GNU Linux-libre 5.15.137-gnu
[releases.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72         .set = set_nx_huge_pages,
73         .get = param_get_bool,
74 };
75
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77         .set = set_nx_huge_pages_recovery_ratio,
78         .get = param_get_uint,
79 };
80
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84                 &nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98
99 static int max_huge_page_level __read_mostly;
100 static int tdp_root_level __read_mostly;
101 static int max_tdp_level __read_mostly;
102
103 enum {
104         AUDIT_PRE_PAGE_FAULT,
105         AUDIT_POST_PAGE_FAULT,
106         AUDIT_PRE_PTE_WRITE,
107         AUDIT_POST_PTE_WRITE,
108         AUDIT_PRE_SYNC,
109         AUDIT_POST_SYNC
110 };
111
112 #ifdef MMU_DEBUG
113 bool dbg = 0;
114 module_param(dbg, bool, 0644);
115 #endif
116
117 #define PTE_PREFETCH_NUM                8
118
119 #define PT32_LEVEL_BITS 10
120
121 #define PT32_LEVEL_SHIFT(level) \
122                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123
124 #define PT32_LVL_OFFSET_MASK(level) \
125         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT32_LEVEL_BITS))) - 1))
127
128 #define PT32_INDEX(address, level)\
129         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137                                             * PT32_LEVEL_BITS))) - 1))
138
139 #include <trace/events/kvm.h>
140
141 /* make pte_list_desc fit well in cache lines */
142 #define PTE_LIST_EXT 14
143
144 /*
145  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
146  * at the start; then accessing it will only use one single cacheline for
147  * either full (entries==PTE_LIST_EXT) case or entries<=6.
148  */
149 struct pte_list_desc {
150         struct pte_list_desc *more;
151         /*
152          * Stores number of entries stored in the pte_list_desc.  No need to be
153          * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
154          */
155         u64 spte_count;
156         u64 *sptes[PTE_LIST_EXT];
157 };
158
159 struct kvm_shadow_walk_iterator {
160         u64 addr;
161         hpa_t shadow_addr;
162         u64 *sptep;
163         int level;
164         unsigned index;
165 };
166
167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
168         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
169                                          (_root), (_addr));                \
170              shadow_walk_okay(&(_walker));                                 \
171              shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
174         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
175              shadow_walk_okay(&(_walker));                      \
176              shadow_walk_next(&(_walker)))
177
178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
179         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
180              shadow_walk_okay(&(_walker)) &&                            \
181                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
182              __shadow_walk_next(&(_walker), spte))
183
184 static struct kmem_cache *pte_list_desc_cache;
185 struct kmem_cache *mmu_page_header_cache;
186 static struct percpu_counter kvm_total_used_mmu_pages;
187
188 static void mmu_spte_set(u64 *sptep, u64 spte);
189 static union kvm_mmu_page_role
190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191
192 struct kvm_mmu_role_regs {
193         const unsigned long cr0;
194         const unsigned long cr4;
195         const u64 efer;
196 };
197
198 #define CREATE_TRACE_POINTS
199 #include "mmutrace.h"
200
201 /*
202  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
203  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
204  * the single source of truth for the MMU's state.
205  */
206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 {                                                                       \
209         return !!(regs->reg & flag);                                    \
210 }
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
221
222 /*
223  * The MMU itself (with a valid role) is the single source of truth for the
224  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
225  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
226  * and the vCPU may be incorrect/irrelevant.
227  */
228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)        \
230 {                                                               \
231         return !!(mmu->mmu_role. base_or_ext . reg##_##name);   \
232 }
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
236 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
237 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
238 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
239 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
240 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
242
243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
244 {
245         struct kvm_mmu_role_regs regs = {
246                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
247                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
248                 .efer = vcpu->arch.efer,
249         };
250
251         return regs;
252 }
253
254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
255 {
256         if (!____is_cr0_pg(regs))
257                 return 0;
258         else if (____is_efer_lma(regs))
259                 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
260                                                PT64_ROOT_4LEVEL;
261         else if (____is_cr4_pae(regs))
262                 return PT32E_ROOT_LEVEL;
263         else
264                 return PT32_ROOT_LEVEL;
265 }
266
267 static inline bool kvm_available_flush_tlb_with_range(void)
268 {
269         return kvm_x86_ops.tlb_remote_flush_with_range;
270 }
271
272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
273                 struct kvm_tlb_range *range)
274 {
275         int ret = -ENOTSUPP;
276
277         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279
280         if (ret)
281                 kvm_flush_remote_tlbs(kvm);
282 }
283
284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285                 u64 start_gfn, u64 pages)
286 {
287         struct kvm_tlb_range range;
288
289         range.start_gfn = start_gfn;
290         range.pages = pages;
291
292         kvm_flush_remote_tlbs_with_range(kvm, &range);
293 }
294
295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
296                            unsigned int access)
297 {
298         u64 spte = make_mmio_spte(vcpu, gfn, access);
299
300         trace_mark_mmio_spte(sptep, gfn, spte);
301         mmu_spte_set(sptep, spte);
302 }
303
304 static gfn_t get_mmio_spte_gfn(u64 spte)
305 {
306         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307
308         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309                & shadow_nonpresent_or_rsvd_mask;
310
311         return gpa >> PAGE_SHIFT;
312 }
313
314 static unsigned get_mmio_spte_access(u64 spte)
315 {
316         return spte & shadow_mmio_access_mask;
317 }
318
319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320 {
321         u64 kvm_gen, spte_gen, gen;
322
323         gen = kvm_vcpu_memslots(vcpu)->generation;
324         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
325                 return false;
326
327         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328         spte_gen = get_mmio_spte_generation(spte);
329
330         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
331         return likely(kvm_gen == spte_gen);
332 }
333
334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
335                                   struct x86_exception *exception)
336 {
337         return gpa;
338 }
339
340 static int is_cpuid_PSE36(void)
341 {
342         return 1;
343 }
344
345 static gfn_t pse36_gfn_delta(u32 gpte)
346 {
347         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
348
349         return (gpte & PT32_DIR_PSE36_MASK) << shift;
350 }
351
352 #ifdef CONFIG_X86_64
353 static void __set_spte(u64 *sptep, u64 spte)
354 {
355         WRITE_ONCE(*sptep, spte);
356 }
357
358 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359 {
360         WRITE_ONCE(*sptep, spte);
361 }
362
363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365         return xchg(sptep, spte);
366 }
367
368 static u64 __get_spte_lockless(u64 *sptep)
369 {
370         return READ_ONCE(*sptep);
371 }
372 #else
373 union split_spte {
374         struct {
375                 u32 spte_low;
376                 u32 spte_high;
377         };
378         u64 spte;
379 };
380
381 static void count_spte_clear(u64 *sptep, u64 spte)
382 {
383         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
384
385         if (is_shadow_present_pte(spte))
386                 return;
387
388         /* Ensure the spte is completely set before we increase the count */
389         smp_wmb();
390         sp->clear_spte_count++;
391 }
392
393 static void __set_spte(u64 *sptep, u64 spte)
394 {
395         union split_spte *ssptep, sspte;
396
397         ssptep = (union split_spte *)sptep;
398         sspte = (union split_spte)spte;
399
400         ssptep->spte_high = sspte.spte_high;
401
402         /*
403          * If we map the spte from nonpresent to present, We should store
404          * the high bits firstly, then set present bit, so cpu can not
405          * fetch this spte while we are setting the spte.
406          */
407         smp_wmb();
408
409         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 }
411
412 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
413 {
414         union split_spte *ssptep, sspte;
415
416         ssptep = (union split_spte *)sptep;
417         sspte = (union split_spte)spte;
418
419         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420
421         /*
422          * If we map the spte from present to nonpresent, we should clear
423          * present bit firstly to avoid vcpu fetch the old high bits.
424          */
425         smp_wmb();
426
427         ssptep->spte_high = sspte.spte_high;
428         count_spte_clear(sptep, spte);
429 }
430
431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
432 {
433         union split_spte *ssptep, sspte, orig;
434
435         ssptep = (union split_spte *)sptep;
436         sspte = (union split_spte)spte;
437
438         /* xchg acts as a barrier before the setting of the high bits */
439         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440         orig.spte_high = ssptep->spte_high;
441         ssptep->spte_high = sspte.spte_high;
442         count_spte_clear(sptep, spte);
443
444         return orig.spte;
445 }
446
447 /*
448  * The idea using the light way get the spte on x86_32 guest is from
449  * gup_get_pte (mm/gup.c).
450  *
451  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
452  * coalesces them and we are running out of the MMU lock.  Therefore
453  * we need to protect against in-progress updates of the spte.
454  *
455  * Reading the spte while an update is in progress may get the old value
456  * for the high part of the spte.  The race is fine for a present->non-present
457  * change (because the high part of the spte is ignored for non-present spte),
458  * but for a present->present change we must reread the spte.
459  *
460  * All such changes are done in two steps (present->non-present and
461  * non-present->present), hence it is enough to count the number of
462  * present->non-present updates: if it changed while reading the spte,
463  * we might have hit the race.  This is done using clear_spte_count.
464  */
465 static u64 __get_spte_lockless(u64 *sptep)
466 {
467         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
468         union split_spte spte, *orig = (union split_spte *)sptep;
469         int count;
470
471 retry:
472         count = sp->clear_spte_count;
473         smp_rmb();
474
475         spte.spte_low = orig->spte_low;
476         smp_rmb();
477
478         spte.spte_high = orig->spte_high;
479         smp_rmb();
480
481         if (unlikely(spte.spte_low != orig->spte_low ||
482               count != sp->clear_spte_count))
483                 goto retry;
484
485         return spte.spte;
486 }
487 #endif
488
489 static bool spte_has_volatile_bits(u64 spte)
490 {
491         if (!is_shadow_present_pte(spte))
492                 return false;
493
494         /*
495          * Always atomically update spte if it can be updated
496          * out of mmu-lock, it can ensure dirty bit is not lost,
497          * also, it can help us to get a stable is_writable_pte()
498          * to ensure tlb flush is not missed.
499          */
500         if (spte_can_locklessly_be_made_writable(spte) ||
501             is_access_track_spte(spte))
502                 return true;
503
504         if (spte_ad_enabled(spte)) {
505                 if ((spte & shadow_accessed_mask) == 0 ||
506                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
507                         return true;
508         }
509
510         return false;
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /*
526  * Update the SPTE (excluding the PFN), but do not track changes in its
527  * accessed/dirty status.
528  */
529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530 {
531         u64 old_spte = *sptep;
532
533         WARN_ON(!is_shadow_present_pte(new_spte));
534
535         if (!is_shadow_present_pte(old_spte)) {
536                 mmu_spte_set(sptep, new_spte);
537                 return old_spte;
538         }
539
540         if (!spte_has_volatile_bits(old_spte))
541                 __update_clear_spte_fast(sptep, new_spte);
542         else
543                 old_spte = __update_clear_spte_slow(sptep, new_spte);
544
545         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
546
547         return old_spte;
548 }
549
550 /* Rules for using mmu_spte_update:
551  * Update the state bits, it means the mapped pfn is not changed.
