GNU Linux-libre 4.4.296-gnu1
[releases.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM                8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99                                                 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110                                                 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                             * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123                         | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
163              shadow_walk_okay(&(_walker)) &&                            \
164                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
165              __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183         shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT         2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
198
199 #define MMIO_GEN_SHIFT                  20
200 #define MMIO_GEN_LOW_SHIFT              10
201 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206         u64 mask;
207
208         WARN_ON(gen & ~MMIO_GEN_MASK);
209
210         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212         return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217         unsigned int gen;
218
219         spte &= ~shadow_mmio_mask;
220
221         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223         return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232                            unsigned access)
233 {
234         unsigned int gen = kvm_current_mmio_generation(vcpu);
235         u64 mask = generation_mmio_spte_mask(gen);
236
237         access &= ACC_WRITE_MASK | ACC_USER_MASK;
238         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240         trace_mark_mmio_spte(sptep, gfn, access, gen);
241         mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252         return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258         return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262                           pfn_t pfn, unsigned access)
263 {
264         if (unlikely(is_noslot_pfn(pfn))) {
265                 mark_mmio_spte(vcpu, sptep, gfn, access);
266                 return true;
267         }
268
269         return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274         unsigned int kvm_gen, spte_gen;
275
276         kvm_gen = kvm_current_mmio_generation(vcpu);
277         spte_gen = get_mmio_spte_generation(spte);
278
279         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280         return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286         shadow_user_mask = user_mask;
287         shadow_accessed_mask = accessed_mask;
288         shadow_dirty_mask = dirty_mask;
289         shadow_nx_mask = nx_mask;
290         shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296         return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311         return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316         return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362         struct {
363                 u32 spte_low;
364                 u32 spte_high;
365         };
366         u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
372
373         if (is_shadow_present_pte(spte))
374                 return;
375
376         /* Ensure the spte is completely set before we increase the count */
377         smp_wmb();
378         sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383         union split_spte *ssptep, sspte;
384
385         ssptep = (union split_spte *)sptep;
386         sspte = (union split_spte)spte;
387
388         ssptep->spte_high = sspte.spte_high;
389
390         /*
391          * If we map the spte from nonpresent to present, We should store
392          * the high bits firstly, then set present bit, so cpu can not
393          * fetch this spte while we are setting the spte.
394          */
395         smp_wmb();
396
397         ssptep->spte_low = sspte.spte_low;
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402         union split_spte *ssptep, sspte;
403
404         ssptep = (union split_spte *)sptep;
405         sspte = (union split_spte)spte;
406
407         ssptep->spte_low = sspte.spte_low;
408
409         /*
410          * If we map the spte from present to nonpresent, we should clear
411          * present bit firstly to avoid vcpu fetch the old high bits.
412          */
413         smp_wmb();
414
415         ssptep->spte_high = sspte.spte_high;
416         count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421         union split_spte *ssptep, sspte, orig;
422
423         ssptep = (union split_spte *)sptep;
424         sspte = (union split_spte)spte;
425
426         /* xchg acts as a barrier before the setting of the high bits */
427         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428         orig.spte_high = ssptep->spte_high;
429         ssptep->spte_high = sspte.spte_high;
430         count_spte_clear(sptep, spte);
431
432         return orig.spte;
433 }
434
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte(arch/x86/mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
456         union split_spte spte, *orig = (union split_spte *)sptep;
457         int count;
458
459 retry:
460         count = sp->clear_spte_count;
461         smp_rmb();
462
463         spte.spte_low = orig->spte_low;
464         smp_rmb();
465
466         spte.spte_high = orig->spte_high;
467         smp_rmb();
468
469         if (unlikely(spte.spte_low != orig->spte_low ||
470               count != sp->clear_spte_count))
471                 goto retry;
472
473         return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485         /*
486          * Always atomicly update spte if it can be updated
487          * out of mmu-lock, it can ensure dirty bit is not lost,
488          * also, it can help us to get a stable is_writable_pte()
489          * to ensure tlb flush is not missed.
490          */
491         if (spte_is_locklessly_modifiable(spte))
492                 return true;
493
494         if (!shadow_accessed_mask)
495                 return false;
496
497         if (!is_shadow_present_pte(spte))
498                 return false;
499
500         if ((spte & shadow_accessed_mask) &&
501               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502                 return false;
503
504         return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509         return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514         return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518  * Set the sptep from nonpresent to present.
519  * Note: the sptep being assigned *must* be either not present
520  * or in a state where the hardware will not attempt to update
521  * the spte.
522  */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525         WARN_ON(is_shadow_present_pte(*sptep));
526         __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530  * Update the state bits, it means the mapped pfn is not changged.
531  *
532  * Whenever we overwrite a writable spte with a read-only one we
533  * should flush remote TLBs. Otherwise rmap_write_protect
534  * will find a read-only spte, even though the writable spte
535  * might be cached on a CPU's TLB, the return value indicates this
536  * case.
537  */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540         u64 old_spte = *sptep;
541         bool ret = false;
542
543         WARN_ON(!is_rmap_spte(new_spte));
544
545         if (!is_shadow_present_pte(old_spte)) {
546                 mmu_spte_set(sptep, new_spte);
547                 return ret;
548         }
549
550         if (!spte_has_volatile_bits(old_spte))
551                 __update_clear_spte_fast(sptep, new_spte);
552         else
553                 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555         /*
556          * For the spte updated out of mmu-lock is safe, since
557          * we always atomicly update it, see the comments in
558          * spte_has_volatile_bits().
559          */
560         if (spte_is_locklessly_modifiable(old_spte) &&
561               !is_writable_pte(new_spte))
562                 ret = true;
563
564         if (!shadow_accessed_mask)
565                 return ret;
566
567         /*
568          * Flush TLB when accessed/dirty bits are changed in the page tables,
569          * to guarantee consistency between TLB and page tables.
570          */
571         if (spte_is_bit_changed(old_spte, new_spte,
572                                 shadow_accessed_mask | shadow_dirty_mask))
573                 ret = true;
574
575         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580         return ret;
581 }
582
583 /*
584  * Rules for using mmu_spte_clear_track_bits:
585  * It sets the sptep from present to nonpresent, and track the
586  * state bits, it is used to clear the last level sptep.
587  */
588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590         pfn_t pfn;
591         u64 old_spte = *sptep;
592
593         if (!spte_has_volatile_bits(old_spte))
594                 __update_clear_spte_fast(sptep, 0ull);
595         else
596                 old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598         if (!is_rmap_spte(old_spte))
599                 return 0;
600
601         pfn = spte_to_pfn(old_spte);
602
603         /*
604          * KVM does not hold the refcount of the page used by
605          * kvm mmu, before reclaiming the page, we should
606          * unmap it from mmu first.
607          */
608         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611                 kvm_set_pfn_accessed(pfn);
612         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613                 kvm_set_pfn_dirty(pfn);
614         return 1;
615 }
616
617 /*
618  * Rules for using mmu_spte_clear_no_track:
619  * Directly clear spte without caring the state bits of sptep,
620  * it is used to set the upper level spte.
621  */
622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624         __update_clear_spte_fast(sptep, 0ull);
625 }
626
627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629         return __get_spte_lockless(sptep);
630 }
631
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634         /*
635          * Prevent page table teardown by making any free-er wait during
636          * kvm_flush_remote_tlbs() IPI to all active vcpus.
637          */
638         local_irq_disable();
639         vcpu->mode = READING_SHADOW_PAGE_TABLES;
640         /*
641          * Make sure a following spte read is not reordered ahead of the write
642          * to vcpu->mode.
643          */
644         smp_mb();
645 }
646
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649         /*
650          * Make sure the write to vcpu->mode is not reordered in front of
651          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
652          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653          */
654         smp_mb();
655         vcpu->mode = OUTSIDE_GUEST_MODE;
656         local_irq_enable();
657 }
658
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660                                   struct kmem_cache *base_cache, int min)
661 {
662         void *obj;
663
664         if (cache->nobjs >= min)
665                 return 0;
666         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668                 if (!obj)
669                         return -ENOMEM;
670                 cache->objects[cache->nobjs++] = obj;
671         }
672         return 0;
673 }
674
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677         return cache->nobjs;
678 }
679
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681                                   struct kmem_cache *cache)
682 {
683         while (mc->nobjs)
684                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688                                        int min)
689 {
690         void *page;
691
692         if (cache->nobjs >= min)
693                 return 0;
694         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695                 page = (void *)__get_free_page(GFP_KERNEL);
696                 if (!page)
697                         return -ENOMEM;
698                 cache->objects[cache->nobjs++] = page;
699         }
700         return 0;
701 }
702
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705         while (mc->nobjs)
706                 free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711         int r;
712
713         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715         if (r)
716                 goto out;
717         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718         if (r)
719                 goto out;
720         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721                                    mmu_page_header_cache, 4);
722 out:
723         return r;
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729                                 pte_list_desc_cache);
730         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732                                 mmu_page_header_cache);
733 }
734
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737         void *p;
738
739         BUG_ON(!mc->nobjs);
740         p = mc->objects[--mc->nobjs];
741         return p;
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756         if (!sp->role.direct)
757                 return sp->gfns[index];
758
759         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764         if (sp->role.direct)
765                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766         else
767                 sp->gfns[index] = gfn;
768 }
769
770 /*
771  * Return the pointer to the large page information for a given gfn,
772  * handling slots that are not large page aligned.
773  */
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775                                               struct kvm_memory_slot *slot,
776                                               int level)
777 {
778         unsigned long idx;
779
780         idx = gfn_to_index(gfn, slot->base_gfn, level);
781         return &slot->arch.lpage_info[level - 2][idx];
782 }
783
784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785 {
786         struct kvm_memslots *slots;
787         struct kvm_memory_slot *slot;
788         struct kvm_lpage_info *linfo;
789         gfn_t gfn;
790         int i;
791
792         gfn = sp->gfn;
793         slots = kvm_memslots_for_spte_role(kvm, sp->role);
794         slot = __gfn_to_memslot(slots, gfn);
795         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796                 linfo = lpage_info_slot(gfn, slot, i);
797                 linfo->write_count += 1;
798         }
799         kvm->arch.indirect_shadow_pages++;
800 }
801
802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804         struct kvm_memslots *slots;
805         struct kvm_memory_slot *slot;
806         struct kvm_lpage_info *linfo;
807         gfn_t gfn;
808         int i;
809
810         gfn = sp->gfn;
811         slots = kvm_memslots_for_spte_role(kvm, sp->role);
812         slot = __gfn_to_memslot(slots, gfn);
813         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814                 linfo = lpage_info_slot(gfn, slot, i);
815                 linfo->write_count -= 1;
816                 WARN_ON(linfo->write_count < 0);
817         }
818         kvm->arch.indirect_shadow_pages--;
819 }
820
821 static int __has_wrprotected_page(gfn_t gfn, int level,
822                                   struct kvm_memory_slot *slot)
823 {
824         struct kvm_lpage_info *linfo;
825
826         if (slot) {
827                 linfo = lpage_info_slot(gfn, slot, level);
828                 return linfo->write_count;
829         }
830
831         return 1;
832 }
833
834 static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
835 {
836         struct kvm_memory_slot *slot;
837
838         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839         return __has_wrprotected_page(gfn, level, slot);
840 }
841
842 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
843 {
844         unsigned long page_size;
845         int i, ret = 0;
846
847         page_size = kvm_host_page_size(kvm, gfn);
848
849         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
850                 if (page_size >= KVM_HPAGE_SIZE(i))
851                         ret = i;
852                 else
853                         break;
854         }
855
856         return ret;
857 }
858
859 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
860                                           bool no_dirty_log)
861 {
862         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
863                 return false;
864         if (no_dirty_log && slot->dirty_bitmap)
865                 return false;
866
867         return true;
868 }
869
870 static struct kvm_memory_slot *
871 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
872                             bool no_dirty_log)
873 {
874         struct kvm_memory_slot *slot;
875
876         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
877         if (!memslot_valid_for_gpte(slot, no_dirty_log))
878                 slot = NULL;
879
880         return slot;
881 }
882
883 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
884                          bool *force_pt_level)
885 {
886         int host_level, level, max_level;
887         struct kvm_memory_slot *slot;
888
889         if (unlikely(*force_pt_level))
890                 return PT_PAGE_TABLE_LEVEL;
891
892         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
893         *force_pt_level = !memslot_valid_for_gpte(slot, true);
894         if (unlikely(*force_pt_level))
895                 return PT_PAGE_TABLE_LEVEL;
896
897         host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899         if (host_level == PT_PAGE_TABLE_LEVEL)
900                 return host_level;
901
902         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903
904         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905                 if (__has_wrprotected_page(large_gfn, level, slot))
906                         break;
907
908         return level - 1;
909 }
910
911 /*
912  * Pte mapping structures:
913  *
914  * If pte_list bit zero is zero, then pte_list point to the spte.
915  *
916  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917  * pte_list_desc containing more mappings.
918  *
919  * Returns the number of pte entries before the spte was added or zero if
920  * the spte was not added.
921  *
922  */
923 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924                         unsigned long *pte_list)
925 {
926         struct pte_list_desc *desc;
927         int i, count = 0;
928
929         if (!*pte_list) {
930                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931                 *pte_list = (unsigned long)spte;
932         } else if (!(*pte_list & 1)) {
933                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934                 desc = mmu_alloc_pte_list_desc(vcpu);
935                 desc->sptes[0] = (u64 *)*pte_list;
936                 desc->sptes[1] = spte;
937                 *pte_list = (unsigned long)desc | 1;
938                 ++count;
939         } else {
940                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943                         desc = desc->more;
944                         count += PTE_LIST_EXT;
945                 }
946                 if (desc->sptes[PTE_LIST_EXT-1]) {
947                         desc->more = mmu_alloc_pte_list_desc(vcpu);
948                         desc = desc->more;
949                 }
950                 for (i = 0; desc->sptes[i]; ++i)
951                         ++count;
952                 desc->sptes[i] = spte;
953         }
954         return count;
955 }
956
957 static void
958 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959                            int i, struct pte_list_desc *prev_desc)
960 {
961         int j;
962
963         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964                 ;
965         desc->sptes[i] = desc->sptes[j];
966         desc->sptes[j] = NULL;
967         if (j != 0)
968                 return;
969         if (!prev_desc && !desc->more)
970                 *pte_list = (unsigned long)desc->sptes[0];
971         else
972                 if (prev_desc)
973                         prev_desc->more = desc->more;
974                 else
975                         *pte_list = (unsigned long)desc->more | 1;
976         mmu_free_pte_list_desc(desc);
977 }
978
979 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980 {
981         struct pte_list_desc *desc;
982         struct pte_list_desc *prev_desc;
983         int i;
984
985         if (!*pte_list) {
986                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987                 BUG();
988         } else if (!(*pte_list & 1)) {
989                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
990                 if ((u64 *)*pte_list != spte) {
991                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992                         BUG();
993                 }
994                 *pte_list = 0;
995         } else {
996                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
997                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998                 prev_desc = NULL;
999                 while (desc) {
1000                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1001                                 if (desc->sptes[i] == spte) {
1002                                         pte_list_desc_remove_entry(pte_list,
1003                                                                desc, i,
1004                                                                prev_desc);
1005                                         return;
1006                                 }
1007                         prev_desc = desc;
1008                         desc = desc->more;
1009                 }
1010                 pr_err("pte_list_remove: %p many->many\n", spte);
1011                 BUG();
1012         }
1013 }
1014
1015 typedef void (*pte_list_walk_fn) (u64 *spte);
1016 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017 {
1018         struct pte_list_desc *desc;
1019         int i;
1020
1021         if (!*pte_list)
1022                 return;
1023
1024         if (!(*pte_list & 1))
1025                 return fn((u64 *)*pte_list);
1026
1027         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028         while (desc) {
1029                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030                         fn(desc->sptes[i]);
1031                 desc = desc->more;
1032         }
1033 }
1034
1035 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036                                     struct kvm_memory_slot *slot)
1037 {
1038         unsigned long idx;
1039
1040         idx = gfn_to_index(gfn, slot->base_gfn, level);
1041         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 }
1043
1044 /*
1045  * Take gfn and return the reverse mapping to it.
