level - 1;
1266 }
1267
1268 /*
1269  * About rmap_head encoding:
1270  *
1271  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1272  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1273  * pte_list_desc containing more mappings.
1274  */
1275
1276 /*
1277  * Returns the number of pointers in the rmap chain, not counting the new one.
1278  */
1279 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1280                         struct kvm_rmap_head *rmap_head)
1281 {
1282         struct pte_list_desc *desc;
1283         int i, count = 0;
1284
1285         if (!rmap_head->val) {
1286                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1287                 rmap_head->val = (unsigned long)spte;
1288         } else if (!(rmap_head->val & 1)) {
1289                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1290                 desc = mmu_alloc_pte_list_desc(vcpu);
1291                 desc->sptes[0] = (u64 *)rmap_head->val;
1292                 desc->sptes[1] = spte;
1293                 rmap_head->val = (unsigned long)desc | 1;
1294                 ++count;
1295         } else {
1296                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1297                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1298                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1299                         desc = desc->more;
1300                         count += PTE_LIST_EXT;
1301                 }
1302                 if (desc->sptes[PTE_LIST_EXT-1]) {
1303                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1304                         desc = desc->more;
1305                 }
1306                 for (i = 0; desc->sptes[i]; ++i)
1307                         ++count;
1308                 desc->sptes[i] = spte;
1309         }
1310         return count;
1311 }
1312
1313 static void
1314 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1315                            struct pte_list_desc *desc, int i,
1316                            struct pte_list_desc *prev_desc)
1317 {
1318         int j;
1319
1320         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1321                 ;
1322         desc->sptes[i] = desc->sptes[j];
1323         desc->sptes[j] = NULL;
1324         if (j != 0)
1325                 return;
1326         if (!prev_desc && !desc->more)
1327                 rmap_head->val = (unsigned long)desc->sptes[0];
1328         else
1329                 if (prev_desc)
1330                         prev_desc->more = desc->more;
1331                 else
1332                         rmap_head->val = (unsigned long)desc->more | 1;
1333         mmu_free_pte_list_desc(desc);
1334 }
1335
1336 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1337 {
1338         struct pte_list_desc *desc;
1339         struct pte_list_desc *prev_desc;
1340         int i;
1341
1342         if (!rmap_head->val) {
1343                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1344                 BUG();
1345         } else if (!(rmap_head->val & 1)) {
1346                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1347                 if ((u64 *)rmap_head->val != spte) {
1348                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1349                         BUG();
1350                 }
1351                 rmap_head->val = 0;
1352         } else {
1353                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1354                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1355                 prev_desc = NULL;
1356                 while (desc) {
1357                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1358                                 if (desc->sptes[i] == spte) {
1359                                         pte_list_desc_remove_entry(rmap_head,
1360                                                         desc, i, prev_desc);
1361                                         return;
1362                                 }
1363                         }
1364                         prev_desc = desc;
1365                         desc = desc->more;
1366                 }
1367                 pr_err("pte_list_remove: %p many->many\n", spte);
1368                 BUG();
1369         }
1370 }
1371
1372 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1373                                            struct kvm_memory_slot *slot)
1374 {
1375         unsigned long idx;
1376
1377         idx = gfn_to_index(gfn, slot->base_gfn, level);
1378         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1379 }
1380
1381 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1382                                          struct kvm_mmu_page *sp)
1383 {
1384         struct kvm_memslots *slots;
1385         struct kvm_memory_slot *slot;
1386
1387         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1388         slot = __gfn_to_memslot(slots, gfn);
1389         return __gfn_to_rmap(gfn, sp->role.level, slot);
1390 }
1391
1392 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1393 {
1394         struct kvm_mmu_memory_cache *cache;
1395
1396         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1397         return mmu_memory_cache_free_objects(cache);
1398 }
1399
1400 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1401 {
1402         struct kvm_mmu_page *sp;
1403         struct kvm_rmap_head *rmap_head;
1404
1405         sp = page_header(__pa(spte));
1406         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1407         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1408         return pte_list_add(vcpu, spte, rmap_head);
1409 }
1410
1411 static void rmap_remove(struct kvm *kvm, u64 *spte)
1412 {
1413         struct kvm_mmu_page *sp;
1414         gfn_t gfn;
1415         struct kvm_rmap_head *rmap_head;
1416
1417         sp = page_header(__pa(spte));
1418         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1419         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1420         pte_list_remove(spte, rmap_head);
1421 }
1422
1423 /*
1424  * Used by the following functions to iterate through the sptes linked by a
1425  * rmap.  All fields are private and not assumed to be used outside.
1426  */
1427 struct rmap_iterator {
1428         /* private fields */
1429         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1430         int pos;                        /* index of the sptep */
1431 };
1432
1433 /*
1434  * Iteration must be started by this function.  This should also be used after
1435  * removing/dropping sptes from the rmap link because in such cases the
1436  * information in the itererator may not be valid.
1437  *
1438  * Returns sptep if found, NULL otherwise.
1439  */
1440 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1441                            struct rmap_iterator *iter)
1442 {
1443         u64 *sptep;
1444
1445         if (!rmap_head->val)
1446                 return NULL;
1447
1448         if (!(rmap_head->val & 1)) {
1449                 iter->desc = NULL;
1450                 sptep = (u64 *)rmap_head->val;
1451                 goto out;
1452         }
1453
1454         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1455         iter->pos = 0;
1456         sptep = iter->desc->sptes[iter->pos];
1457 out:
1458         BUG_ON(!is_shadow_present_pte(*sptep));
1459         return sptep;
1460 }
1461
1462 /*
1463  * Must be used with a valid iterator: e.g. after rmap_get_first().
1464  *
1465  * Returns sptep if found, NULL otherwise.
1466  */
1467 static u64 *rmap_get_next(struct rmap_iterator *iter)
1468 {
1469         u64 *sptep;
1470
1471         if (iter->desc) {
1472                 if (iter->pos < PTE_LIST_EXT - 1) {
1473                         ++iter->pos;
1474                         sptep = iter->desc->sptes[iter->pos];
1475                         if (sptep)
1476                                 goto out;
1477                 }
1478
1479                 iter->desc = iter->desc->more;
1480
1481                 if (iter->desc) {
1482                         iter->pos = 0;
1483                         /* desc->sptes[0] cannot be NULL */
1484                         sptep = iter->desc->sptes[iter->pos];
1485                         goto out;
1486                 }
1487         }
1488
1489         return NULL;
1490 out:
1491         BUG_ON(!is_shadow_present_pte(*sptep));
1492         return sptep;
1493 }
1494
1495 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1496         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1497              _spte_; _spte_ = rmap_get_next(_iter_))
1498
1499 static void drop_spte(struct kvm *kvm, u64 *sptep)
1500 {
1501         if (mmu_spte_clear_track_bits(sptep))
1502                 rmap_remove(kvm, sptep);
1503 }
1504
1505
1506 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1507 {
1508         if (is_large_pte(*sptep)) {
1509                 WARN_ON(page_header(__pa(sptep))->role.level ==
1510                         PT_PAGE_TABLE_LEVEL);
1511                 drop_spte(kvm, sptep);
1512                 --kvm->stat.lpages;
1513                 return true;
1514         }
1515
1516         return false;
1517 }
1518
1519 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1520 {
1521         if (__drop_large_spte(vcpu->kvm, sptep))
1522                 kvm_flush_remote_tlbs(vcpu->kvm);
1523 }
1524
1525 /*
1526  * Write-protect on the specified @sptep, @pt_protect indicates whether
1527  * spte write-protection is caused by protecting shadow page table.
1528  *
1529  * Note: write protection is difference between dirty logging and spte
1530  * protection:
1531  * - for dirty logging, the spte can be set to writable at anytime if
1532  *   its dirty bitmap is properly set.
1533  * - for spte protection, the spte can be writable only after unsync-ing
1534  *   shadow page.
1535  *
1536  * Return true if tlb need be flushed.
1537  */
1538 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1539 {
1540         u64 spte = *sptep;
1541
1542         if (!is_writable_pte(spte) &&
1543               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1544                 return false;
1545
1546         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1547
1548         if (pt_protect)
1549                 spte &= ~SPTE_MMU_WRITEABLE;
1550         spte = spte & ~PT_WRITABLE_MASK;
1551
1552         return mmu_spte_update(sptep, spte);
1553 }
1554
1555 static bool __rmap_write_protect(struct kvm *kvm,
1556                                  struct kvm_rmap_head *rmap_head,
1557                                  bool pt_protect)
1558 {
1559         u64 *sptep;
1560         struct rmap_iterator iter;
1561         bool flush = false;
1562
1563         for_each_rmap_spte(rmap_head, &iter, sptep)
1564                 flush |= spte_write_protect(sptep, pt_protect);
1565
1566         return flush;
1567 }
1568
1569 static bool spte_clear_dirty(u64 *sptep)
1570 {
1571         u64 spte = *sptep;
1572
1573         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1574
1575         spte &= ~shadow_dirty_mask;
1576
1577         return mmu_spte_update(sptep, spte);
1578 }
1579
1580 static bool wrprot_ad_disabled_spte(u64 *sptep)
1581 {
1582         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1583                                                (unsigned long *)sptep);
1584         if (was_writable)
1585                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1586
1587         return was_writable;
1588 }
1589
1590 /*
1591  * Gets the GFN ready for another round of dirty logging by clearing the
1592  *      - D bit on ad-enabled SPTEs, and
1593  *      - W bit on ad-disabled SPTEs.
1594  * Returns true iff any D or W bits were cleared.
1595  */
1596 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1597 {
1598         u64 *sptep;
1599         struct rmap_iterator iter;
1600         bool flush = false;
1601
1602         for_each_rmap_spte(rmap_head, &iter, sptep)
1603                 if (spte_ad_enabled(*sptep))
1604                         flush |= spte_clear_dirty(sptep);
1605                 else
1606                         flush |= wrprot_ad_disabled_spte(sptep);
1607
1608         return flush;
1609 }
1610
1611 static bool spte_set_dirty(u64 *sptep)
1612 {
1613         u64 spte = *sptep;
1614
1615         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1616
1617         spte |= shadow_dirty_mask;
1618
1619         return mmu_spte_update(sptep, spte);
1620 }
1621
1622 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1623 {
1624         u64 *sptep;
1625         struct rmap_iterator iter;
1626         bool flush = false;
1627
1628         for_each_rmap_spte(rmap_head, &iter, sptep)
1629                 if (spte_ad_enabled(*sptep))
1630                         flush |= spte_set_dirty(sptep);
1631
1632         return flush;
1633 }
1634
1635 /**
1636  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1637  * @kvm: kvm instance
1638  * @slot: slot to protect
1639  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1640  * @mask: indicates which pages we should protect
1641  *
1642  * Used when we do not need to care about huge page mappings: e.g. during dirty
1643  * logging we do not have any such mappings.
1644  */
1645 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1646                                      struct kvm_memory_slot *slot,
1647                                      gfn_t gfn_offset, unsigned long mask)
1648 {
1649         struct kvm_rmap_head *rmap_head;
1650
1651         while (mask) {
1652                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1653                                           PT_PAGE_TABLE_LEVEL, slot);
1654                 __rmap_write_protect(kvm, rmap_head, false);
1655
1656                 /* clear the first set bit */
1657                 mask &= mask - 1;
1658         }
1659 }
1660
1661 /**
1662  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1663  * protect the page if the D-bit isn't supported.
1664  * @kvm: kvm instance
1665  * @slot: slot to clear D-bit
1666  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1667  * @mask: indicates which pages we should clear D-bit
1668  *
1669  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1670  */
1671 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1672                                      struct kvm_memory_slot *slot,
1673                                      gfn_t gfn_offset, unsigned long mask)
1674 {
1675         struct kvm_rmap_head *rmap_head;
1676
1677         while (mask) {
1678                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1679                                           PT_PAGE_TABLE_LEVEL, slot);
1680                 __rmap_clear_dirty(kvm, rmap_head);
1681
1682                 /* clear the first set bit */
1683                 mask &= mask - 1;
1684         }
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1687
1688 /**
1689  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1690  * PT level pages.
1691  *
1692  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1693  * enable dirty logging for them.
1694  *
1695  * Used when we do not need to care about huge page mappings: e.g. during dirty
1696  * logging we do not have any such mappings.