552  *
553  * Whenever we overwrite a writable spte with a read-only one we
554  * should flush remote TLBs. Otherwise rmap_write_protect
555  * will find a read-only spte, even though the writable spte
556  * might be cached on a CPU's TLB, the return value indicates this
557  * case.
558  *
559  * Returns true if the TLB needs to be flushed
560  */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563         bool flush = false;
564         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
565
566         if (!is_shadow_present_pte(old_spte))
567                 return false;
568
569         /*
570          * For the spte updated out of mmu-lock is safe, since
571          * we always atomically update it, see the comments in
572          * spte_has_volatile_bits().
573          */
574         if (spte_can_locklessly_be_made_writable(old_spte) &&
575               !is_writable_pte(new_spte))
576                 flush = true;
577
578         /*
579          * Flush TLB when accessed/dirty states are changed in the page tables,
580          * to guarantee consistency between TLB and page tables.
581          */
582
583         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
584                 flush = true;
585                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586         }
587
588         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
589                 flush = true;
590                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591         }
592
593         return flush;
594 }
595
596 /*
597  * Rules for using mmu_spte_clear_track_bits:
598  * It sets the sptep from present to nonpresent, and track the
599  * state bits, it is used to clear the last level sptep.
600  * Returns the old PTE.
601  */
602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603 {
604         kvm_pfn_t pfn;
605         u64 old_spte = *sptep;
606         int level = sptep_to_sp(sptep)->role.level;
607
608         if (!spte_has_volatile_bits(old_spte))
609                 __update_clear_spte_fast(sptep, 0ull);
610         else
611                 old_spte = __update_clear_spte_slow(sptep, 0ull);
612
613         if (!is_shadow_present_pte(old_spte))
614                 return old_spte;
615
616         kvm_update_page_stats(kvm, level, -1);
617
618         pfn = spte_to_pfn(old_spte);
619
620         /*
621          * KVM does not hold the refcount of the page used by
622          * kvm mmu, before reclaiming the page, we should
623          * unmap it from mmu first.
624          */
625         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626
627         if (is_accessed_spte(old_spte))
628                 kvm_set_pfn_accessed(pfn);
629
630         if (is_dirty_spte(old_spte))
631                 kvm_set_pfn_dirty(pfn);
632
633         return old_spte;
634 }
635
636 /*
637  * Rules for using mmu_spte_clear_no_track:
638  * Directly clear spte without caring the state bits of sptep,
639  * it is used to set the upper level spte.
640  */
641 static void mmu_spte_clear_no_track(u64 *sptep)
642 {
643         __update_clear_spte_fast(sptep, 0ull);
644 }
645
646 static u64 mmu_spte_get_lockless(u64 *sptep)
647 {
648         return __get_spte_lockless(sptep);
649 }
650
651 /* Restore an acc-track PTE back to a regular PTE */
652 static u64 restore_acc_track_spte(u64 spte)
653 {
654         u64 new_spte = spte;
655         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
656                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657
658         WARN_ON_ONCE(spte_ad_enabled(spte));
659         WARN_ON_ONCE(!is_access_track_spte(spte));
660
661         new_spte &= ~shadow_acc_track_mask;
662         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
663                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664         new_spte |= saved_bits;
665
666         return new_spte;
667 }
668
669 /* Returns the Accessed status of the PTE and resets it at the same time. */
670 static bool mmu_spte_age(u64 *sptep)
671 {
672         u64 spte = mmu_spte_get_lockless(sptep);
673
674         if (!is_accessed_spte(spte))
675                 return false;
676
677         if (spte_ad_enabled(spte)) {
678                 clear_bit((ffs(shadow_accessed_mask) - 1),
679                           (unsigned long *)sptep);
680         } else {
681                 /*
682                  * Capture the dirty status of the page, so that it doesn't get
683                  * lost when the SPTE is marked for access tracking.
684                  */
685                 if (is_writable_pte(spte))
686                         kvm_set_pfn_dirty(spte_to_pfn(spte));
687
688                 spte = mark_spte_for_access_track(spte);
689                 mmu_spte_update_no_track(sptep, spte);
690         }
691
692         return true;
693 }
694
695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
696 {
697         if (is_tdp_mmu(vcpu->arch.mmu)) {
698                 kvm_tdp_mmu_walk_lockless_begin();
699         } else {
700                 /*
701                  * Prevent page table teardown by making any free-er wait during
702                  * kvm_flush_remote_tlbs() IPI to all active vcpus.
703                  */
704                 local_irq_disable();
705
706                 /*
707                  * Make sure a following spte read is not reordered ahead of the write
708                  * to vcpu->mode.
709                  */
710                 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
711         }
712 }
713
714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
715 {
716         if (is_tdp_mmu(vcpu->arch.mmu)) {
717                 kvm_tdp_mmu_walk_lockless_end();
718         } else {
719                 /*
720                  * Make sure the write to vcpu->mode is not reordered in front of
721                  * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
722                  * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
723                  */
724                 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
725                 local_irq_enable();
726         }
727 }
728
729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730 {
731         int r;
732
733         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736         if (r)
737                 return r;
738         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
739                                        PT64_ROOT_MAX_LEVEL);
740         if (r)
741                 return r;
742         if (maybe_indirect) {
743                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
744                                                PT64_ROOT_MAX_LEVEL);
745                 if (r)
746                         return r;
747         }
748         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
749                                           PT64_ROOT_MAX_LEVEL);
750 }
751
752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
753 {
754         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
755         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
756         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
757         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 }
759
760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761 {
762         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 }
764
765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766 {
767         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 }
769
770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
771 {
772         if (!sp->role.direct)
773                 return sp->gfns[index];
774
775         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
776 }
777
778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
779 {
780         if (!sp->role.direct) {
781                 sp->gfns[index] = gfn;
782                 return;
783         }
784
785         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
786                 pr_err_ratelimited("gfn mismatch under direct page %llx "
787                                    "(expected %llx, got %llx)\n",
788                                    sp->gfn,
789                                    kvm_mmu_page_get_gfn(sp, index), gfn);
790 }
791
792 /*
793  * Return the pointer to the large page information for a given gfn,
794  * handling slots that are not large page aligned.
795  */
796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797                 const struct kvm_memory_slot *slot, int level)
798 {
799         unsigned long idx;
800
801         idx = gfn_to_index(gfn, slot->base_gfn, level);
802         return &slot->arch.lpage_info[level - 2][idx];
803 }
804
805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806                                             gfn_t gfn, int count)
807 {
808         struct kvm_lpage_info *linfo;
809         int i;
810
811         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812                 linfo = lpage_info_slot(gfn, slot, i);
813                 linfo->disallow_lpage += count;
814                 WARN_ON(linfo->disallow_lpage < 0);
815         }
816 }
817
818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 {
820         update_gfn_disallow_lpage_count(slot, gfn, 1);
821 }
822
823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 {
825         update_gfn_disallow_lpage_count(slot, gfn, -1);
826 }
827
828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
829 {
830         struct kvm_memslots *slots;
831         struct kvm_memory_slot *slot;
832         gfn_t gfn;
833
834         kvm->arch.indirect_shadow_pages++;
835         gfn = sp->gfn;
836         slots = kvm_memslots_for_spte_role(kvm, sp->role);
837         slot = __gfn_to_memslot(slots, gfn);
838
839         /* the non-leaf shadow pages are keeping readonly. */
840         if (sp->role.level > PG_LEVEL_4K)
841                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
842                                                     KVM_PAGE_TRACK_WRITE);
843
844         kvm_mmu_gfn_disallow_lpage(slot, gfn);
845 }
846
847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
848 {
849         if (sp->lpage_disallowed)
850                 return;
851
852         ++kvm->stat.nx_lpage_splits;
853         list_add_tail(&sp->lpage_disallowed_link,
854                       &kvm->arch.lpage_disallowed_mmu_pages);
855         sp->lpage_disallowed = true;
856 }
857
858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
859 {
860         struct kvm_memslots *slots;
861         struct kvm_memory_slot *slot;
862         gfn_t gfn;
863
864         kvm->arch.indirect_shadow_pages--;
865         gfn = sp->gfn;
866         slots = kvm_memslots_for_spte_role(kvm, sp->role);
867         slot = __gfn_to_memslot(slots, gfn);
868         if (sp->role.level > PG_LEVEL_4K)
869                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
870                                                        KVM_PAGE_TRACK_WRITE);
871
872         kvm_mmu_gfn_allow_lpage(slot, gfn);
873 }
874
875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877         --kvm->stat.nx_lpage_splits;
878         sp->lpage_disallowed = false;
879         list_del(&sp->lpage_disallowed_link);
880 }
881
882 static struct kvm_memory_slot *
883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
884                             bool no_dirty_log)
885 {
886         struct kvm_memory_slot *slot;
887
888         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
890                 return NULL;
891         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892                 return NULL;
893
894         return slot;
895 }
896
897 /*
898  * About rmap_head encoding:
899  *
900  * If the bit zero of rmap_head->val is clear, then it points to the only spte
901  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902  * pte_list_desc containing more mappings.
903  */
904
905 /*
906  * Returns the number of pointers in the rmap chain, not counting the new one.