1046  */
1047 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1048 {
1049         struct kvm_memslots *slots;
1050         struct kvm_memory_slot *slot;
1051
1052         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1053         slot = __gfn_to_memslot(slots, gfn);
1054         return __gfn_to_rmap(gfn, sp->role.level, slot);
1055 }
1056
1057 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1058 {
1059         struct kvm_mmu_memory_cache *cache;
1060
1061         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1062         return mmu_memory_cache_free_objects(cache);
1063 }
1064
1065 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1066 {
1067         struct kvm_mmu_page *sp;
1068         unsigned long *rmapp;
1069
1070         sp = page_header(__pa(spte));
1071         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1072         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1073         return pte_list_add(vcpu, spte, rmapp);
1074 }
1075
1076 static void rmap_remove(struct kvm *kvm, u64 *spte)
1077 {
1078         struct kvm_mmu_page *sp;
1079         gfn_t gfn;
1080         unsigned long *rmapp;
1081
1082         sp = page_header(__pa(spte));
1083         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084         rmapp = gfn_to_rmap(kvm, gfn, sp);
1085         pte_list_remove(spte, rmapp);
1086 }
1087
1088 /*
1089  * Used by the following functions to iterate through the sptes linked by a
1090  * rmap.  All fields are private and not assumed to be used outside.
1091  */
1092 struct rmap_iterator {
1093         /* private fields */
1094         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1095         int pos;                        /* index of the sptep */
1096 };
1097
1098 /*
1099  * Iteration must be started by this function.  This should also be used after
1100  * removing/dropping sptes from the rmap link because in such cases the
1101  * information in the itererator may not be valid.
1102  *
1103  * Returns sptep if found, NULL otherwise.
1104  */
1105 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1106 {
1107         if (!rmap)
1108                 return NULL;
1109
1110         if (!(rmap & 1)) {
1111                 iter->desc = NULL;
1112                 return (u64 *)rmap;
1113         }
1114
1115         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1116         iter->pos = 0;
1117         return iter->desc->sptes[iter->pos];
1118 }
1119
1120 /*
1121  * Must be used with a valid iterator: e.g. after rmap_get_first().
1122  *
1123  * Returns sptep if found, NULL otherwise.
1124  */
1125 static u64 *rmap_get_next(struct rmap_iterator *iter)
1126 {
1127         if (iter->desc) {
1128                 if (iter->pos < PTE_LIST_EXT - 1) {
1129                         u64 *sptep;
1130
1131                         ++iter->pos;
1132                         sptep = iter->desc->sptes[iter->pos];
1133                         if (sptep)
1134                                 return sptep;
1135                 }
1136
1137                 iter->desc = iter->desc->more;
1138
1139                 if (iter->desc) {
1140                         iter->pos = 0;
1141                         /* desc->sptes[0] cannot be NULL */
1142                         return iter->desc->sptes[iter->pos];
1143                 }
1144         }
1145
1146         return NULL;
1147 }
1148
1149 #define for_each_rmap_spte(_rmap_, _iter_, _spte_)                          \
1150            for (_spte_ = rmap_get_first(*_rmap_, _iter_);                   \
1151                 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1152                         _spte_ = rmap_get_next(_iter_))
1153
1154 static void drop_spte(struct kvm *kvm, u64 *sptep)
1155 {
1156         if (mmu_spte_clear_track_bits(sptep))
1157                 rmap_remove(kvm, sptep);
1158 }
1159
1160
1161 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163         if (is_large_pte(*sptep)) {
1164                 WARN_ON(page_header(__pa(sptep))->role.level ==
1165                         PT_PAGE_TABLE_LEVEL);
1166                 drop_spte(kvm, sptep);
1167                 --kvm->stat.lpages;
1168                 return true;
1169         }
1170
1171         return false;
1172 }
1173
1174 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1175 {
1176         if (__drop_large_spte(vcpu->kvm, sptep))
1177                 kvm_flush_remote_tlbs(vcpu->kvm);
1178 }
1179
1180 /*
1181  * Write-protect on the specified @sptep, @pt_protect indicates whether
1182  * spte write-protection is caused by protecting shadow page table.
1183  *
1184  * Note: write protection is difference between dirty logging and spte
1185  * protection:
1186  * - for dirty logging, the spte can be set to writable at anytime if
1187  *   its dirty bitmap is properly set.
1188  * - for spte protection, the spte can be writable only after unsync-ing
1189  *   shadow page.
1190  *
1191  * Return true if tlb need be flushed.
1192  */
1193 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1194 {
1195         u64 spte = *sptep;
1196
1197         if (!is_writable_pte(spte) &&
1198               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1199                 return false;
1200
1201         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1202
1203         if (pt_protect)
1204                 spte &= ~SPTE_MMU_WRITEABLE;
1205         spte = spte & ~PT_WRITABLE_MASK;
1206
1207         return mmu_spte_update(sptep, spte);
1208 }
1209
1210 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1211                                  bool pt_protect)
1212 {
1213         u64 *sptep;
1214         struct rmap_iterator iter;
1215         bool flush = false;
1216
1217         for_each_rmap_spte(rmapp, &iter, sptep)
1218                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1219
1220         return flush;
1221 }
1222
1223 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1224 {
1225         u64 spte = *sptep;
1226
1227         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1228
1229         spte &= ~shadow_dirty_mask;
1230
1231         return mmu_spte_update(sptep, spte);
1232 }
1233
1234 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1235 {
1236         u64 *sptep;
1237         struct rmap_iterator iter;
1238         bool flush = false;
1239
1240         for_each_rmap_spte(rmapp, &iter, sptep)
1241                 flush |= spte_clear_dirty(kvm, sptep);
1242
1243         return flush;
1244 }
1245
1246 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1247 {
1248         u64 spte = *sptep;
1249
1250         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1251
1252         spte |= shadow_dirty_mask;
1253
1254         return mmu_spte_update(sptep, spte);
1255 }
1256
1257 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1258 {
1259         u64 *sptep;
1260         struct rmap_iterator iter;
1261         bool flush = false;
1262
1263         for_each_rmap_spte(rmapp, &iter, sptep)
1264                 flush |= spte_set_dirty(kvm, sptep);
1265
1266         return flush;
1267 }
1268
1269 /**
1270  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1271  * @kvm: kvm instance
1272  * @slot: slot to protect
1273  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274  * @mask: indicates which pages we should protect
1275  *
1276  * Used when we do not need to care about huge page mappings: e.g. during dirty
1277  * logging we do not have any such mappings.
1278  */
1279 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1280                                      struct kvm_memory_slot *slot,
1281                                      gfn_t gfn_offset, unsigned long mask)
1282 {
1283         unsigned long *rmapp;
1284
1285         while (mask) {
1286                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1287                                       PT_PAGE_TABLE_LEVEL, slot);
1288                 __rmap_write_protect(kvm, rmapp, false);
1289
1290                 /* clear the first set bit */
1291                 mask &= mask - 1;
1292         }
1293 }
1294
1295 /**
1296  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1297  * @kvm: kvm instance
1298  * @slot: slot to clear D-bit
1299  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1300  * @mask: indicates which pages we should clear D-bit
1301  *
1302  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1303  */
1304 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1305                                      struct kvm_memory_slot *slot,
1306                                      gfn_t gfn_offset, unsigned long mask)
1307 {
1308         unsigned long *rmapp;
1309
1310         while (mask) {
1311                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1312                                       PT_PAGE_TABLE_LEVEL, slot);
1313                 __rmap_clear_dirty(kvm, rmapp);
1314
1315                 /* clear the first set bit */
1316                 mask &= mask - 1;
1317         }
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1320
1321 /**
1322  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1323  * PT level pages.
1324  *
1325  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1326  * enable dirty logging for them.
1327  *
1328  * Used when we do not need to care about huge page mappings: e.g. during dirty
1329  * logging we do not have any such mappings.
1330  */
1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1332                                 struct kvm_memory_slot *slot,
1333                                 gfn_t gfn_offset, unsigned long mask)
1334 {
1335         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1336                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1337                                 mask);
1338         else
1339                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 }
1341
1342 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1343 {
1344         struct kvm_memory_slot *slot;
1345         unsigned long *rmapp;
1346         int i;
1347         bool write_protected = false;
1348
1349         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1350
1351         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1352                 rmapp = __gfn_to_rmap(gfn, i, slot);
1353                 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1354         }
1355
1356         return write_protected;
1357 }
1358
1359 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1360 {
1361         u64 *sptep;
1362         struct rmap_iterator iter;
1363         bool flush = false;
1364
1365         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1366                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1367                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1368
1369                 drop_spte(kvm, sptep);
1370                 flush = true;
1371         }
1372
1373         return flush;
1374 }
1375
1376 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1377                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378                            unsigned long data)
1379 {
1380         return kvm_zap_rmapp(kvm, rmapp);
1381 }
1382
1383 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1384                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1385                              unsigned long data)
1386 {
1387         u64 *sptep;
1388         struct rmap_iterator iter;
1389         int need_flush = 0;
1390         u64 new_spte;
1391         pte_t *ptep = (pte_t *)data;
1392         pfn_t new_pfn;
1393
1394         WARN_ON(pte_huge(*ptep));
1395         new_pfn = pte_pfn(*ptep);
1396
1397 restart:
1398         for_each_rmap_spte(rmapp, &iter, sptep) {
1399                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400                              sptep, *sptep, gfn, level);
1401
1402                 need_flush = 1;
1403
1404                 if (pte_write(*ptep)) {
1405                         drop_spte(kvm, sptep);
1406                         goto restart;
1407                 } else {
1408                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1409                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1410
1411                         new_spte &= ~PT_WRITABLE_MASK;
1412                         new_spte &= ~SPTE_HOST_WRITEABLE;
1413                         new_spte &= ~shadow_accessed_mask;
1414
1415                         mmu_spte_clear_track_bits(sptep);
1416                         mmu_spte_set(sptep, new_spte);
1417                 }
1418         }
1419
1420         if (need_flush)
1421                 kvm_flush_remote_tlbs(kvm);
1422
1423         return 0;
1424 }
1425
1426 struct slot_rmap_walk_iterator {
1427         /* input fields. */
1428         struct kvm_memory_slot *slot;
1429         gfn_t start_gfn;
1430         gfn_t end_gfn;
1431         int start_level;
1432         int end_level;
1433
1434         /* output fields. */
1435         gfn_t gfn;
1436         unsigned long *rmap;
1437         int level;
1438
1439         /* private field. */
1440         unsigned long *end_rmap;
1441 };
1442
1443 static void
1444 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1445 {
1446         iterator->level = level;
1447         iterator->gfn = iterator->start_gfn;
1448         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1449         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1450                                            iterator->slot);
1451 }
1452
1453 static void
1454 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1455                     struct kvm_memory_slot *slot, int start_level,
1456                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1457 {
1458         iterator->slot = slot;
1459         iterator->start_level = start_level;
1460         iterator->end_level = end_level;
1461         iterator->start_gfn = start_gfn;
1462         iterator->end_gfn = end_gfn;
1463
1464         rmap_walk_init_level(iterator, iterator->start_level);
1465 }
1466
1467 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1468 {
1469         return !!iterator->rmap;
1470 }
1471
1472 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1473 {
1474         if (++iterator->rmap <= iterator->end_rmap) {
1475                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1476                 return;
1477         }
1478
1479         if (++iterator->level > iterator->end_level) {
1480                 iterator->rmap = NULL;
1481                 return;
1482         }
1483
1484         rmap_walk_init_level(iterator, iterator->level);
1485 }
1486
1487 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1488            _start_gfn, _end_gfn, _iter_)                                \
1489         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1490                                  _end_level_, _start_gfn, _end_gfn);    \
1491              slot_rmap_walk_okay(_iter_);                               \
1492              slot_rmap_walk_next(_iter_))
1493
1494 static int kvm_handle_hva_range(struct kvm *kvm,
1495                                 unsigned long start,
1496                                 unsigned long end,
1497                                 unsigned long data,
1498                                 int (*handler)(struct kvm *kvm,
1499                                                unsigned long *rmapp,
1500                                                struct kvm_memory_slot *slot,
1501                                                gfn_t gfn,
1502                                                int level,
1503                                                unsigned long data))
1504 {
1505         struct kvm_memslots *slots;
1506         struct kvm_memory_slot *memslot;
1507         struct slot_rmap_walk_iterator iterator;
1508         int ret = 0;
1509         int i;
1510
1511         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1512                 slots = __kvm_memslots(kvm, i);
1513                 kvm_for_each_memslot(memslot, slots) {
1514                         unsigned long hva_start, hva_end;
1515                         gfn_t gfn_start, gfn_end;
1516
1517                         hva_start = max(start, memslot->userspace_addr);
1518                         hva_end = min(end, memslot->userspace_addr +
1519                                       (memslot->npages << PAGE_SHIFT));
1520                         if (hva_start >= hva_end)
1521                                 continue;
1522                         /*
1523                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1524                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1525                          */
1526                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1527                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1528
1529                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1530                                                  PT_MAX_HUGEPAGE_LEVEL,
1531                                                  gfn_start, gfn_end - 1,
1532                                                  &iterator)
1533                                 ret |= handler(kvm, iterator.rmap, memslot,
1534                                                iterator.gfn, iterator.level, data);
1535                 }
1536         }
1537
1538         return ret;
1539 }
1540
1541 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1542                           unsigned long data,
1543                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1544                                          struct kvm_memory_slot *slot,
1545                                          gfn_t gfn, int level,
1546                                          unsigned long data))
1547 {
1548         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1549 }
1550
1551 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1552 {
1553         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1554 }
1555
1556 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1557 {
1558         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1559 }
1560
1561 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1562 {
1563         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1564 }
1565
1566 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1567                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1568                          unsigned long data)
1569 {
1570         u64 *sptep;
1571         struct rmap_iterator uninitialized_var(iter);
1572         int young = 0;
1573
1574         BUG_ON(!shadow_accessed_mask);
1575
1576         for_each_rmap_spte(rmapp, &iter, sptep)
1577                 if (*sptep & shadow_accessed_mask) {
1578                         young = 1;
1579                         clear_bit((ffs(shadow_accessed_mask) - 1),
1580                                  (unsigned long *)sptep);
1581                 }
1582
1583         trace_kvm_age_page(gfn, level, slot, young);
1584         return young;
1585 }
1586
1587 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1588                               struct kvm_memory_slot *slot, gfn_t gfn,
1589                               int level, unsigned long data)
1590 {
1591         u64 *sptep;
1592         struct rmap_iterator iter;
1593         int young = 0;
1594
1595         /*
1596          * If there's no access bit in the secondary pte set by the
1597          * hardware it's up to gup-fast/gup to set the access bit in
1598          * the primary pte or in the page structure.