1697  */
1698 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1699                                 struct kvm_memory_slot *slot,
1700                                 gfn_t gfn_offset, unsigned long mask)
1701 {
1702         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1703                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1704                                 mask);
1705         else
1706                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1707 }
1708
1709 /**
1710  * kvm_arch_write_log_dirty - emulate dirty page logging
1711  * @vcpu: Guest mode vcpu
1712  *
1713  * Emulate arch specific page modification logging for the
1714  * nested hypervisor
1715  */
1716 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu, gpa_t l2_gpa)
1717 {
1718         if (kvm_x86_ops->write_log_dirty)
1719                 return kvm_x86_ops->write_log_dirty(vcpu, l2_gpa);
1720
1721         return 0;
1722 }
1723
1724 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1725                                     struct kvm_memory_slot *slot, u64 gfn)
1726 {
1727         struct kvm_rmap_head *rmap_head;
1728         int i;
1729         bool write_protected = false;
1730
1731         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1732                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1733                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1734         }
1735
1736         return write_protected;
1737 }
1738
1739 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1740 {
1741         struct kvm_memory_slot *slot;
1742
1743         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1744         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1745 }
1746
1747 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1748 {
1749         u64 *sptep;
1750         struct rmap_iterator iter;
1751         bool flush = false;
1752
1753         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1754                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1755
1756                 drop_spte(kvm, sptep);
1757                 flush = true;
1758         }
1759
1760         return flush;
1761 }
1762
1763 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1764                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1765                            unsigned long data)
1766 {
1767         return kvm_zap_rmapp(kvm, rmap_head);
1768 }
1769
1770 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1771                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1772                              unsigned long data)
1773 {
1774         u64 *sptep;
1775         struct rmap_iterator iter;
1776         int need_flush = 0;
1777         u64 new_spte;
1778         pte_t *ptep = (pte_t *)data;
1779         kvm_pfn_t new_pfn;
1780
1781         WARN_ON(pte_huge(*ptep));
1782         new_pfn = pte_pfn(*ptep);
1783
1784 restart:
1785         for_each_rmap_spte(rmap_head, &iter, sptep) {
1786                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1787                             sptep, *sptep, gfn, level);
1788
1789                 need_flush = 1;
1790
1791                 if (pte_write(*ptep)) {
1792                         drop_spte(kvm, sptep);
1793                         goto restart;
1794                 } else {
1795                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1796                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1797
1798                         new_spte &= ~PT_WRITABLE_MASK;
1799                         new_spte &= ~SPTE_HOST_WRITEABLE;
1800
1801                         new_spte = mark_spte_for_access_track(new_spte);
1802
1803                         mmu_spte_clear_track_bits(sptep);
1804                         mmu_spte_set(sptep, new_spte);
1805                 }
1806         }
1807
1808         if (need_flush)
1809                 kvm_flush_remote_tlbs(kvm);
1810
1811         return 0;
1812 }
1813
1814 struct slot_rmap_walk_iterator {
1815         /* input fields. */
1816         struct kvm_memory_slot *slot;
1817         gfn_t start_gfn;
1818         gfn_t end_gfn;
1819         int start_level;
1820         int end_level;
1821
1822         /* output fields. */
1823         gfn_t gfn;
1824         struct kvm_rmap_head *rmap;
1825         int level;
1826
1827         /* private field. */
1828         struct kvm_rmap_head *end_rmap;
1829 };
1830
1831 static void
1832 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1833 {
1834         iterator->level = level;
1835         iterator->gfn = iterator->start_gfn;
1836         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1837         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1838                                            iterator->slot);
1839 }
1840
1841 static void
1842 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1843                     struct kvm_memory_slot *slot, int start_level,
1844                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1845 {
1846         iterator->slot = slot;
1847         iterator->start_level = start_level;
1848         iterator->end_level = end_level;
1849         iterator->start_gfn = start_gfn;
1850         iterator->end_gfn = end_gfn;
1851
1852         rmap_walk_init_level(iterator, iterator->start_level);
1853 }
1854
1855 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1856 {
1857         return !!iterator->rmap;
1858 }
1859
1860 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1861 {
1862         if (++iterator->rmap <= iterator->end_rmap) {
1863                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1864                 return;
1865         }
1866
1867         if (++iterator->level > iterator->end_level) {
1868                 iterator->rmap = NULL;
1869                 return;
1870         }
1871
1872         rmap_walk_init_level(iterator, iterator->level);
1873 }
1874
1875 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1876            _start_gfn, _end_gfn, _iter_)                                \
1877         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1878                                  _end_level_, _start_gfn, _end_gfn);    \
1879              slot_rmap_walk_okay(_iter_);                               \
1880              slot_rmap_walk_next(_iter_))
1881
1882 static int kvm_handle_hva_range(struct kvm *kvm,
1883                                 unsigned long start,
1884                                 unsigned long end,
1885                                 unsigned long data,
1886                                 int (*handler)(struct kvm *kvm,
1887                                                struct kvm_rmap_head *rmap_head,
1888                                                struct kvm_memory_slot *slot,
1889                                                gfn_t gfn,
1890                                                int level,
1891                                                unsigned long data))
1892 {
1893         struct kvm_memslots *slots;
1894         struct kvm_memory_slot *memslot;
1895         struct slot_rmap_walk_iterator iterator;
1896         int ret = 0;
1897         int i;
1898
1899         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1900                 slots = __kvm_memslots(kvm, i);
1901                 kvm_for_each_memslot(memslot, slots) {
1902                         unsigned long hva_start, hva_end;
1903                         gfn_t gfn_start, gfn_end;
1904
1905                         hva_start = max(start, memslot->userspace_addr);
1906                         hva_end = min(end, memslot->userspace_addr +
1907                                       (memslot->npages << PAGE_SHIFT));
1908                         if (hva_start >= hva_end)
1909                                 continue;
1910                         /*
1911                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1912                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1913                          */
1914                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1915                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1916
1917                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1918                                                  PT_MAX_HUGEPAGE_LEVEL,
1919                                                  gfn_start, gfn_end - 1,
1920                                                  &iterator)
1921                                 ret |= handler(kvm, iterator.rmap, memslot,
1922                                                iterator.gfn, iterator.level, data);
1923                 }
1924         }
1925
1926         return ret;
1927 }
1928
1929 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1930                           unsigned long data,
1931                           int (*handler)(struct kvm *kvm,
1932                                          struct kvm_rmap_head *rmap_head,
1933                                          struct kvm_memory_slot *slot,
1934                                          gfn_t gfn, int level,
1935                                          unsigned long data))
1936 {
1937         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1938 }
1939
1940 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1941 {
1942         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1943 }
1944
1945 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1946 {
1947         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1948 }
1949
1950 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1951 {
1952         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1953 }
1954
1955 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1956                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1957                          unsigned long data)
1958 {
1959         u64 *sptep;
1960         struct rmap_iterator uninitialized_var(iter);
1961         int young = 0;
1962
1963         for_each_rmap_spte(rmap_head, &iter, sptep)
1964                 young |= mmu_spte_age(sptep);
1965
1966         trace_kvm_age_page(gfn, level, slot, young);
1967         return young;
1968 }
1969
1970 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1971                               struct kvm_memory_slot *slot, gfn_t gfn,
1972                               int level, unsigned long data)
1973 {
1974         u64 *sptep;
1975         struct rmap_iterator iter;
1976
1977         for_each_rmap_spte(rmap_head, &iter, sptep)
1978                 if (is_accessed_spte(*sptep))
1979                         return 1;
1980         return 0;
1981 }
1982
1983 #define RMAP_RECYCLE_THRESHOLD 1000
1984
1985 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1986 {
1987         struct kvm_rmap_head *rmap_head;
1988         struct kvm_mmu_page *sp;
1989
1990         sp = page_header(__pa(spte));
1991
1992         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1993
1994         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1995         kvm_flush_remote_tlbs(vcpu->kvm);
1996 }
1997
1998 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1999 {
2000         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2001 }
2002
2003 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2004 {
2005         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2006 }
2007
2008 #ifdef MMU_DEBUG
2009 static int is_empty_shadow_page(u64 *spt)
2010 {
2011         u64 *pos;
2012         u64 *end;
2013
2014         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2015                 if (is_shadow_present_pte(*pos)) {
2016                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2017                                pos, *pos);
2018                         return 0;
2019                 }
2020         return 1;
2021 }
2022 #endif
2023
2024 /*
2025  * This value is the sum of all of the kvm instances's
2026  * kvm->arch.n_used_mmu_pages values.  We need a global,
2027  * aggregate version in order to make the slab shrinker
2028  * faster
2029  */
2030 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2031 {
2032         kvm->arch.n_used_mmu_pages += nr;
2033         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2034 }
2035
2036 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2037 {
2038         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2039         hlist_del(&sp->hash_link);
2040         list_del(&sp->link);
2041         free_page((unsigned long)sp->spt);
2042         if (!sp->role.direct)
2043                 free_page((unsigned long)sp->gfns);
2044         kmem_cache_free(mmu_page_header_cache, sp);
2045 }
2046
2047 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2048 {
2049         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2050 }
2051
2052 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2053                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2054 {
2055         if (!parent_pte)
2056                 return;
2057
2058         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2059 }
2060
2061 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2062                                        u64 *parent_pte)
2063 {
2064         pte_list_remove(parent_pte, &sp->parent_ptes);
2065 }
2066
2067 static void drop_parent_pte(struct kvm_mmu_page *sp,
2068                             u64 *parent_pte)
2069 {
2070         mmu_page_remove_parent_pte(sp, parent_pte);
2071         mmu_spte_clear_no_track(parent_pte);
2072 }
2073
2074 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2075 {
2076         struct kvm_mmu_page *sp;
2077
2078         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2079         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2080         if (!direct)
2081                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2082         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2083
2084         /*
2085          * The active_mmu_pages list is the FIFO list, do not move the
2086          * page until it is zapped. kvm_zap_obsolete_pages depends on
2087          * this feature. See the comments in kvm_zap_obsolete_pages().
2088          */
2089         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2090         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2091         return sp;
2092 }
2093
2094 static void mark_unsync(u64 *spte);
2095 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2096 {
2097         u64 *sptep;
2098         struct rmap_iterator iter;
2099
2100         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2101                 mark_unsync(sptep);
2102         }
2103 }
2104
2105 static void mark_unsync(u64 *spte)
2106 {
2107         struct kvm_mmu_page *sp;
2108         unsigned int index;
2109
2110         sp = page_header(__pa(spte));
2111         index = spte - sp->spt;
2112         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2113                 return;
2114         if (sp->unsync_children++)
2115                 return;
2116         kvm_mmu_mark_parents_unsync(sp);
2117 }
2118
2119 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2120                                struct kvm_mmu_page *sp)
2121 {
2122         return 0;
2123 }
2124
2125 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2126 {
2127 }
2128
2129 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2130                                  struct kvm_mmu_page *sp, u64 *spte,
2131                                  const void *pte)
2132 {
2133         WARN_ON(1);
2134 }
2135
2136 #define KVM_PAGE_ARRAY_NR 16
2137
2138 struct kvm_mmu_pages {
2139         struct mmu_page_and_offset {
2140                 struct kvm_mmu_page *sp;
2141                 unsigned int idx;
2142         } page[KVM_PAGE_ARRAY_NR];
2143         unsigned int nr;
2144 };
2145
2146 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2147                          int idx)
2148 {
2149         int i;
2150
2151         if (sp->unsync)
2152                 for (i=0; i < pvec->nr; i++)
2153                         if (pvec->page[i].sp == sp)
2154                                 return 0;
2155
2156         pvec->page[pvec->nr].sp = sp;
2157         pvec->page[pvec->nr].idx = idx;
2158         pvec->nr++;
2159         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2160 }
2161
2162 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2163 {
2164         --sp->unsync_children;
2165         WARN_ON((int)sp->unsync_children < 0);
2166         __clear_bit(idx, sp->unsync_child_bitmap);
2167 }
2168
2169 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2170                            struct kvm_mmu_pages *pvec)
2171 {
2172         int i, ret, nr_unsync_leaf = 0;
2173
2174         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2175                 struct kvm_mmu_page *child;
2176                 u64 ent = sp->spt[i];
2177
2178                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2179                         clear_unsync_child_bit(sp, i);
2180                         continue;
2181                 }
2182
2183                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2184
2185                 if (child->unsync_children) {
2186                         if (mmu_pages_add(pvec, child, i))
2187                                 return -ENOSPC;
2188
2189                         ret = __mmu_unsync_walk(child, pvec);
2190                         if (!ret) {
2191                                 clear_unsync_child_bit(sp, i);
2192                                 continue;
2193                         } else if (ret > 0) {
2194                                 nr_unsync_leaf += ret;
2195                         } else
2196                                 return ret;
2197                 } else if (child->unsync) {
2198                         nr_unsync_leaf++;
2199                         if (mmu_pages_add(pvec, child, i))
2200                                 return -ENOSPC;
2201                 } else
2202                         clear_unsync_child_bit(sp, i);
2203         }
2204
2205         return nr_unsync_leaf;
2206 }
2207
2208 #define INVALID_INDEX (-1)
2209
2210 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2211                            struct kvm_mmu_pages *pvec)
2212 {
2213         pvec->nr = 0;
2214         if (!sp->unsync_children)
2215                 return 0;
2216
2217         mmu_pages_add(pvec, sp, INVALID_INDEX);
2218         return __mmu_unsync_walk(sp, pvec);
2219 }
2220
2221 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2222 {
2223         WARN_ON(!sp->unsync);
2224         trace_kvm_mmu_sync_page(sp);
2225         sp->unsync = 0;
2226         --kvm->stat.mmu_unsync;
2227 }
2228
2229 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2230                                     struct list_head *invalid_list);
2231 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2232                                     struct list_head *invalid_list);
2233
2234 /*
2235  * NOTE: we should pay more attention on the zapped-obsolete page
2236  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2237  * since it has been deleted from active_mmu_pages but still can be found
2238  * at hast list.
2239  *
2240  * for_each_valid_sp() has skipped that kind of pages.
2241  */
2242 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2243         hlist_for_each_entry(_sp,                                       \
2244           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2245                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2246                 } else
2247
2248 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2249         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2250                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2251
2252 /* @sp->gfn should be write-protected at the call site */
2253 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2254                             struct list_head *invalid_list)
2255 {
2256         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2257                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2258                 return false;
2259         }
2260
2261         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2262                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2263                 return false;
2264         }
2265
2266         return true;
2267 }
2268
2269 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2270                                  struct list_head *invalid_list,
2271                                  bool remote_flush, bool local_flush)
2272 {
2273         if (!list_empty(invalid_list)) {
2274                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2275                 return;
2276         }
2277
2278         if (remote_flush)
2279                 kvm_flush_remote_tlbs(vcpu->kvm);
2280         else if (local_flush)
2281                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2282 }
2283
2284 #ifdef CONFIG_KVM_MMU_AUDIT
2285 #include "mmu_audit.c"
2286 #else
2287 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2288 static void mmu_audit_disable(void) { }
2289 #endif
2290
2291 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2292 {
2293         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2294 }
2295
2296 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2297                          struct list_head *invalid_list)
2298 {
2299         kvm_unlink_unsync_page(vcpu->kvm, sp);
2300         return __kvm_sync_page(vcpu, sp, invalid_list);
2301 }
2302
2303 /* @gfn should be write-protected at the call site */
2304 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2305                            struct list_head *invalid_list)
2306 {
2307         struct kvm_mmu_page *s;
2308         bool ret = false;
2309
2310         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2311                 if (!s->unsync)
2312                         continue;
2313
2314                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2315                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2316         }
2317
2318         return ret;
2319 }
2320
2321 struct mmu_page_path {
2322         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2323         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2324 };
2325
2326 #define for_each_sp(pvec, sp, parents, i)                       \
2327                 for (i = mmu_pages_first(&pvec, &parents);      \
2328                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2329                         i = mmu_pages_next(&pvec, &parents, i))
2330
2331 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2332                           struct mmu_page_path *parents,
2333                           int i)
2334 {
2335         int n;
2336
2337         for (n = i+1; n < pvec->nr; n++) {
2338                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2339                 unsigned idx = pvec->page[n].idx;
2340                 int level = sp->role.level;
2341
2342                 parents->idx[level-1] = idx;
2343                 if (level == PT_PAGE_TABLE_LEVEL)
2344                         break;
2345
2346                 parents->parent[level-2] = sp;
2347         }
2348
2349         return n;
2350 }
2351
2352 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2353                            struct mmu_page_path *parents)
2354 {
2355         struct kvm_mmu_page *sp;
2356         int level;
2357
2358         if (pvec->nr == 0)
2359                 return 0;
2360
2361         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2362
2363         sp = pvec->page[0].sp;
2364         level = sp->role.level;
2365         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2366
2367         parents->parent[level-2] = sp;
2368
2369         /* Also set up a sentinel.  Further entries in pvec are all
2370          * children of sp, so this element is never overwritten.
2371          */
2372         parents->parent[level-1] = NULL;
2373         return mmu_pages_next(pvec, parents, 0);
2374 }
2375
2376 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2377 {
2378         struct kvm_mmu_page *sp;
2379         unsigned int level = 0;
2380
2381         do {
2382                 unsigned int idx = parents->idx[level];
2383                 sp = parents->parent[level];
2384                 if (!sp)
2385                         return;
2386
2387                 WARN_ON(idx == INVALID_INDEX);
2388                 clear_unsync_child_bit(sp, idx);
2389                 level++;
2390         } while (!sp->unsync_children);
2391 }
2392
2393 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2394                               struct kvm_mmu_page *parent)
2395 {
2396         int i;
2397         struct kvm_mmu_page *sp;
2398         struct mmu_page_path parents;
2399         struct kvm_mmu_pages pages;
2400         LIST_HEAD(invalid_list);
2401         bool flush = false;
2402
2403         while (mmu_unsync_walk(parent, &pages)) {
2404                 bool protected = false;
2405
2406                 for_each_sp(pages, sp, parents, i)
2407                         protected |= rmap_write_protect(vcpu, sp->gfn);
2408
2409                 if (protected) {
2410                         kvm_flush_remote_tlbs(vcpu->kvm);
2411                         flush = false;
2412                 }
2413
2414                 for_each_sp(pages, sp, parents, i) {
2415                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2416                         mmu_pages_clear_parents(&parents);
2417                 }
2418                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2419                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2420                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2421                         flush = false;
2422                 }
2423         }
2424
2425         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2426 }
2427
2428 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2429 {
2430         atomic_set(&sp->write_flooding_count,  0);
2431 }
2432
2433 static void clear_sp_write_flooding_count(u64 *spte)
2434 {
2435         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2436
2437         __clear_sp_write_flooding_count(sp);
2438 }
2439
2440 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2441                                              gfn_t gfn,
2442                                              gva_t gaddr,
2443                                              unsigned level,
2444                                              int direct,
2445                                              unsigned access)
2446 {
2447         union kvm_mmu_page_role role;
2448         unsigned quadrant;
2449         struct kvm_mmu_page *sp;
2450         bool need_sync = false;
2451         bool flush = false;
2452         int collisions = 0;
2453         LIST_HEAD(invalid_list);
2454
2455         role = vcpu->arch.mmu.base_role;
2456         role.level = level;
2457         role.direct = direct;
2458         if (role.direct)
2459                 role.cr4_pae = 0;
2460         role.access = access;
2461         if (!vcpu->arch.mmu.direct_map
2462             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2463                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2464                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2465                 role.quadrant = quadrant;
2466         }
2467         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2468                 if (sp->gfn != gfn) {
2469                         collisions++;
2470                         continue;
2471                 }
2472
2473                 if (!need_sync && sp->unsync)
2474                         need_sync = true;
2475
2476                 if (sp->role.word != role.word)
2477                         continue;
2478
2479                 if (sp->unsync) {
2480                         /* The page is good, but __kvm_sync_page might still end
2481                          * up zapping it.  If so, break in order to rebuild it.