907  */
908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909                         struct kvm_rmap_head *rmap_head)
910 {
911         struct pte_list_desc *desc;
912         int count = 0;
913
914         if (!rmap_head->val) {
915                 rmap_printk("%p %llx 0->1\n", spte, *spte);
916                 rmap_head->val = (unsigned long)spte;
917         } else if (!(rmap_head->val & 1)) {
918                 rmap_printk("%p %llx 1->many\n", spte, *spte);
919                 desc = mmu_alloc_pte_list_desc(vcpu);
920                 desc->sptes[0] = (u64 *)rmap_head->val;
921                 desc->sptes[1] = spte;
922                 desc->spte_count = 2;
923                 rmap_head->val = (unsigned long)desc | 1;
924                 ++count;
925         } else {
926                 rmap_printk("%p %llx many->many\n", spte, *spte);
927                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928                 while (desc->spte_count == PTE_LIST_EXT) {
929                         count += PTE_LIST_EXT;
930                         if (!desc->more) {
931                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
932                                 desc = desc->more;
933                                 desc->spte_count = 0;
934                                 break;
935                         }
936                         desc = desc->more;
937                 }
938                 count += desc->spte_count;
939                 desc->sptes[desc->spte_count++] = spte;
940         }
941         return count;
942 }
943
944 static void
945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
946                            struct pte_list_desc *desc, int i,
947                            struct pte_list_desc *prev_desc)
948 {
949         int j = desc->spte_count - 1;
950
951         desc->sptes[i] = desc->sptes[j];
952         desc->sptes[j] = NULL;
953         desc->spte_count--;
954         if (desc->spte_count)
955                 return;
956         if (!prev_desc && !desc->more)
957                 rmap_head->val = 0;
958         else
959                 if (prev_desc)
960                         prev_desc->more = desc->more;
961                 else
962                         rmap_head->val = (unsigned long)desc->more | 1;
963         mmu_free_pte_list_desc(desc);
964 }
965
966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967 {
968         struct pte_list_desc *desc;
969         struct pte_list_desc *prev_desc;
970         int i;
971
972         if (!rmap_head->val) {
973                 pr_err("%s: %p 0->BUG\n", __func__, spte);
974                 BUG();
975         } else if (!(rmap_head->val & 1)) {
976                 rmap_printk("%p 1->0\n", spte);
977                 if ((u64 *)rmap_head->val != spte) {
978                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
979                         BUG();
980                 }
981                 rmap_head->val = 0;
982         } else {
983                 rmap_printk("%p many->many\n", spte);
984                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985                 prev_desc = NULL;
986                 while (desc) {
987                         for (i = 0; i < desc->spte_count; ++i) {
988                                 if (desc->sptes[i] == spte) {
989                                         pte_list_desc_remove_entry(rmap_head,
990                                                         desc, i, prev_desc);
991                                         return;
992                                 }
993                         }
994                         prev_desc = desc;
995                         desc = desc->more;
996                 }
997                 pr_err("%s: %p many->many\n", __func__, spte);
998                 BUG();
999         }
1000 }
1001
1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1003                             u64 *sptep)
1004 {
1005         mmu_spte_clear_track_bits(kvm, sptep);
1006         __pte_list_remove(sptep, rmap_head);
1007 }
1008
1009 /* Return true if rmap existed, false otherwise */
1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1011 {
1012         struct pte_list_desc *desc, *next;
1013         int i;
1014
1015         if (!rmap_head->val)
1016                 return false;
1017
1018         if (!(rmap_head->val & 1)) {
1019                 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1020                 goto out;
1021         }
1022
1023         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
1025         for (; desc; desc = next) {
1026                 for (i = 0; i < desc->spte_count; i++)
1027                         mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1028                 next = desc->more;
1029                 mmu_free_pte_list_desc(desc);
1030         }
1031 out:
1032         /* rmap_head is meaningless now, remember to reset it */
1033         rmap_head->val = 0;
1034         return true;
1035 }
1036
1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1038 {
1039         struct pte_list_desc *desc;
1040         unsigned int count = 0;
1041
1042         if (!rmap_head->val)
1043                 return 0;
1044         else if (!(rmap_head->val & 1))
1045                 return 1;
1046
1047         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1048
1049         while (desc) {
1050                 count += desc->spte_count;
1051                 desc = desc->more;
1052         }
1053
1054         return count;
1055 }
1056
1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1058                                          const struct kvm_memory_slot *slot)
1059 {
1060         unsigned long idx;
1061
1062         idx = gfn_to_index(gfn, slot->base_gfn, level);
1063         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 }
1065
1066 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1067 {
1068         struct kvm_mmu_memory_cache *mc;
1069
1070         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071         return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 }
1073
1074 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 {
1076         struct kvm_memslots *slots;
1077         struct kvm_memory_slot *slot;
1078         struct kvm_mmu_page *sp;
1079         gfn_t gfn;
1080         struct kvm_rmap_head *rmap_head;
1081
1082         sp = sptep_to_sp(spte);
1083         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084
1085         /*
1086          * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1087          * so we have to determine which memslots to use based on context
1088          * information in sp->role.
1089          */
1090         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1091
1092         slot = __gfn_to_memslot(slots, gfn);
1093         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1094
1095         __pte_list_remove(spte, rmap_head);
1096 }
1097
1098 /*
1099  * Used by the following functions to iterate through the sptes linked by a
1100  * rmap.  All fields are private and not assumed to be used outside.
1101  */
1102 struct rmap_iterator {
1103         /* private fields */
1104         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1105         int pos;                        /* index of the sptep */
1106 };
1107
1108 /*
1109  * Iteration must be started by this function.  This should also be used after
1110  * removing/dropping sptes from the rmap link because in such cases the
1111  * information in the iterator may not be valid.
1112  *
1113  * Returns sptep if found, NULL otherwise.
1114  */
1115 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1116                            struct rmap_iterator *iter)
1117 {
1118         u64 *sptep;
1119
1120         if (!rmap_head->val)
1121                 return NULL;
1122
1123         if (!(rmap_head->val & 1)) {
1124                 iter->desc = NULL;
1125                 sptep = (u64 *)rmap_head->val;
1126                 goto out;
1127         }
1128
1129         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1130         iter->pos = 0;
1131         sptep = iter->desc->sptes[iter->pos];
1132 out:
1133         BUG_ON(!is_shadow_present_pte(*sptep));
1134         return sptep;
1135 }
1136
1137 /*
1138  * Must be used with a valid iterator: e.g. after rmap_get_first().
1139  *
1140  * Returns sptep if found, NULL otherwise.
1141  */
1142 static u64 *rmap_get_next(struct rmap_iterator *iter)
1143 {
1144         u64 *sptep;
1145
1146         if (iter->desc) {
1147                 if (iter->pos < PTE_LIST_EXT - 1) {
1148                         ++iter->pos;
1149                         sptep = iter->desc->sptes[iter->pos];
1150                         if (sptep)
1151                                 goto out;
1152                 }
1153
1154                 iter->desc = iter->desc->more;
1155
1156                 if (iter->desc) {
1157                         iter->pos = 0;
1158                         /* desc->sptes[0] cannot be NULL */
1159                         sptep = iter->desc->sptes[iter->pos];
1160                         goto out;
1161                 }
1162         }
1163
1164         return NULL;
1165 out:
1166         BUG_ON(!is_shadow_present_pte(*sptep));
1167         return sptep;
1168 }
1169
1170 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1171         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1172              _spte_; _spte_ = rmap_get_next(_iter_))
1173
1174 static void drop_spte(struct kvm *kvm, u64 *sptep)
1175 {
1176         u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1177
1178         if (is_shadow_present_pte(old_spte))
1179                 rmap_remove(kvm, sptep);
1180 }
1181
1182
1183 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1184 {
1185         if (is_large_pte(*sptep)) {
1186                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1187                 drop_spte(kvm, sptep);
1188                 return true;
1189         }
1190
1191         return false;
1192 }
1193
1194 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1195 {
1196         if (__drop_large_spte(vcpu->kvm, sptep)) {
1197                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1198
1199                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1200                         KVM_PAGES_PER_HPAGE(sp->role.level));
1201         }
1202 }
1203
1204 /*
1205  * Write-protect on the specified @sptep, @pt_protect indicates whether
1206  * spte write-protection is caused by protecting shadow page table.
1207  *
1208  * Note: write protection is difference between dirty logging and spte
1209  * protection:
1210  * - for dirty logging, the spte can be set to writable at anytime if
1211  *   its dirty bitmap is properly set.
1212  * - for spte protection, the spte can be writable only after unsync-ing
1213  *   shadow page.
1214  *
1215  * Return true if tlb need be flushed.
1216  */
1217 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1218 {
1219         u64 spte = *sptep;
1220
1221         if (!is_writable_pte(spte) &&
1222               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1223                 return false;
1224
1225         rmap_printk("spte %p %llx\n", sptep, *sptep);
1226
1227         if (pt_protect)
1228                 spte &= ~shadow_mmu_writable_mask;
1229         spte = spte & ~PT_WRITABLE_MASK;
1230
1231         return mmu_spte_update(sptep, spte);
1232 }
1233
1234 static bool __rmap_write_protect(struct kvm *kvm,
1235                                  struct kvm_rmap_head *rmap_head,
1236                                  bool pt_protect)
1237 {
1238         u64 *sptep;
1239         struct rmap_iterator iter;
1240         bool flush = false;
1241
1242         for_each_rmap_spte(rmap_head, &iter, sptep)
1243                 flush |= spte_write_protect(sptep, pt_protect);
1244
1245         return flush;
1246 }
1247
1248 static bool spte_clear_dirty(u64 *sptep)
1249 {
1250         u64 spte = *sptep;
1251
1252         rmap_printk("spte %p %llx\n", sptep, *sptep);
1253
1254         MMU_WARN_ON(!spte_ad_enabled(spte));
1255         spte &= ~shadow_dirty_mask;
1256         return mmu_spte_update(sptep, spte);
1257 }
1258
1259 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1260 {
1261         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1262                                                (unsigned long *)sptep);
1263         if (was_writable && !spte_ad_enabled(*sptep))
1264                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1265
1266         return was_writable;
1267 }
1268
1269 /*
1270  * Gets the GFN ready for another round of dirty logging by clearing the
1271  *      - D bit on ad-enabled SPTEs, and
1272  *      - W bit on ad-disabled SPTEs.
1273  * Returns true iff any D or W bits were cleared.
1274  */
1275 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1276                                const struct kvm_memory_slot *slot)
1277 {
1278         u64 *sptep;
1279         struct rmap_iterator iter;
1280         bool flush = false;
1281
1282         for_each_rmap_spte(rmap_head, &iter, sptep)
1283                 if (spte_ad_need_write_protect(*sptep))
1284                         flush |= spte_wrprot_for_clear_dirty(sptep);
1285                 else
1286                         flush |= spte_clear_dirty(sptep);
1287
1288         return flush;
1289 }
1290
1291 /**
1292  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1293  * @kvm: kvm instance
1294  * @slot: slot to protect
1295  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1296  * @mask: indicates which pages we should protect
1297  *
1298  * Used when we do not need to care about huge page mappings.
1299  */
1300 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1301                                      struct kvm_memory_slot *slot,
1302                                      gfn_t gfn_offset, unsigned long mask)
1303 {
1304         struct kvm_rmap_head *rmap_head;
1305
1306         if (is_tdp_mmu_enabled(kvm))
1307                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1308                                 slot->base_gfn + gfn_offset, mask, true);
1309
1310         if (!kvm_memslots_have_rmaps(kvm))
1311                 return;
1312
1313         while (mask) {
1314                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315                                         PG_LEVEL_4K, slot);
1316                 __rmap_write_protect(kvm, rmap_head, false);
1317
1318                 /* clear the first set bit */
1319                 mask &= mask - 1;
1320         }
1321 }
1322
1323 /**
1324  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1325  * protect the page if the D-bit isn't supported.
1326  * @kvm: kvm instance
1327  * @slot: slot to clear D-bit
1328  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1329  * @mask: indicates which pages we should clear D-bit
1330  *
1331  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1332  */
1333 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1334                                          struct kvm_memory_slot *slot,
1335                                          gfn_t gfn_offset, unsigned long mask)
1336 {
1337         struct kvm_rmap_head *rmap_head;
1338
1339         if (is_tdp_mmu_enabled(kvm))
1340                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1341                                 slot->base_gfn + gfn_offset, mask, false);
1342
1343         if (!kvm_memslots_have_rmaps(kvm))
1344                 return;
1345
1346         while (mask) {
1347                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1348                                         PG_LEVEL_4K, slot);
1349                 __rmap_clear_dirty(kvm, rmap_head, slot);
1350
1351                 /* clear the first set bit */
1352                 mask &= mask - 1;
1353         }
1354 }
1355
1356 /**
1357  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1358  * PT level pages.
1359  *
1360  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1361  * enable dirty logging for them.
1362  *
1363  * We need to care about huge page mappings: e.g. during dirty logging we may
1364  * have such mappings.
1365  */
1366 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1367                                 struct kvm_memory_slot *slot,
1368                                 gfn_t gfn_offset, unsigned long mask)
1369 {
1370         /*
1371          * Huge pages are NOT write protected when we start dirty logging in
1372          * initially-all-set mode; must write protect them here so that they
1373          * are split to 4K on the first write.