1599          */
1600         if (!shadow_accessed_mask)
1601                 goto out;
1602
1603         for_each_rmap_spte(rmapp, &iter, sptep)
1604                 if (*sptep & shadow_accessed_mask) {
1605                         young = 1;
1606                         break;
1607                 }
1608 out:
1609         return young;
1610 }
1611
1612 #define RMAP_RECYCLE_THRESHOLD 1000
1613
1614 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1615 {
1616         unsigned long *rmapp;
1617         struct kvm_mmu_page *sp;
1618
1619         sp = page_header(__pa(spte));
1620
1621         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1622
1623         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1624         kvm_flush_remote_tlbs(vcpu->kvm);
1625 }
1626
1627 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1628 {
1629         /*
1630          * In case of absence of EPT Access and Dirty Bits supports,
1631          * emulate the accessed bit for EPT, by checking if this page has
1632          * an EPT mapping, and clearing it if it does. On the next access,
1633          * a new EPT mapping will be established.
1634          * This has some overhead, but not as much as the cost of swapping
1635          * out actively used pages or breaking up actively used hugepages.
1636          */
1637         if (!shadow_accessed_mask) {
1638                 /*
1639                  * We are holding the kvm->mmu_lock, and we are blowing up
1640                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1641                  * This is correct as long as we don't decouple the mmu_lock
1642                  * protected regions (like invalidate_range_start|end does).
1643                  */
1644                 kvm->mmu_notifier_seq++;
1645                 return kvm_handle_hva_range(kvm, start, end, 0,
1646                                             kvm_unmap_rmapp);
1647         }
1648
1649         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1650 }
1651
1652 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1653 {
1654         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1655 }
1656
1657 #ifdef MMU_DEBUG
1658 static int is_empty_shadow_page(u64 *spt)
1659 {
1660         u64 *pos;
1661         u64 *end;
1662
1663         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1664                 if (is_shadow_present_pte(*pos)) {
1665                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1666                                pos, *pos);
1667                         return 0;
1668                 }
1669         return 1;
1670 }
1671 #endif
1672
1673 /*
1674  * This value is the sum of all of the kvm instances's
1675  * kvm->arch.n_used_mmu_pages values.  We need a global,
1676  * aggregate version in order to make the slab shrinker
1677  * faster
1678  */
1679 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1680 {
1681         kvm->arch.n_used_mmu_pages += nr;
1682         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1683 }
1684
1685 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1686 {
1687         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1688         hlist_del(&sp->hash_link);
1689         list_del(&sp->link);
1690         free_page((unsigned long)sp->spt);
1691         if (!sp->role.direct)
1692                 free_page((unsigned long)sp->gfns);
1693         kmem_cache_free(mmu_page_header_cache, sp);
1694 }
1695
1696 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1697 {
1698         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1699 }
1700
1701 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1702                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1703 {
1704         if (!parent_pte)
1705                 return;
1706
1707         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1708 }
1709
1710 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1711                                        u64 *parent_pte)
1712 {
1713         pte_list_remove(parent_pte, &sp->parent_ptes);
1714 }
1715
1716 static void drop_parent_pte(struct kvm_mmu_page *sp,
1717                             u64 *parent_pte)
1718 {
1719         mmu_page_remove_parent_pte(sp, parent_pte);
1720         mmu_spte_clear_no_track(parent_pte);
1721 }
1722
1723 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1724                                                u64 *parent_pte, int direct)
1725 {
1726         struct kvm_mmu_page *sp;
1727
1728         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1729         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1730         if (!direct)
1731                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1732         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1733
1734         /*
1735          * The active_mmu_pages list is the FIFO list, do not move the
1736          * page until it is zapped. kvm_zap_obsolete_pages depends on
1737          * this feature. See the comments in kvm_zap_obsolete_pages().
1738          */
1739         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1740         sp->parent_ptes = 0;
1741         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1742         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1743         return sp;
1744 }
1745
1746 static void mark_unsync(u64 *spte);
1747 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1748 {
1749         pte_list_walk(&sp->parent_ptes, mark_unsync);
1750 }
1751
1752 static void mark_unsync(u64 *spte)
1753 {
1754         struct kvm_mmu_page *sp;
1755         unsigned int index;
1756
1757         sp = page_header(__pa(spte));
1758         index = spte - sp->spt;
1759         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1760                 return;
1761         if (sp->unsync_children++)
1762                 return;
1763         kvm_mmu_mark_parents_unsync(sp);
1764 }
1765
1766 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1767                                struct kvm_mmu_page *sp)
1768 {
1769         return 1;
1770 }
1771
1772 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1773 {
1774 }
1775
1776 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1777                                  struct kvm_mmu_page *sp, u64 *spte,
1778                                  const void *pte)
1779 {
1780         WARN_ON(1);
1781 }
1782
1783 #define KVM_PAGE_ARRAY_NR 16
1784
1785 struct kvm_mmu_pages {
1786         struct mmu_page_and_offset {
1787                 struct kvm_mmu_page *sp;
1788                 unsigned int idx;
1789         } page[KVM_PAGE_ARRAY_NR];
1790         unsigned int nr;
1791 };
1792
1793 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1794                          int idx)
1795 {
1796         int i;
1797
1798         if (sp->unsync)
1799                 for (i=0; i < pvec->nr; i++)
1800                         if (pvec->page[i].sp == sp)
1801                                 return 0;
1802
1803         pvec->page[pvec->nr].sp = sp;
1804         pvec->page[pvec->nr].idx = idx;
1805         pvec->nr++;
1806         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1807 }
1808
1809 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1810                            struct kvm_mmu_pages *pvec)
1811 {
1812         int i, ret, nr_unsync_leaf = 0;
1813
1814         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1815                 struct kvm_mmu_page *child;
1816                 u64 ent = sp->spt[i];
1817
1818                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1819                         goto clear_child_bitmap;
1820
1821                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1822
1823                 if (child->unsync_children) {
1824                         if (mmu_pages_add(pvec, child, i))
1825                                 return -ENOSPC;
1826
1827                         ret = __mmu_unsync_walk(child, pvec);
1828                         if (!ret)
1829                                 goto clear_child_bitmap;
1830                         else if (ret > 0)
1831                                 nr_unsync_leaf += ret;
1832                         else
1833                                 return ret;
1834                 } else if (child->unsync) {
1835                         nr_unsync_leaf++;
1836                         if (mmu_pages_add(pvec, child, i))
1837                                 return -ENOSPC;
1838                 } else
1839                          goto clear_child_bitmap;
1840
1841                 continue;
1842
1843 clear_child_bitmap:
1844                 __clear_bit(i, sp->unsync_child_bitmap);
1845                 sp->unsync_children--;
1846                 WARN_ON((int)sp->unsync_children < 0);
1847         }
1848
1849
1850         return nr_unsync_leaf;
1851 }
1852
1853 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1854                            struct kvm_mmu_pages *pvec)
1855 {
1856         if (!sp->unsync_children)
1857                 return 0;
1858
1859         mmu_pages_add(pvec, sp, 0);
1860         return __mmu_unsync_walk(sp, pvec);
1861 }
1862
1863 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1864 {
1865         WARN_ON(!sp->unsync);
1866         trace_kvm_mmu_sync_page(sp);
1867         sp->unsync = 0;
1868         --kvm->stat.mmu_unsync;
1869 }
1870
1871 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1872                                     struct list_head *invalid_list);
1873 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1874                                     struct list_head *invalid_list);
1875
1876 /*
1877  * NOTE: we should pay more attention on the zapped-obsolete page
1878  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1879  * since it has been deleted from active_mmu_pages but still can be found
1880  * at hast list.
1881  *
1882  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1883  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1884  * all the obsolete pages.
1885  */
1886 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1887         hlist_for_each_entry(_sp,                                       \
1888           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1889                 if ((_sp)->gfn != (_gfn)) {} else
1890
1891 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1892         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1893                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1894
1895 /* @sp->gfn should be write-protected at the call site */
1896 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1897                            struct list_head *invalid_list, bool clear_unsync)
1898 {
1899         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1900                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1901                 return 1;
1902         }
1903
1904         if (clear_unsync)
1905                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1906
1907         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1908                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1909                 return 1;
1910         }
1911
1912         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1913         return 0;
1914 }
1915
1916 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1917                                    struct kvm_mmu_page *sp)
1918 {
1919         LIST_HEAD(invalid_list);
1920         int ret;
1921
1922         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1923         if (ret)
1924                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1925
1926         return ret;
1927 }
1928
1929 #ifdef CONFIG_KVM_MMU_AUDIT
1930 #include "mmu_audit.c"
1931 #else
1932 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1933 static void mmu_audit_disable(void) { }
1934 #endif
1935
1936 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1937                          struct list_head *invalid_list)
1938 {
1939         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1940 }
1941
1942 /* @gfn should be write-protected at the call site */
1943 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1944 {
1945         struct kvm_mmu_page *s;
1946         LIST_HEAD(invalid_list);
1947         bool flush = false;
1948
1949         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1950                 if (!s->unsync)
1951                         continue;
1952
1953                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1954                 kvm_unlink_unsync_page(vcpu->kvm, s);
1955                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1956                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1957                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1958                         continue;
1959                 }
1960                 flush = true;
1961         }
1962
1963         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1964         if (flush)
1965                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1966 }
1967
1968 struct mmu_page_path {
1969         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1970         unsigned int idx[PT64_ROOT_LEVEL-1];
1971 };
1972
1973 #define for_each_sp(pvec, sp, parents, i)                       \
1974                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1975                         sp = pvec.page[i].sp;                   \
1976                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1977                         i = mmu_pages_next(&pvec, &parents, i))
1978
1979 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1980                           struct mmu_page_path *parents,
1981                           int i)
1982 {
1983         int n;
1984
1985         for (n = i+1; n < pvec->nr; n++) {
1986                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1987
1988                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1989                         parents->idx[0] = pvec->page[n].idx;
1990                         return n;
1991                 }
1992
1993                 parents->parent[sp->role.level-2] = sp;
1994                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1995         }
1996
1997         return n;
1998 }
1999
2000 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2001 {
2002         struct kvm_mmu_page *sp;
2003         unsigned int level = 0;
2004
2005         do {
2006                 unsigned int idx = parents->idx[level];
2007
2008                 sp = parents->parent[level];
2009                 if (!sp)
2010                         return;
2011
2012                 --sp->unsync_children;
2013                 WARN_ON((int)sp->unsync_children < 0);
2014                 __clear_bit(idx, sp->unsync_child_bitmap);
2015                 level++;
2016         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2017 }
2018
2019 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2020                                struct mmu_page_path *parents,
2021                                struct kvm_mmu_pages *pvec)
2022 {
2023         parents->parent[parent->role.level-1] = NULL;
2024         pvec->nr = 0;
2025 }
2026
2027 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2028                               struct kvm_mmu_page *parent)
2029 {
2030         int i;
2031         struct kvm_mmu_page *sp;
2032         struct mmu_page_path parents;
2033         struct kvm_mmu_pages pages;
2034         LIST_HEAD(invalid_list);
2035
2036         kvm_mmu_pages_init(parent, &parents, &pages);
2037         while (mmu_unsync_walk(parent, &pages)) {
2038                 bool protected = false;
2039
2040                 for_each_sp(pages, sp, parents, i)
2041                         protected |= rmap_write_protect(vcpu, sp->gfn);
2042
2043                 if (protected)
2044                         kvm_flush_remote_tlbs(vcpu->kvm);
2045
2046                 for_each_sp(pages, sp, parents, i) {
2047                         kvm_sync_page(vcpu, sp, &invalid_list);
2048                         mmu_pages_clear_parents(&parents);
2049                 }
2050                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2051                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2052                 kvm_mmu_pages_init(parent, &parents, &pages);
2053         }
2054 }
2055
2056 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2057 {
2058         int i;
2059
2060         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2061                 sp->spt[i] = 0ull;
2062 }
2063
2064 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2065 {
2066         sp->write_flooding_count = 0;
2067 }
2068
2069 static void clear_sp_write_flooding_count(u64 *spte)
2070 {
2071         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2072
2073         __clear_sp_write_flooding_count(sp);
2074 }
2075
2076 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2077 {
2078         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2079 }
2080
2081 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2082                                              gfn_t gfn,
2083                                              gva_t gaddr,
2084                                              unsigned level,
2085                                              int direct,
2086                                              unsigned access,
2087                                              u64 *parent_pte)
2088 {
2089         union kvm_mmu_page_role role;
2090         unsigned quadrant;
2091         struct kvm_mmu_page *sp;
2092         bool need_sync = false;
2093
2094         role = vcpu->arch.mmu.base_role;
2095         role.level = level;
2096         role.direct = direct;
2097         if (role.direct)
2098                 role.cr4_pae = 0;
2099         role.access = access;
2100         if (!vcpu->arch.mmu.direct_map
2101             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2102                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2103                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2104                 role.quadrant = quadrant;
2105         }
2106         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2107                 if (is_obsolete_sp(vcpu->kvm, sp))
2108                         continue;
2109
2110                 if (!need_sync && sp->unsync)
2111                         need_sync = true;
2112
2113                 if (sp->role.word != role.word)
2114                         continue;
2115
2116                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2117                         break;
2118
2119                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2120                 if (sp->unsync_children) {
2121                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2122                         kvm_mmu_mark_parents_unsync(sp);
2123                 } else if (sp->unsync)
2124                         kvm_mmu_mark_parents_unsync(sp);
2125
2126                 __clear_sp_write_flooding_count(sp);
2127                 trace_kvm_mmu_get_page(sp, false);
2128                 return sp;
2129         }
2130         ++vcpu->kvm->stat.mmu_cache_miss;
2131         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2132         if (!sp)
2133                 return sp;
2134         sp->gfn = gfn;
2135         sp->role = role;
2136         hlist_add_head(&sp->hash_link,
2137                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2138         if (!direct) {
2139                 if (rmap_write_protect(vcpu, gfn))
2140                         kvm_flush_remote_tlbs(vcpu->kvm);
2141                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2142                         kvm_sync_pages(vcpu, gfn);
2143
2144                 account_shadowed(vcpu->kvm, sp);
2145         }
2146         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2147         init_shadow_page_table(sp);
2148         trace_kvm_mmu_get_page(sp, true);
2149         return sp;
2150 }
2151
2152 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2153                              struct kvm_vcpu *vcpu, u64 addr)
2154 {
2155         iterator->addr = addr;
2156         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2157         iterator->level = vcpu->arch.mmu.shadow_root_level;
2158
2159         if (iterator->level == PT64_ROOT_LEVEL &&
2160             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2161             !vcpu->arch.mmu.direct_map)
2162                 --iterator->level;
2163
2164         if (iterator->level == PT32E_ROOT_LEVEL) {
2165                 iterator->shadow_addr
2166                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2167                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2168                 --iterator->level;
2169                 if (!iterator->shadow_addr)
2170                         iterator->level = 0;
2171         }
2172 }
2173
2174 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2175 {
2176         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2177                 return false;
2178
2179         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2180         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2181         return true;
2182 }
2183
2184 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2185                                u64 spte)
2186 {
2187         if (is_last_spte(spte, iterator->level)) {
2188                 iterator->level = 0;
2189                 return;
2190         }
2191
2192         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2193         --iterator->level;
2194 }
2195
2196 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2197 {
2198         return __shadow_walk_next(iterator, *iterator->sptep);
2199 }
2200
2201 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2202 {
2203         u64 spte;
2204
2205         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2206                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2207
2208         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2209                shadow_user_mask | shadow_x_mask;
2210
2211         if (accessed)
2212                 spte |= shadow_accessed_mask;
2213
2214         mmu_spte_set(sptep, spte);
2215 }
2216
2217 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2218                                    unsigned direct_access)
2219 {
2220         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2221                 struct kvm_mmu_page *child;
2222
2223                 /*
2224                  * For the direct sp, if the guest pte's dirty bit
2225                  * changed form clean to dirty, it will corrupt the
2226                  * sp's access: allow writable in the read-only sp,
2227                  * so we should update the spte at this point to get
2228                  * a new sp with the correct access.