2482                          */
2483                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2484                                 break;
2485
2486                         WARN_ON(!list_empty(&invalid_list));
2487                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2488                 }
2489
2490                 if (sp->unsync_children)
2491                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2492
2493                 __clear_sp_write_flooding_count(sp);
2494                 trace_kvm_mmu_get_page(sp, false);
2495                 goto out;
2496         }
2497
2498         ++vcpu->kvm->stat.mmu_cache_miss;
2499
2500         sp = kvm_mmu_alloc_page(vcpu, direct);
2501
2502         sp->gfn = gfn;
2503         sp->role = role;
2504         hlist_add_head(&sp->hash_link,
2505                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2506         if (!direct) {
2507                 /*
2508                  * we should do write protection before syncing pages
2509                  * otherwise the content of the synced shadow page may
2510                  * be inconsistent with guest page table.
2511                  */
2512                 account_shadowed(vcpu->kvm, sp);
2513                 if (level == PT_PAGE_TABLE_LEVEL &&
2514                       rmap_write_protect(vcpu, gfn))
2515                         kvm_flush_remote_tlbs(vcpu->kvm);
2516
2517                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2518                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2519         }
2520         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2521         clear_page(sp->spt);
2522         trace_kvm_mmu_get_page(sp, true);
2523
2524         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2525 out:
2526         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2527                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2528         return sp;
2529 }
2530
2531 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2532                              struct kvm_vcpu *vcpu, u64 addr)
2533 {
2534         iterator->addr = addr;
2535         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2536         iterator->level = vcpu->arch.mmu.shadow_root_level;
2537
2538         if (iterator->level == PT64_ROOT_4LEVEL &&
2539             vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2540             !vcpu->arch.mmu.direct_map)
2541                 --iterator->level;
2542
2543         if (iterator->level == PT32E_ROOT_LEVEL) {
2544                 iterator->shadow_addr
2545                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2546                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2547                 --iterator->level;
2548                 if (!iterator->shadow_addr)
2549                         iterator->level = 0;
2550         }
2551 }
2552
2553 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2554 {
2555         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2556                 return false;
2557
2558         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2559         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2560         return true;
2561 }
2562
2563 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2564                                u64 spte)
2565 {
2566         if (is_last_spte(spte, iterator->level)) {
2567                 iterator->level = 0;
2568                 return;
2569         }
2570
2571         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2572         --iterator->level;
2573 }
2574
2575 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2576 {
2577         return __shadow_walk_next(iterator, *iterator->sptep);
2578 }
2579
2580 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2581                              struct kvm_mmu_page *sp)
2582 {
2583         u64 spte;
2584
2585         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2586
2587         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2588                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2589
2590         if (sp_ad_disabled(sp))
2591                 spte |= shadow_acc_track_value;
2592         else
2593                 spte |= shadow_accessed_mask;
2594
2595         mmu_spte_set(sptep, spte);
2596
2597         mmu_page_add_parent_pte(vcpu, sp, sptep);
2598
2599         if (sp->unsync_children || sp->unsync)
2600                 mark_unsync(sptep);
2601 }
2602
2603 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2604                                    unsigned direct_access)
2605 {
2606         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2607                 struct kvm_mmu_page *child;
2608
2609                 /*
2610                  * For the direct sp, if the guest pte's dirty bit
2611                  * changed form clean to dirty, it will corrupt the
2612                  * sp's access: allow writable in the read-only sp,
2613                  * so we should update the spte at this point to get
2614                  * a new sp with the correct access.
2615                  */
2616                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2617                 if (child->role.access == direct_access)
2618                         return;
2619
2620                 drop_parent_pte(child, sptep);
2621                 kvm_flush_remote_tlbs(vcpu->kvm);
2622         }
2623 }
2624
2625 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2626                              u64 *spte)
2627 {
2628         u64 pte;
2629         struct kvm_mmu_page *child;
2630
2631         pte = *spte;
2632         if (is_shadow_present_pte(pte)) {
2633                 if (is_last_spte(pte, sp->role.level)) {
2634                         drop_spte(kvm, spte);
2635                         if (is_large_pte(pte))
2636                                 --kvm->stat.lpages;
2637                 } else {
2638                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2639                         drop_parent_pte(child, spte);
2640                 }
2641                 return true;
2642         }
2643
2644         if (is_mmio_spte(pte))
2645                 mmu_spte_clear_no_track(spte);
2646
2647         return false;
2648 }
2649
2650 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2651                                          struct kvm_mmu_page *sp)
2652 {
2653         unsigned i;
2654
2655         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2656                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2657 }
2658
2659 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2660 {
2661         u64 *sptep;
2662         struct rmap_iterator iter;
2663
2664         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2665                 drop_parent_pte(sp, sptep);
2666 }
2667
2668 static int mmu_zap_unsync_children(struct kvm *kvm,
2669                                    struct kvm_mmu_page *parent,
2670                                    struct list_head *invalid_list)
2671 {
2672         int i, zapped = 0;
2673         struct mmu_page_path parents;
2674         struct kvm_mmu_pages pages;
2675
2676         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2677                 return 0;
2678
2679         while (mmu_unsync_walk(parent, &pages)) {
2680                 struct kvm_mmu_page *sp;
2681
2682                 for_each_sp(pages, sp, parents, i) {
2683                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2684                         mmu_pages_clear_parents(&parents);
2685                         zapped++;
2686                 }
2687         }
2688
2689         return zapped;
2690 }
2691
2692 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2693                                     struct list_head *invalid_list)
2694 {
2695         int ret;
2696
2697         trace_kvm_mmu_prepare_zap_page(sp);
2698         ++kvm->stat.mmu_shadow_zapped;
2699         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2700         kvm_mmu_page_unlink_children(kvm, sp);
2701         kvm_mmu_unlink_parents(kvm, sp);
2702
2703         if (!sp->role.invalid && !sp->role.direct)
2704                 unaccount_shadowed(kvm, sp);
2705
2706         if (sp->unsync)
2707                 kvm_unlink_unsync_page(kvm, sp);
2708         if (!sp->root_count) {
2709                 /* Count self */
2710                 ret++;
2711                 list_move(&sp->link, invalid_list);
2712                 kvm_mod_used_mmu_pages(kvm, -1);
2713         } else {
2714                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2715
2716                 /*
2717                  * The obsolete pages can not be used on any vcpus.
2718                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2719                  */
2720                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2721                         kvm_reload_remote_mmus(kvm);
2722         }
2723
2724         if (sp->lpage_disallowed)
2725                 unaccount_huge_nx_page(kvm, sp);
2726
2727         sp->role.invalid = 1;
2728         return ret;
2729 }
2730
2731 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2732                                     struct list_head *invalid_list)
2733 {
2734         struct kvm_mmu_page *sp, *nsp;
2735
2736         if (list_empty(invalid_list))
2737                 return;
2738
2739         /*
2740          * We need to make sure everyone sees our modifications to
2741          * the page tables and see changes to vcpu->mode here. The barrier
2742          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2743          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2744          *
2745          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2746          * guest mode and/or lockless shadow page table walks.
2747          */
2748         kvm_flush_remote_tlbs(kvm);
2749
2750         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2751                 WARN_ON(!sp->role.invalid || sp->root_count);
2752                 kvm_mmu_free_page(sp);
2753         }
2754 }
2755
2756 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2757                                         struct list_head *invalid_list)
2758 {
2759         struct kvm_mmu_page *sp;
2760
2761         if (list_empty(&kvm->arch.active_mmu_pages))
2762                 return false;
2763
2764         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2765                              struct kvm_mmu_page, link);
2766         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2767 }
2768
2769 /*
2770  * Changing the number of mmu pages allocated to the vm
2771  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2772  */
2773 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2774 {
2775         LIST_HEAD(invalid_list);
2776
2777         spin_lock(&kvm->mmu_lock);
2778
2779         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2780                 /* Need to free some mmu pages to achieve the goal. */
2781                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2782                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2783                                 break;
2784
2785                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2786                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2787         }
2788
2789         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2790
2791         spin_unlock(&kvm->mmu_lock);
2792 }
2793
2794 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2795 {
2796         struct kvm_mmu_page *sp;
2797         LIST_HEAD(invalid_list);
2798         int r;
2799
2800         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2801         r = 0;
2802         spin_lock(&kvm->mmu_lock);
2803         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2804                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2805                          sp->role.word);
2806                 r = 1;
2807                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2808         }
2809         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2810         spin_unlock(&kvm->mmu_lock);
2811
2812         return r;
2813 }
2814 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2815
2816 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2817 {
2818         trace_kvm_mmu_unsync_page(sp);
2819         ++vcpu->kvm->stat.mmu_unsync;
2820         sp->unsync = 1;
2821
2822         kvm_mmu_mark_parents_unsync(sp);
2823 }
2824
2825 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2826                                    bool can_unsync)
2827 {
2828         struct kvm_mmu_page *sp;
2829
2830         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2831                 return true;
2832
2833         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2834                 if (!can_unsync)
2835                         return true;
2836
2837                 if (sp->unsync)
2838                         continue;
2839
2840                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2841                 kvm_unsync_page(vcpu, sp);
2842         }
2843
2844         return false;
2845 }
2846
2847 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2848 {
2849         if (pfn_valid(pfn))
2850                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2851
2852         return true;
2853 }
2854
2855 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2856                     unsigned pte_access, int level,
2857                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2858                     bool can_unsync, bool host_writable)
2859 {
2860         u64 spte = 0;
2861         int ret = 0;
2862         struct kvm_mmu_page *sp;
2863
2864         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2865                 return 0;
2866
2867         sp = page_header(__pa(sptep));
2868         if (sp_ad_disabled(sp))
2869                 spte |= shadow_acc_track_value;
2870
2871         /*
2872          * For the EPT case, shadow_present_mask is 0 if hardware
2873          * supports exec-only page table entries.  In that case,
2874          * ACC_USER_MASK and shadow_user_mask are used to represent
2875          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2876          */
2877         spte |= shadow_present_mask;
2878         if (!speculative)
2879                 spte |= spte_shadow_accessed_mask(spte);
2880
2881         if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
2882             is_nx_huge_page_enabled()) {
2883                 pte_access &= ~ACC_EXEC_MASK;
2884         }
2885
2886         if (pte_access & ACC_EXEC_MASK)
2887                 spte |= shadow_x_mask;
2888         else
2889                 spte |= shadow_nx_mask;
2890
2891         if (pte_access & ACC_USER_MASK)
2892                 spte |= shadow_user_mask;
2893
2894         if (level > PT_PAGE_TABLE_LEVEL)
2895                 spte |= PT_PAGE_SIZE_MASK;
2896         if (tdp_enabled)
2897                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2898                         kvm_is_mmio_pfn(pfn));
2899
2900         if (host_writable)
2901                 spte |= SPTE_HOST_WRITEABLE;
2902         else
2903                 pte_access &= ~ACC_WRITE_MASK;
2904
2905         if (!kvm_is_mmio_pfn(pfn))
2906                 spte |= shadow_me_mask;
2907
2908         spte |= (u64)pfn << PAGE_SHIFT;
2909
2910         if (pte_access & ACC_WRITE_MASK) {
2911
2912                 /*
2913                  * Other vcpu creates new sp in the window between
2914                  * mapping_level() and acquiring mmu-lock. We can
2915                  * allow guest to retry the access, the mapping can
2916                  * be fixed if guest refault.
2917                  */
2918                 if (level > PT_PAGE_TABLE_LEVEL &&
2919                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2920                         goto done;
2921
2922                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2923
2924                 /*
2925                  * Optimization: for pte sync, if spte was writable the hash
2926                  * lookup is unnecessary (and expensive). Write protection
2927                  * is responsibility of mmu_get_page / kvm_sync_page.
2928                  * Same reasoning can be applied to dirty page accounting.
2929                  */
2930                 if (!can_unsync && is_writable_pte(*sptep))
2931                         goto set_pte;
2932
2933                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2934                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2935                                  __func__, gfn);
2936                         ret = 1;
2937                         pte_access &= ~ACC_WRITE_MASK;
2938                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2939                 }
2940         }
2941
2942         if (pte_access & ACC_WRITE_MASK) {
2943                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2944                 spte |= spte_shadow_dirty_mask(spte);
2945         }
2946
2947         if (speculative)
2948                 spte = mark_spte_for_access_track(spte);
2949
2950 set_pte:
2951         if (mmu_spte_update(sptep, spte))
2952                 kvm_flush_remote_tlbs(vcpu->kvm);
2953 done:
2954         return ret;
2955 }
2956
2957 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2958                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2959                         bool speculative, bool host_writable)
2960 {
2961         int was_rmapped = 0;
2962         int rmap_count;
2963         int ret = RET_PF_RETRY;
2964
2965         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2966                  *sptep, write_fault, gfn);
2967
2968         if (is_shadow_present_pte(*sptep)) {
2969                 /*
2970                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2971                  * the parent of the now unreachable PTE.
2972                  */
2973                 if (level > PT_PAGE_TABLE_LEVEL &&
2974                     !is_large_pte(*sptep)) {
2975                         struct kvm_mmu_page *child;
2976                         u64 pte = *sptep;
2977
2978                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2979                         drop_parent_pte(child, sptep);
2980                         kvm_flush_remote_tlbs(vcpu->kvm);
2981                 } else if (pfn != spte_to_pfn(*sptep)) {
2982                         pgprintk("hfn old %llx new %llx\n",
2983                                  spte_to_pfn(*sptep), pfn);
2984                         drop_spte(vcpu->kvm, sptep);
2985                         kvm_flush_remote_tlbs(vcpu->kvm);
2986                 } else
2987                         was_rmapped = 1;
2988         }
2989
2990         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2991               true, host_writable)) {
2992                 if (write_fault)
2993                         ret = RET_PF_EMULATE;
2994                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2995         }
2996
2997         if (unlikely(is_mmio_spte(*sptep)))
2998                 ret = RET_PF_EMULATE;
2999
3000         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3001         trace_kvm_mmu_set_spte(level, gfn, sptep);
3002         if (!was_rmapped && is_large_pte(*sptep))
3003                 ++vcpu->kvm->stat.lpages;
3004
3005         if (is_shadow_present_pte(*sptep)) {
3006                 if (!was_rmapped) {
3007                         rmap_count = rmap_add(vcpu, sptep, gfn);
3008                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3009                                 rmap_recycle(vcpu, sptep, gfn);
3010                 }
3011         }
3012
3013         return ret;
3014 }
3015
3016 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3017                                      bool no_dirty_log)
3018 {
3019         struct kvm_memory_slot *slot;
3020
3021         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3022         if (!slot)
3023                 return KVM_PFN_ERR_FAULT;
3024
3025         return gfn_to_pfn_memslot_atomic(slot, gfn);
3026 }
3027
3028 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3029                                     struct kvm_mmu_page *sp,
3030                                     u64 *start, u64 *end)
3031 {
3032         struct page *pages[PTE_PREFETCH_NUM];
3033         struct kvm_memory_slot *slot;
3034         unsigned access = sp->role.access;
3035         int i, ret;
3036         gfn_t gfn;
3037
3038         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3039         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3040         if (!slot)
3041                 return -1;
3042
3043         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3044         if (ret <= 0)
3045                 return -1;
3046
3047         for (i = 0; i < ret; i++, gfn++, start++) {
3048                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3049                              page_to_pfn(pages[i]), true, true);
3050                 put_page(pages[i]);
3051         }
3052
3053         return 0;
3054 }
3055
3056 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3057                                   struct kvm_mmu_page *sp, u64 *sptep)
3058 {
3059         u64 *spte, *start = NULL;
3060         int i;
3061
3062         WARN_ON(!sp->role.direct);
3063
3064         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3065         spte = sp->spt + i;
3066
3067         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3068                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3069                         if (!start)
3070                                 continue;
3071                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3072                                 break;
3073                         start = NULL;
3074                 } else if (!start)
3075                         start = spte;
3076         }
3077 }
3078
3079 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3080 {
3081         struct kvm_mmu_page *sp;
3082
3083         sp = page_header(__pa(sptep));
3084
3085         /*
3086          * Without accessed bits, there's no way to distinguish between
3087          * actually accessed translations and prefetched, so disable pte
3088          * prefetch if accessed bits aren't available.