1374          *
1375          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1376          * of memslot has no such restriction, so the range can cross two large
1377          * pages.
1378          */
1379         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1380                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1381                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1382
1383                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1384
1385                 /* Cross two large pages? */
1386                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1387                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1388                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1389                                                        PG_LEVEL_2M);
1390         }
1391
1392         /* Now handle 4K PTEs.  */
1393         if (kvm_x86_ops.cpu_dirty_log_size)
1394                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1395         else
1396                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1397 }
1398
1399 int kvm_cpu_dirty_log_size(void)
1400 {
1401         return kvm_x86_ops.cpu_dirty_log_size;
1402 }
1403
1404 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1405                                     struct kvm_memory_slot *slot, u64 gfn,
1406                                     int min_level)
1407 {
1408         struct kvm_rmap_head *rmap_head;
1409         int i;
1410         bool write_protected = false;
1411
1412         if (kvm_memslots_have_rmaps(kvm)) {
1413                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1414                         rmap_head = gfn_to_rmap(gfn, i, slot);
1415                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1416                 }
1417         }
1418
1419         if (is_tdp_mmu_enabled(kvm))
1420                 write_protected |=
1421                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1422
1423         return write_protected;
1424 }
1425
1426 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1427 {
1428         struct kvm_memory_slot *slot;
1429
1430         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1431         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1432 }
1433
1434 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1435                           const struct kvm_memory_slot *slot)
1436 {
1437         return pte_list_destroy(kvm, rmap_head);
1438 }
1439
1440 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1441                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1442                             pte_t unused)
1443 {
1444         return kvm_zap_rmapp(kvm, rmap_head, slot);
1445 }
1446
1447 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1448                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1449                               pte_t pte)
1450 {
1451         u64 *sptep;
1452         struct rmap_iterator iter;
1453         int need_flush = 0;
1454         u64 new_spte;
1455         kvm_pfn_t new_pfn;
1456
1457         WARN_ON(pte_huge(pte));
1458         new_pfn = pte_pfn(pte);
1459
1460 restart:
1461         for_each_rmap_spte(rmap_head, &iter, sptep) {
1462                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1463                             sptep, *sptep, gfn, level);
1464
1465                 need_flush = 1;
1466
1467                 if (pte_write(pte)) {
1468                         pte_list_remove(kvm, rmap_head, sptep);
1469                         goto restart;
1470                 } else {
1471                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1472                                         *sptep, new_pfn);
1473
1474                         mmu_spte_clear_track_bits(kvm, sptep);
1475                         mmu_spte_set(sptep, new_spte);
1476                 }
1477         }
1478
1479         if (need_flush && kvm_available_flush_tlb_with_range()) {
1480                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1481                 return 0;
1482         }
1483
1484         return need_flush;
1485 }
1486
1487 struct slot_rmap_walk_iterator {
1488         /* input fields. */
1489         const struct kvm_memory_slot *slot;
1490         gfn_t start_gfn;
1491         gfn_t end_gfn;
1492         int start_level;
1493         int end_level;
1494
1495         /* output fields. */
1496         gfn_t gfn;
1497         struct kvm_rmap_head *rmap;
1498         int level;
1499
1500         /* private field. */
1501         struct kvm_rmap_head *end_rmap;
1502 };
1503
1504 static void
1505 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1506 {
1507         iterator->level = level;
1508         iterator->gfn = iterator->start_gfn;
1509         iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1510         iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1511 }
1512
1513 static void
1514 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1515                     const struct kvm_memory_slot *slot, int start_level,
1516                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1517 {
1518         iterator->slot = slot;
1519         iterator->start_level = start_level;
1520         iterator->end_level = end_level;
1521         iterator->start_gfn = start_gfn;
1522         iterator->end_gfn = end_gfn;
1523
1524         rmap_walk_init_level(iterator, iterator->start_level);
1525 }
1526
1527 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1528 {
1529         return !!iterator->rmap;
1530 }
1531
1532 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1533 {
1534         if (++iterator->rmap <= iterator->end_rmap) {
1535                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1536                 return;
1537         }
1538
1539         if (++iterator->level > iterator->end_level) {
1540                 iterator->rmap = NULL;
1541                 return;
1542         }
1543
1544         rmap_walk_init_level(iterator, iterator->level);
1545 }
1546
1547 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1548            _start_gfn, _end_gfn, _iter_)                                \
1549         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1550                                  _end_level_, _start_gfn, _end_gfn);    \
1551              slot_rmap_walk_okay(_iter_);                               \
1552              slot_rmap_walk_next(_iter_))
1553
1554 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555                                struct kvm_memory_slot *slot, gfn_t gfn,
1556                                int level, pte_t pte);
1557
1558 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1559                                                  struct kvm_gfn_range *range,
1560                                                  rmap_handler_t handler)
1561 {
1562         struct slot_rmap_walk_iterator iterator;
1563         bool ret = false;
1564
1565         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1566                                  range->start, range->end - 1, &iterator)
1567                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1568                                iterator.level, range->pte);
1569
1570         return ret;
1571 }
1572
1573 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1574 {
1575         bool flush = false;
1576
1577         if (kvm_memslots_have_rmaps(kvm))
1578                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1579
1580         if (is_tdp_mmu_enabled(kvm))
1581                 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1582
1583         return flush;
1584 }
1585
1586 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1587 {
1588         bool flush = false;
1589
1590         if (kvm_memslots_have_rmaps(kvm))
1591                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1592
1593         if (is_tdp_mmu_enabled(kvm))
1594                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1595
1596         return flush;
1597 }
1598
1599 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1600                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1601                           pte_t unused)
1602 {
1603         u64 *sptep;
1604         struct rmap_iterator iter;
1605         int young = 0;
1606
1607         for_each_rmap_spte(rmap_head, &iter, sptep)
1608                 young |= mmu_spte_age(sptep);
1609
1610         return young;
1611 }
1612
1613 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614                                struct kvm_memory_slot *slot, gfn_t gfn,
1615                                int level, pte_t unused)
1616 {
1617         u64 *sptep;
1618         struct rmap_iterator iter;
1619
1620         for_each_rmap_spte(rmap_head, &iter, sptep)
1621                 if (is_accessed_spte(*sptep))
1622                         return 1;
1623         return 0;
1624 }
1625
1626 #define RMAP_RECYCLE_THRESHOLD 1000
1627
1628 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1629 {
1630         struct kvm_memory_slot *slot;
1631         struct kvm_mmu_page *sp;
1632         struct kvm_rmap_head *rmap_head;
1633         int rmap_count;
1634
1635         sp = sptep_to_sp(spte);
1636         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1637         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1638         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1639         rmap_count = pte_list_add(vcpu, spte, rmap_head);
1640
1641         if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1642                 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1643                 kvm_flush_remote_tlbs_with_address(
1644                                 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1645         }
1646 }
1647
1648 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1649 {
1650         bool young = false;
1651
1652         if (kvm_memslots_have_rmaps(kvm))
1653                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1654
1655         if (is_tdp_mmu_enabled(kvm))
1656                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1657
1658         return young;
1659 }
1660
1661 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1662 {
1663         bool young = false;
1664
1665         if (kvm_memslots_have_rmaps(kvm))
1666                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1667
1668         if (is_tdp_mmu_enabled(kvm))
1669                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1670
1671         return young;
1672 }
1673
1674 #ifdef MMU_DEBUG
1675 static int is_empty_shadow_page(u64 *spt)
1676 {
1677         u64 *pos;
1678         u64 *end;
1679
1680         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1681                 if (is_shadow_present_pte(*pos)) {
1682                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1683                                pos, *pos);
1684                         return 0;
1685                 }
1686         return 1;
1687 }
1688 #endif
1689
1690 /*
1691  * This value is the sum of all of the kvm instances's
1692  * kvm->arch.n_used_mmu_pages values.  We need a global,
1693  * aggregate version in order to make the slab shrinker
1694  * faster
1695  */
1696 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1697 {
1698         kvm->arch.n_used_mmu_pages += nr;
1699         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1700 }
1701
1702 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1703 {
1704         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1705         hlist_del(&sp->hash_link);
1706         list_del(&sp->link);
1707         free_page((unsigned long)sp->spt);
1708         if (!sp->role.direct)
1709                 free_page((unsigned long)sp->gfns);
1710         kmem_cache_free(mmu_page_header_cache, sp);
1711 }
1712
1713 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1714 {
1715         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1716 }
1717
1718 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1719                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1720 {
1721         if (!parent_pte)
1722                 return;
1723
1724         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1725 }
1726
1727 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1728                                        u64 *parent_pte)
1729 {
1730         __pte_list_remove(parent_pte, &sp->parent_ptes);
1731 }
1732
1733 static void drop_parent_pte(struct kvm_mmu_page *sp,
1734                             u64 *parent_pte)
1735 {
1736         mmu_page_remove_parent_pte(sp, parent_pte);
1737         mmu_spte_clear_no_track(parent_pte);
1738 }
1739
1740 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1741 {
1742         struct kvm_mmu_page *sp;
1743
1744         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1745         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1746         if (!direct)
1747                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1748         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1749
1750         /*
1751          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1752          * depends on valid pages being added to the head of the list.  See
1753          * comments in kvm_zap_obsolete_pages().