2229                  */
2230                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2231                 if (child->role.access == direct_access)
2232                         return;
2233
2234                 drop_parent_pte(child, sptep);
2235                 kvm_flush_remote_tlbs(vcpu->kvm);
2236         }
2237 }
2238
2239 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2240                              u64 *spte)
2241 {
2242         u64 pte;
2243         struct kvm_mmu_page *child;
2244
2245         pte = *spte;
2246         if (is_shadow_present_pte(pte)) {
2247                 if (is_last_spte(pte, sp->role.level)) {
2248                         drop_spte(kvm, spte);
2249                         if (is_large_pte(pte))
2250                                 --kvm->stat.lpages;
2251                 } else {
2252                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2253                         drop_parent_pte(child, spte);
2254                 }
2255                 return true;
2256         }
2257
2258         if (is_mmio_spte(pte))
2259                 mmu_spte_clear_no_track(spte);
2260
2261         return false;
2262 }
2263
2264 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2265                                          struct kvm_mmu_page *sp)
2266 {
2267         unsigned i;
2268
2269         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2270                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2271 }
2272
2273 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2274 {
2275         mmu_page_remove_parent_pte(sp, parent_pte);
2276 }
2277
2278 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2279 {
2280         u64 *sptep;
2281         struct rmap_iterator iter;
2282
2283         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2284                 drop_parent_pte(sp, sptep);
2285 }
2286
2287 static int mmu_zap_unsync_children(struct kvm *kvm,
2288                                    struct kvm_mmu_page *parent,
2289                                    struct list_head *invalid_list)
2290 {
2291         int i, zapped = 0;
2292         struct mmu_page_path parents;
2293         struct kvm_mmu_pages pages;
2294
2295         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2296                 return 0;
2297
2298         kvm_mmu_pages_init(parent, &parents, &pages);
2299         while (mmu_unsync_walk(parent, &pages)) {
2300                 struct kvm_mmu_page *sp;
2301
2302                 for_each_sp(pages, sp, parents, i) {
2303                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2304                         mmu_pages_clear_parents(&parents);
2305                         zapped++;
2306                 }
2307                 kvm_mmu_pages_init(parent, &parents, &pages);
2308         }
2309
2310         return zapped;
2311 }
2312
2313 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2314                                     struct list_head *invalid_list)
2315 {
2316         int ret;
2317
2318         trace_kvm_mmu_prepare_zap_page(sp);
2319         ++kvm->stat.mmu_shadow_zapped;
2320         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2321         kvm_mmu_page_unlink_children(kvm, sp);
2322         kvm_mmu_unlink_parents(kvm, sp);
2323
2324         if (!sp->role.invalid && !sp->role.direct)
2325                 unaccount_shadowed(kvm, sp);
2326
2327         if (sp->unsync)
2328                 kvm_unlink_unsync_page(kvm, sp);
2329         if (!sp->root_count) {
2330                 /* Count self */
2331                 ret++;
2332                 list_move(&sp->link, invalid_list);
2333                 kvm_mod_used_mmu_pages(kvm, -1);
2334         } else {
2335                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2336
2337                 /*
2338                  * The obsolete pages can not be used on any vcpus.
2339                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2340                  */
2341                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2342                         kvm_reload_remote_mmus(kvm);
2343         }
2344
2345         sp->role.invalid = 1;
2346         return ret;
2347 }
2348
2349 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2350                                     struct list_head *invalid_list)
2351 {
2352         struct kvm_mmu_page *sp, *nsp;
2353
2354         if (list_empty(invalid_list))
2355                 return;
2356
2357         /*
2358          * wmb: make sure everyone sees our modifications to the page tables
2359          * rmb: make sure we see changes to vcpu->mode
2360          */
2361         smp_mb();
2362
2363         /*
2364          * Wait for all vcpus to exit guest mode and/or lockless shadow
2365          * page table walks.
2366          */
2367         kvm_flush_remote_tlbs(kvm);
2368
2369         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2370                 WARN_ON(!sp->role.invalid || sp->root_count);
2371                 kvm_mmu_free_page(sp);
2372         }
2373 }
2374
2375 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2376                                         struct list_head *invalid_list)
2377 {
2378         struct kvm_mmu_page *sp;
2379
2380         if (list_empty(&kvm->arch.active_mmu_pages))
2381                 return false;
2382
2383         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2384                         struct kvm_mmu_page, link);
2385         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2386
2387         return true;
2388 }
2389
2390 /*
2391  * Changing the number of mmu pages allocated to the vm
2392  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2393  */
2394 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2395 {
2396         LIST_HEAD(invalid_list);
2397
2398         spin_lock(&kvm->mmu_lock);
2399
2400         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2401                 /* Need to free some mmu pages to achieve the goal. */
2402                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2403                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2404                                 break;
2405
2406                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2407                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2408         }
2409
2410         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2411
2412         spin_unlock(&kvm->mmu_lock);
2413 }
2414
2415 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2416 {
2417         struct kvm_mmu_page *sp;
2418         LIST_HEAD(invalid_list);
2419         int r;
2420
2421         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2422         r = 0;
2423         spin_lock(&kvm->mmu_lock);
2424         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2425                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2426                          sp->role.word);
2427                 r = 1;
2428                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2429         }
2430         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431         spin_unlock(&kvm->mmu_lock);
2432
2433         return r;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2436
2437 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2438 {
2439         trace_kvm_mmu_unsync_page(sp);
2440         ++vcpu->kvm->stat.mmu_unsync;
2441         sp->unsync = 1;
2442
2443         kvm_mmu_mark_parents_unsync(sp);
2444 }
2445
2446 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2447 {
2448         struct kvm_mmu_page *s;
2449
2450         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2451                 if (s->unsync)
2452                         continue;
2453                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2454                 __kvm_unsync_page(vcpu, s);
2455         }
2456 }
2457
2458 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2459                                   bool can_unsync)
2460 {
2461         struct kvm_mmu_page *s;
2462         bool need_unsync = false;
2463
2464         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2465                 if (!can_unsync)
2466                         return 1;
2467
2468                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2469                         return 1;
2470
2471                 if (!s->unsync)
2472                         need_unsync = true;
2473         }
2474         if (need_unsync)
2475                 kvm_unsync_pages(vcpu, gfn);
2476         return 0;
2477 }
2478
2479 static bool kvm_is_mmio_pfn(pfn_t pfn)
2480 {
2481         if (pfn_valid(pfn))
2482                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2483
2484         return true;
2485 }
2486
2487 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2488                     unsigned pte_access, int level,
2489                     gfn_t gfn, pfn_t pfn, bool speculative,
2490                     bool can_unsync, bool host_writable)
2491 {
2492         u64 spte;
2493         int ret = 0;
2494
2495         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2496                 return 0;
2497
2498         spte = PT_PRESENT_MASK;
2499         if (!speculative)
2500                 spte |= shadow_accessed_mask;
2501
2502         if (pte_access & ACC_EXEC_MASK)
2503                 spte |= shadow_x_mask;
2504         else
2505                 spte |= shadow_nx_mask;
2506
2507         if (pte_access & ACC_USER_MASK)
2508                 spte |= shadow_user_mask;
2509
2510         if (level > PT_PAGE_TABLE_LEVEL)
2511                 spte |= PT_PAGE_SIZE_MASK;
2512         if (tdp_enabled)
2513                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2514                         kvm_is_mmio_pfn(pfn));
2515
2516         if (host_writable)
2517                 spte |= SPTE_HOST_WRITEABLE;
2518         else
2519                 pte_access &= ~ACC_WRITE_MASK;
2520
2521         spte |= (u64)pfn << PAGE_SHIFT;
2522
2523         if (pte_access & ACC_WRITE_MASK) {
2524
2525                 /*
2526                  * Other vcpu creates new sp in the window between
2527                  * mapping_level() and acquiring mmu-lock. We can
2528                  * allow guest to retry the access, the mapping can
2529                  * be fixed if guest refault.
2530                  */
2531                 if (level > PT_PAGE_TABLE_LEVEL &&
2532                     has_wrprotected_page(vcpu, gfn, level))
2533                         goto done;
2534
2535                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2536
2537                 /*
2538                  * Optimization: for pte sync, if spte was writable the hash
2539                  * lookup is unnecessary (and expensive). Write protection
2540                  * is responsibility of mmu_get_page / kvm_sync_page.
2541                  * Same reasoning can be applied to dirty page accounting.
2542                  */
2543                 if (!can_unsync && is_writable_pte(*sptep))
2544                         goto set_pte;
2545
2546                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2547                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2548                                  __func__, gfn);
2549                         ret = 1;
2550                         pte_access &= ~ACC_WRITE_MASK;
2551                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2552                 }
2553         }
2554
2555         if (pte_access & ACC_WRITE_MASK) {
2556                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2557                 spte |= shadow_dirty_mask;
2558         }
2559
2560 set_pte:
2561         if (mmu_spte_update(sptep, spte))
2562                 kvm_flush_remote_tlbs(vcpu->kvm);
2563 done:
2564         return ret;
2565 }
2566
2567 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2568                          unsigned pte_access, int write_fault, int *emulate,
2569                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2570                          bool host_writable)
2571 {
2572         int was_rmapped = 0;
2573         int rmap_count;
2574
2575         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2576                  *sptep, write_fault, gfn);
2577
2578         if (is_rmap_spte(*sptep)) {
2579                 /*
2580                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2581                  * the parent of the now unreachable PTE.
2582                  */
2583                 if (level > PT_PAGE_TABLE_LEVEL &&
2584                     !is_large_pte(*sptep)) {
2585                         struct kvm_mmu_page *child;
2586                         u64 pte = *sptep;
2587
2588                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2589                         drop_parent_pte(child, sptep);
2590                         kvm_flush_remote_tlbs(vcpu->kvm);
2591                 } else if (pfn != spte_to_pfn(*sptep)) {
2592                         pgprintk("hfn old %llx new %llx\n",
2593                                  spte_to_pfn(*sptep), pfn);
2594                         drop_spte(vcpu->kvm, sptep);
2595                         kvm_flush_remote_tlbs(vcpu->kvm);
2596                 } else
2597                         was_rmapped = 1;
2598         }
2599
2600         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2601               true, host_writable)) {
2602                 if (write_fault)
2603                         *emulate = 1;
2604                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2605         }
2606
2607         if (unlikely(is_mmio_spte(*sptep) && emulate))
2608                 *emulate = 1;
2609
2610         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2611         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2612                  is_large_pte(*sptep)? "2MB" : "4kB",
2613                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2614                  *sptep, sptep);
2615         if (!was_rmapped && is_large_pte(*sptep))
2616                 ++vcpu->kvm->stat.lpages;
2617
2618         if (is_shadow_present_pte(*sptep)) {
2619                 if (!was_rmapped) {
2620                         rmap_count = rmap_add(vcpu, sptep, gfn);
2621                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2622                                 rmap_recycle(vcpu, sptep, gfn);
2623                 }
2624         }
2625
2626         kvm_release_pfn_clean(pfn);
2627 }
2628
2629 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2630                                      bool no_dirty_log)
2631 {
2632         struct kvm_memory_slot *slot;
2633
2634         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2635         if (!slot)
2636                 return KVM_PFN_ERR_FAULT;
2637
2638         return gfn_to_pfn_memslot_atomic(slot, gfn);
2639 }
2640
2641 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2642                                     struct kvm_mmu_page *sp,
2643                                     u64 *start, u64 *end)
2644 {
2645         struct page *pages[PTE_PREFETCH_NUM];
2646         struct kvm_memory_slot *slot;
2647         unsigned access = sp->role.access;
2648         int i, ret;
2649         gfn_t gfn;
2650
2651         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2652         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2653         if (!slot)
2654                 return -1;
2655
2656         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2657         if (ret <= 0)
2658                 return -1;
2659
2660         for (i = 0; i < ret; i++, gfn++, start++)
2661                 mmu_set_spte(vcpu, start, access, 0, NULL,
2662                              sp->role.level, gfn, page_to_pfn(pages[i]),
2663                              true, true);
2664
2665         return 0;
2666 }
2667
2668 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2669                                   struct kvm_mmu_page *sp, u64 *sptep)
2670 {
2671         u64 *spte, *start = NULL;
2672         int i;
2673
2674         WARN_ON(!sp->role.direct);
2675
2676         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2677         spte = sp->spt + i;
2678
2679         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2680                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2681                         if (!start)
2682                                 continue;
2683                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2684                                 break;
2685                         start = NULL;
2686                 } else if (!start)
2687                         start = spte;
2688         }
2689 }
2690
2691 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2692 {
2693         struct kvm_mmu_page *sp;
2694
2695         /*
2696          * Since it's no accessed bit on EPT, it's no way to
2697          * distinguish between actually accessed translations
2698          * and prefetched, so disable pte prefetch if EPT is
2699          * enabled.
2700          */
2701         if (!shadow_accessed_mask)
2702                 return;
2703
2704         sp = page_header(__pa(sptep));
2705         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2706                 return;
2707
2708         __direct_pte_prefetch(vcpu, sp, sptep);
2709 }
2710
2711 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2712                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2713                         bool prefault)
2714 {
2715         struct kvm_shadow_walk_iterator iterator;
2716         struct kvm_mmu_page *sp;
2717         int emulate = 0;
2718         gfn_t pseudo_gfn;
2719
2720         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2721                 return 0;
2722
2723         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2724                 if (iterator.level == level) {
2725                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2726                                      write, &emulate, level, gfn, pfn,
2727                                      prefault, map_writable);
2728                         direct_pte_prefetch(vcpu, iterator.sptep);
2729                         ++vcpu->stat.pf_fixed;
2730                         break;
2731                 }
2732
2733                 drop_large_spte(vcpu, iterator.sptep);
2734                 if (!is_shadow_present_pte(*iterator.sptep)) {
2735                         u64 base_addr = iterator.addr;
2736
2737                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2738                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2739                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2740                                               iterator.level - 1,
2741                                               1, ACC_ALL, iterator.sptep);
2742
2743                         link_shadow_page(iterator.sptep, sp, true);
2744                 }
2745         }
2746         return emulate;
2747 }
2748
2749 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2750 {
2751         siginfo_t info;
2752
2753         info.si_signo   = SIGBUS;
2754         info.si_errno   = 0;
2755         info.si_code    = BUS_MCEERR_AR;
2756         info.si_addr    = (void __user *)address;
2757         info.si_addr_lsb = PAGE_SHIFT;
2758
2759         send_sig_info(SIGBUS, &info, tsk);
2760 }
2761
2762 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2763 {
2764         /*
2765          * Do not cache the mmio info caused by writing the readonly gfn
2766          * into the spte otherwise read access on readonly gfn also can
2767          * caused mmio page fault and treat it as mmio access.
2768          * Return 1 to tell kvm to emulate it.