3089          */
3090         if (sp_ad_disabled(sp))
3091                 return;
3092
3093         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3094                 return;
3095
3096         __direct_pte_prefetch(vcpu, sp, sptep);
3097 }
3098
3099 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3100                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3101 {
3102         int level = *levelp;
3103         u64 spte = *it.sptep;
3104
3105         if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3106             is_nx_huge_page_enabled() &&
3107             is_shadow_present_pte(spte) &&
3108             !is_large_pte(spte)) {
3109                 /*
3110                  * A small SPTE exists for this pfn, but FNAME(fetch)
3111                  * and __direct_map would like to create a large PTE
3112                  * instead: just force them to go down another level,
3113                  * patching back for them into pfn the next 9 bits of
3114                  * the address.
3115                  */
3116                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3117                 *pfnp |= gfn & page_mask;
3118                 (*levelp)--;
3119         }
3120 }
3121
3122 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3123                         int map_writable, int level, kvm_pfn_t pfn,
3124                         bool prefault, bool lpage_disallowed)
3125 {
3126         struct kvm_shadow_walk_iterator it;
3127         struct kvm_mmu_page *sp;
3128         int ret;
3129         gfn_t gfn = gpa >> PAGE_SHIFT;
3130         gfn_t base_gfn = gfn;
3131
3132         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3133                 return RET_PF_RETRY;
3134
3135         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3136         for_each_shadow_entry(vcpu, gpa, it) {
3137                 /*
3138                  * We cannot overwrite existing page tables with an NX
3139                  * large page, as the leaf could be executable.
3140                  */
3141                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3142
3143                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3144                 if (it.level == level)
3145                         break;
3146
3147                 drop_large_spte(vcpu, it.sptep);
3148                 if (!is_shadow_present_pte(*it.sptep)) {
3149                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3150                                               it.level - 1, true, ACC_ALL);
3151
3152                         link_shadow_page(vcpu, it.sptep, sp);
3153                         if (lpage_disallowed)
3154                                 account_huge_nx_page(vcpu->kvm, sp);
3155                 }
3156         }
3157
3158         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3159                            write, level, base_gfn, pfn, prefault,
3160                            map_writable);
3161         direct_pte_prefetch(vcpu, it.sptep);
3162         ++vcpu->stat.pf_fixed;
3163         return ret;
3164 }
3165
3166 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3167 {
3168         siginfo_t info;
3169
3170         info.si_signo   = SIGBUS;
3171         info.si_errno   = 0;
3172         info.si_code    = BUS_MCEERR_AR;
3173         info.si_addr    = (void __user *)address;
3174         info.si_addr_lsb = PAGE_SHIFT;
3175
3176         send_sig_info(SIGBUS, &info, tsk);
3177 }
3178
3179 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3180 {
3181         /*
3182          * Do not cache the mmio info caused by writing the readonly gfn
3183          * into the spte otherwise read access on readonly gfn also can
3184          * caused mmio page fault and treat it as mmio access.
3185          */
3186         if (pfn == KVM_PFN_ERR_RO_FAULT)
3187                 return RET_PF_EMULATE;
3188
3189         if (pfn == KVM_PFN_ERR_HWPOISON) {
3190                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3191                 return RET_PF_RETRY;
3192         }
3193
3194         return -EFAULT;
3195 }
3196
3197 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3198                                         gfn_t gfn, kvm_pfn_t *pfnp,
3199                                         int *levelp)
3200 {
3201         kvm_pfn_t pfn = *pfnp;
3202         int level = *levelp;
3203
3204         /*
3205          * Check if it's a transparent hugepage. If this would be an
3206          * hugetlbfs page, level wouldn't be set to
3207          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3208          * here.
3209          */
3210         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3211             !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3212             PageTransCompoundMap(pfn_to_page(pfn)) &&
3213             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3214                 unsigned long mask;
3215                 /*
3216                  * mmu_notifier_retry was successful and we hold the
3217                  * mmu_lock here, so the pmd can't become splitting
3218                  * from under us, and in turn
3219                  * __split_huge_page_refcount() can't run from under
3220                  * us and we can safely transfer the refcount from
3221                  * PG_tail to PG_head as we switch the pfn to tail to
3222                  * head.
3223                  */
3224                 *levelp = level = PT_DIRECTORY_LEVEL;
3225                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3226                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3227                 if (pfn & mask) {
3228                         kvm_release_pfn_clean(pfn);
3229                         pfn &= ~mask;
3230                         kvm_get_pfn(pfn);
3231                         *pfnp = pfn;
3232                 }
3233         }
3234 }
3235
3236 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3237                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3238 {
3239         /* The pfn is invalid, report the error! */
3240         if (unlikely(is_error_pfn(pfn))) {
3241                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3242                 return true;
3243         }
3244
3245         if (unlikely(is_noslot_pfn(pfn)))
3246                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3247
3248         return false;
3249 }
3250
3251 static bool page_fault_can_be_fast(u32 error_code)
3252 {
3253         /*
3254          * Do not fix the mmio spte with invalid generation number which
3255          * need to be updated by slow page fault path.
3256          */
3257         if (unlikely(error_code & PFERR_RSVD_MASK))
3258                 return false;
3259
3260         /* See if the page fault is due to an NX violation */
3261         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3262                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3263                 return false;
3264
3265         /*
3266          * #PF can be fast if:
3267          * 1. The shadow page table entry is not present, which could mean that
3268          *    the fault is potentially caused by access tracking (if enabled).
3269          * 2. The shadow page table entry is present and the fault
3270          *    is caused by write-protect, that means we just need change the W
3271          *    bit of the spte which can be done out of mmu-lock.
3272          *
3273          * However, if access tracking is disabled we know that a non-present
3274          * page must be a genuine page fault where we have to create a new SPTE.
3275          * So, if access tracking is disabled, we return true only for write
3276          * accesses to a present page.
3277          */
3278
3279         return shadow_acc_track_mask != 0 ||
3280                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3281                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3282 }
3283
3284 /*
3285  * Returns true if the SPTE was fixed successfully. Otherwise,
3286  * someone else modified the SPTE from its original value.
3287  */
3288 static bool
3289 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3290                         u64 *sptep, u64 old_spte, u64 new_spte)
3291 {
3292         gfn_t gfn;
3293
3294         WARN_ON(!sp->role.direct);
3295
3296         /*
3297          * Theoretically we could also set dirty bit (and flush TLB) here in
3298          * order to eliminate unnecessary PML logging. See comments in
3299          * set_spte. But fast_page_fault is very unlikely to happen with PML
3300          * enabled, so we do not do this. This might result in the same GPA
3301          * to be logged in PML buffer again when the write really happens, and
3302          * eventually to be called by mark_page_dirty twice. But it's also no
3303          * harm. This also avoids the TLB flush needed after setting dirty bit
3304          * so non-PML cases won't be impacted.
3305          *
3306          * Compare with set_spte where instead shadow_dirty_mask is set.
3307          */
3308         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3309                 return false;
3310
3311         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3312                 /*
3313                  * The gfn of direct spte is stable since it is
3314                  * calculated by sp->gfn.
3315                  */
3316                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3317                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3318         }
3319
3320         return true;
3321 }
3322
3323 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3324 {
3325         if (fault_err_code & PFERR_FETCH_MASK)
3326                 return is_executable_pte(spte);
3327
3328         if (fault_err_code & PFERR_WRITE_MASK)
3329                 return is_writable_pte(spte);
3330
3331         /* Fault was on Read access */
3332         return spte & PT_PRESENT_MASK;
3333 }
3334
3335 /*
3336  * Return value:
3337  * - true: let the vcpu to access on the same address again.
3338  * - false: let the real page fault path to fix it.
3339  */
3340 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3341                             u32 error_code)
3342 {
3343         struct kvm_shadow_walk_iterator iterator;
3344         struct kvm_mmu_page *sp;
3345         bool fault_handled = false;
3346         u64 spte = 0ull;
3347         uint retry_count = 0;
3348
3349         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3350                 return false;
3351
3352         if (!page_fault_can_be_fast(error_code))
3353                 return false;
3354
3355         walk_shadow_page_lockless_begin(vcpu);
3356
3357         do {
3358                 u64 new_spte;
3359
3360                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3361                         if (!is_shadow_present_pte(spte) ||
3362                             iterator.level < level)
3363                                 break;
3364
3365                 sp = page_header(__pa(iterator.sptep));
3366                 if (!is_last_spte(spte, sp->role.level))
3367                         break;
3368
3369                 /*
3370                  * Check whether the memory access that caused the fault would
3371                  * still cause it if it were to be performed right now. If not,
3372                  * then this is a spurious fault caused by TLB lazily flushed,
3373                  * or some other CPU has already fixed the PTE after the
3374                  * current CPU took the fault.
3375                  *
3376                  * Need not check the access of upper level table entries since
3377                  * they are always ACC_ALL.
3378                  */
3379                 if (is_access_allowed(error_code, spte)) {
3380                         fault_handled = true;
3381                         break;
3382                 }
3383
3384                 new_spte = spte;
3385
3386                 if (is_access_track_spte(spte))
3387                         new_spte = restore_acc_track_spte(new_spte);
3388
3389                 /*
3390                  * Currently, to simplify the code, write-protection can
3391                  * be removed in the fast path only if the SPTE was
3392                  * write-protected for dirty-logging or access tracking.
3393                  */
3394                 if ((error_code & PFERR_WRITE_MASK) &&
3395                     spte_can_locklessly_be_made_writable(spte))
3396                 {
3397                         new_spte |= PT_WRITABLE_MASK;
3398
3399                         /*
3400                          * Do not fix write-permission on the large spte.  Since
3401                          * we only dirty the first page into the dirty-bitmap in
3402                          * fast_pf_fix_direct_spte(), other pages are missed
3403                          * if its slot has dirty logging enabled.
3404                          *
3405                          * Instead, we let the slow page fault path create a
3406                          * normal spte to fix the access.
3407                          *
3408                          * See the comments in kvm_arch_commit_memory_region().
3409                          */
3410                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3411                                 break;
3412                 }
3413
3414                 /* Verify that the fault can be handled in the fast path */
3415                 if (new_spte == spte ||
3416                     !is_access_allowed(error_code, new_spte))
3417                         break;
3418
3419                 /*
3420                  * Currently, fast page fault only works for direct mapping
3421                  * since the gfn is not stable for indirect shadow page. See
3422                  * Documentation/virtual/kvm/locking.txt to get more detail.
3423                  */
3424                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3425                                                         iterator.sptep, spte,
3426                                                         new_spte);
3427                 if (fault_handled)
3428                         break;
3429
3430                 if (++retry_count > 4) {
3431                         printk_once(KERN_WARNING
3432                                 "kvm: Fast #PF retrying more than 4 times.\n");
3433                         break;
3434                 }
3435
3436         } while (true);
3437
3438         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3439                               spte, fault_handled);
3440         walk_shadow_page_lockless_end(vcpu);
3441
3442         return fault_handled;
3443 }
3444
3445 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3446                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3447 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3448
3449 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3450                          gfn_t gfn, bool prefault)
3451 {
3452         int r;
3453         int level;
3454         bool force_pt_level;
3455         kvm_pfn_t pfn;
3456         unsigned long mmu_seq;
3457         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3458         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3459                                 is_nx_huge_page_enabled();
3460
3461         force_pt_level = lpage_disallowed;
3462         level = mapping_level(vcpu, gfn, &force_pt_level);
3463         if (likely(!force_pt_level)) {
3464                 /*
3465                  * This path builds a PAE pagetable - so we can map
3466                  * 2mb pages at maximum. Therefore check if the level
3467                  * is larger than that.
3468                  */
3469                 if (level > PT_DIRECTORY_LEVEL)
3470                         level = PT_DIRECTORY_LEVEL;
3471
3472                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3473         }
3474
3475         if (fast_page_fault(vcpu, v, level, error_code))
3476                 return RET_PF_RETRY;
3477
3478         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3479         smp_rmb();
3480
3481         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3482                 return RET_PF_RETRY;
3483
3484         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3485                 return r;
3486
3487         r = RET_PF_RETRY;
3488         spin_lock(&vcpu->kvm->mmu_lock);
3489         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3490                 goto out_unlock;
3491         if (make_mmu_pages_available(vcpu) < 0)
3492                 goto out_unlock;
3493         if (likely(!force_pt_level))
3494                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3495         r = __direct_map(vcpu, v, write, map_writable, level, pfn,
3496                          prefault, false);
3497 out_unlock:
3498         spin_unlock(&vcpu->kvm->mmu_lock);
3499         kvm_release_pfn_clean(pfn);
3500         return r;
3501 }
3502
3503
3504 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3505 {
3506         int i;
3507         struct kvm_mmu_page *sp;
3508         LIST_HEAD(invalid_list);
3509
3510         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3511                 return;
3512
3513         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3514             (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3515              vcpu->arch.mmu.direct_map)) {
3516                 hpa_t root = vcpu->arch.mmu.root_hpa;
3517
3518                 spin_lock(&vcpu->kvm->mmu_lock);
3519                 sp = page_header(root);
3520                 --sp->root_count;
3521                 if (!sp->root_count && sp->role.invalid) {
3522                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3523                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3524                 }
3525                 spin_unlock(&vcpu->kvm->mmu_lock);
3526                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3527                 return;
3528         }
3529
3530         spin_lock(&vcpu->kvm->mmu_lock);
3531         for (i = 0; i < 4; ++i) {
3532                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3533
3534                 if (root) {
3535                         root &= PT64_BASE_ADDR_MASK;
3536                         sp = page_header(root);
3537                         --sp->root_count;
3538                         if (!sp->root_count && sp->role.invalid)
3539                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3540                                                          &invalid_list);
3541                 }
3542                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3543         }
3544         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3545         spin_unlock(&vcpu->kvm->mmu_lock);
3546         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3547 }
3548
3549 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3550 {
3551         int ret = 0;
3552
3553         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3554                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3555                 ret = 1;
3556         }
3557
3558         return ret;
3559 }
3560
3561 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3562 {
3563         struct kvm_mmu_page *sp;
3564         unsigned i;
3565
3566         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3567                 spin_lock(&vcpu->kvm->mmu_lock);
3568                 if(make_mmu_pages_available(vcpu) < 0) {
3569                         spin_unlock(&vcpu->kvm->mmu_lock);
3570                         return -ENOSPC;
3571                 }
3572                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3573                                 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3574                 ++sp->root_count;
3575                 spin_unlock(&vcpu->kvm->mmu_lock);
3576                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3577         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3578                 for (i = 0; i < 4; ++i) {
3579                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3580
3581                         MMU_WARN_ON(VALID_PAGE(root));
3582                         spin_lock(&vcpu->kvm->mmu_lock);
3583                         if (make_mmu_pages_available(vcpu) < 0) {
3584                                 spin_unlock(&vcpu->kvm->mmu_lock);
3585                                 return -ENOSPC;
3586                         }
3587                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3588                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3589                         root = __pa(sp->spt);
3590                         ++sp->root_count;
3591                         spin_unlock(&vcpu->kvm->mmu_lock);
3592                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3593                 }
3594                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3595         } else
3596                 BUG();
3597
3598         return 0;
3599 }
3600
3601 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3602 {
3603         struct kvm_mmu_page *sp;
3604         u64 pdptr, pm_mask;
3605         gfn_t root_gfn;
3606         int i;
3607
3608         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3609
3610         if (mmu_check_root(vcpu, root_gfn))
3611                 return 1;
3612
3613         /*
3614          * Do we shadow a long mode page table? If so we need to
3615          * write-protect the guests page table root.
3616          */
3617         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3618                 hpa_t root = vcpu->arch.mmu.root_hpa;
3619
3620                 MMU_WARN_ON(VALID_PAGE(root));
3621
3622                 spin_lock(&vcpu->kvm->mmu_lock);
3623                 if (make_mmu_pages_available(vcpu) < 0) {
3624                         spin_unlock(&vcpu->kvm->mmu_lock);
3625                         return -ENOSPC;
3626                 }
3627                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3628                                 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3629                 root = __pa(sp->spt);
3630                 ++sp->root_count;
3631                 spin_unlock(&vcpu->kvm->mmu_lock);
3632                 vcpu->arch.mmu.root_hpa = root;
3633                 return 0;
3634         }
3635
3636         /*
3637          * We shadow a 32 bit page table. This may be a legacy 2-level
3638          * or a PAE 3-level page table. In either case we need to be aware that
3639          * the shadow page table may be a PAE or a long mode page table.