1754          */
1755         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1756         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1757         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1758         return sp;
1759 }
1760
1761 static void mark_unsync(u64 *spte);
1762 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1763 {
1764         u64 *sptep;
1765         struct rmap_iterator iter;
1766
1767         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1768                 mark_unsync(sptep);
1769         }
1770 }
1771
1772 static void mark_unsync(u64 *spte)
1773 {
1774         struct kvm_mmu_page *sp;
1775         unsigned int index;
1776
1777         sp = sptep_to_sp(spte);
1778         index = spte - sp->spt;
1779         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1780                 return;
1781         if (sp->unsync_children++)
1782                 return;
1783         kvm_mmu_mark_parents_unsync(sp);
1784 }
1785
1786 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1787                                struct kvm_mmu_page *sp)
1788 {
1789         return 0;
1790 }
1791
1792 #define KVM_PAGE_ARRAY_NR 16
1793
1794 struct kvm_mmu_pages {
1795         struct mmu_page_and_offset {
1796                 struct kvm_mmu_page *sp;
1797                 unsigned int idx;
1798         } page[KVM_PAGE_ARRAY_NR];
1799         unsigned int nr;
1800 };
1801
1802 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1803                          int idx)
1804 {
1805         int i;
1806
1807         if (sp->unsync)
1808                 for (i=0; i < pvec->nr; i++)
1809                         if (pvec->page[i].sp == sp)
1810                                 return 0;
1811
1812         pvec->page[pvec->nr].sp = sp;
1813         pvec->page[pvec->nr].idx = idx;
1814         pvec->nr++;
1815         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1816 }
1817
1818 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1819 {
1820         --sp->unsync_children;
1821         WARN_ON((int)sp->unsync_children < 0);
1822         __clear_bit(idx, sp->unsync_child_bitmap);
1823 }
1824
1825 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1826                            struct kvm_mmu_pages *pvec)
1827 {
1828         int i, ret, nr_unsync_leaf = 0;
1829
1830         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1831                 struct kvm_mmu_page *child;
1832                 u64 ent = sp->spt[i];
1833
1834                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1835                         clear_unsync_child_bit(sp, i);
1836                         continue;
1837                 }
1838
1839                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1840
1841                 if (child->unsync_children) {
1842                         if (mmu_pages_add(pvec, child, i))
1843                                 return -ENOSPC;
1844
1845                         ret = __mmu_unsync_walk(child, pvec);
1846                         if (!ret) {
1847                                 clear_unsync_child_bit(sp, i);
1848                                 continue;
1849                         } else if (ret > 0) {
1850                                 nr_unsync_leaf += ret;
1851                         } else
1852                                 return ret;
1853                 } else if (child->unsync) {
1854                         nr_unsync_leaf++;
1855                         if (mmu_pages_add(pvec, child, i))
1856                                 return -ENOSPC;
1857                 } else
1858                         clear_unsync_child_bit(sp, i);
1859         }
1860
1861         return nr_unsync_leaf;
1862 }
1863
1864 #define INVALID_INDEX (-1)
1865
1866 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1867                            struct kvm_mmu_pages *pvec)
1868 {
1869         pvec->nr = 0;
1870         if (!sp->unsync_children)
1871                 return 0;
1872
1873         mmu_pages_add(pvec, sp, INVALID_INDEX);
1874         return __mmu_unsync_walk(sp, pvec);
1875 }
1876
1877 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1878 {
1879         WARN_ON(!sp->unsync);
1880         trace_kvm_mmu_sync_page(sp);
1881         sp->unsync = 0;
1882         --kvm->stat.mmu_unsync;
1883 }
1884
1885 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1886                                      struct list_head *invalid_list);
1887 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1888                                     struct list_head *invalid_list);
1889
1890 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1891         hlist_for_each_entry(_sp, _list, hash_link)                     \
1892                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1893                 } else
1894
1895 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1896         for_each_valid_sp(_kvm, _sp,                                    \
1897           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1898                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1899
1900 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1901                          struct list_head *invalid_list)
1902 {
1903         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1904                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1905                 return false;
1906         }
1907
1908         return true;
1909 }
1910
1911 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1912                                         struct list_head *invalid_list,
1913                                         bool remote_flush)
1914 {
1915         if (!remote_flush && list_empty(invalid_list))
1916                 return false;
1917
1918         if (!list_empty(invalid_list))
1919                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1920         else
1921                 kvm_flush_remote_tlbs(kvm);
1922         return true;
1923 }
1924
1925 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1926                                  struct list_head *invalid_list,
1927                                  bool remote_flush, bool local_flush)
1928 {
1929         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1930                 return;
1931
1932         if (local_flush)
1933                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1934 }
1935
1936 #ifdef CONFIG_KVM_MMU_AUDIT
1937 #include "mmu_audit.c"
1938 #else
1939 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1940 static void mmu_audit_disable(void) { }
1941 #endif
1942
1943 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1944 {
1945         return sp->role.invalid ||
1946                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1947 }
1948
1949 struct mmu_page_path {
1950         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1951         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1952 };
1953
1954 #define for_each_sp(pvec, sp, parents, i)                       \
1955                 for (i = mmu_pages_first(&pvec, &parents);      \
1956                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1957                         i = mmu_pages_next(&pvec, &parents, i))
1958
1959 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1960                           struct mmu_page_path *parents,
1961                           int i)
1962 {
1963         int n;
1964
1965         for (n = i+1; n < pvec->nr; n++) {
1966                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1967                 unsigned idx = pvec->page[n].idx;
1968                 int level = sp->role.level;
1969
1970                 parents->idx[level-1] = idx;
1971                 if (level == PG_LEVEL_4K)
1972                         break;
1973
1974                 parents->parent[level-2] = sp;
1975         }
1976
1977         return n;
1978 }
1979
1980 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1981                            struct mmu_page_path *parents)
1982 {
1983         struct kvm_mmu_page *sp;
1984         int level;
1985
1986         if (pvec->nr == 0)
1987                 return 0;
1988
1989         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1990
1991         sp = pvec->page[0].sp;
1992         level = sp->role.level;
1993         WARN_ON(level == PG_LEVEL_4K);
1994
1995         parents->parent[level-2] = sp;
1996
1997         /* Also set up a sentinel.  Further entries in pvec are all
1998          * children of sp, so this element is never overwritten.
1999          */
2000         parents->parent[level-1] = NULL;
2001         return mmu_pages_next(pvec, parents, 0);
2002 }
2003
2004 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2005 {
2006         struct kvm_mmu_page *sp;
2007         unsigned int level = 0;
2008
2009         do {
2010                 unsigned int idx = parents->idx[level];
2011                 sp = parents->parent[level];
2012                 if (!sp)
2013                         return;
2014
2015                 WARN_ON(idx == INVALID_INDEX);
2016                 clear_unsync_child_bit(sp, idx);
2017                 level++;
2018         } while (!sp->unsync_children);
2019 }
2020
2021 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2022                              struct kvm_mmu_page *parent, bool can_yield)
2023 {
2024         int i;
2025         struct kvm_mmu_page *sp;
2026         struct mmu_page_path parents;
2027         struct kvm_mmu_pages pages;
2028         LIST_HEAD(invalid_list);
2029         bool flush = false;
2030
2031         while (mmu_unsync_walk(parent, &pages)) {
2032                 bool protected = false;
2033
2034                 for_each_sp(pages, sp, parents, i)
2035                         protected |= rmap_write_protect(vcpu, sp->gfn);
2036
2037                 if (protected) {
2038                         kvm_flush_remote_tlbs(vcpu->kvm);
2039                         flush = false;
2040                 }
2041
2042                 for_each_sp(pages, sp, parents, i) {
2043                         kvm_unlink_unsync_page(vcpu->kvm, sp);
2044                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2045                         mmu_pages_clear_parents(&parents);
2046                 }
2047                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2048                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2049                         if (!can_yield) {
2050                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2051                                 return -EINTR;
2052                         }
2053
2054                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2055                         flush = false;
2056                 }
2057         }
2058
2059         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2060         return 0;
2061 }
2062
2063 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2064 {
2065         atomic_set(&sp->write_flooding_count,  0);
2066 }
2067
2068 static void clear_sp_write_flooding_count(u64 *spte)
2069 {
2070         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2071 }
2072
2073 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2074                                              gfn_t gfn,
2075                                              gva_t gaddr,
2076                                              unsigned level,
2077                                              int direct,
2078                                              unsigned int access)
2079 {
2080         bool direct_mmu = vcpu->arch.mmu->direct_map;
2081         union kvm_mmu_page_role role;
2082         struct hlist_head *sp_list;
2083         unsigned quadrant;
2084         struct kvm_mmu_page *sp;
2085         int collisions = 0;
2086         LIST_HEAD(invalid_list);
2087
2088         role = vcpu->arch.mmu->mmu_role.base;
2089         role.level = level;
2090         role.direct = direct;
2091         if (role.direct)
2092                 role.gpte_is_8_bytes = true;
2093         role.access = access;
2094         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2095                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2096                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2097                 role.quadrant = quadrant;
2098         }
2099
2100         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2101         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2102                 if (sp->gfn != gfn) {
2103                         collisions++;
2104                         continue;
2105                 }
2106
2107                 if (sp->role.word != role.word) {
2108                         /*
2109                          * If the guest is creating an upper-level page, zap
2110                          * unsync pages for the same gfn.  While it's possible
2111                          * the guest is using recursive page tables, in all
2112                          * likelihood the guest has stopped using the unsync
2113                          * page and is installing a completely unrelated page.
2114                          * Unsync pages must not be left as is, because the new
2115                          * upper-level page will be write-protected.
2116                          */
2117                         if (level > PG_LEVEL_4K && sp->unsync)
2118                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2119                                                          &invalid_list);
2120                         continue;
2121                 }
2122
2123                 if (direct_mmu)
2124                         goto trace_get_page;
2125
2126                 if (sp->unsync) {
2127                         /*
2128                          * The page is good, but is stale.  kvm_sync_page does
2129                          * get the latest guest state, but (unlike mmu_unsync_children)
2130                          * it doesn't write-protect the page or mark it synchronized!
2131                          * This way the validity of the mapping is ensured, but the
2132                          * overhead of write protection is not incurred until the
2133                          * guest invalidates the TLB mapping.  This allows multiple
2134                          * SPs for a single gfn to be unsync.
2135                          *
2136                          * If the sync fails, the page is zapped.  If so, break
2137                          * in order to rebuild it.
2138                          */
2139                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2140                                 break;
2141
2142                         WARN_ON(!list_empty(&invalid_list));
2143                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2144                 }
2145
2146                 __clear_sp_write_flooding_count(sp);
2147
2148 trace_get_page:
2149                 trace_kvm_mmu_get_page(sp, false);
2150                 goto out;
2151         }
2152
2153         ++vcpu->kvm->stat.mmu_cache_miss;
2154
2155         sp = kvm_mmu_alloc_page(vcpu, direct);
2156
2157         sp->gfn = gfn;
2158         sp->role = role;
2159         hlist_add_head(&sp->hash_link, sp_list);
2160         if (!direct) {
2161                 account_shadowed(vcpu->kvm, sp);
2162                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2163                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2164         }
2165         trace_kvm_mmu_get_page(sp, true);
2166 out:
2167         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2168
2169         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2170                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2171         return sp;
2172 }
2173
2174 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2175                                         struct kvm_vcpu *vcpu, hpa_t root,
2176                                         u64 addr)
2177 {
2178         iterator->addr = addr;
2179         iterator->shadow_addr = root;
2180         iterator->level = vcpu->arch.mmu->shadow_root_level;
2181
2182         if (iterator->level >= PT64_ROOT_4LEVEL &&
2183             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2184             !vcpu->arch.mmu->direct_map)
2185                 iterator->level = PT32E_ROOT_LEVEL;
2186
2187         if (iterator->level == PT32E_ROOT_LEVEL) {
2188                 /*
2189                  * prev_root is currently only used for 64-bit hosts. So only
2190                  * the active root_hpa is valid here.
2191                  */
2192                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2193
2194                 iterator->shadow_addr
2195                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2196                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2197                 --iterator->level;
2198                 if (!iterator->shadow_addr)
2199                         iterator->level = 0;
2200         }
2201 }
2202
2203 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2204                              struct kvm_vcpu *vcpu, u64 addr)
2205 {
2206         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2207                                     addr);
2208 }
2209
2210 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2211 {
2212         if (iterator->level < PG_LEVEL_4K)
2213                 return false;
2214
2215         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2216         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2217         return true;
2218 }
2219
2220 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2221                                u64 spte)
2222 {
2223         if (is_last_spte(spte, iterator->level)) {
2224                 iterator->level = 0;
2225                 return;
2226         }
2227
2228         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2229         --iterator->level;
2230 }
2231
2232 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2233 {
2234         __shadow_walk_next(iterator, *iterator->sptep);
2235 }
2236
2237 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2238                              struct kvm_mmu_page *sp)
2239 {
2240         u64 spte;
2241
2242         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2243
2244         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2245
2246         mmu_spte_set(sptep, spte);
2247
2248         mmu_page_add_parent_pte(vcpu, sp, sptep);
2249
2250         if (sp->unsync_children || sp->unsync)
2251                 mark_unsync(sptep);
2252 }
2253
2254 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2255                                    unsigned direct_access)
2256 {
2257         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2258                 struct kvm_mmu_page *child;
2259
2260                 /*
2261                  * For the direct sp, if the guest pte's dirty bit
2262                  * changed form clean to dirty, it will corrupt the
2263                  * sp's access: allow writable in the read-only sp,
2264                  * so we should update the spte at this point to get
2265                  * a new sp with the correct access.