2769          */
2770         if (pfn == KVM_PFN_ERR_RO_FAULT)
2771                 return 1;
2772
2773         if (pfn == KVM_PFN_ERR_HWPOISON) {
2774                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2775                 return 0;
2776         }
2777
2778         return -EFAULT;
2779 }
2780
2781 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2782                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2783 {
2784         pfn_t pfn = *pfnp;
2785         gfn_t gfn = *gfnp;
2786         int level = *levelp;
2787
2788         /*
2789          * Check if it's a transparent hugepage. If this would be an
2790          * hugetlbfs page, level wouldn't be set to
2791          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2792          * here.
2793          */
2794         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2795             level == PT_PAGE_TABLE_LEVEL &&
2796             PageTransCompound(pfn_to_page(pfn)) &&
2797             !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2798                 unsigned long mask;
2799                 /*
2800                  * mmu_notifier_retry was successful and we hold the
2801                  * mmu_lock here, so the pmd can't become splitting
2802                  * from under us, and in turn
2803                  * __split_huge_page_refcount() can't run from under
2804                  * us and we can safely transfer the refcount from
2805                  * PG_tail to PG_head as we switch the pfn to tail to
2806                  * head.
2807                  */
2808                 *levelp = level = PT_DIRECTORY_LEVEL;
2809                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2810                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2811                 if (pfn & mask) {
2812                         gfn &= ~mask;
2813                         *gfnp = gfn;
2814                         kvm_release_pfn_clean(pfn);
2815                         pfn &= ~mask;
2816                         kvm_get_pfn(pfn);
2817                         *pfnp = pfn;
2818                 }
2819         }
2820 }
2821
2822 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2823                                 pfn_t pfn, unsigned access, int *ret_val)
2824 {
2825         bool ret = true;
2826
2827         /* The pfn is invalid, report the error! */
2828         if (unlikely(is_error_pfn(pfn))) {
2829                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2830                 goto exit;
2831         }
2832
2833         if (unlikely(is_noslot_pfn(pfn)))
2834                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2835
2836         ret = false;
2837 exit:
2838         return ret;
2839 }
2840
2841 static bool page_fault_can_be_fast(u32 error_code)
2842 {
2843         /*
2844          * Do not fix the mmio spte with invalid generation number which
2845          * need to be updated by slow page fault path.
2846          */
2847         if (unlikely(error_code & PFERR_RSVD_MASK))
2848                 return false;
2849
2850         /*
2851          * #PF can be fast only if the shadow page table is present and it
2852          * is caused by write-protect, that means we just need change the
2853          * W bit of the spte which can be done out of mmu-lock.
2854          */
2855         if (!(error_code & PFERR_PRESENT_MASK) ||
2856               !(error_code & PFERR_WRITE_MASK))
2857                 return false;
2858
2859         return true;
2860 }
2861
2862 static bool
2863 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2864                         u64 *sptep, u64 spte)
2865 {
2866         gfn_t gfn;
2867
2868         WARN_ON(!sp->role.direct);
2869
2870         /*
2871          * The gfn of direct spte is stable since it is calculated
2872          * by sp->gfn.
2873          */
2874         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2875
2876         /*
2877          * Theoretically we could also set dirty bit (and flush TLB) here in
2878          * order to eliminate unnecessary PML logging. See comments in
2879          * set_spte. But fast_page_fault is very unlikely to happen with PML
2880          * enabled, so we do not do this. This might result in the same GPA
2881          * to be logged in PML buffer again when the write really happens, and
2882          * eventually to be called by mark_page_dirty twice. But it's also no
2883          * harm. This also avoids the TLB flush needed after setting dirty bit
2884          * so non-PML cases won't be impacted.
2885          *
2886          * Compare with set_spte where instead shadow_dirty_mask is set.
2887          */
2888         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2889                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2890
2891         return true;
2892 }
2893
2894 /*
2895  * Return value:
2896  * - true: let the vcpu to access on the same address again.
2897  * - false: let the real page fault path to fix it.
2898  */
2899 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2900                             u32 error_code)
2901 {
2902         struct kvm_shadow_walk_iterator iterator;
2903         struct kvm_mmu_page *sp;
2904         bool ret = false;
2905         u64 spte = 0ull;
2906
2907         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2908                 return false;
2909
2910         if (!page_fault_can_be_fast(error_code))
2911                 return false;
2912
2913         walk_shadow_page_lockless_begin(vcpu);
2914         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2915                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2916                         break;
2917
2918         /*
2919          * If the mapping has been changed, let the vcpu fault on the
2920          * same address again.
2921          */
2922         if (!is_rmap_spte(spte)) {
2923                 ret = true;
2924                 goto exit;
2925         }
2926
2927         sp = page_header(__pa(iterator.sptep));
2928         if (!is_last_spte(spte, sp->role.level))
2929                 goto exit;
2930
2931         /*
2932          * Check if it is a spurious fault caused by TLB lazily flushed.
2933          *
2934          * Need not check the access of upper level table entries since
2935          * they are always ACC_ALL.
2936          */
2937          if (is_writable_pte(spte)) {
2938                 ret = true;
2939                 goto exit;
2940         }
2941
2942         /*
2943          * Currently, to simplify the code, only the spte write-protected
2944          * by dirty-log can be fast fixed.
2945          */
2946         if (!spte_is_locklessly_modifiable(spte))
2947                 goto exit;
2948
2949         /*
2950          * Do not fix write-permission on the large spte since we only dirty
2951          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2952          * that means other pages are missed if its slot is dirty-logged.
2953          *
2954          * Instead, we let the slow page fault path create a normal spte to
2955          * fix the access.
2956          *
2957          * See the comments in kvm_arch_commit_memory_region().
2958          */
2959         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2960                 goto exit;
2961
2962         /*
2963          * Currently, fast page fault only works for direct mapping since
2964          * the gfn is not stable for indirect shadow page.
2965          * See Documentation/virtual/kvm/locking.txt to get more detail.
2966          */
2967         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2968 exit:
2969         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2970                               spte, ret);
2971         walk_shadow_page_lockless_end(vcpu);
2972
2973         return ret;
2974 }
2975
2976 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2977                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2978 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2979
2980 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2981                          gfn_t gfn, bool prefault)
2982 {
2983         int r;
2984         int level;
2985         bool force_pt_level = false;
2986         pfn_t pfn;
2987         unsigned long mmu_seq;
2988         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2989
2990         level = mapping_level(vcpu, gfn, &force_pt_level);
2991         if (likely(!force_pt_level)) {
2992                 /*
2993                  * This path builds a PAE pagetable - so we can map
2994                  * 2mb pages at maximum. Therefore check if the level
2995                  * is larger than that.
2996                  */
2997                 if (level > PT_DIRECTORY_LEVEL)
2998                         level = PT_DIRECTORY_LEVEL;
2999
3000                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3001         }
3002
3003         if (fast_page_fault(vcpu, v, level, error_code))
3004                 return 0;
3005
3006         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3007         smp_rmb();
3008
3009         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3010                 return 0;
3011
3012         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3013                 return r;
3014
3015         spin_lock(&vcpu->kvm->mmu_lock);
3016         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3017                 goto out_unlock;
3018         make_mmu_pages_available(vcpu);
3019         if (likely(!force_pt_level))
3020                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3021         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3022                          prefault);
3023         spin_unlock(&vcpu->kvm->mmu_lock);
3024
3025
3026         return r;
3027
3028 out_unlock:
3029         spin_unlock(&vcpu->kvm->mmu_lock);
3030         kvm_release_pfn_clean(pfn);
3031         return 0;
3032 }
3033
3034
3035 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3036 {
3037         int i;
3038         struct kvm_mmu_page *sp;
3039         LIST_HEAD(invalid_list);
3040
3041         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3042                 return;
3043
3044         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3045             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3046              vcpu->arch.mmu.direct_map)) {
3047                 hpa_t root = vcpu->arch.mmu.root_hpa;
3048
3049                 spin_lock(&vcpu->kvm->mmu_lock);
3050                 sp = page_header(root);
3051                 --sp->root_count;
3052                 if (!sp->root_count && sp->role.invalid) {
3053                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3054                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3055                 }
3056                 spin_unlock(&vcpu->kvm->mmu_lock);
3057                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3058                 return;
3059         }
3060
3061         spin_lock(&vcpu->kvm->mmu_lock);
3062         for (i = 0; i < 4; ++i) {
3063                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3064
3065                 if (root) {
3066                         root &= PT64_BASE_ADDR_MASK;
3067                         sp = page_header(root);
3068                         --sp->root_count;
3069                         if (!sp->root_count && sp->role.invalid)
3070                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3071                                                          &invalid_list);
3072                 }
3073                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3074         }
3075         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3076         spin_unlock(&vcpu->kvm->mmu_lock);
3077         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078 }
3079
3080 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3081 {
3082         int ret = 0;
3083
3084         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3085                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3086                 ret = 1;
3087         }
3088
3089         return ret;
3090 }
3091
3092 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3093 {
3094         struct kvm_mmu_page *sp;
3095         unsigned i;
3096
3097         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3098                 spin_lock(&vcpu->kvm->mmu_lock);
3099                 make_mmu_pages_available(vcpu);
3100                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3101                                       1, ACC_ALL, NULL);
3102                 ++sp->root_count;
3103                 spin_unlock(&vcpu->kvm->mmu_lock);
3104                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3105         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3106                 for (i = 0; i < 4; ++i) {
3107                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3108
3109                         MMU_WARN_ON(VALID_PAGE(root));
3110                         spin_lock(&vcpu->kvm->mmu_lock);
3111                         make_mmu_pages_available(vcpu);
3112                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3113                                               i << 30,
3114                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3115                                               NULL);
3116                         root = __pa(sp->spt);
3117                         ++sp->root_count;
3118                         spin_unlock(&vcpu->kvm->mmu_lock);
3119                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3120                 }
3121                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3122         } else
3123                 BUG();
3124
3125         return 0;
3126 }
3127
3128 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3129 {
3130         struct kvm_mmu_page *sp;
3131         u64 pdptr, pm_mask;
3132         gfn_t root_gfn;
3133         int i;
3134
3135         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3136
3137         if (mmu_check_root(vcpu, root_gfn))
3138                 return 1;
3139
3140         /*
3141          * Do we shadow a long mode page table? If so we need to
3142          * write-protect the guests page table root.
3143          */
3144         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3145                 hpa_t root = vcpu->arch.mmu.root_hpa;
3146
3147                 MMU_WARN_ON(VALID_PAGE(root));
3148
3149                 spin_lock(&vcpu->kvm->mmu_lock);
3150                 make_mmu_pages_available(vcpu);
3151                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3152                                       0, ACC_ALL, NULL);
3153                 root = __pa(sp->spt);
3154                 ++sp->root_count;
3155                 spin_unlock(&vcpu->kvm->mmu_lock);
3156                 vcpu->arch.mmu.root_hpa = root;
3157                 return 0;
3158         }
3159
3160         /*
3161          * We shadow a 32 bit page table. This may be a legacy 2-level
3162          * or a PAE 3-level page table. In either case we need to be aware that
3163          * the shadow page table may be a PAE or a long mode page table.
3164          */
3165         pm_mask = PT_PRESENT_MASK;
3166         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3167                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3168
3169         for (i = 0; i < 4; ++i) {
3170                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3171
3172                 MMU_WARN_ON(VALID_PAGE(root));
3173                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3174                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3175                         if (!is_present_gpte(pdptr)) {
3176                                 vcpu->arch.mmu.pae_root[i] = 0;
3177                                 continue;
3178                         }
3179                         root_gfn = pdptr >> PAGE_SHIFT;
3180                         if (mmu_check_root(vcpu, root_gfn))
3181                                 return 1;
3182                 }
3183                 spin_lock(&vcpu->kvm->mmu_lock);
3184                 make_mmu_pages_available(vcpu);
3185                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3186                                       PT32_ROOT_LEVEL, 0,
3187                                       ACC_ALL, NULL);
3188                 root = __pa(sp->spt);
3189                 ++sp->root_count;
3190                 spin_unlock(&vcpu->kvm->mmu_lock);
3191
3192                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3193         }
3194         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3195
3196         /*
3197          * If we shadow a 32 bit page table with a long mode page
3198          * table we enter this path.
3199          */
3200         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3201                 if (vcpu->arch.mmu.lm_root == NULL) {
3202                         /*
3203                          * The additional page necessary for this is only
3204                          * allocated on demand.
3205                          */
3206
3207                         u64 *lm_root;
3208
3209                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3210                         if (lm_root == NULL)
3211                                 return 1;
3212
3213                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3214
3215                         vcpu->arch.mmu.lm_root = lm_root;
3216                 }
3217
3218                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3219         }
3220
3221         return 0;
3222 }
3223
3224 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3225 {
3226         if (vcpu->arch.mmu.direct_map)
3227                 return mmu_alloc_direct_roots(vcpu);
3228         else
3229                 return mmu_alloc_shadow_roots(vcpu);
3230 }
3231
3232 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3233 {
3234         int i;
3235         struct kvm_mmu_page *sp;
3236
3237         if (vcpu->arch.mmu.direct_map)
3238                 return;
3239
3240         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3241                 return;
3242
3243         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3244         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3245         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3246                 hpa_t root = vcpu->arch.mmu.root_hpa;
3247                 sp = page_header(root);
3248                 mmu_sync_children(vcpu, sp);
3249                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3250                 return;
3251         }
3252         for (i = 0; i < 4; ++i) {
3253                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3254
3255                 if (root && VALID_PAGE(root)) {
3256                         root &= PT64_BASE_ADDR_MASK;
3257                         sp = page_header(root);
3258                         mmu_sync_children(vcpu, sp);
3259                 }
3260         }
3261         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3262 }
3263
3264 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3265 {
3266         spin_lock(&vcpu->kvm->mmu_lock);
3267         mmu_sync_roots(vcpu);
3268         spin_unlock(&vcpu->kvm->mmu_lock);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3271
3272 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3273                                   u32 access, struct x86_exception *exception)
3274 {
3275         if (exception)
3276                 exception->error_code = 0;
3277         return vaddr;
3278 }
3279
3280 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3281                                          u32 access,
3282                                          struct x86_exception *exception)
3283 {
3284         if (exception)
3285                 exception->error_code = 0;
3286         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3287 }
3288
3289 static bool
3290 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3291 {
3292         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3293
3294         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3295                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3296 }
3297
3298 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3299 {
3300         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3301 }
3302
3303 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3304 {
3305         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3306 }
3307
3308 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3309 {
3310         if (direct)
3311                 return vcpu_match_mmio_gpa(vcpu, addr);
3312
3313         return vcpu_match_mmio_gva(vcpu, addr);
3314 }
3315
3316 /* return true if reserved bit is detected on spte. */
3317 static bool
3318 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3319 {
3320         struct kvm_shadow_walk_iterator iterator;
3321         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3322         int root, leaf;
3323         bool reserved = false;
3324
3325         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326                 goto exit;
3327
3328         walk_shadow_page_lockless_begin(vcpu);
3329
3330         for (shadow_walk_init(&iterator, vcpu, addr),
3331                  leaf = root = iterator.level;
3332              shadow_walk_okay(&iterator);
3333              __shadow_walk_next(&iterator, spte)) {
3334                 spte = mmu_spte_get_lockless(iterator.sptep);
3335
3336                 sptes[leaf - 1] = spte;
3337                 leaf--;
3338
3339                 if (!is_shadow_present_pte(spte))
3340                         break;
3341
3342                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3343                                                     iterator.level);
3344         }
3345
3346         walk_shadow_page_lockless_end(vcpu);
3347
3348         if (reserved) {
3349                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3350                        __func__, addr);
3351                 while (root > leaf) {
3352                         pr_err("------ spte 0x%llx level %d.\n",
3353                                sptes[root - 1], root);
3354                         root--;
3355                 }
3356         }
3357 exit:
3358         *sptep = spte;
3359         return reserved;
3360 }
3361
3362 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3363 {
3364         u64 spte;
3365         bool reserved;
3366
3367         if (quickly_check_mmio_pf(vcpu, addr, direct))
3368                 return RET_MMIO_PF_EMULATE;
3369
3370         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3371         if (WARN_ON(reserved))
3372                 return RET_MMIO_PF_BUG;
3373
3374         if (is_mmio_spte(spte)) {
3375                 gfn_t gfn = get_mmio_spte_gfn(spte);
3376                 unsigned access = get_mmio_spte_access(spte);
3377
3378                 if (!check_mmio_spte(vcpu, spte))
3379                         return RET_MMIO_PF_INVALID;
3380
3381                 if (direct)
3382                         addr = 0;
3383
3384                 trace_handle_mmio_page_fault(addr, gfn, access);
3385                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3386                 return RET_MMIO_PF_EMULATE;
3387         }
3388
3389         /*
3390          * If the page table is zapped by other cpus, let CPU fault again on
3391          * the address.