3640          */
3641         pm_mask = PT_PRESENT_MASK;
3642         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3643                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3644
3645         for (i = 0; i < 4; ++i) {
3646                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3647
3648                 MMU_WARN_ON(VALID_PAGE(root));
3649                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3650                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3651                         if (!(pdptr & PT_PRESENT_MASK)) {
3652                                 vcpu->arch.mmu.pae_root[i] = 0;
3653                                 continue;
3654                         }
3655                         root_gfn = pdptr >> PAGE_SHIFT;
3656                         if (mmu_check_root(vcpu, root_gfn))
3657                                 return 1;
3658                 }
3659                 spin_lock(&vcpu->kvm->mmu_lock);
3660                 if (make_mmu_pages_available(vcpu) < 0) {
3661                         spin_unlock(&vcpu->kvm->mmu_lock);
3662                         return -ENOSPC;
3663                 }
3664                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3665                                       0, ACC_ALL);
3666                 root = __pa(sp->spt);
3667                 ++sp->root_count;
3668                 spin_unlock(&vcpu->kvm->mmu_lock);
3669
3670                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3671         }
3672         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3673
3674         /*
3675          * If we shadow a 32 bit page table with a long mode page
3676          * table we enter this path.
3677          */
3678         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3679                 if (vcpu->arch.mmu.lm_root == NULL) {
3680                         /*
3681                          * The additional page necessary for this is only
3682                          * allocated on demand.
3683                          */
3684
3685                         u64 *lm_root;
3686
3687                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3688                         if (lm_root == NULL)
3689                                 return 1;
3690
3691                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3692
3693                         vcpu->arch.mmu.lm_root = lm_root;
3694                 }
3695
3696                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3697         }
3698
3699         return 0;
3700 }
3701
3702 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3703 {
3704         if (vcpu->arch.mmu.direct_map)
3705                 return mmu_alloc_direct_roots(vcpu);
3706         else
3707                 return mmu_alloc_shadow_roots(vcpu);
3708 }
3709
3710 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3711 {
3712         int i;
3713         struct kvm_mmu_page *sp;
3714
3715         if (vcpu->arch.mmu.direct_map)
3716                 return;
3717
3718         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3719                 return;
3720
3721         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3722         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3723         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3724                 hpa_t root = vcpu->arch.mmu.root_hpa;
3725                 sp = page_header(root);
3726                 mmu_sync_children(vcpu, sp);
3727                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3728                 return;
3729         }
3730         for (i = 0; i < 4; ++i) {
3731                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3732
3733                 if (root && VALID_PAGE(root)) {
3734                         root &= PT64_BASE_ADDR_MASK;
3735                         sp = page_header(root);
3736                         mmu_sync_children(vcpu, sp);
3737                 }
3738         }
3739         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3740 }
3741
3742 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3743 {
3744         spin_lock(&vcpu->kvm->mmu_lock);
3745         mmu_sync_roots(vcpu);
3746         spin_unlock(&vcpu->kvm->mmu_lock);
3747 }
3748 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3749
3750 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3751                                   u32 access, struct x86_exception *exception)
3752 {
3753         if (exception)
3754                 exception->error_code = 0;
3755         return vaddr;
3756 }
3757
3758 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3759                                          u32 access,
3760                                          struct x86_exception *exception)
3761 {
3762         if (exception)
3763                 exception->error_code = 0;
3764         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3765 }
3766
3767 static bool
3768 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3769 {
3770         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3771
3772         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3773                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3774 }
3775
3776 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3777 {
3778         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3779 }
3780
3781 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3782 {
3783         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3784 }
3785
3786 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3787 {
3788         /*
3789          * A nested guest cannot use the MMIO cache if it is using nested
3790          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3791          */
3792         if (mmu_is_nested(vcpu))
3793                 return false;
3794
3795         if (direct)
3796                 return vcpu_match_mmio_gpa(vcpu, addr);
3797
3798         return vcpu_match_mmio_gva(vcpu, addr);
3799 }
3800
3801 /* return true if reserved bit is detected on spte. */
3802 static bool
3803 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3804 {
3805         struct kvm_shadow_walk_iterator iterator;
3806         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3807         int root, leaf;
3808         bool reserved = false;
3809
3810         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3811                 goto exit;
3812
3813         walk_shadow_page_lockless_begin(vcpu);
3814
3815         for (shadow_walk_init(&iterator, vcpu, addr),
3816                  leaf = root = iterator.level;
3817              shadow_walk_okay(&iterator);
3818              __shadow_walk_next(&iterator, spte)) {
3819                 spte = mmu_spte_get_lockless(iterator.sptep);
3820
3821                 sptes[leaf - 1] = spte;
3822                 leaf--;
3823
3824                 if (!is_shadow_present_pte(spte))
3825                         break;
3826
3827                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3828                                                     iterator.level);
3829         }
3830
3831         walk_shadow_page_lockless_end(vcpu);
3832
3833         if (reserved) {
3834                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3835                        __func__, addr);
3836                 while (root > leaf) {
3837                         pr_err("------ spte 0x%llx level %d.\n",
3838                                sptes[root - 1], root);
3839                         root--;
3840                 }
3841         }
3842 exit:
3843         *sptep = spte;
3844         return reserved;
3845 }
3846
3847 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3848 {
3849         u64 spte;
3850         bool reserved;
3851
3852         if (mmio_info_in_cache(vcpu, addr, direct))
3853                 return RET_PF_EMULATE;
3854
3855         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3856         if (WARN_ON(reserved))
3857                 return -EINVAL;
3858
3859         if (is_mmio_spte(spte)) {
3860                 gfn_t gfn = get_mmio_spte_gfn(spte);
3861                 unsigned access = get_mmio_spte_access(spte);
3862
3863                 if (!check_mmio_spte(vcpu, spte))
3864                         return RET_PF_INVALID;
3865
3866                 if (direct)
3867                         addr = 0;
3868
3869                 trace_handle_mmio_page_fault(addr, gfn, access);
3870                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3871                 return RET_PF_EMULATE;
3872         }
3873
3874         /*
3875          * If the page table is zapped by other cpus, let CPU fault again on
3876          * the address.
3877          */
3878         return RET_PF_RETRY;
3879 }
3880 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3881
3882 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3883                                          u32 error_code, gfn_t gfn)
3884 {
3885         if (unlikely(error_code & PFERR_RSVD_MASK))
3886                 return false;
3887
3888         if (!(error_code & PFERR_PRESENT_MASK) ||
3889               !(error_code & PFERR_WRITE_MASK))
3890                 return false;
3891
3892         /*
3893          * guest is writing the page which is write tracked which can
3894          * not be fixed by page fault handler.
3895          */
3896         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3897                 return true;
3898
3899         return false;
3900 }
3901
3902 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3903 {
3904         struct kvm_shadow_walk_iterator iterator;
3905         u64 spte;
3906
3907         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3908                 return;
3909
3910         walk_shadow_page_lockless_begin(vcpu);
3911         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3912                 clear_sp_write_flooding_count(iterator.sptep);
3913                 if (!is_shadow_present_pte(spte))
3914                         break;
3915         }
3916         walk_shadow_page_lockless_end(vcpu);
3917 }
3918
3919 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3920                                 u32 error_code, bool prefault)
3921 {
3922         gfn_t gfn = gva >> PAGE_SHIFT;
3923         int r;
3924
3925         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3926
3927         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3928                 return RET_PF_EMULATE;
3929
3930         r = mmu_topup_memory_caches(vcpu);
3931         if (r)
3932                 return r;
3933
3934         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3935
3936
3937         return nonpaging_map(vcpu, gva & PAGE_MASK,
3938                              error_code, gfn, prefault);
3939 }
3940
3941 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3942 {
3943         struct kvm_arch_async_pf arch;
3944
3945         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3946         arch.gfn = gfn;
3947         arch.direct_map = vcpu->arch.mmu.direct_map;
3948         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3949
3950         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3951 }
3952
3953 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3954 {
3955         if (unlikely(!lapic_in_kernel(vcpu) ||
3956                      kvm_event_needs_reinjection(vcpu) ||
3957                      vcpu->arch.exception.pending))
3958                 return false;
3959
3960         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3961                 return false;
3962
3963         return kvm_x86_ops->interrupt_allowed(vcpu);
3964 }
3965
3966 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3967                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3968 {
3969         struct kvm_memory_slot *slot;
3970         bool async;
3971
3972         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3973         async = false;
3974         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3975         if (!async)
3976                 return false; /* *pfn has correct page already */
3977
3978         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3979                 trace_kvm_try_async_get_page(gva, gfn);
3980                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3981                         trace_kvm_async_pf_doublefault(gva, gfn);
3982                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3983                         return true;
3984                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3985                         return true;
3986         }
3987
3988         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3989         return false;
3990 }
3991
3992 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3993                                 u64 fault_address, char *insn, int insn_len,
3994                                 bool need_unprotect)
3995 {
3996         int r = 1;
3997
3998         vcpu->arch.l1tf_flush_l1d = true;
3999         switch (vcpu->arch.apf.host_apf_reason) {
4000         default:
4001                 trace_kvm_page_fault(fault_address, error_code);
4002
4003                 if (need_unprotect && kvm_event_needs_reinjection(vcpu))
4004                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4005                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4006                                 insn_len);
4007                 break;
4008         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4009                 vcpu->arch.apf.host_apf_reason = 0;
4010                 local_irq_disable();
4011                 kvm_async_pf_task_wait(fault_address, 0);
4012                 local_irq_enable();
4013                 break;
4014         case KVM_PV_REASON_PAGE_READY:
4015                 vcpu->arch.apf.host_apf_reason = 0;
4016                 local_irq_disable();
4017                 kvm_async_pf_task_wake(fault_address);
4018                 local_irq_enable();
4019                 break;
4020         }
4021         return r;
4022 }
4023 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4024
4025 static bool
4026 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4027 {
4028         int page_num = KVM_PAGES_PER_HPAGE(level);
4029
4030         gfn &= ~(page_num - 1);
4031
4032         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4033 }
4034
4035 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4036                           bool prefault)
4037 {
4038         kvm_pfn_t pfn;
4039         int r;
4040         int level;
4041         bool force_pt_level;
4042         gfn_t gfn = gpa >> PAGE_SHIFT;
4043         unsigned long mmu_seq;
4044         int write = error_code & PFERR_WRITE_MASK;
4045         bool map_writable;
4046         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4047                                 is_nx_huge_page_enabled();
4048
4049         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4050
4051         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4052                 return RET_PF_EMULATE;
4053
4054         r = mmu_topup_memory_caches(vcpu);
4055         if (r)
4056                 return r;
4057
4058         force_pt_level =
4059                 lpage_disallowed ||
4060                 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4061         level = mapping_level(vcpu, gfn, &force_pt_level);
4062         if (likely(!force_pt_level)) {
4063                 if (level > PT_DIRECTORY_LEVEL &&
4064                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4065                         level = PT_DIRECTORY_LEVEL;
4066                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4067         }
4068
4069         if (fast_page_fault(vcpu, gpa, level, error_code))
4070                 return RET_PF_RETRY;
4071
4072         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4073         smp_rmb();
4074
4075         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4076                 return RET_PF_RETRY;
4077
4078         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4079                 return r;
4080
4081         r = RET_PF_RETRY;
4082         spin_lock(&vcpu->kvm->mmu_lock);
4083         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4084                 goto out_unlock;
4085         if (make_mmu_pages_available(vcpu) < 0)
4086                 goto out_unlock;
4087         if (likely(!force_pt_level))
4088                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4089         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4090                          prefault, lpage_disallowed);
4091 out_unlock:
4092         spin_unlock(&vcpu->kvm->mmu_lock);
4093         kvm_release_pfn_clean(pfn);
4094         return r;
4095 }
4096
4097 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4098                                    struct kvm_mmu *context)
4099 {
4100         context->page_fault = nonpaging_page_fault;
4101         context->gva_to_gpa = nonpaging_gva_to_gpa;
4102         context->sync_page = nonpaging_sync_page;
4103         context->invlpg = nonpaging_invlpg;
4104         context->update_pte = nonpaging_update_pte;
4105         context->root_level = 0;
4106         context->shadow_root_level = PT32E_ROOT_LEVEL;
4107         context->root_hpa = INVALID_PAGE;
4108         context->direct_map = true;
4109         context->nx = false;
4110 }
4111
4112 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
4113 {
4114         mmu_free_roots(vcpu);
4115 }
4116
4117 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4118 {
4119         return kvm_read_cr3(vcpu);
4120 }
4121
4122 static void inject_page_fault(struct kvm_vcpu *vcpu,
4123                               struct x86_exception *fault)
4124 {
4125         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
4126 }
4127
4128 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4129                            unsigned access, int *nr_present)
4130 {
4131         if (unlikely(is_mmio_spte(*sptep))) {
4132                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4133                         mmu_spte_clear_no_track(sptep);
4134                         return true;
4135                 }
4136
4137                 (*nr_present)++;
4138                 mark_mmio_spte(vcpu, sptep, gfn, access);
4139                 return true;
4140         }
4141
4142         return false;
4143 }
4144
4145 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4146                                 unsigned level, unsigned gpte)
4147 {
4148         /*
4149          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4150          * If it is clear, there are no large pages at this level, so clear
4151          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4152          */
4153         gpte &= level - mmu->last_nonleaf_level;
4154
4155         /*
4156          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4157          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4158          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4159          */
4160         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4161
4162         return gpte & PT_PAGE_SIZE_MASK;
4163 }
4164
4165 #define PTTYPE_EPT 18 /* arbitrary */
4166 #define PTTYPE PTTYPE_EPT
4167 #include "paging_tmpl.h"
4168 #undef PTTYPE
4169
4170 #define PTTYPE 64
4171 #include "paging_tmpl.h"
4172 #undef PTTYPE
4173
4174 #define PTTYPE 32
4175 #include "paging_tmpl.h"
4176 #undef PTTYPE
4177
4178 static void
4179 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4180                         struct rsvd_bits_validate *rsvd_check,
4181                         int maxphyaddr, int level, bool nx, bool gbpages,
4182                         bool pse, bool amd)
4183 {
4184         u64 exb_bit_rsvd = 0;
4185         u64 gbpages_bit_rsvd = 0;
4186         u64 nonleaf_bit8_rsvd = 0;
4187
4188         rsvd_check->bad_mt_xwr = 0;
4189
4190         if (!nx)
4191                 exb_bit_rsvd = rsvd_bits(63, 63);
4192         if (!gbpages)
4193                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4194
4195         /*
4196          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4197          * leaf entries) on AMD CPUs only.