2266                  */
2267                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2268                 if (child->role.access == direct_access)
2269                         return;
2270
2271                 drop_parent_pte(child, sptep);
2272                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2273         }
2274 }
2275
2276 /* Returns the number of zapped non-leaf child shadow pages. */
2277 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2278                             u64 *spte, struct list_head *invalid_list)
2279 {
2280         u64 pte;
2281         struct kvm_mmu_page *child;
2282
2283         pte = *spte;
2284         if (is_shadow_present_pte(pte)) {
2285                 if (is_last_spte(pte, sp->role.level)) {
2286                         drop_spte(kvm, spte);
2287                 } else {
2288                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2289                         drop_parent_pte(child, spte);
2290
2291                         /*
2292                          * Recursively zap nested TDP SPs, parentless SPs are
2293                          * unlikely to be used again in the near future.  This
2294                          * avoids retaining a large number of stale nested SPs.
2295                          */
2296                         if (tdp_enabled && invalid_list &&
2297                             child->role.guest_mode && !child->parent_ptes.val)
2298                                 return kvm_mmu_prepare_zap_page(kvm, child,
2299                                                                 invalid_list);
2300                 }
2301         } else if (is_mmio_spte(pte)) {
2302                 mmu_spte_clear_no_track(spte);
2303         }
2304         return 0;
2305 }
2306
2307 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2308                                         struct kvm_mmu_page *sp,
2309                                         struct list_head *invalid_list)
2310 {
2311         int zapped = 0;
2312         unsigned i;
2313
2314         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2315                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2316
2317         return zapped;
2318 }
2319
2320 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2321 {
2322         u64 *sptep;
2323         struct rmap_iterator iter;
2324
2325         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2326                 drop_parent_pte(sp, sptep);
2327 }
2328
2329 static int mmu_zap_unsync_children(struct kvm *kvm,
2330                                    struct kvm_mmu_page *parent,
2331                                    struct list_head *invalid_list)
2332 {
2333         int i, zapped = 0;
2334         struct mmu_page_path parents;
2335         struct kvm_mmu_pages pages;
2336
2337         if (parent->role.level == PG_LEVEL_4K)
2338                 return 0;
2339
2340         while (mmu_unsync_walk(parent, &pages)) {
2341                 struct kvm_mmu_page *sp;
2342
2343                 for_each_sp(pages, sp, parents, i) {
2344                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2345                         mmu_pages_clear_parents(&parents);
2346                         zapped++;
2347                 }
2348         }
2349
2350         return zapped;
2351 }
2352
2353 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2354                                        struct kvm_mmu_page *sp,
2355                                        struct list_head *invalid_list,
2356                                        int *nr_zapped)
2357 {
2358         bool list_unstable;
2359
2360         lockdep_assert_held_write(&kvm->mmu_lock);
2361         trace_kvm_mmu_prepare_zap_page(sp);
2362         ++kvm->stat.mmu_shadow_zapped;
2363         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2364         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2365         kvm_mmu_unlink_parents(kvm, sp);
2366
2367         /* Zapping children means active_mmu_pages has become unstable. */
2368         list_unstable = *nr_zapped;
2369
2370         if (!sp->role.invalid && !sp->role.direct)
2371                 unaccount_shadowed(kvm, sp);
2372
2373         if (sp->unsync)
2374                 kvm_unlink_unsync_page(kvm, sp);
2375         if (!sp->root_count) {
2376                 /* Count self */
2377                 (*nr_zapped)++;
2378
2379                 /*
2380                  * Already invalid pages (previously active roots) are not on
2381                  * the active page list.  See list_del() in the "else" case of
2382                  * !sp->root_count.
2383                  */
2384                 if (sp->role.invalid)
2385                         list_add(&sp->link, invalid_list);
2386                 else
2387                         list_move(&sp->link, invalid_list);
2388                 kvm_mod_used_mmu_pages(kvm, -1);
2389         } else {
2390                 /*
2391                  * Remove the active root from the active page list, the root
2392                  * will be explicitly freed when the root_count hits zero.
2393                  */
2394                 list_del(&sp->link);
2395
2396                 /*
2397                  * Obsolete pages cannot be used on any vCPUs, see the comment
2398                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2399                  * treats invalid shadow pages as being obsolete.
2400                  */
2401                 if (!is_obsolete_sp(kvm, sp))
2402                         kvm_reload_remote_mmus(kvm);
2403         }
2404
2405         if (sp->lpage_disallowed)
2406                 unaccount_huge_nx_page(kvm, sp);
2407
2408         sp->role.invalid = 1;
2409         return list_unstable;
2410 }
2411
2412 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2413                                      struct list_head *invalid_list)
2414 {
2415         int nr_zapped;
2416
2417         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2418         return nr_zapped;
2419 }
2420
2421 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2422                                     struct list_head *invalid_list)
2423 {
2424         struct kvm_mmu_page *sp, *nsp;
2425
2426         if (list_empty(invalid_list))
2427                 return;
2428
2429         /*
2430          * We need to make sure everyone sees our modifications to
2431          * the page tables and see changes to vcpu->mode here. The barrier
2432          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2433          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2434          *
2435          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2436          * guest mode and/or lockless shadow page table walks.
2437          */
2438         kvm_flush_remote_tlbs(kvm);
2439
2440         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2441                 WARN_ON(!sp->role.invalid || sp->root_count);
2442                 kvm_mmu_free_page(sp);
2443         }
2444 }
2445
2446 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2447                                                   unsigned long nr_to_zap)
2448 {
2449         unsigned long total_zapped = 0;
2450         struct kvm_mmu_page *sp, *tmp;
2451         LIST_HEAD(invalid_list);
2452         bool unstable;
2453         int nr_zapped;
2454
2455         if (list_empty(&kvm->arch.active_mmu_pages))
2456                 return 0;
2457
2458 restart:
2459         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2460                 /*
2461                  * Don't zap active root pages, the page itself can't be freed
2462                  * and zapping it will just force vCPUs to realloc and reload.
2463                  */
2464                 if (sp->root_count)
2465                         continue;
2466
2467                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2468                                                       &nr_zapped);
2469                 total_zapped += nr_zapped;
2470                 if (total_zapped >= nr_to_zap)
2471                         break;
2472
2473                 if (unstable)
2474                         goto restart;
2475         }
2476
2477         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2478
2479         kvm->stat.mmu_recycled += total_zapped;
2480         return total_zapped;
2481 }
2482
2483 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2484 {
2485         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2486                 return kvm->arch.n_max_mmu_pages -
2487                         kvm->arch.n_used_mmu_pages;
2488
2489         return 0;
2490 }
2491
2492 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2493 {
2494         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2495
2496         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2497                 return 0;
2498
2499         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2500
2501         /*
2502          * Note, this check is intentionally soft, it only guarantees that one
2503          * page is available, while the caller may end up allocating as many as
2504          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2505          * exceeding the (arbitrary by default) limit will not harm the host,
2506          * being too aggressive may unnecessarily kill the guest, and getting an
2507          * exact count is far more trouble than it's worth, especially in the
2508          * page fault paths.
2509          */
2510         if (!kvm_mmu_available_pages(vcpu->kvm))
2511                 return -ENOSPC;
2512         return 0;
2513 }
2514
2515 /*
2516  * Changing the number of mmu pages allocated to the vm
2517  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2518  */
2519 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2520 {
2521         write_lock(&kvm->mmu_lock);
2522
2523         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2524                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2525                                                   goal_nr_mmu_pages);
2526
2527                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2528         }
2529
2530         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2531
2532         write_unlock(&kvm->mmu_lock);
2533 }
2534
2535 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2536 {
2537         struct kvm_mmu_page *sp;
2538         LIST_HEAD(invalid_list);
2539         int r;
2540
2541         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2542         r = 0;
2543         write_lock(&kvm->mmu_lock);
2544         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2545                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2546                          sp->role.word);
2547                 r = 1;
2548                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2549         }
2550         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2551         write_unlock(&kvm->mmu_lock);
2552
2553         return r;
2554 }
2555
2556 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2557 {
2558         gpa_t gpa;
2559         int r;
2560
2561         if (vcpu->arch.mmu->direct_map)
2562                 return 0;
2563
2564         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2565
2566         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2567
2568         return r;
2569 }
2570
2571 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2572 {
2573         trace_kvm_mmu_unsync_page(sp);
2574         ++vcpu->kvm->stat.mmu_unsync;
2575         sp->unsync = 1;
2576
2577         kvm_mmu_mark_parents_unsync(sp);
2578 }
2579
2580 /*
2581  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2582  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2583  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2584  * be write-protected.
2585  */
2586 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2587 {
2588         struct kvm_mmu_page *sp;
2589         bool locked = false;
2590
2591         /*
2592          * Force write-protection if the page is being tracked.  Note, the page
2593          * track machinery is used to write-protect upper-level shadow pages,
2594          * i.e. this guards the role.level == 4K assertion below!
2595          */
2596         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2597                 return -EPERM;
2598
2599         /*
2600          * The page is not write-tracked, mark existing shadow pages unsync
2601          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2602          * that case, KVM must complete emulation of the guest TLB flush before
2603          * allowing shadow pages to become unsync (writable by the guest).
2604          */
2605         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2606                 if (!can_unsync)
2607                         return -EPERM;
2608
2609                 if (sp->unsync)
2610                         continue;
2611
2612                 /*
2613                  * TDP MMU page faults require an additional spinlock as they
2614                  * run with mmu_lock held for read, not write, and the unsync
2615                  * logic is not thread safe.  Take the spinklock regardless of
2616                  * the MMU type to avoid extra conditionals/parameters, there's
2617                  * no meaningful penalty if mmu_lock is held for write.
2618                  */
2619                 if (!locked) {
2620                         locked = true;
2621                         spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2622
2623                         /*
2624                          * Recheck after taking the spinlock, a different vCPU
2625                          * may have since marked the page unsync.  A false
2626                          * positive on the unprotected check above is not
2627                          * possible as clearing sp->unsync _must_ hold mmu_lock
2628                          * for write, i.e. unsync cannot transition from 0->1
2629                          * while this CPU holds mmu_lock for read (or write).
2630                          */
2631                         if (READ_ONCE(sp->unsync))
2632                                 continue;
2633                 }
2634
2635                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2636                 kvm_unsync_page(vcpu, sp);
2637         }
2638         if (locked)
2639                 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2640
2641         /*
2642          * We need to ensure that the marking of unsync pages is visible
2643          * before the SPTE is updated to allow writes because
2644          * kvm_mmu_sync_roots() checks the unsync flags without holding
2645          * the MMU lock and so can race with this. If the SPTE was updated
2646          * before the page had been marked as unsync-ed, something like the
2647          * following could happen:
2648          *
2649          * CPU 1                    CPU 2
2650          * ---------------------------------------------------------------------
2651          * 1.2 Host updates SPTE
2652          *     to be writable
2653          *                      2.1 Guest writes a GPTE for GVA X.