3392          */
3393         return RET_MMIO_PF_RETRY;
3394 }
3395 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3396
3397 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3398                                 u32 error_code, bool prefault)
3399 {
3400         gfn_t gfn;
3401         int r;
3402
3403         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3404
3405         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3406                 r = handle_mmio_page_fault(vcpu, gva, true);
3407
3408                 if (likely(r != RET_MMIO_PF_INVALID))
3409                         return r;
3410         }
3411
3412         r = mmu_topup_memory_caches(vcpu);
3413         if (r)
3414                 return r;
3415
3416         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3417
3418         gfn = gva >> PAGE_SHIFT;
3419
3420         return nonpaging_map(vcpu, gva & PAGE_MASK,
3421                              error_code, gfn, prefault);
3422 }
3423
3424 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3425 {
3426         struct kvm_arch_async_pf arch;
3427
3428         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3429         arch.gfn = gfn;
3430         arch.direct_map = vcpu->arch.mmu.direct_map;
3431         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3432
3433         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3434 }
3435
3436 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3437 {
3438         if (unlikely(!lapic_in_kernel(vcpu) ||
3439                      kvm_event_needs_reinjection(vcpu)))
3440                 return false;
3441
3442         if (is_guest_mode(vcpu))
3443                 return false;
3444
3445         return kvm_x86_ops->interrupt_allowed(vcpu);
3446 }
3447
3448 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3449                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3450 {
3451         struct kvm_memory_slot *slot;
3452         bool async;
3453
3454         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3455         async = false;
3456         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3457         if (!async)
3458                 return false; /* *pfn has correct page already */
3459
3460         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3461                 trace_kvm_try_async_get_page(gva, gfn);
3462                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3463                         trace_kvm_async_pf_doublefault(gva, gfn);
3464                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3465                         return true;
3466                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3467                         return true;
3468         }
3469
3470         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3471         return false;
3472 }
3473
3474 static bool
3475 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3476 {
3477         int page_num = KVM_PAGES_PER_HPAGE(level);
3478
3479         gfn &= ~(page_num - 1);
3480
3481         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3482 }
3483
3484 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3485                           bool prefault)
3486 {
3487         pfn_t pfn;
3488         int r;
3489         int level;
3490         bool force_pt_level;
3491         gfn_t gfn = gpa >> PAGE_SHIFT;
3492         unsigned long mmu_seq;
3493         int write = error_code & PFERR_WRITE_MASK;
3494         bool map_writable;
3495
3496         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3497
3498         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3499                 r = handle_mmio_page_fault(vcpu, gpa, true);
3500
3501                 if (likely(r != RET_MMIO_PF_INVALID))
3502                         return r;
3503         }
3504
3505         r = mmu_topup_memory_caches(vcpu);
3506         if (r)
3507                 return r;
3508
3509         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3510                                                            PT_DIRECTORY_LEVEL);
3511         level = mapping_level(vcpu, gfn, &force_pt_level);
3512         if (likely(!force_pt_level)) {
3513                 if (level > PT_DIRECTORY_LEVEL &&
3514                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3515                         level = PT_DIRECTORY_LEVEL;
3516                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3517         }
3518
3519         if (fast_page_fault(vcpu, gpa, level, error_code))
3520                 return 0;
3521
3522         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3523         smp_rmb();
3524
3525         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3526                 return 0;
3527
3528         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3529                 return r;
3530
3531         spin_lock(&vcpu->kvm->mmu_lock);
3532         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3533                 goto out_unlock;
3534         make_mmu_pages_available(vcpu);
3535         if (likely(!force_pt_level))
3536                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3537         r = __direct_map(vcpu, gpa, write, map_writable,
3538                          level, gfn, pfn, prefault);
3539         spin_unlock(&vcpu->kvm->mmu_lock);
3540
3541         return r;
3542
3543 out_unlock:
3544         spin_unlock(&vcpu->kvm->mmu_lock);
3545         kvm_release_pfn_clean(pfn);
3546         return 0;
3547 }
3548
3549 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3550                                    struct kvm_mmu *context)
3551 {
3552         context->page_fault = nonpaging_page_fault;
3553         context->gva_to_gpa = nonpaging_gva_to_gpa;
3554         context->sync_page = nonpaging_sync_page;
3555         context->invlpg = nonpaging_invlpg;
3556         context->update_pte = nonpaging_update_pte;
3557         context->root_level = 0;
3558         context->shadow_root_level = PT32E_ROOT_LEVEL;
3559         context->root_hpa = INVALID_PAGE;
3560         context->direct_map = true;
3561         context->nx = false;
3562 }
3563
3564 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3565 {
3566         mmu_free_roots(vcpu);
3567 }
3568
3569 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3570 {
3571         return kvm_read_cr3(vcpu);
3572 }
3573
3574 static void inject_page_fault(struct kvm_vcpu *vcpu,
3575                               struct x86_exception *fault)
3576 {
3577         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3578 }
3579
3580 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3581                            unsigned access, int *nr_present)
3582 {
3583         if (unlikely(is_mmio_spte(*sptep))) {
3584                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3585                         mmu_spte_clear_no_track(sptep);
3586                         return true;
3587                 }
3588
3589                 (*nr_present)++;
3590                 mark_mmio_spte(vcpu, sptep, gfn, access);
3591                 return true;
3592         }
3593
3594         return false;
3595 }
3596
3597 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3598 {
3599         unsigned index;
3600
3601         index = level - 1;
3602         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3603         return mmu->last_pte_bitmap & (1 << index);
3604 }
3605
3606 #define PTTYPE_EPT 18 /* arbitrary */
3607 #define PTTYPE PTTYPE_EPT
3608 #include "paging_tmpl.h"
3609 #undef PTTYPE
3610
3611 #define PTTYPE 64
3612 #include "paging_tmpl.h"
3613 #undef PTTYPE
3614
3615 #define PTTYPE 32
3616 #include "paging_tmpl.h"
3617 #undef PTTYPE
3618
3619 static void
3620 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3621                         struct rsvd_bits_validate *rsvd_check,
3622                         int maxphyaddr, int level, bool nx, bool gbpages,
3623                         bool pse, bool amd)
3624 {
3625         u64 exb_bit_rsvd = 0;
3626         u64 gbpages_bit_rsvd = 0;
3627         u64 nonleaf_bit8_rsvd = 0;
3628
3629         rsvd_check->bad_mt_xwr = 0;
3630
3631         if (!nx)
3632                 exb_bit_rsvd = rsvd_bits(63, 63);
3633         if (!gbpages)
3634                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3635
3636         /*
3637          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3638          * leaf entries) on AMD CPUs only.
3639          */
3640         if (amd)
3641                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3642
3643         switch (level) {
3644         case PT32_ROOT_LEVEL:
3645                 /* no rsvd bits for 2 level 4K page table entries */
3646                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3647                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3648                 rsvd_check->rsvd_bits_mask[1][0] =
3649                         rsvd_check->rsvd_bits_mask[0][0];
3650
3651                 if (!pse) {
3652                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3653                         break;
3654                 }
3655
3656                 if (is_cpuid_PSE36())
3657                         /* 36bits PSE 4MB page */
3658                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3659                 else
3660                         /* 32 bits PSE 4MB page */
3661                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3662                 break;
3663         case PT32E_ROOT_LEVEL:
3664                 rsvd_check->rsvd_bits_mask[0][2] =
3665                         rsvd_bits(maxphyaddr, 63) |
3666                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3667                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3668                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3669                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3670                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3671                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3672                         rsvd_bits(maxphyaddr, 62) |
3673                         rsvd_bits(13, 20);              /* large page */
3674                 rsvd_check->rsvd_bits_mask[1][0] =
3675                         rsvd_check->rsvd_bits_mask[0][0];
3676                 break;
3677         case PT64_ROOT_LEVEL:
3678                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3679                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3680                         rsvd_bits(maxphyaddr, 51);
3681                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3682                         gbpages_bit_rsvd |
3683                         rsvd_bits(maxphyaddr, 51);
3684                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3685                         rsvd_bits(maxphyaddr, 51);
3686                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3687                         rsvd_bits(maxphyaddr, 51);
3688                 rsvd_check->rsvd_bits_mask[1][3] =
3689                         rsvd_check->rsvd_bits_mask[0][3];
3690                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3691                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3692                         rsvd_bits(13, 29);
3693                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3694                         rsvd_bits(maxphyaddr, 51) |
3695                         rsvd_bits(13, 20);              /* large page */
3696                 rsvd_check->rsvd_bits_mask[1][0] =
3697                         rsvd_check->rsvd_bits_mask[0][0];
3698                 break;
3699         }
3700 }
3701
3702 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3703                                   struct kvm_mmu *context)
3704 {
3705         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3706                                 cpuid_maxphyaddr(vcpu), context->root_level,
3707                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3708                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3709 }
3710
3711 static void
3712 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3713                             int maxphyaddr, bool execonly)
3714 {
3715         u64 bad_mt_xwr;
3716
3717         rsvd_check->rsvd_bits_mask[0][3] =
3718                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3719         rsvd_check->rsvd_bits_mask[0][2] =
3720                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3721         rsvd_check->rsvd_bits_mask[0][1] =
3722                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3723         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3724
3725         /* large page */
3726         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3727         rsvd_check->rsvd_bits_mask[1][2] =
3728                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3729         rsvd_check->rsvd_bits_mask[1][1] =
3730                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3731         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3732
3733         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3734         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3735         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3736         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3737         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3738         if (!execonly) {
3739                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3740                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3741         }
3742         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3743 }
3744
3745 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3746                 struct kvm_mmu *context, bool execonly)
3747 {
3748         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3749                                     cpuid_maxphyaddr(vcpu), execonly);
3750 }
3751
3752 /*
3753  * the page table on host is the shadow page table for the page
3754  * table in guest or amd nested guest, its mmu features completely
3755  * follow the features in guest.
3756  */
3757 void
3758 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3759 {
3760         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3761
3762         /*
3763          * Passing "true" to the last argument is okay; it adds a check
3764          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3765          */
3766         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3767                                 boot_cpu_data.x86_phys_bits,
3768                                 context->shadow_root_level, uses_nx,
3769                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3770                                 true);
3771 }
3772 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3773
3774 static inline bool boot_cpu_is_amd(void)
3775 {
3776         WARN_ON_ONCE(!tdp_enabled);
3777         return shadow_x_mask == 0;
3778 }
3779
3780 /*
3781  * the direct page table on host, use as much mmu features as
3782  * possible, however, kvm currently does not do execution-protection.
3783  */
3784 static void
3785 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3786                                 struct kvm_mmu *context)
3787 {
3788         if (boot_cpu_is_amd())
3789                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3790                                         boot_cpu_data.x86_phys_bits,
3791                                         context->shadow_root_level, false,
3792                                         cpu_has_gbpages, true, true);
3793         else
3794                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3795                                             boot_cpu_data.x86_phys_bits,
3796                                             false);
3797
3798 }
3799
3800 /*
3801  * as the comments in reset_shadow_zero_bits_mask() except it
3802  * is the shadow page table for intel nested guest.
3803  */
3804 static void
3805 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3806                                 struct kvm_mmu *context, bool execonly)
3807 {
3808         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3809                                     boot_cpu_data.x86_phys_bits, execonly);
3810 }
3811
3812 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3813                                       struct kvm_mmu *mmu, bool ept)
3814 {
3815         unsigned bit, byte, pfec;
3816         u8 map;
3817         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3818
3819         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3820         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3821         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3822                 pfec = byte << 1;
3823                 map = 0;
3824                 wf = pfec & PFERR_WRITE_MASK;
3825                 uf = pfec & PFERR_USER_MASK;
3826                 ff = pfec & PFERR_FETCH_MASK;
3827                 /*
3828                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3829                  * subject to SMAP restrictions, and cleared otherwise. The
3830                  * bit is only meaningful if the SMAP bit is set in CR4.
3831                  */
3832                 smapf = !(pfec & PFERR_RSVD_MASK);
3833                 for (bit = 0; bit < 8; ++bit) {
3834                         x = bit & ACC_EXEC_MASK;
3835                         w = bit & ACC_WRITE_MASK;
3836                         u = bit & ACC_USER_MASK;
3837
3838                         if (!ept) {
3839                                 /* Not really needed: !nx will cause pte.nx to fault */
3840                                 x |= !mmu->nx;
3841                                 /* Allow supervisor writes if !cr0.wp */
3842                                 w |= !is_write_protection(vcpu) && !uf;
3843                                 /* Disallow supervisor fetches of user code if cr4.smep */
3844                                 x &= !(cr4_smep && u && !uf);
3845
3846                                 /*
3847                                  * SMAP:kernel-mode data accesses from user-mode
3848                                  * mappings should fault. A fault is considered
3849                                  * as a SMAP violation if all of the following
3850                                  * conditions are ture:
3851                                  *   - X86_CR4_SMAP is set in CR4
3852                                  *   - An user page is accessed
3853                                  *   - Page fault in kernel mode
3854                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3855                                  *
3856                                  *   Here, we cover the first three conditions.
3857                                  *   The fourth is computed dynamically in
3858                                  *   permission_fault() and is in smapf.
3859                                  *
3860                                  *   Also, SMAP does not affect instruction
3861                                  *   fetches, add the !ff check here to make it
3862                                  *   clearer.