4198          */
4199         if (amd)
4200                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4201
4202         switch (level) {
4203         case PT32_ROOT_LEVEL:
4204                 /* no rsvd bits for 2 level 4K page table entries */
4205                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4206                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4207                 rsvd_check->rsvd_bits_mask[1][0] =
4208                         rsvd_check->rsvd_bits_mask[0][0];
4209
4210                 if (!pse) {
4211                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4212                         break;
4213                 }
4214
4215                 if (is_cpuid_PSE36())
4216                         /* 36bits PSE 4MB page */
4217                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4218                 else
4219                         /* 32 bits PSE 4MB page */
4220                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4221                 break;
4222         case PT32E_ROOT_LEVEL:
4223                 rsvd_check->rsvd_bits_mask[0][2] =
4224                         rsvd_bits(maxphyaddr, 63) |
4225                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4226                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4227                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4228                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4229                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4230                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4231                         rsvd_bits(maxphyaddr, 62) |
4232                         rsvd_bits(13, 20);              /* large page */
4233                 rsvd_check->rsvd_bits_mask[1][0] =
4234                         rsvd_check->rsvd_bits_mask[0][0];
4235                 break;
4236         case PT64_ROOT_5LEVEL:
4237                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4238                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4239                         rsvd_bits(maxphyaddr, 51);
4240                 rsvd_check->rsvd_bits_mask[1][4] =
4241                         rsvd_check->rsvd_bits_mask[0][4];
4242         case PT64_ROOT_4LEVEL:
4243                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4244                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4245                         rsvd_bits(maxphyaddr, 51);
4246                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4247                         gbpages_bit_rsvd |
4248                         rsvd_bits(maxphyaddr, 51);
4249                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4250                         rsvd_bits(maxphyaddr, 51);
4251                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4252                         rsvd_bits(maxphyaddr, 51);
4253                 rsvd_check->rsvd_bits_mask[1][3] =
4254                         rsvd_check->rsvd_bits_mask[0][3];
4255                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4256                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4257                         rsvd_bits(13, 29);
4258                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4259                         rsvd_bits(maxphyaddr, 51) |
4260                         rsvd_bits(13, 20);              /* large page */
4261                 rsvd_check->rsvd_bits_mask[1][0] =
4262                         rsvd_check->rsvd_bits_mask[0][0];
4263                 break;
4264         }
4265 }
4266
4267 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4268                                   struct kvm_mmu *context)
4269 {
4270         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4271                                 cpuid_maxphyaddr(vcpu), context->root_level,
4272                                 context->nx,
4273                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4274                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4275 }
4276
4277 static void
4278 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4279                             int maxphyaddr, bool execonly)
4280 {
4281         u64 bad_mt_xwr;
4282
4283         rsvd_check->rsvd_bits_mask[0][4] =
4284                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4285         rsvd_check->rsvd_bits_mask[0][3] =
4286                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4287         rsvd_check->rsvd_bits_mask[0][2] =
4288                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4289         rsvd_check->rsvd_bits_mask[0][1] =
4290                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4291         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4292
4293         /* large page */
4294         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4295         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4296         rsvd_check->rsvd_bits_mask[1][2] =
4297                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4298         rsvd_check->rsvd_bits_mask[1][1] =
4299                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4300         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4301
4302         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4303         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4304         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4305         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4306         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4307         if (!execonly) {
4308                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4309                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4310         }
4311         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4312 }
4313
4314 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4315                 struct kvm_mmu *context, bool execonly)
4316 {
4317         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4318                                     cpuid_maxphyaddr(vcpu), execonly);
4319 }
4320
4321 /*
4322  * the page table on host is the shadow page table for the page
4323  * table in guest or amd nested guest, its mmu features completely
4324  * follow the features in guest.
4325  */
4326 void
4327 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4328 {
4329         /*
4330          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4331          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4332          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4333          * The iTLB multi-hit workaround can be toggled at any time, so assume
4334          * NX can be used by any non-nested shadow MMU to avoid having to reset
4335          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4336          */
4337         bool uses_nx = context->nx || !tdp_enabled ||
4338                 context->base_role.smep_andnot_wp;
4339         struct rsvd_bits_validate *shadow_zero_check;
4340         int i;
4341
4342         /*
4343          * Passing "true" to the last argument is okay; it adds a check
4344          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4345          */
4346         shadow_zero_check = &context->shadow_zero_check;
4347         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4348                                 shadow_phys_bits,
4349                                 context->shadow_root_level, uses_nx,
4350                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4351                                 is_pse(vcpu), true);
4352
4353         if (!shadow_me_mask)
4354                 return;
4355
4356         for (i = context->shadow_root_level; --i >= 0;) {
4357                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4358                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4359         }
4360
4361 }
4362 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4363
4364 static inline bool boot_cpu_is_amd(void)
4365 {
4366         WARN_ON_ONCE(!tdp_enabled);
4367         return shadow_x_mask == 0;
4368 }
4369
4370 /*
4371  * the direct page table on host, use as much mmu features as
4372  * possible, however, kvm currently does not do execution-protection.
4373  */
4374 static void
4375 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4376                                 struct kvm_mmu *context)
4377 {
4378         struct rsvd_bits_validate *shadow_zero_check;
4379         int i;
4380
4381         shadow_zero_check = &context->shadow_zero_check;
4382
4383         if (boot_cpu_is_amd())
4384                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4385                                         shadow_phys_bits,
4386                                         context->shadow_root_level, false,
4387                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4388                                         true, true);
4389         else
4390                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4391                                             shadow_phys_bits,
4392                                             false);
4393
4394         if (!shadow_me_mask)
4395                 return;
4396
4397         for (i = context->shadow_root_level; --i >= 0;) {
4398                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4399                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4400         }
4401 }
4402
4403 /*
4404  * as the comments in reset_shadow_zero_bits_mask() except it
4405  * is the shadow page table for intel nested guest.
4406  */
4407 static void
4408 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4409                                 struct kvm_mmu *context, bool execonly)
4410 {
4411         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4412                                     shadow_phys_bits, execonly);
4413 }
4414
4415 #define BYTE_MASK(access) \
4416         ((1 & (access) ? 2 : 0) | \
4417          (2 & (access) ? 4 : 0) | \
4418          (3 & (access) ? 8 : 0) | \
4419          (4 & (access) ? 16 : 0) | \
4420          (5 & (access) ? 32 : 0) | \
4421          (6 & (access) ? 64 : 0) | \
4422          (7 & (access) ? 128 : 0))
4423
4424
4425 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4426                                       struct kvm_mmu *mmu, bool ept)
4427 {
4428         unsigned byte;
4429
4430         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4431         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4432         const u8 u = BYTE_MASK(ACC_USER_MASK);
4433
4434         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4435         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4436         bool cr0_wp = is_write_protection(vcpu);
4437
4438         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4439                 unsigned pfec = byte << 1;
4440
4441                 /*
4442                  * Each "*f" variable has a 1 bit for each UWX value
4443                  * that causes a fault with the given PFEC.
4444                  */
4445
4446                 /* Faults from writes to non-writable pages */
4447                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4448                 /* Faults from user mode accesses to supervisor pages */
4449                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4450                 /* Faults from fetches of non-executable pages*/
4451                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4452                 /* Faults from kernel mode fetches of user pages */
4453                 u8 smepf = 0;
4454                 /* Faults from kernel mode accesses of user pages */
4455                 u8 smapf = 0;
4456
4457                 if (!ept) {
4458                         /* Faults from kernel mode accesses to user pages */
4459                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4460
4461                         /* Not really needed: !nx will cause pte.nx to fault */
4462                         if (!mmu->nx)
4463                                 ff = 0;
4464
4465                         /* Allow supervisor writes if !cr0.wp */
4466                         if (!cr0_wp)
4467                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4468
4469                         /* Disallow supervisor fetches of user code if cr4.smep */
4470                         if (cr4_smep)
4471                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4472
4473                         /*
4474                          * SMAP:kernel-mode data accesses from user-mode
4475                          * mappings should fault. A fault is considered
4476                          * as a SMAP violation if all of the following
4477                          * conditions are ture:
4478                          *   - X86_CR4_SMAP is set in CR4
4479                          *   - A user page is accessed
4480                          *   - The access is not a fetch
4481                          *   - Page fault in kernel mode
4482                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4483                          *
4484                          * Here, we cover the first three conditions.
4485                          * The fourth is computed dynamically in permission_fault();
4486                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4487                          * *not* subject to SMAP restrictions.
4488                          */
4489                         if (cr4_smap)
4490                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4491                 }
4492
4493                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4494         }
4495 }
4496
4497 /*
4498 * PKU is an additional mechanism by which the paging controls access to
4499 * user-mode addresses based on the value in the PKRU register.  Protection
4500 * key violations are reported through a bit in the page fault error code.
4501 * Unlike other bits of the error code, the PK bit is not known at the
4502 * call site of e.g. gva_to_gpa; it must be computed directly in
4503 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4504 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4505 *
4506 * In particular the following conditions come from the error code, the
4507 * page tables and the machine state:
4508 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4509 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4510 * - PK is always zero if U=0 in the page tables
4511 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4512 *
4513 * The PKRU bitmask caches the result of these four conditions.  The error
4514 * code (minus the P bit) and the page table's U bit form an index into the
4515 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4516 * with the two bits of the PKRU register corresponding to the protection key.
4517 * For the first three conditions above the bits will be 00, thus masking
4518 * away both AD and WD.  For all reads or if the last condition holds, WD
4519 * only will be masked away.
4520 */
4521 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4522                                 bool ept)
4523 {
4524         unsigned bit;
4525         bool wp;
4526
4527         if (ept) {
4528                 mmu->pkru_mask = 0;
4529                 return;
4530         }
4531
4532         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4533         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4534                 mmu->pkru_mask = 0;
4535                 return;
4536         }
4537
4538         wp = is_write_protection(vcpu);
4539
4540         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4541                 unsigned pfec, pkey_bits;
4542                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4543
4544                 pfec = bit << 1;
4545                 ff = pfec & PFERR_FETCH_MASK;
4546                 uf = pfec & PFERR_USER_MASK;
4547                 wf = pfec & PFERR_WRITE_MASK;
4548
4549                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4550                 pte_user = pfec & PFERR_RSVD_MASK;
4551
4552                 /*
4553                  * Only need to check the access which is not an
4554                  * instruction fetch and is to a user page.
4555                  */
4556                 check_pkey = (!ff && pte_user);
4557                 /*
4558                  * write access is controlled by PKRU if it is a
4559                  * user access or CR0.WP = 1.
4560                  */
4561                 check_write = check_pkey && wf && (uf || wp);
4562
4563                 /* PKRU.AD stops both read and write access. */
4564                 pkey_bits = !!check_pkey;
4565                 /* PKRU.WD stops write access. */
4566                 pkey_bits |= (!!check_write) << 1;
4567
4568                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4569         }
4570 }
4571
4572 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4573 {
4574         unsigned root_level = mmu->root_level;
4575
4576         mmu->last_nonleaf_level = root_level;
4577         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4578                 mmu->last_nonleaf_level++;
4579 }
4580
4581 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4582                                          struct kvm_mmu *context,
4583                                          int level)
4584 {
4585         context->nx = is_nx(vcpu);
4586         context->root_level = level;
4587
4588         reset_rsvds_bits_mask(vcpu, context);
4589         update_permission_bitmask(vcpu, context, false);
4590         update_pkru_bitmask(vcpu, context, false);
4591         update_last_nonleaf_level(vcpu, context);
4592
4593         MMU_WARN_ON(!is_pae(vcpu));
4594         context->page_fault = paging64_page_fault;
4595         context->gva_to_gpa = paging64_gva_to_gpa;
4596         context->sync_page = paging64_sync_page;
4597         context->invlpg = paging64_invlpg;
4598         context->update_pte = paging64_update_pte;
4599         context->shadow_root_level = level;
4600         context->root_hpa = INVALID_PAGE;
4601         context->direct_map = false;
4602 }
4603
4604 static void paging64_init_context(struct kvm_vcpu *vcpu,
4605                                   struct kvm_mmu *context)
4606 {
4607         int root_level = is_la57_mode(vcpu) ?
4608                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4609
4610         paging64_init_context_common(vcpu, context, root_level);
4611 }
4612
4613 static void paging32_init_context(struct kvm_vcpu *vcpu,
4614                                   struct kvm_mmu *context)
4615 {
4616         context->nx = false;
4617         context->root_level = PT32_ROOT_LEVEL;
4618
4619         reset_rsvds_bits_mask(vcpu, context);
4620         update_permission_bitmask(vcpu, context, false);
4621         update_pkru_bitmask(vcpu, context, false);
4622         update_last_nonleaf_level(vcpu, context);
4623
4624         context->page_fault = paging32_page_fault;
4625         context->gva_to_gpa = paging32_gva_to_gpa;
4626         context->sync_page = paging32_sync_page;
4627         context->invlpg = paging32_invlpg;
4628         context->update_pte = paging32_update_pte;
4629         context->shadow_root_level = PT32E_ROOT_LEVEL;
4630         context->root_hpa = INVALID_PAGE;
4631         context->direct_map = false;
4632 }
4633
4634 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4635                                    struct kvm_mmu *context)
4636 {
4637         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4638 }
4639
4640 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4641 {
4642         struct kvm_mmu *context = &vcpu->arch.mmu;
4643
4644         context->base_role.word = 0;
4645         context->base_role.smm = is_smm(vcpu);
4646         context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4647         context->page_fault = tdp_page_fault;
4648         context->sync_page = nonpaging_sync_page;
4649         context->invlpg = nonpaging_invlpg;
4650         context->update_pte = nonpaging_update_pte;
4651         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4652         context->root_hpa = INVALID_PAGE;
4653         context->direct_map = true;
4654         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4655         context->get_cr3 = get_cr3;
4656         context->get_pdptr = kvm_pdptr_read;
4657         context->inject_page_fault = kvm_inject_page_fault;
4658
4659         if (!is_paging(vcpu)) {
4660                 context->nx = false;
4661                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4662                 context->root_level = 0;
4663         } else if (is_long_mode(vcpu)) {
4664                 context->nx = is_nx(vcpu);
4665                 context->root_level = is_la57_mode(vcpu) ?
4666                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4667                 reset_rsvds_bits_mask(vcpu, context);
4668                 context->gva_to_gpa = paging64_gva_to_gpa;
4669         } else if (is_pae(vcpu)) {
4670                 context->nx = is_nx(vcpu);
4671                 context->root_level = PT32E_ROOT_LEVEL;
4672                 reset_rsvds_bits_mask(vcpu, context);
4673                 context->gva_to_gpa = paging64_gva_to_gpa;
4674         } else {
4675                 context->nx = false;
4676                 context->root_level = PT32_ROOT_LEVEL;
4677                 reset_rsvds_bits_mask(vcpu, context);
4678                 context->gva_to_gpa = paging32_gva_to_gpa;
4679         }
4680
4681         update_permission_bitmask(vcpu, context, false);
4682         update_pkru_bitmask(vcpu, context, false);
4683         update_last_nonleaf_level(vcpu, context);
4684         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4685 }
4686
4687 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4688 {
4689         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4690         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4691         struct kvm_mmu *context = &vcpu->arch.mmu;
4692
4693         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4694
4695         if (!is_paging(vcpu))
4696                 nonpaging_init_context(vcpu, context);
4697         else if (is_long_mode(vcpu))
4698                 paging64_init_context(vcpu, context);
4699         else if (is_pae(vcpu))
4700                 paging32E_init_context(vcpu, context);
4701         else
4702                 paging32_init_context(vcpu, context);
4703
4704         context->base_role.nxe = is_nx(vcpu);
4705         context->base_role.cr4_pae = !!is_pae(vcpu);
4706         context->base_role.cr0_wp  = is_write_protection(vcpu);
4707         context->base_role.smep_andnot_wp
4708                 = smep && !is_write_protection(vcpu);
4709         context->base_role.smap_andnot_wp
4710                 = smap && !is_write_protection(vcpu);
4711         context->base_role.smm = is_smm(vcpu);
4712         reset_shadow_zero_bits_mask(vcpu, context);
4713 }
4714 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4715
4716 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4717                              bool accessed_dirty)
4718 {
4719         struct kvm_mmu *context = &vcpu->arch.mmu;
4720
4721         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4722
4723         context->shadow_root_level = PT64_ROOT_4LEVEL;
4724
4725         context->nx = true;
4726         context->ept_ad = accessed_dirty;
4727         context->page_fault = ept_page_fault;
4728         context->gva_to_gpa = ept_gva_to_gpa;
4729         context->sync_page = ept_sync_page;
4730         context->invlpg = ept_invlpg;
4731         context->update_pte = ept_update_pte;
4732         context->root_level = PT64_ROOT_4LEVEL;
4733         context->root_hpa = INVALID_PAGE;
4734         context->direct_map = false;
4735         context->base_role.ad_disabled = !accessed_dirty;
4736
4737         update_permission_bitmask(vcpu, context, true);
4738         update_pkru_bitmask(vcpu, context, true);
4739         update_last_nonleaf_level(vcpu, context);
4740         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4741         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4742 }
4743 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4744
4745 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4746 {
4747         struct kvm_mmu *context = &vcpu->arch.mmu;
4748
4749         kvm_init_shadow_mmu(vcpu);
4750         context->set_cr3           = kvm_x86_ops->set_cr3;
4751         context->get_cr3           = get_cr3;
4752         context->get_pdptr         = kvm_pdptr_read;
4753         context->inject_page_fault = kvm_inject_page_fault;
4754 }
4755
4756 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4757 {
4758         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4759
4760         g_context->get_cr3           = get_cr3;
4761         g_context->get_pdptr         = kvm_pdptr_read;
4762         g_context->inject_page_fault = kvm_inject_page_fault;
4763
4764         /*
4765          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4766          * L1's nested page tables (e.g. EPT12). The nested translation
4767          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4768          * L2's page tables as the first level of translation and L1's
4769          * nested page tables as the second level of translation. Basically
4770          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4771          */
4772         if (!is_paging(vcpu)) {
4773                 g_context->nx = false;
4774                 g_context->root_level = 0;
4775                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4776         } else if (is_long_mode(vcpu)) {
4777                 g_context->nx = is_nx(vcpu);
4778                 g_context->root_level = is_la57_mode(vcpu) ?