2654          *                          (GPTE being in the guest page table shadowed
2655          *                           by the SP from CPU 1.)
2656          *                          This reads SPTE during the page table walk.
2657          *                          Since SPTE.W is read as 1, there is no
2658          *                          fault.
2659          *
2660          *                      2.2 Guest issues TLB flush.
2661          *                          That causes a VM Exit.
2662          *
2663          *                      2.3 Walking of unsync pages sees sp->unsync is
2664          *                          false and skips the page.
2665          *
2666          *                      2.4 Guest accesses GVA X.
2667          *                          Since the mapping in the SP was not updated,
2668          *                          so the old mapping for GVA X incorrectly
2669          *                          gets used.
2670          * 1.1 Host marks SP
2671          *     as unsync
2672          *     (sp->unsync = true)
2673          *
2674          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2675          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2676          * pairs with this write barrier.
2677          */
2678         smp_wmb();
2679
2680         return 0;
2681 }
2682
2683 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2684                     unsigned int pte_access, int level,
2685                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2686                     bool can_unsync, bool host_writable)
2687 {
2688         u64 spte;
2689         struct kvm_mmu_page *sp;
2690         int ret;
2691
2692         sp = sptep_to_sp(sptep);
2693
2694         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2695                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2696
2697         if (spte & PT_WRITABLE_MASK)
2698                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2699
2700         if (*sptep == spte)
2701                 ret |= SET_SPTE_SPURIOUS;
2702         else if (mmu_spte_update(sptep, spte))
2703                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2704         return ret;
2705 }
2706
2707 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2708                         unsigned int pte_access, bool write_fault, int level,
2709                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2710                         bool host_writable)
2711 {
2712         int was_rmapped = 0;
2713         int set_spte_ret;
2714         int ret = RET_PF_FIXED;
2715         bool flush = false;
2716
2717         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2718                  *sptep, write_fault, gfn);
2719
2720         if (unlikely(is_noslot_pfn(pfn))) {
2721                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2722                 return RET_PF_EMULATE;
2723         }
2724
2725         if (is_shadow_present_pte(*sptep)) {
2726                 /*
2727                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2728                  * the parent of the now unreachable PTE.
2729                  */
2730                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2731                         struct kvm_mmu_page *child;
2732                         u64 pte = *sptep;
2733
2734                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2735                         drop_parent_pte(child, sptep);
2736                         flush = true;
2737                 } else if (pfn != spte_to_pfn(*sptep)) {
2738                         pgprintk("hfn old %llx new %llx\n",
2739                                  spte_to_pfn(*sptep), pfn);
2740                         drop_spte(vcpu->kvm, sptep);
2741                         flush = true;
2742                 } else
2743                         was_rmapped = 1;
2744         }
2745
2746         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2747                                 speculative, true, host_writable);
2748         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2749                 if (write_fault)
2750                         ret = RET_PF_EMULATE;
2751                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2752         }
2753
2754         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2755                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2756                                 KVM_PAGES_PER_HPAGE(level));
2757
2758         /*
2759          * The fault is fully spurious if and only if the new SPTE and old SPTE
2760          * are identical, and emulation is not required.
2761          */
2762         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2763                 WARN_ON_ONCE(!was_rmapped);
2764                 return RET_PF_SPURIOUS;
2765         }
2766
2767         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2768         trace_kvm_mmu_set_spte(level, gfn, sptep);
2769
2770         if (!was_rmapped) {
2771                 kvm_update_page_stats(vcpu->kvm, level, 1);
2772                 rmap_add(vcpu, sptep, gfn);
2773         }
2774
2775         return ret;
2776 }
2777
2778 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2779                                      bool no_dirty_log)
2780 {
2781         struct kvm_memory_slot *slot;
2782
2783         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2784         if (!slot)
2785                 return KVM_PFN_ERR_FAULT;
2786
2787         return gfn_to_pfn_memslot_atomic(slot, gfn);
2788 }
2789
2790 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2791                                     struct kvm_mmu_page *sp,
2792                                     u64 *start, u64 *end)
2793 {
2794         struct page *pages[PTE_PREFETCH_NUM];
2795         struct kvm_memory_slot *slot;
2796         unsigned int access = sp->role.access;
2797         int i, ret;
2798         gfn_t gfn;
2799
2800         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2801         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2802         if (!slot)
2803                 return -1;
2804
2805         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2806         if (ret <= 0)
2807                 return -1;
2808
2809         for (i = 0; i < ret; i++, gfn++, start++) {
2810                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2811                              page_to_pfn(pages[i]), true, true);
2812                 put_page(pages[i]);
2813         }
2814
2815         return 0;
2816 }
2817
2818 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2819                                   struct kvm_mmu_page *sp, u64 *sptep)
2820 {
2821         u64 *spte, *start = NULL;
2822         int i;
2823
2824         WARN_ON(!sp->role.direct);
2825
2826         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2827         spte = sp->spt + i;
2828
2829         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2830                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2831                         if (!start)
2832                                 continue;
2833                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2834                                 break;
2835                         start = NULL;
2836                 } else if (!start)
2837                         start = spte;
2838         }
2839 }
2840
2841 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2842 {
2843         struct kvm_mmu_page *sp;
2844
2845         sp = sptep_to_sp(sptep);
2846
2847         /*
2848          * Without accessed bits, there's no way to distinguish between
2849          * actually accessed translations and prefetched, so disable pte
2850          * prefetch if accessed bits aren't available.
2851          */
2852         if (sp_ad_disabled(sp))
2853                 return;
2854
2855         if (sp->role.level > PG_LEVEL_4K)
2856                 return;
2857
2858         /*
2859          * If addresses are being invalidated, skip prefetching to avoid
2860          * accidentally prefetching those addresses.
2861          */
2862         if (unlikely(vcpu->kvm->mmu_notifier_count))
2863                 return;
2864
2865         __direct_pte_prefetch(vcpu, sp, sptep);
2866 }
2867
2868 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2869                                   const struct kvm_memory_slot *slot)
2870 {
2871         unsigned long hva;
2872         pte_t *pte;
2873         int level;
2874
2875         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2876                 return PG_LEVEL_4K;
2877
2878         /*
2879          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2880          * is not solely for performance, it's also necessary to avoid the
2881          * "writable" check in __gfn_to_hva_many(), which will always fail on
2882          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2883          * page fault steps have already verified the guest isn't writing a
2884          * read-only memslot.
2885          */
2886         hva = __gfn_to_hva_memslot(slot, gfn);
2887
2888         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2889         if (unlikely(!pte))
2890                 return PG_LEVEL_4K;
2891
2892         return level;
2893 }
2894
2895 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2896                               const struct kvm_memory_slot *slot, gfn_t gfn,
2897                               kvm_pfn_t pfn, int max_level)
2898 {
2899         struct kvm_lpage_info *linfo;
2900         int host_level;
2901
2902         max_level = min(max_level, max_huge_page_level);
2903         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2904                 linfo = lpage_info_slot(gfn, slot, max_level);
2905                 if (!linfo->disallow_lpage)
2906                         break;
2907         }
2908
2909         if (max_level == PG_LEVEL_4K)
2910                 return PG_LEVEL_4K;
2911
2912         host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2913         return min(host_level, max_level);
2914 }
2915
2916 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2917                             int max_level, kvm_pfn_t *pfnp,
2918                             bool huge_page_disallowed, int *req_level)
2919 {
2920         struct kvm_memory_slot *slot;
2921         kvm_pfn_t pfn = *pfnp;
2922         kvm_pfn_t mask;
2923         int level;
2924
2925         *req_level = PG_LEVEL_4K;
2926
2927         if (unlikely(max_level == PG_LEVEL_4K))
2928                 return PG_LEVEL_4K;
2929
2930         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2931                 return PG_LEVEL_4K;
2932
2933         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2934         if (!slot)
2935                 return PG_LEVEL_4K;
2936
2937         /*
2938          * Enforce the iTLB multihit workaround after capturing the requested
2939          * level, which will be used to do precise, accurate accounting.
2940          */
2941         *req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2942         if (level == PG_LEVEL_4K || huge_page_disallowed)
2943                 return PG_LEVEL_4K;
2944
2945         /*
2946          * mmu_notifier_retry() was successful and mmu_lock is held, so
2947          * the pmd can't be split from under us.
2948          */
2949         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2950         VM_BUG_ON((gfn & mask) != (pfn & mask));
2951         *pfnp = pfn & ~mask;
2952
2953         return level;
2954 }
2955
2956 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2957                                 kvm_pfn_t *pfnp, int *goal_levelp)
2958 {
2959         int level = *goal_levelp;
2960
2961         if (cur_level == level && level > PG_LEVEL_4K &&
2962             is_shadow_present_pte(spte) &&
2963             !is_large_pte(spte)) {
2964                 /*
2965                  * A small SPTE exists for this pfn, but FNAME(fetch)
2966                  * and __direct_map would like to create a large PTE
2967                  * instead: just force them to go down another level,
2968                  * patching back for them into pfn the next 9 bits of
2969                  * the address.
2970                  */
2971                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2972                                 KVM_PAGES_PER_HPAGE(level - 1);
2973                 *pfnp |= gfn & page_mask;
2974                 (*goal_levelp)--;
2975         }
2976 }
2977
2978 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2979                         int map_writable, int max_level, kvm_pfn_t pfn,
2980                         bool prefault, bool is_tdp)
2981 {
2982         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2983         bool write = error_code & PFERR_WRITE_MASK;
2984         bool exec = error_code & PFERR_FETCH_MASK;
2985         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2986         struct kvm_shadow_walk_iterator it;
2987         struct kvm_mmu_page *sp;
2988         int level, req_level, ret;
2989         gfn_t gfn = gpa >> PAGE_SHIFT;
2990         gfn_t base_gfn = gfn;
2991
2992         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2993                                         huge_page_disallowed, &req_level);
2994
2995         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2996         for_each_shadow_entry(vcpu, gpa, it) {
2997                 /*
2998                  * We cannot overwrite existing page tables with an NX
2999                  * large page, as the leaf could be executable.
3000                  */
3001                 if (nx_huge_page_workaround_enabled)
3002                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
3003                                                    &pfn, &level);
3004
3005                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3006                 if (it.level == level)
3007                         break;
3008
3009                 drop_large_spte(vcpu, it.sptep);
3010                 if (is_shadow_present_pte(*it.sptep))
3011                         continue;
3012
3013                 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3014                                       it.level - 1, true, ACC_ALL);
3015
3016                 link_shadow_page(vcpu, it.sptep, sp);
3017                 if (is_tdp && huge_page_disallowed &&
3018                     req_level >= it.level)
3019                         account_huge_nx_page(vcpu->kvm, sp);
3020         }
3021
3022         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3023                            write, level, base_gfn, pfn, prefault,
3024                            map_writable);
3025         if (ret == RET_PF_SPURIOUS)
3026                 return ret;
3027
3028         direct_pte_prefetch(vcpu, it.sptep);
3029         ++vcpu->stat.pf_fixed;
3030         return ret;
3031 }
3032
3033 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3034 {
3035         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3036 }
3037
3038 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3039 {
3040         /*
3041          * Do not cache the mmio info caused by writing the readonly gfn
3042          * into the spte otherwise read access on readonly gfn also can
3043          * caused mmio page fault and treat it as mmio access.