3863                                  */
3864                                 smap = cr4_smap && u && !uf && !ff;
3865                         } else
3866                                 /* Not really needed: no U/S accesses on ept  */
3867                                 u = 1;
3868
3869                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3870                                 (smapf && smap);
3871                         map |= fault << bit;
3872                 }
3873                 mmu->permissions[byte] = map;
3874         }
3875 }
3876
3877 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3878 {
3879         u8 map;
3880         unsigned level, root_level = mmu->root_level;
3881         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3882
3883         if (root_level == PT32E_ROOT_LEVEL)
3884                 --root_level;
3885         /* PT_PAGE_TABLE_LEVEL always terminates */
3886         map = 1 | (1 << ps_set_index);
3887         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3888                 if (level <= PT_PDPE_LEVEL
3889                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3890                         map |= 1 << (ps_set_index | (level - 1));
3891         }
3892         mmu->last_pte_bitmap = map;
3893 }
3894
3895 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3896                                          struct kvm_mmu *context,
3897                                          int level)
3898 {
3899         context->nx = is_nx(vcpu);
3900         context->root_level = level;
3901
3902         reset_rsvds_bits_mask(vcpu, context);
3903         update_permission_bitmask(vcpu, context, false);
3904         update_last_pte_bitmap(vcpu, context);
3905
3906         MMU_WARN_ON(!is_pae(vcpu));
3907         context->page_fault = paging64_page_fault;
3908         context->gva_to_gpa = paging64_gva_to_gpa;
3909         context->sync_page = paging64_sync_page;
3910         context->invlpg = paging64_invlpg;
3911         context->update_pte = paging64_update_pte;
3912         context->shadow_root_level = level;
3913         context->root_hpa = INVALID_PAGE;
3914         context->direct_map = false;
3915 }
3916
3917 static void paging64_init_context(struct kvm_vcpu *vcpu,
3918                                   struct kvm_mmu *context)
3919 {
3920         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3921 }
3922
3923 static void paging32_init_context(struct kvm_vcpu *vcpu,
3924                                   struct kvm_mmu *context)
3925 {
3926         context->nx = false;
3927         context->root_level = PT32_ROOT_LEVEL;
3928
3929         reset_rsvds_bits_mask(vcpu, context);
3930         update_permission_bitmask(vcpu, context, false);
3931         update_last_pte_bitmap(vcpu, context);
3932
3933         context->page_fault = paging32_page_fault;
3934         context->gva_to_gpa = paging32_gva_to_gpa;
3935         context->sync_page = paging32_sync_page;
3936         context->invlpg = paging32_invlpg;
3937         context->update_pte = paging32_update_pte;
3938         context->shadow_root_level = PT32E_ROOT_LEVEL;
3939         context->root_hpa = INVALID_PAGE;
3940         context->direct_map = false;
3941 }
3942
3943 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3944                                    struct kvm_mmu *context)
3945 {
3946         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3947 }
3948
3949 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3950 {
3951         struct kvm_mmu *context = &vcpu->arch.mmu;
3952
3953         context->base_role.word = 0;
3954         context->base_role.smm = is_smm(vcpu);
3955         context->page_fault = tdp_page_fault;
3956         context->sync_page = nonpaging_sync_page;
3957         context->invlpg = nonpaging_invlpg;
3958         context->update_pte = nonpaging_update_pte;
3959         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3960         context->root_hpa = INVALID_PAGE;
3961         context->direct_map = true;
3962         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3963         context->get_cr3 = get_cr3;
3964         context->get_pdptr = kvm_pdptr_read;
3965         context->inject_page_fault = kvm_inject_page_fault;
3966
3967         if (!is_paging(vcpu)) {
3968                 context->nx = false;
3969                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3970                 context->root_level = 0;
3971         } else if (is_long_mode(vcpu)) {
3972                 context->nx = is_nx(vcpu);
3973                 context->root_level = PT64_ROOT_LEVEL;
3974                 reset_rsvds_bits_mask(vcpu, context);
3975                 context->gva_to_gpa = paging64_gva_to_gpa;
3976         } else if (is_pae(vcpu)) {
3977                 context->nx = is_nx(vcpu);
3978                 context->root_level = PT32E_ROOT_LEVEL;
3979                 reset_rsvds_bits_mask(vcpu, context);
3980                 context->gva_to_gpa = paging64_gva_to_gpa;
3981         } else {
3982                 context->nx = false;
3983                 context->root_level = PT32_ROOT_LEVEL;
3984                 reset_rsvds_bits_mask(vcpu, context);
3985                 context->gva_to_gpa = paging32_gva_to_gpa;
3986         }
3987
3988         update_permission_bitmask(vcpu, context, false);
3989         update_last_pte_bitmap(vcpu, context);
3990         reset_tdp_shadow_zero_bits_mask(vcpu, context);
3991 }
3992
3993 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3994 {
3995         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3996         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3997         struct kvm_mmu *context = &vcpu->arch.mmu;
3998
3999         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4000
4001         if (!is_paging(vcpu))
4002                 nonpaging_init_context(vcpu, context);
4003         else if (is_long_mode(vcpu))
4004                 paging64_init_context(vcpu, context);
4005         else if (is_pae(vcpu))
4006                 paging32E_init_context(vcpu, context);
4007         else
4008                 paging32_init_context(vcpu, context);
4009
4010         context->base_role.nxe = is_nx(vcpu);
4011         context->base_role.cr4_pae = !!is_pae(vcpu);
4012         context->base_role.cr0_wp  = is_write_protection(vcpu);
4013         context->base_role.smep_andnot_wp
4014                 = smep && !is_write_protection(vcpu);
4015         context->base_role.smap_andnot_wp
4016                 = smap && !is_write_protection(vcpu);
4017         context->base_role.smm = is_smm(vcpu);
4018         reset_shadow_zero_bits_mask(vcpu, context);
4019 }
4020 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4021
4022 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4023 {
4024         struct kvm_mmu *context = &vcpu->arch.mmu;
4025
4026         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4027
4028         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4029
4030         context->nx = true;
4031         context->page_fault = ept_page_fault;
4032         context->gva_to_gpa = ept_gva_to_gpa;
4033         context->sync_page = ept_sync_page;
4034         context->invlpg = ept_invlpg;
4035         context->update_pte = ept_update_pte;
4036         context->root_level = context->shadow_root_level;
4037         context->root_hpa = INVALID_PAGE;
4038         context->direct_map = false;
4039
4040         update_permission_bitmask(vcpu, context, true);
4041         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4042         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4043 }
4044 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4045
4046 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4047 {
4048         struct kvm_mmu *context = &vcpu->arch.mmu;
4049
4050         kvm_init_shadow_mmu(vcpu);
4051         context->set_cr3           = kvm_x86_ops->set_cr3;
4052         context->get_cr3           = get_cr3;
4053         context->get_pdptr         = kvm_pdptr_read;
4054         context->inject_page_fault = kvm_inject_page_fault;
4055 }
4056
4057 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4058 {
4059         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4060
4061         g_context->get_cr3           = get_cr3;
4062         g_context->get_pdptr         = kvm_pdptr_read;
4063         g_context->inject_page_fault = kvm_inject_page_fault;
4064
4065         /*
4066          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4067          * translation of l2_gpa to l1_gpa addresses is done using the
4068          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4069          * functions between mmu and nested_mmu are swapped.
4070          */
4071         if (!is_paging(vcpu)) {
4072                 g_context->nx = false;
4073                 g_context->root_level = 0;
4074                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4075         } else if (is_long_mode(vcpu)) {
4076                 g_context->nx = is_nx(vcpu);
4077                 g_context->root_level = PT64_ROOT_LEVEL;
4078                 reset_rsvds_bits_mask(vcpu, g_context);
4079                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4080         } else if (is_pae(vcpu)) {
4081                 g_context->nx = is_nx(vcpu);
4082                 g_context->root_level = PT32E_ROOT_LEVEL;
4083                 reset_rsvds_bits_mask(vcpu, g_context);
4084                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4085         } else {
4086                 g_context->nx = false;
4087                 g_context->root_level = PT32_ROOT_LEVEL;
4088                 reset_rsvds_bits_mask(vcpu, g_context);
4089                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4090         }
4091
4092         update_permission_bitmask(vcpu, g_context, false);
4093         update_last_pte_bitmap(vcpu, g_context);
4094 }
4095
4096 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4097 {
4098         if (mmu_is_nested(vcpu))
4099                 init_kvm_nested_mmu(vcpu);
4100         else if (tdp_enabled)
4101                 init_kvm_tdp_mmu(vcpu);
4102         else
4103                 init_kvm_softmmu(vcpu);
4104 }
4105
4106 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4107 {
4108         kvm_mmu_unload(vcpu);
4109         init_kvm_mmu(vcpu);
4110 }
4111 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4112
4113 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4114 {
4115         int r;
4116
4117         r = mmu_topup_memory_caches(vcpu);
4118         if (r)
4119                 goto out;
4120         r = mmu_alloc_roots(vcpu);
4121         kvm_mmu_sync_roots(vcpu);
4122         if (r)
4123                 goto out;
4124         /* set_cr3() should ensure TLB has been flushed */
4125         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4126 out:
4127         return r;
4128 }
4129 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4130
4131 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4132 {
4133         mmu_free_roots(vcpu);
4134         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4135 }
4136 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4137
4138 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4139                                   struct kvm_mmu_page *sp, u64 *spte,
4140                                   const void *new)
4141 {
4142         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4143                 ++vcpu->kvm->stat.mmu_pde_zapped;
4144                 return;
4145         }
4146
4147         ++vcpu->kvm->stat.mmu_pte_updated;
4148         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4149 }
4150
4151 static bool need_remote_flush(u64 old, u64 new)
4152 {
4153         if (!is_shadow_present_pte(old))
4154                 return false;
4155         if (!is_shadow_present_pte(new))
4156                 return true;
4157         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4158                 return true;
4159         old ^= shadow_nx_mask;
4160         new ^= shadow_nx_mask;
4161         return (old & ~new & PT64_PERM_MASK) != 0;
4162 }
4163
4164 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4165                                     bool remote_flush, bool local_flush)
4166 {
4167         if (zap_page)
4168                 return;
4169
4170         if (remote_flush)
4171                 kvm_flush_remote_tlbs(vcpu->kvm);
4172         else if (local_flush)
4173                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4174 }
4175
4176 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4177                                     int *bytes)
4178 {
4179         u64 gentry = 0;
4180         int r;
4181
4182         /*
4183          * Assume that the pte write on a page table of the same type
4184          * as the current vcpu paging mode since we update the sptes only
4185          * when they have the same mode.
4186          */
4187         if (is_pae(vcpu) && *bytes == 4) {
4188                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4189                 *gpa &= ~(gpa_t)7;
4190                 *bytes = 8;
4191         }
4192
4193         if (*bytes == 4 || *bytes == 8) {
4194                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4195                 if (r)
4196                         gentry = 0;
4197         }
4198
4199         return gentry;
4200 }
4201
4202 /*
4203  * If we're seeing too many writes to a page, it may no longer be a page table,
4204  * or we may be forking, in which case it is better to unmap the page.
4205  */
4206 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4207 {
4208         /*
4209          * Skip write-flooding detected for the sp whose level is 1, because
4210          * it can become unsync, then the guest page is not write-protected.
4211          */
4212         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4213                 return false;
4214
4215         return ++sp->write_flooding_count >= 3;
4216 }
4217
4218 /*
4219  * Misaligned accesses are too much trouble to fix up; also, they usually
4220  * indicate a page is not used as a page table.
4221  */
4222 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4223                                     int bytes)
4224 {
4225         unsigned offset, pte_size, misaligned;
4226
4227         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4228                  gpa, bytes, sp->role.word);
4229
4230         offset = offset_in_page(gpa);
4231         pte_size = sp->role.cr4_pae ? 8 : 4;
4232
4233         /*
4234          * Sometimes, the OS only writes the last one bytes to update status
4235          * bits, for example, in linux, andb instruction is used in clear_bit().
4236          */
4237         if (!(offset & (pte_size - 1)) && bytes == 1)
4238                 return false;
4239
4240         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4241         misaligned |= bytes < 4;
4242
4243         return misaligned;
4244 }
4245
4246 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4247 {
4248         unsigned page_offset, quadrant;
4249         u64 *spte;
4250         int level;
4251
4252         page_offset = offset_in_page(gpa);
4253         level = sp->role.level;
4254         *nspte = 1;
4255         if (!sp->role.cr4_pae) {
4256                 page_offset <<= 1;      /* 32->64 */
4257                 /*
4258                  * A 32-bit pde maps 4MB while the shadow pdes map
4259                  * only 2MB.  So we need to double the offset again
4260                  * and zap two pdes instead of one.
4261                  */
4262                 if (level == PT32_ROOT_LEVEL) {
4263                         page_offset &= ~7; /* kill rounding error */
4264                         page_offset <<= 1;
4265                         *nspte = 2;
4266                 }
4267                 quadrant = page_offset >> PAGE_SHIFT;
4268                 page_offset &= ~PAGE_MASK;
4269                 if (quadrant != sp->role.quadrant)
4270                         return NULL;
4271         }
4272
4273         spte = &sp->spt[page_offset / sizeof(*spte)];
4274         return spte;
4275 }
4276
4277 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4278                        const u8 *new, int bytes)
4279 {
4280         gfn_t gfn = gpa >> PAGE_SHIFT;
4281         struct kvm_mmu_page *sp;
4282         LIST_HEAD(invalid_list);
4283         u64 entry, gentry, *spte;
4284         int npte;
4285         bool remote_flush, local_flush, zap_page;
4286         union kvm_mmu_page_role mask = { };
4287
4288         mask.cr0_wp = 1;
4289         mask.cr4_pae = 1;
4290         mask.nxe = 1;
4291         mask.smep_andnot_wp = 1;
4292         mask.smap_andnot_wp = 1;
4293         mask.smm = 1;
4294
4295         /*
4296          * If we don't have indirect shadow pages, it means no page is
4297          * write-protected, so we can exit simply.
4298          */
4299         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4300                 return;
4301
4302         zap_page = remote_flush = local_flush = false;
4303
4304         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4305
4306         /*
4307          * No need to care whether allocation memory is successful
4308          * or not since pte prefetch is skiped if it does not have
4309          * enough objects in the cache.
4310          */
4311         mmu_topup_memory_caches(vcpu);
4312
4313         spin_lock(&vcpu->kvm->mmu_lock);
4314
4315         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4316
4317         ++vcpu->kvm->stat.mmu_pte_write;
4318         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4319
4320         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4321                 if (detect_write_misaligned(sp, gpa, bytes) ||
4322                       detect_write_flooding(sp)) {
4323                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4324                                                      &invalid_list);
4325                         ++vcpu->kvm->stat.mmu_flooded;
4326                         continue;
4327                 }
4328
4329                 spte = get_written_sptes(sp, gpa, &npte);
4330                 if (!spte)
4331                         continue;
4332
4333                 local_flush = true;
4334                 while (npte--) {
4335                         entry = *spte;
4336                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4337                         if (gentry &&
4338                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4339                               & mask.word) && rmap_can_add(vcpu))
4340                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4341                         if (need_remote_flush(entry, *spte))
4342                                 remote_flush = true;
4343                         ++spte;
4344                 }
4345         }
4346         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4347         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4348         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4349         spin_unlock(&vcpu->kvm->mmu_lock);
4350 }
4351
4352 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4353 {
4354         gpa_t gpa;
4355         int r;
4356
4357         if (vcpu->arch.mmu.direct_map)
4358                 return 0;
4359
4360         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4361
4362         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4363
4364         return r;
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4367
4368 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4369 {
4370         LIST_HEAD(invalid_list);
4371
4372         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4373                 return;
4374
4375         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4376                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4377                         break;
4378
4379                 ++vcpu->kvm->stat.mmu_recycled;
4380         }
4381         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4382 }
4383
4384 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4385 {
4386         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4387                 return vcpu_match_mmio_gpa(vcpu, addr);
4388
4389         return vcpu_match_mmio_gva(vcpu, addr);
4390 }
4391
4392 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4393                        void *insn, int insn_len)
4394 {
4395         int r, emulation_type = EMULTYPE_RETRY;
4396         enum emulation_result er;
4397
4398         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4399         if (r < 0)
4400                 goto out;
4401
4402         if (!r) {
4403                 r = 1;
4404                 goto out;
4405         }
4406
4407         if (is_mmio_page_fault(vcpu, cr2))
4408                 emulation_type = 0;
4409
4410         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4411
4412         switch (er) {
4413         case EMULATE_DONE:
4414                 return 1;
4415         case EMULATE_USER_EXIT:
4416                 ++vcpu->stat.mmio_exits;
4417                 /* fall through */
4418         case EMULATE_FAIL:
4419                 return 0;
4420         default:
4421                 BUG();
4422         }
4423 out:
4424         return r;
4425 }
4426 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4427
4428 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4429 {
4430         vcpu->arch.mmu.invlpg(vcpu, gva);
4431         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4432         ++vcpu->stat.invlpg;
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4435
4436 void kvm_enable_tdp(void)
4437 {
4438         tdp_enabled = true;
4439 }
4440 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4441
4442 void kvm_disable_tdp(void)
4443 {
4444         tdp_enabled = false;
4445 }
4446 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4447
4448 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4449 {
4450         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4451         if (vcpu->arch.mmu.lm_root != NULL)
4452                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4453 }
4454
4455 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4456 {
4457         struct page *page;
4458         int i;
4459
4460         /*
4461          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4462          * Therefore we need to allocate shadow page tables in the first
4463          * 4GB of memory, which happens to fit the DMA32 zone.