4779                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4780                 reset_rsvds_bits_mask(vcpu, g_context);
4781                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4782         } else if (is_pae(vcpu)) {
4783                 g_context->nx = is_nx(vcpu);
4784                 g_context->root_level = PT32E_ROOT_LEVEL;
4785                 reset_rsvds_bits_mask(vcpu, g_context);
4786                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4787         } else {
4788                 g_context->nx = false;
4789                 g_context->root_level = PT32_ROOT_LEVEL;
4790                 reset_rsvds_bits_mask(vcpu, g_context);
4791                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4792         }
4793
4794         update_permission_bitmask(vcpu, g_context, false);
4795         update_pkru_bitmask(vcpu, g_context, false);
4796         update_last_nonleaf_level(vcpu, g_context);
4797 }
4798
4799 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4800 {
4801         if (mmu_is_nested(vcpu))
4802                 init_kvm_nested_mmu(vcpu);
4803         else if (tdp_enabled)
4804                 init_kvm_tdp_mmu(vcpu);
4805         else
4806                 init_kvm_softmmu(vcpu);
4807 }
4808
4809 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4810 {
4811         kvm_mmu_unload(vcpu);
4812         init_kvm_mmu(vcpu);
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4815
4816 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4817 {
4818         int r;
4819
4820         r = mmu_topup_memory_caches(vcpu);
4821         if (r)
4822                 goto out;
4823         r = mmu_alloc_roots(vcpu);
4824         kvm_mmu_sync_roots(vcpu);
4825         if (r)
4826                 goto out;
4827         /* set_cr3() should ensure TLB has been flushed */
4828         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4829 out:
4830         return r;
4831 }
4832 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4833
4834 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4835 {
4836         mmu_free_roots(vcpu);
4837         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4838 }
4839 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4840
4841 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4842                                   struct kvm_mmu_page *sp, u64 *spte,
4843                                   const void *new)
4844 {
4845         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4846                 ++vcpu->kvm->stat.mmu_pde_zapped;
4847                 return;
4848         }
4849
4850         ++vcpu->kvm->stat.mmu_pte_updated;
4851         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4852 }
4853
4854 static bool need_remote_flush(u64 old, u64 new)
4855 {
4856         if (!is_shadow_present_pte(old))
4857                 return false;
4858         if (!is_shadow_present_pte(new))
4859                 return true;
4860         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4861                 return true;
4862         old ^= shadow_nx_mask;
4863         new ^= shadow_nx_mask;
4864         return (old & ~new & PT64_PERM_MASK) != 0;
4865 }
4866
4867 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4868                                     int *bytes)
4869 {
4870         u64 gentry = 0;
4871         int r;
4872
4873         /*
4874          * Assume that the pte write on a page table of the same type
4875          * as the current vcpu paging mode since we update the sptes only
4876          * when they have the same mode.
4877          */
4878         if (is_pae(vcpu) && *bytes == 4) {
4879                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4880                 *gpa &= ~(gpa_t)7;
4881                 *bytes = 8;
4882         }
4883
4884         if (*bytes == 4 || *bytes == 8) {
4885                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4886                 if (r)
4887                         gentry = 0;
4888         }
4889
4890         return gentry;
4891 }
4892
4893 /*
4894  * If we're seeing too many writes to a page, it may no longer be a page table,
4895  * or we may be forking, in which case it is better to unmap the page.
4896  */
4897 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4898 {
4899         /*
4900          * Skip write-flooding detected for the sp whose level is 1, because
4901          * it can become unsync, then the guest page is not write-protected.
4902          */
4903         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4904                 return false;
4905
4906         atomic_inc(&sp->write_flooding_count);
4907         return atomic_read(&sp->write_flooding_count) >= 3;
4908 }
4909
4910 /*
4911  * Misaligned accesses are too much trouble to fix up; also, they usually
4912  * indicate a page is not used as a page table.
4913  */
4914 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4915                                     int bytes)
4916 {
4917         unsigned offset, pte_size, misaligned;
4918
4919         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4920                  gpa, bytes, sp->role.word);
4921
4922         offset = offset_in_page(gpa);
4923         pte_size = sp->role.cr4_pae ? 8 : 4;
4924
4925         /*
4926          * Sometimes, the OS only writes the last one bytes to update status
4927          * bits, for example, in linux, andb instruction is used in clear_bit().
4928          */
4929         if (!(offset & (pte_size - 1)) && bytes == 1)
4930                 return false;
4931
4932         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4933         misaligned |= bytes < 4;
4934
4935         return misaligned;
4936 }
4937
4938 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4939 {
4940         unsigned page_offset, quadrant;
4941         u64 *spte;
4942         int level;
4943
4944         page_offset = offset_in_page(gpa);
4945         level = sp->role.level;
4946         *nspte = 1;
4947         if (!sp->role.cr4_pae) {
4948                 page_offset <<= 1;      /* 32->64 */
4949                 /*
4950                  * A 32-bit pde maps 4MB while the shadow pdes map
4951                  * only 2MB.  So we need to double the offset again
4952                  * and zap two pdes instead of one.
4953                  */
4954                 if (level == PT32_ROOT_LEVEL) {
4955                         page_offset &= ~7; /* kill rounding error */
4956                         page_offset <<= 1;
4957                         *nspte = 2;
4958                 }
4959                 quadrant = page_offset >> PAGE_SHIFT;
4960                 page_offset &= ~PAGE_MASK;
4961                 if (quadrant != sp->role.quadrant)
4962                         return NULL;
4963         }
4964
4965         spte = &sp->spt[page_offset / sizeof(*spte)];
4966         return spte;
4967 }
4968
4969 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4970                               const u8 *new, int bytes,
4971                               struct kvm_page_track_notifier_node *node)
4972 {
4973         gfn_t gfn = gpa >> PAGE_SHIFT;
4974         struct kvm_mmu_page *sp;
4975         LIST_HEAD(invalid_list);
4976         u64 entry, gentry, *spte;
4977         int npte;
4978         bool remote_flush, local_flush;
4979         union kvm_mmu_page_role mask = { };
4980
4981         mask.cr0_wp = 1;
4982         mask.cr4_pae = 1;
4983         mask.nxe = 1;
4984         mask.smep_andnot_wp = 1;
4985         mask.smap_andnot_wp = 1;
4986         mask.smm = 1;
4987         mask.ad_disabled = 1;
4988
4989         /*
4990          * If we don't have indirect shadow pages, it means no page is
4991          * write-protected, so we can exit simply.
4992          */
4993         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4994                 return;
4995
4996         remote_flush = local_flush = false;
4997
4998         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4999
5000         /*
5001          * No need to care whether allocation memory is successful
5002          * or not since pte prefetch is skiped if it does not have
5003          * enough objects in the cache.
5004          */
5005         mmu_topup_memory_caches(vcpu);
5006
5007         spin_lock(&vcpu->kvm->mmu_lock);
5008
5009         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5010
5011         ++vcpu->kvm->stat.mmu_pte_write;
5012         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5013
5014         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5015                 if (detect_write_misaligned(sp, gpa, bytes) ||
5016                       detect_write_flooding(sp)) {
5017                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5018                         ++vcpu->kvm->stat.mmu_flooded;
5019                         continue;
5020                 }
5021
5022                 spte = get_written_sptes(sp, gpa, &npte);
5023                 if (!spte)
5024                         continue;
5025
5026                 local_flush = true;
5027                 while (npte--) {
5028                         entry = *spte;
5029                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5030                         if (gentry &&
5031                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5032                               & mask.word) && rmap_can_add(vcpu))
5033                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5034                         if (need_remote_flush(entry, *spte))
5035                                 remote_flush = true;
5036                         ++spte;
5037                 }
5038         }
5039         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5040         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5041         spin_unlock(&vcpu->kvm->mmu_lock);
5042 }
5043
5044 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5045 {
5046         gpa_t gpa;
5047         int r;
5048
5049         if (vcpu->arch.mmu.direct_map)
5050                 return 0;
5051
5052         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5053
5054         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5055
5056         return r;
5057 }
5058 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5059
5060 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5061 {
5062         LIST_HEAD(invalid_list);
5063
5064         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5065                 return 0;
5066
5067         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5068                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5069                         break;
5070
5071                 ++vcpu->kvm->stat.mmu_recycled;
5072         }
5073         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5074
5075         if (!kvm_mmu_available_pages(vcpu->kvm))
5076                 return -ENOSPC;
5077         return 0;
5078 }
5079
5080 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5081                        void *insn, int insn_len)
5082 {
5083         int r, emulation_type = EMULTYPE_RETRY;
5084         enum emulation_result er;
5085         bool direct = vcpu->arch.mmu.direct_map;
5086
5087         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5088         if (vcpu->arch.mmu.direct_map) {
5089                 vcpu->arch.gpa_available = true;
5090                 vcpu->arch.gpa_val = cr2;
5091         }
5092
5093         r = RET_PF_INVALID;
5094         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5095                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5096                 if (r == RET_PF_EMULATE) {
5097                         emulation_type = 0;
5098                         goto emulate;
5099                 }
5100         }
5101
5102         if (r == RET_PF_INVALID) {
5103                 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
5104                                               false);
5105                 WARN_ON(r == RET_PF_INVALID);
5106         }
5107
5108         if (r == RET_PF_RETRY)
5109                 return 1;
5110         if (r < 0)
5111                 return r;
5112
5113         /*
5114          * Before emulating the instruction, check if the error code
5115          * was due to a RO violation while translating the guest page.
5116          * This can occur when using nested virtualization with nested
5117          * paging in both guests. If true, we simply unprotect the page
5118          * and resume the guest.
5119          */
5120         if (vcpu->arch.mmu.direct_map &&
5121             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5122                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5123                 return 1;
5124         }
5125
5126         if (mmio_info_in_cache(vcpu, cr2, direct))
5127                 emulation_type = 0;
5128 emulate:
5129         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5130
5131         switch (er) {
5132         case EMULATE_DONE:
5133                 return 1;
5134         case EMULATE_USER_EXIT:
5135                 ++vcpu->stat.mmio_exits;
5136                 /* fall through */
5137         case EMULATE_FAIL:
5138                 return 0;
5139         default:
5140                 BUG();
5141         }
5142 }
5143 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5144
5145 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5146 {
5147         vcpu->arch.mmu.invlpg(vcpu, gva);
5148         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5149         ++vcpu->stat.invlpg;
5150 }
5151 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5152
5153 void kvm_enable_tdp(void)
5154 {
5155         tdp_enabled = true;
5156 }
5157 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5158
5159 void kvm_disable_tdp(void)
5160 {
5161         tdp_enabled = false;
5162 }
5163 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5164
5165 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5166 {
5167         free_page((unsigned long)vcpu->arch.mmu.pae_root);
5168         if (vcpu->arch.mmu.lm_root != NULL)
5169                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
5170 }
5171
5172 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5173 {
5174         struct page *page;
5175         int i;
5176
5177         /*
5178          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5179          * Therefore we need to allocate shadow page tables in the first
5180          * 4GB of memory, which happens to fit the DMA32 zone.
5181          */
5182         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5183         if (!page)
5184                 return -ENOMEM;
5185
5186         vcpu->arch.mmu.pae_root = page_address(page);
5187         for (i = 0; i < 4; ++i)
5188                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5189
5190         return 0;
5191 }
5192
5193 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5194 {
5195         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5196         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5197         vcpu->arch.mmu.translate_gpa = translate_gpa;
5198         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5199
5200         return alloc_mmu_pages(vcpu);
5201 }
5202
5203 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5204 {
5205         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5206
5207         init_kvm_mmu(vcpu);
5208 }
5209
5210 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5211                         struct kvm_memory_slot *slot,
5212                         struct kvm_page_track_notifier_node *node)
5213 {
5214         kvm_mmu_invalidate_zap_all_pages(kvm);
5215 }
5216
5217 void kvm_mmu_init_vm(struct kvm *kvm)
5218 {
5219         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5220
5221         node->track_write = kvm_mmu_pte_write;
5222         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5223         kvm_page_track_register_notifier(kvm, node);
5224 }
5225
5226 void kvm_mmu_uninit_vm(struct kvm *kvm)
5227 {
5228         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5229
5230         kvm_page_track_unregister_notifier(kvm, node);
5231 }
5232
5233 /* The return value indicates if tlb flush on all vcpus is needed. */
5234 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5235
5236 /* The caller should hold mmu-lock before calling this function. */
5237 static __always_inline bool
5238 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5239                         slot_level_handler fn, int start_level, int end_level,
5240                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5241 {
5242         struct slot_rmap_walk_iterator iterator;
5243         bool flush = false;
5244
5245         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5246                         end_gfn, &iterator) {
5247                 if (iterator.rmap)
5248                         flush |= fn(kvm, iterator.rmap);
5249
5250                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5251                         if (flush && lock_flush_tlb) {
5252                                 kvm_flush_remote_tlbs(kvm);
5253                                 flush = false;
5254                         }
5255                         cond_resched_lock(&kvm->mmu_lock);
5256                 }
5257         }
5258
5259         if (flush && lock_flush_tlb) {
5260                 kvm_flush_remote_tlbs(kvm);
5261                 flush = false;
5262         }
5263
5264         return flush;
5265 }
5266
5267 static __always_inline bool
5268 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5269                   slot_level_handler fn, int start_level, int end_level,
5270                   bool lock_flush_tlb)
5271 {
5272         return slot_handle_level_range(kvm, memslot, fn, start_level,
5273                         end_level, memslot->base_gfn,
5274                         memslot->base_gfn + memslot->npages - 1,
5275                         lock_flush_tlb);
5276 }
5277
5278 static __always_inline bool
5279 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5280                       slot_level_handler fn, bool lock_flush_tlb)
5281 {
5282         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5283                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5284 }
5285
5286 static __always_inline bool
5287 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5288                         slot_level_handler fn, bool lock_flush_tlb)
5289 {
5290         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5291                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5292 }
5293
5294 static __always_inline bool
5295 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5296                  slot_level_handler fn, bool lock_flush_tlb)
5297 {
5298         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5299                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5300 }
5301
5302 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5303 {
5304         struct kvm_memslots *slots;
5305         struct kvm_memory_slot *memslot;
5306         int i;
5307
5308         spin_lock(&kvm->mmu_lock);
5309         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5310                 slots = __kvm_memslots(kvm, i);
5311                 kvm_for_each_memslot(memslot, slots) {
5312                         gfn_t start, end;
5313
5314                         start = max(gfn_start, memslot->base_gfn);
5315                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5316                         if (start >= end)
5317                                 continue;
5318
5319                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5320                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5321                                                 start, end - 1, true);
5322                 }
5323         }
5324
5325         spin_unlock(&kvm->mmu_lock);
5326 }
5327
5328 static bool slot_rmap_write_protect(struct kvm *kvm,
5329                                     struct kvm_rmap_head *rmap_head)
5330 {
5331         return __rmap_write_protect(kvm, rmap_head, false);
5332 }
5333
5334 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5335                                       struct kvm_memory_slot *memslot)
5336 {
5337         bool flush;
5338
5339         spin_lock(&kvm->mmu_lock);
5340         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5341                                       false);
5342         spin_unlock(&kvm->mmu_lock);
5343
5344         /*
5345          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5346          * which do tlb flush out of mmu-lock should be serialized by
5347          * kvm->slots_lock otherwise tlb flush would be missed.
5348          */
5349         lockdep_assert_held(&kvm->slots_lock);
5350
5351         /*
5352          * We can flush all the TLBs out of the mmu lock without TLB
5353          * corruption since we just change the spte from writable to
5354          * readonly so that we only need to care the case of changing
5355          * spte from present to present (changing the spte from present
5356          * to nonpresent will flush all the TLBs immediately), in other
5357          * words, the only case we care is mmu_spte_update() where we
5358          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5359          * instead of PT_WRITABLE_MASK, that means it does not depend
5360          * on PT_WRITABLE_MASK anymore.