4464          */
4465         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4466         if (!page)
4467                 return -ENOMEM;
4468
4469         vcpu->arch.mmu.pae_root = page_address(page);
4470         for (i = 0; i < 4; ++i)
4471                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4472
4473         return 0;
4474 }
4475
4476 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4477 {
4478         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4479         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4480         vcpu->arch.mmu.translate_gpa = translate_gpa;
4481         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4482
4483         return alloc_mmu_pages(vcpu);
4484 }
4485
4486 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4487 {
4488         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4489
4490         init_kvm_mmu(vcpu);
4491 }
4492
4493 /* The return value indicates if tlb flush on all vcpus is needed. */
4494 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4495
4496 /* The caller should hold mmu-lock before calling this function. */
4497 static __always_inline bool
4498 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4499                         slot_level_handler fn, int start_level, int end_level,
4500                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4501 {
4502         struct slot_rmap_walk_iterator iterator;
4503         bool flush = false;
4504
4505         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4506                         end_gfn, &iterator) {
4507                 if (iterator.rmap)
4508                         flush |= fn(kvm, iterator.rmap);
4509
4510                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4511                         if (flush && lock_flush_tlb) {
4512                                 kvm_flush_remote_tlbs(kvm);
4513                                 flush = false;
4514                         }
4515                         cond_resched_lock(&kvm->mmu_lock);
4516                 }
4517         }
4518
4519         if (flush && lock_flush_tlb) {
4520                 kvm_flush_remote_tlbs(kvm);
4521                 flush = false;
4522         }
4523
4524         return flush;
4525 }
4526
4527 static __always_inline bool
4528 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4529                   slot_level_handler fn, int start_level, int end_level,
4530                   bool lock_flush_tlb)
4531 {
4532         return slot_handle_level_range(kvm, memslot, fn, start_level,
4533                         end_level, memslot->base_gfn,
4534                         memslot->base_gfn + memslot->npages - 1,
4535                         lock_flush_tlb);
4536 }
4537
4538 static __always_inline bool
4539 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4540                       slot_level_handler fn, bool lock_flush_tlb)
4541 {
4542         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4543                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4544 }
4545
4546 static __always_inline bool
4547 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4548                         slot_level_handler fn, bool lock_flush_tlb)
4549 {
4550         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4551                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4552 }
4553
4554 static __always_inline bool
4555 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4556                  slot_level_handler fn, bool lock_flush_tlb)
4557 {
4558         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4559                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4560 }
4561
4562 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4563 {
4564         struct kvm_memslots *slots;
4565         struct kvm_memory_slot *memslot;
4566         int i;
4567
4568         spin_lock(&kvm->mmu_lock);
4569         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4570                 slots = __kvm_memslots(kvm, i);
4571                 kvm_for_each_memslot(memslot, slots) {
4572                         gfn_t start, end;
4573
4574                         start = max(gfn_start, memslot->base_gfn);
4575                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4576                         if (start >= end)
4577                                 continue;
4578
4579                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4580                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4581                                                 start, end - 1, true);
4582                 }
4583         }
4584
4585         spin_unlock(&kvm->mmu_lock);
4586 }
4587
4588 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4589 {
4590         return __rmap_write_protect(kvm, rmapp, false);
4591 }
4592
4593 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4594                                       struct kvm_memory_slot *memslot)
4595 {
4596         bool flush;
4597
4598         spin_lock(&kvm->mmu_lock);
4599         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4600                                       false);
4601         spin_unlock(&kvm->mmu_lock);
4602
4603         /*
4604          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4605          * which do tlb flush out of mmu-lock should be serialized by
4606          * kvm->slots_lock otherwise tlb flush would be missed.
4607          */
4608         lockdep_assert_held(&kvm->slots_lock);
4609
4610         /*
4611          * We can flush all the TLBs out of the mmu lock without TLB
4612          * corruption since we just change the spte from writable to
4613          * readonly so that we only need to care the case of changing
4614          * spte from present to present (changing the spte from present
4615          * to nonpresent will flush all the TLBs immediately), in other
4616          * words, the only case we care is mmu_spte_update() where we
4617          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4618          * instead of PT_WRITABLE_MASK, that means it does not depend
4619          * on PT_WRITABLE_MASK anymore.
4620          */
4621         if (flush)
4622                 kvm_flush_remote_tlbs(kvm);
4623 }
4624
4625 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4626                 unsigned long *rmapp)
4627 {
4628         u64 *sptep;
4629         struct rmap_iterator iter;
4630         int need_tlb_flush = 0;
4631         pfn_t pfn;
4632         struct kvm_mmu_page *sp;
4633
4634 restart:
4635         for_each_rmap_spte(rmapp, &iter, sptep) {
4636                 sp = page_header(__pa(sptep));
4637                 pfn = spte_to_pfn(*sptep);
4638
4639                 /*
4640                  * We cannot do huge page mapping for indirect shadow pages,
4641                  * which are found on the last rmap (level = 1) when not using
4642                  * tdp; such shadow pages are synced with the page table in
4643                  * the guest, and the guest page table is using 4K page size
4644                  * mapping if the indirect sp has level = 1.
4645                  */
4646                 if (sp->role.direct &&
4647                         !kvm_is_reserved_pfn(pfn) &&
4648                         PageTransCompound(pfn_to_page(pfn))) {
4649                         drop_spte(kvm, sptep);
4650                         need_tlb_flush = 1;
4651                         goto restart;
4652                 }
4653         }
4654
4655         return need_tlb_flush;
4656 }
4657
4658 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4659                                    const struct kvm_memory_slot *memslot)
4660 {
4661         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4662         spin_lock(&kvm->mmu_lock);
4663         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4664                          kvm_mmu_zap_collapsible_spte, true);
4665         spin_unlock(&kvm->mmu_lock);
4666 }
4667
4668 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4669                                    struct kvm_memory_slot *memslot)
4670 {
4671         bool flush;
4672
4673         spin_lock(&kvm->mmu_lock);
4674         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4675         spin_unlock(&kvm->mmu_lock);
4676
4677         lockdep_assert_held(&kvm->slots_lock);
4678
4679         /*
4680          * It's also safe to flush TLBs out of mmu lock here as currently this
4681          * function is only used for dirty logging, in which case flushing TLB
4682          * out of mmu lock also guarantees no dirty pages will be lost in
4683          * dirty_bitmap.
4684          */
4685         if (flush)
4686                 kvm_flush_remote_tlbs(kvm);
4687 }
4688 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4689
4690 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4691                                         struct kvm_memory_slot *memslot)
4692 {
4693         bool flush;
4694
4695         spin_lock(&kvm->mmu_lock);
4696         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4697                                         false);
4698         spin_unlock(&kvm->mmu_lock);
4699
4700         /* see kvm_mmu_slot_remove_write_access */
4701         lockdep_assert_held(&kvm->slots_lock);
4702
4703         if (flush)
4704                 kvm_flush_remote_tlbs(kvm);
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4707
4708 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4709                             struct kvm_memory_slot *memslot)
4710 {
4711         bool flush;
4712
4713         spin_lock(&kvm->mmu_lock);
4714         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4715         spin_unlock(&kvm->mmu_lock);
4716
4717         lockdep_assert_held(&kvm->slots_lock);
4718
4719         /* see kvm_mmu_slot_leaf_clear_dirty */
4720         if (flush)
4721                 kvm_flush_remote_tlbs(kvm);
4722 }
4723 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4724
4725 #define BATCH_ZAP_PAGES 10
4726 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4727 {
4728         struct kvm_mmu_page *sp, *node;
4729         int batch = 0;
4730
4731 restart:
4732         list_for_each_entry_safe_reverse(sp, node,
4733               &kvm->arch.active_mmu_pages, link) {
4734                 int ret;
4735
4736                 /*
4737                  * No obsolete page exists before new created page since
4738                  * active_mmu_pages is the FIFO list.
4739                  */
4740                 if (!is_obsolete_sp(kvm, sp))
4741                         break;
4742
4743                 /*
4744                  * Since we are reversely walking the list and the invalid
4745                  * list will be moved to the head, skip the invalid page
4746                  * can help us to avoid the infinity list walking.
4747                  */
4748                 if (sp->role.invalid)
4749                         continue;
4750
4751                 /*
4752                  * Need not flush tlb since we only zap the sp with invalid
4753                  * generation number.
4754                  */
4755                 if (batch >= BATCH_ZAP_PAGES &&
4756                       cond_resched_lock(&kvm->mmu_lock)) {
4757                         batch = 0;
4758                         goto restart;
4759                 }
4760
4761                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4762                                 &kvm->arch.zapped_obsolete_pages);
4763                 batch += ret;
4764
4765                 if (ret)
4766                         goto restart;
4767         }
4768
4769         /*
4770          * Should flush tlb before free page tables since lockless-walking
4771          * may use the pages.
4772          */
4773         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4774 }
4775
4776 /*
4777  * Fast invalidate all shadow pages and use lock-break technique
4778  * to zap obsolete pages.
4779  *
4780  * It's required when memslot is being deleted or VM is being
4781  * destroyed, in these cases, we should ensure that KVM MMU does
4782  * not use any resource of the being-deleted slot or all slots
4783  * after calling the function.
4784  */
4785 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4786 {
4787         spin_lock(&kvm->mmu_lock);
4788         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4789         kvm->arch.mmu_valid_gen++;
4790
4791         /*
4792          * Notify all vcpus to reload its shadow page table
4793          * and flush TLB. Then all vcpus will switch to new
4794          * shadow page table with the new mmu_valid_gen.
4795          *
4796          * Note: we should do this under the protection of
4797          * mmu-lock, otherwise, vcpu would purge shadow page
4798          * but miss tlb flush.
4799          */
4800         kvm_reload_remote_mmus(kvm);
4801
4802         kvm_zap_obsolete_pages(kvm);
4803         spin_unlock(&kvm->mmu_lock);
4804 }
4805
4806 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4807 {
4808         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4809 }
4810
4811 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4812 {
4813         /*
4814          * The very rare case: if the generation-number is round,
4815          * zap all shadow pages.
4816          */
4817         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4818                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4819                 kvm_mmu_invalidate_zap_all_pages(kvm);
4820         }
4821 }
4822
4823 static unsigned long
4824 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4825 {
4826         struct kvm *kvm;
4827         int nr_to_scan = sc->nr_to_scan;
4828         unsigned long freed = 0;
4829
4830         spin_lock(&kvm_lock);
4831
4832         list_for_each_entry(kvm, &vm_list, vm_list) {
4833                 int idx;
4834                 LIST_HEAD(invalid_list);
4835
4836                 /*
4837                  * Never scan more than sc->nr_to_scan VM instances.
4838                  * Will not hit this condition practically since we do not try
4839                  * to shrink more than one VM and it is very unlikely to see
4840                  * !n_used_mmu_pages so many times.
4841                  */
4842                 if (!nr_to_scan--)
4843                         break;
4844                 /*
4845                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4846                  * here. We may skip a VM instance errorneosly, but we do not
4847                  * want to shrink a VM that only started to populate its MMU
4848                  * anyway.
4849                  */
4850                 if (!kvm->arch.n_used_mmu_pages &&
4851                       !kvm_has_zapped_obsolete_pages(kvm))
4852                         continue;
4853
4854                 idx = srcu_read_lock(&kvm->srcu);
4855                 spin_lock(&kvm->mmu_lock);
4856
4857                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4858                         kvm_mmu_commit_zap_page(kvm,
4859                               &kvm->arch.zapped_obsolete_pages);
4860                         goto unlock;
4861                 }
4862
4863                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4864                         freed++;
4865                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4866
4867 unlock:
4868                 spin_unlock(&kvm->mmu_lock);
4869                 srcu_read_unlock(&kvm->srcu, idx);
4870
4871                 /*
4872                  * unfair on small ones
4873                  * per-vm shrinkers cry out
4874                  * sadness comes quickly
4875                  */
4876                 list_move_tail(&kvm->vm_list, &vm_list);
4877                 break;
4878         }
4879
4880         spin_unlock(&kvm_lock);
4881         return freed;
4882 }
4883
4884 static unsigned long
4885 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4886 {
4887         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4888 }
4889
4890 static struct shrinker mmu_shrinker = {
4891         .count_objects = mmu_shrink_count,
4892         .scan_objects = mmu_shrink_scan,
4893         .seeks = DEFAULT_SEEKS * 10,
4894 };
4895
4896 static void mmu_destroy_caches(void)
4897 {
4898         if (pte_list_desc_cache)
4899                 kmem_cache_destroy(pte_list_desc_cache);
4900         if (mmu_page_header_cache)
4901                 kmem_cache_destroy(mmu_page_header_cache);
4902 }
4903
4904 int kvm_mmu_module_init(void)
4905 {
4906         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4907                                             sizeof(struct pte_list_desc),
4908                                             0, 0, NULL);
4909         if (!pte_list_desc_cache)
4910                 goto nomem;
4911
4912         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4913                                                   sizeof(struct kvm_mmu_page),
4914                                                   0, 0, NULL);
4915         if (!mmu_page_header_cache)
4916                 goto nomem;
4917
4918         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4919                 goto nomem;
4920
4921         register_shrinker(&mmu_shrinker);
4922
4923         return 0;
4924
4925 nomem:
4926         mmu_destroy_caches();
4927         return -ENOMEM;
4928 }
4929
4930 /*
4931  * Caculate mmu pages needed for kvm.
4932  */
4933 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4934 {
4935         unsigned int nr_mmu_pages;
4936         unsigned int  nr_pages = 0;
4937         struct kvm_memslots *slots;
4938         struct kvm_memory_slot *memslot;
4939         int i;
4940
4941         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4942                 slots = __kvm_memslots(kvm, i);
4943
4944                 kvm_for_each_memslot(memslot, slots)
4945                         nr_pages += memslot->npages;
4946         }
4947
4948         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4949         nr_mmu_pages = max(nr_mmu_pages,
4950                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4951
4952         return nr_mmu_pages;
4953 }
4954
4955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4956 {
4957         kvm_mmu_unload(vcpu);
4958         free_mmu_pages(vcpu);
4959         mmu_free_memory_caches(vcpu);
4960 }
4961
4962 void kvm_mmu_module_exit(void)
4963 {
4964         mmu_destroy_caches();
4965         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4966         unregister_shrinker(&mmu_shrinker);
4967         mmu_audit_disable();
4968 }