5361          */
5362         if (flush)
5363                 kvm_flush_remote_tlbs(kvm);
5364 }
5365
5366 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5367                                          struct kvm_rmap_head *rmap_head)
5368 {
5369         u64 *sptep;
5370         struct rmap_iterator iter;
5371         int need_tlb_flush = 0;
5372         kvm_pfn_t pfn;
5373         struct kvm_mmu_page *sp;
5374
5375 restart:
5376         for_each_rmap_spte(rmap_head, &iter, sptep) {
5377                 sp = page_header(__pa(sptep));
5378                 pfn = spte_to_pfn(*sptep);
5379
5380                 /*
5381                  * We cannot do huge page mapping for indirect shadow pages,
5382                  * which are found on the last rmap (level = 1) when not using
5383                  * tdp; such shadow pages are synced with the page table in
5384                  * the guest, and the guest page table is using 4K page size
5385                  * mapping if the indirect sp has level = 1.
5386                  */
5387                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5388                     !kvm_is_zone_device_pfn(pfn) &&
5389                     PageTransCompoundMap(pfn_to_page(pfn))) {
5390                         drop_spte(kvm, sptep);
5391                         need_tlb_flush = 1;
5392                         goto restart;
5393                 }
5394         }
5395
5396         return need_tlb_flush;
5397 }
5398
5399 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5400                                    const struct kvm_memory_slot *memslot)
5401 {
5402         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5403         spin_lock(&kvm->mmu_lock);
5404         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5405                          kvm_mmu_zap_collapsible_spte, true);
5406         spin_unlock(&kvm->mmu_lock);
5407 }
5408
5409 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5410                                    struct kvm_memory_slot *memslot)
5411 {
5412         bool flush;
5413
5414         spin_lock(&kvm->mmu_lock);
5415         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5416         spin_unlock(&kvm->mmu_lock);
5417
5418         lockdep_assert_held(&kvm->slots_lock);
5419
5420         /*
5421          * It's also safe to flush TLBs out of mmu lock here as currently this
5422          * function is only used for dirty logging, in which case flushing TLB
5423          * out of mmu lock also guarantees no dirty pages will be lost in
5424          * dirty_bitmap.
5425          */
5426         if (flush)
5427                 kvm_flush_remote_tlbs(kvm);
5428 }
5429 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5430
5431 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5432                                         struct kvm_memory_slot *memslot)
5433 {
5434         bool flush;
5435
5436         spin_lock(&kvm->mmu_lock);
5437         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5438                                         false);
5439         spin_unlock(&kvm->mmu_lock);
5440
5441         /* see kvm_mmu_slot_remove_write_access */
5442         lockdep_assert_held(&kvm->slots_lock);
5443
5444         if (flush)
5445                 kvm_flush_remote_tlbs(kvm);
5446 }
5447 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5448
5449 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5450                             struct kvm_memory_slot *memslot)
5451 {
5452         bool flush;
5453
5454         spin_lock(&kvm->mmu_lock);
5455         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5456         spin_unlock(&kvm->mmu_lock);
5457
5458         lockdep_assert_held(&kvm->slots_lock);
5459
5460         /* see kvm_mmu_slot_leaf_clear_dirty */
5461         if (flush)
5462                 kvm_flush_remote_tlbs(kvm);
5463 }
5464 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5465
5466 #define BATCH_ZAP_PAGES 10
5467 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5468 {
5469         struct kvm_mmu_page *sp, *node;
5470         int batch = 0;
5471
5472 restart:
5473         list_for_each_entry_safe_reverse(sp, node,
5474               &kvm->arch.active_mmu_pages, link) {
5475                 int ret;
5476
5477                 /*
5478                  * No obsolete page exists before new created page since
5479                  * active_mmu_pages is the FIFO list.
5480                  */
5481                 if (!is_obsolete_sp(kvm, sp))
5482                         break;
5483
5484                 /*
5485                  * Since we are reversely walking the list and the invalid
5486                  * list will be moved to the head, skip the invalid page
5487                  * can help us to avoid the infinity list walking.
5488                  */
5489                 if (sp->role.invalid)
5490                         continue;
5491
5492                 /*
5493                  * Need not flush tlb since we only zap the sp with invalid
5494                  * generation number.
5495                  */
5496                 if (batch >= BATCH_ZAP_PAGES &&
5497                       cond_resched_lock(&kvm->mmu_lock)) {
5498                         batch = 0;
5499                         goto restart;
5500                 }
5501
5502                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5503                                 &kvm->arch.zapped_obsolete_pages);
5504                 batch += ret;
5505
5506                 if (ret)
5507                         goto restart;
5508         }
5509
5510         /*
5511          * Should flush tlb before free page tables since lockless-walking
5512          * may use the pages.
5513          */
5514         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5515 }
5516
5517 /*
5518  * Fast invalidate all shadow pages and use lock-break technique
5519  * to zap obsolete pages.
5520  *
5521  * It's required when memslot is being deleted or VM is being
5522  * destroyed, in these cases, we should ensure that KVM MMU does
5523  * not use any resource of the being-deleted slot or all slots
5524  * after calling the function.
5525  */
5526 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5527 {
5528         spin_lock(&kvm->mmu_lock);
5529         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5530         kvm->arch.mmu_valid_gen++;
5531
5532         /*
5533          * Notify all vcpus to reload its shadow page table
5534          * and flush TLB. Then all vcpus will switch to new
5535          * shadow page table with the new mmu_valid_gen.
5536          *
5537          * Note: we should do this under the protection of
5538          * mmu-lock, otherwise, vcpu would purge shadow page
5539          * but miss tlb flush.
5540          */
5541         kvm_reload_remote_mmus(kvm);
5542
5543         kvm_zap_obsolete_pages(kvm);
5544         spin_unlock(&kvm->mmu_lock);
5545 }
5546
5547 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5548 {
5549         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5550 }
5551
5552 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5553 {
5554         gen &= MMIO_GEN_MASK;
5555
5556         /*
5557          * Shift to eliminate the "update in-progress" flag, which isn't
5558          * included in the spte's generation number.
5559          */
5560         gen >>= 1;
5561
5562         /*
5563          * Generation numbers are incremented in multiples of the number of
5564          * address spaces in order to provide unique generations across all
5565          * address spaces.  Strip what is effectively the address space
5566          * modifier prior to checking for a wrap of the MMIO generation so
5567          * that a wrap in any address space is detected.
5568          */
5569         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5570
5571         /*
5572          * The very rare case: if the MMIO generation number has wrapped,
5573          * zap all shadow pages.
5574          */
5575         if (unlikely(gen == 0)) {
5576                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5577                 kvm_mmu_invalidate_zap_all_pages(kvm);
5578         }
5579 }
5580
5581 static unsigned long
5582 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5583 {
5584         struct kvm *kvm;
5585         int nr_to_scan = sc->nr_to_scan;
5586         unsigned long freed = 0;
5587
5588         mutex_lock(&kvm_lock);
5589
5590         list_for_each_entry(kvm, &vm_list, vm_list) {
5591                 int idx;
5592                 LIST_HEAD(invalid_list);
5593
5594                 /*
5595                  * Never scan more than sc->nr_to_scan VM instances.
5596                  * Will not hit this condition practically since we do not try
5597                  * to shrink more than one VM and it is very unlikely to see
5598                  * !n_used_mmu_pages so many times.
5599                  */
5600                 if (!nr_to_scan--)
5601                         break;
5602                 /*
5603                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5604                  * here. We may skip a VM instance errorneosly, but we do not
5605                  * want to shrink a VM that only started to populate its MMU
5606                  * anyway.
5607                  */
5608                 if (!kvm->arch.n_used_mmu_pages &&
5609                       !kvm_has_zapped_obsolete_pages(kvm))
5610                         continue;
5611
5612                 idx = srcu_read_lock(&kvm->srcu);
5613                 spin_lock(&kvm->mmu_lock);
5614
5615                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5616                         kvm_mmu_commit_zap_page(kvm,
5617                               &kvm->arch.zapped_obsolete_pages);
5618                         goto unlock;
5619                 }
5620
5621                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5622                         freed++;
5623                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5624
5625 unlock:
5626                 spin_unlock(&kvm->mmu_lock);
5627                 srcu_read_unlock(&kvm->srcu, idx);
5628
5629                 /*
5630                  * unfair on small ones
5631                  * per-vm shrinkers cry out
5632                  * sadness comes quickly
5633                  */
5634                 list_move_tail(&kvm->vm_list, &vm_list);
5635                 break;
5636         }
5637
5638         mutex_unlock(&kvm_lock);
5639         return freed;
5640 }
5641
5642 static unsigned long
5643 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5644 {
5645         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5646 }
5647
5648 static struct shrinker mmu_shrinker = {
5649         .count_objects = mmu_shrink_count,
5650         .scan_objects = mmu_shrink_scan,
5651         .seeks = DEFAULT_SEEKS * 10,
5652 };
5653
5654 static void mmu_destroy_caches(void)
5655 {
5656         if (pte_list_desc_cache)
5657                 kmem_cache_destroy(pte_list_desc_cache);
5658         if (mmu_page_header_cache)
5659                 kmem_cache_destroy(mmu_page_header_cache);
5660 }
5661
5662 static bool get_nx_auto_mode(void)
5663 {
5664         /* Return true when CPU has the bug, and mitigations are ON */
5665         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5666 }
5667
5668 static void __set_nx_huge_pages(bool val)
5669 {
5670         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5671 }
5672
5673 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5674 {
5675         bool old_val = nx_huge_pages;
5676         bool new_val;
5677
5678         /* In "auto" mode deploy workaround only if CPU has the bug. */
5679         if (sysfs_streq(val, "off"))
5680                 new_val = 0;
5681         else if (sysfs_streq(val, "force"))
5682                 new_val = 1;
5683         else if (sysfs_streq(val, "auto"))
5684                 new_val = get_nx_auto_mode();
5685         else if (strtobool(val, &new_val) < 0)
5686                 return -EINVAL;
5687
5688         __set_nx_huge_pages(new_val);
5689
5690         if (new_val != old_val) {
5691                 struct kvm *kvm;
5692                 int idx;
5693
5694                 mutex_lock(&kvm_lock);
5695
5696                 list_for_each_entry(kvm, &vm_list, vm_list) {
5697                         idx = srcu_read_lock(&kvm->srcu);
5698                         kvm_mmu_invalidate_zap_all_pages(kvm);
5699                         srcu_read_unlock(&kvm->srcu, idx);
5700
5701                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5702                 }
5703                 mutex_unlock(&kvm_lock);
5704         }
5705
5706         return 0;
5707 }
5708
5709 static void kvm_set_mmio_spte_mask(void)
5710 {
5711         u64 mask;
5712
5713         /*
5714          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5715          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5716          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5717          * 52-bit physical addresses then there are no reserved PA bits in the
5718          * PTEs and so the reserved PA approach must be disabled.
5719          */
5720         if (shadow_phys_bits < 52)
5721                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5722         else
5723                 mask = 0;
5724
5725         kvm_mmu_set_mmio_spte_mask(mask, mask);
5726 }
5727
5728 int kvm_mmu_module_init(void)
5729 {
5730         if (nx_huge_pages == -1)
5731                 __set_nx_huge_pages(get_nx_auto_mode());
5732
5733         kvm_mmu_reset_all_pte_masks();
5734
5735         kvm_set_mmio_spte_mask();
5736
5737         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5738                                             sizeof(struct pte_list_desc),
5739                                             0, SLAB_ACCOUNT, NULL);
5740         if (!pte_list_desc_cache)
5741                 goto nomem;
5742
5743         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5744                                                   sizeof(struct kvm_mmu_page),
5745                                                   0, SLAB_ACCOUNT, NULL);
5746         if (!mmu_page_header_cache)
5747                 goto nomem;
5748
5749         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5750                 goto nomem;
5751
5752         register_shrinker(&mmu_shrinker);
5753
5754         return 0;
5755
5756 nomem:
5757         mmu_destroy_caches();
5758         return -ENOMEM;
5759 }
5760
5761 /*
5762  * Caculate mmu pages needed for kvm.
5763  */
5764 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5765 {
5766         unsigned int nr_mmu_pages;
5767         unsigned int  nr_pages = 0;
5768         struct kvm_memslots *slots;
5769         struct kvm_memory_slot *memslot;
5770         int i;
5771
5772         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5773                 slots = __kvm_memslots(kvm, i);
5774
5775                 kvm_for_each_memslot(memslot, slots)
5776                         nr_pages += memslot->npages;
5777         }
5778
5779         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5780         nr_mmu_pages = max(nr_mmu_pages,
5781                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5782
5783         return nr_mmu_pages;
5784 }
5785
5786 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5787 {
5788         kvm_mmu_unload(vcpu);
5789         free_mmu_pages(vcpu);
5790         mmu_free_memory_caches(vcpu);
5791 }
5792
5793 void kvm_mmu_module_exit(void)
5794 {
5795         mmu_destroy_caches();
5796         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5797         unregister_shrinker(&mmu_shrinker);
5798         mmu_audit_disable();
5799 }
5800
5801 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5802 {
5803         unsigned int old_val;
5804         int err;
5805
5806         old_val = nx_huge_pages_recovery_ratio;
5807         err = param_set_uint(val, kp);
5808         if (err)
5809                 return err;
5810
5811         if (READ_ONCE(nx_huge_pages) &&
5812             !old_val && nx_huge_pages_recovery_ratio) {
5813                 struct kvm *kvm;
5814
5815                 mutex_lock(&kvm_lock);
5816
5817                 list_for_each_entry(kvm, &vm_list, vm_list)
5818                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5819
5820                 mutex_unlock(&kvm_lock);
5821         }
5822
5823         return err;
5824 }
5825
5826 static void kvm_recover_nx_lpages(struct kvm *kvm)
5827 {
5828         int rcu_idx;
5829         struct kvm_mmu_page *sp;
5830         unsigned int ratio;
5831         LIST_HEAD(invalid_list);
5832         ulong to_zap;
5833
5834         rcu_idx = srcu_read_lock(&kvm->srcu);
5835         spin_lock(&kvm->mmu_lock);
5836
5837         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5838         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5839         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
5840                 /*
5841                  * We use a separate list instead of just using active_mmu_pages
5842                  * because the number of lpage_disallowed pages is expected to
5843                  * be relatively small compared to the total.
5844                  */
5845                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5846                                       struct kvm_mmu_page,
5847                                       lpage_disallowed_link);
5848                 WARN_ON_ONCE(!sp->lpage_disallowed);
5849                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5850                 WARN_ON_ONCE(sp->lpage_disallowed);
5851
5852                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5853                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5854                         if (to_zap)
5855                                 cond_resched_lock(&kvm->mmu_lock);
5856                 }
5857         }
5858         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5859
5860         spin_unlock(&kvm->mmu_lock);
5861         srcu_read_unlock(&kvm->srcu, rcu_idx);
5862 }
5863
5864 static long get_nx_lpage_recovery_timeout(u64 start_time)
5865 {
5866         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5867                 ? start_time + 60 * HZ - get_jiffies_64()
5868                 : MAX_SCHEDULE_TIMEOUT;
5869 }
5870
5871 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5872 {
5873         u64 start_time;
5874         long remaining_time;
5875
5876         while (true) {
5877                 start_time = get_jiffies_64();
5878                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5879
5880                 set_current_state(TASK_INTERRUPTIBLE);
5881                 while (!kthread_should_stop() && remaining_time > 0) {
5882                         schedule_timeout(remaining_time);
5883                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
5884                         set_current_state(TASK_INTERRUPTIBLE);
5885                 }
5886
5887                 set_current_state(TASK_RUNNING);
5888
5889                 if (kthread_should_stop())
5890                         return 0;
5891
5892                 kvm_recover_nx_lpages(kvm);
5893         }
5894 }
5895
5896 int kvm_mmu_post_init_vm(struct kvm *kvm)
5897 {
5898         int err;
5899
5900         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5901                                           "kvm-nx-lpage-recovery",
5902                                           &kvm->arch.nx_lpage_recovery_thread);
5903         if (!err)
5904                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5905
5906         return err;
5907 }
5908
5909 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5910 {
5911         if (kvm->arch.nx_lpage_recovery_thread)
5912                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5913 }