3044          */
3045         if (pfn == KVM_PFN_ERR_RO_FAULT)
3046                 return RET_PF_EMULATE;
3047
3048         if (pfn == KVM_PFN_ERR_HWPOISON) {
3049                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3050                 return RET_PF_RETRY;
3051         }
3052
3053         return -EFAULT;
3054 }
3055
3056 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3057                                 kvm_pfn_t pfn, unsigned int access,
3058                                 int *ret_val)
3059 {
3060         /* The pfn is invalid, report the error! */
3061         if (unlikely(is_error_pfn(pfn))) {
3062                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3063                 return true;
3064         }
3065
3066         if (unlikely(is_noslot_pfn(pfn))) {
3067                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3068                                      access & shadow_mmio_access_mask);
3069                 /*
3070                  * If MMIO caching is disabled, emulate immediately without
3071                  * touching the shadow page tables as attempting to install an
3072                  * MMIO SPTE will just be an expensive nop.
3073                  */
3074                 if (unlikely(!shadow_mmio_value)) {
3075                         *ret_val = RET_PF_EMULATE;
3076                         return true;
3077                 }
3078         }
3079
3080         return false;
3081 }
3082
3083 static bool page_fault_can_be_fast(u32 error_code)
3084 {
3085         /*
3086          * Do not fix the mmio spte with invalid generation number which
3087          * need to be updated by slow page fault path.
3088          */
3089         if (unlikely(error_code & PFERR_RSVD_MASK))
3090                 return false;
3091
3092         /* See if the page fault is due to an NX violation */
3093         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3094                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3095                 return false;
3096
3097         /*
3098          * #PF can be fast if:
3099          * 1. The shadow page table entry is not present, which could mean that
3100          *    the fault is potentially caused by access tracking (if enabled).
3101          * 2. The shadow page table entry is present and the fault
3102          *    is caused by write-protect, that means we just need change the W
3103          *    bit of the spte which can be done out of mmu-lock.
3104          *
3105          * However, if access tracking is disabled we know that a non-present
3106          * page must be a genuine page fault where we have to create a new SPTE.
3107          * So, if access tracking is disabled, we return true only for write
3108          * accesses to a present page.
3109          */
3110
3111         return shadow_acc_track_mask != 0 ||
3112                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3113                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3114 }
3115
3116 /*
3117  * Returns true if the SPTE was fixed successfully. Otherwise,
3118  * someone else modified the SPTE from its original value.
3119  */
3120 static bool
3121 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3122                         u64 *sptep, u64 old_spte, u64 new_spte)
3123 {
3124         gfn_t gfn;
3125
3126         WARN_ON(!sp->role.direct);
3127
3128         /*
3129          * Theoretically we could also set dirty bit (and flush TLB) here in
3130          * order to eliminate unnecessary PML logging. See comments in
3131          * set_spte. But fast_page_fault is very unlikely to happen with PML
3132          * enabled, so we do not do this. This might result in the same GPA
3133          * to be logged in PML buffer again when the write really happens, and
3134          * eventually to be called by mark_page_dirty twice. But it's also no
3135          * harm. This also avoids the TLB flush needed after setting dirty bit
3136          * so non-PML cases won't be impacted.
3137          *
3138          * Compare with set_spte where instead shadow_dirty_mask is set.
3139          */
3140         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3141                 return false;
3142
3143         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3144                 /*
3145                  * The gfn of direct spte is stable since it is
3146                  * calculated by sp->gfn.
3147                  */
3148                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3149                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3150         }
3151
3152         return true;
3153 }
3154
3155 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3156 {
3157         if (fault_err_code & PFERR_FETCH_MASK)
3158                 return is_executable_pte(spte);
3159
3160         if (fault_err_code & PFERR_WRITE_MASK)
3161                 return is_writable_pte(spte);
3162
3163         /* Fault was on Read access */
3164         return spte & PT_PRESENT_MASK;
3165 }
3166
3167 /*
3168  * Returns the last level spte pointer of the shadow page walk for the given
3169  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3170  * walk could be performed, returns NULL and *spte does not contain valid data.
3171  *
3172  * Contract:
3173  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3174  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3175  */
3176 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3177 {
3178         struct kvm_shadow_walk_iterator iterator;
3179         u64 old_spte;
3180         u64 *sptep = NULL;
3181
3182         for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3183                 sptep = iterator.sptep;
3184                 *spte = old_spte;
3185
3186                 if (!is_shadow_present_pte(old_spte))
3187                         break;
3188         }
3189
3190         return sptep;
3191 }
3192
3193 /*
3194  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3195  */
3196 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3197 {
3198         struct kvm_mmu_page *sp;
3199         int ret = RET_PF_INVALID;
3200         u64 spte = 0ull;
3201         u64 *sptep = NULL;
3202         uint retry_count = 0;
3203
3204         if (!page_fault_can_be_fast(error_code))
3205                 return ret;
3206
3207         walk_shadow_page_lockless_begin(vcpu);
3208
3209         do {
3210                 u64 new_spte;
3211
3212                 if (is_tdp_mmu(vcpu->arch.mmu))
3213                         sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
3214                 else
3215                         sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3216
3217                 if (!is_shadow_present_pte(spte))
3218                         break;
3219
3220                 sp = sptep_to_sp(sptep);
3221                 if (!is_last_spte(spte, sp->role.level))
3222                         break;
3223
3224                 /*
3225                  * Check whether the memory access that caused the fault would
3226                  * still cause it if it were to be performed right now. If not,
3227                  * then this is a spurious fault caused by TLB lazily flushed,
3228                  * or some other CPU has already fixed the PTE after the
3229                  * current CPU took the fault.
3230                  *
3231                  * Need not check the access of upper level table entries since
3232                  * they are always ACC_ALL.
3233                  */
3234                 if (is_access_allowed(error_code, spte)) {
3235                         ret = RET_PF_SPURIOUS;
3236                         break;
3237                 }
3238
3239                 new_spte = spte;
3240
3241                 if (is_access_track_spte(spte))
3242                         new_spte = restore_acc_track_spte(new_spte);
3243
3244                 /*
3245                  * Currently, to simplify the code, write-protection can
3246                  * be removed in the fast path only if the SPTE was
3247                  * write-protected for dirty-logging or access tracking.
3248                  */
3249                 if ((error_code & PFERR_WRITE_MASK) &&
3250                     spte_can_locklessly_be_made_writable(spte)) {
3251                         new_spte |= PT_WRITABLE_MASK;
3252
3253                         /*
3254                          * Do not fix write-permission on the large spte.  Since
3255                          * we only dirty the first page into the dirty-bitmap in
3256                          * fast_pf_fix_direct_spte(), other pages are missed
3257                          * if its slot has dirty logging enabled.
3258                          *
3259                          * Instead, we let the slow page fault path create a
3260                          * normal spte to fix the access.
3261                          *
3262                          * See the comments in kvm_arch_commit_memory_region().
3263                          */
3264                         if (sp->role.level > PG_LEVEL_4K)
3265                                 break;
3266                 }
3267
3268                 /* Verify that the fault can be handled in the fast path */
3269                 if (new_spte == spte ||
3270                     !is_access_allowed(error_code, new_spte))
3271                         break;
3272
3273                 /*
3274                  * Currently, fast page fault only works for direct mapping
3275                  * since the gfn is not stable for indirect shadow page. See
3276                  * Documentation/virt/kvm/locking.rst to get more detail.
3277                  */
3278                 if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3279                         ret = RET_PF_FIXED;
3280                         break;
3281                 }
3282
3283                 if (++retry_count > 4) {
3284                         printk_once(KERN_WARNING
3285                                 "kvm: Fast #PF retrying more than 4 times.\n");
3286                         break;
3287                 }
3288
3289         } while (true);
3290
3291         trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3292         walk_shadow_page_lockless_end(vcpu);
3293
3294         return ret;
3295 }
3296
3297 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3298                                struct list_head *invalid_list)
3299 {
3300         struct kvm_mmu_page *sp;
3301
3302         if (!VALID_PAGE(*root_hpa))
3303                 return;
3304
3305         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3306         if (WARN_ON(!sp))
3307                 return;
3308
3309         if (is_tdp_mmu_page(sp))
3310                 kvm_tdp_mmu_put_root(kvm, sp, false);
3311         else if (!--sp->root_count && sp->role.invalid)
3312                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3313
3314         *root_hpa = INVALID_PAGE;
3315 }
3316
3317 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3318 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3319                         ulong roots_to_free)
3320 {
3321         struct kvm *kvm = vcpu->kvm;
3322         int i;
3323         LIST_HEAD(invalid_list);
3324         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3325
3326         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3327
3328         /* Before acquiring the MMU lock, see if we need to do any real work. */
3329         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3330                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3331                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3332                             VALID_PAGE(mmu->prev_roots[i].hpa))
3333                                 break;
3334
3335                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3336                         return;
3337         }
3338
3339         write_lock(&kvm->mmu_lock);
3340
3341         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3342                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3343                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3344                                            &invalid_list);
3345
3346         if (free_active_root) {
3347                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3348                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3349                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3350                 } else if (mmu->pae_root) {
3351                         for (i = 0; i < 4; ++i) {
3352                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3353                                         continue;
3354
3355                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3356                                                    &invalid_list);
3357                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3358                         }
3359                 }
3360                 mmu->root_hpa = INVALID_PAGE;
3361                 mmu->root_pgd = 0;
3362         }
3363
3364         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3365         write_unlock(&kvm->mmu_lock);
3366 }
3367 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3368
3369 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3370 {
3371         unsigned long roots_to_free = 0;
3372         hpa_t root_hpa;
3373         int i;
3374
3375         /*
3376          * This should not be called while L2 is active, L2 can't invalidate
3377          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3378          */
3379         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3380
3381         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3382                 root_hpa = mmu->prev_roots[i].hpa;
3383                 if (!VALID_PAGE(root_hpa))
3384                         continue;
3385
3386                 if (!to_shadow_page(root_hpa) ||
3387                         to_shadow_page(root_hpa)->role.guest_mode)
3388                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3389         }
3390
3391         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3392 }
3393 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3394
3395
3396 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3397 {
3398         int ret = 0;
3399
3400         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3401                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3402                 ret = 1;
3403         }
3404
3405         return ret;
3406 }
3407
3408 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3409                             u8 level, bool direct)
3410 {
3411         struct kvm_mmu_page *sp;
3412
3413         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3414         ++sp->root_count;
3415
3416         return __pa(sp->spt);
3417 }
3418
3419 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3420 {
3421         struct kvm_mmu *mmu = vcpu->arch.mmu;
3422         u8 shadow_root_level = mmu->shadow_root_level;
3423         hpa_t root;
3424         unsigned i;
3425         int r;
3426
3427         write_lock(&vcpu->kvm->mmu_lock);
3428         r = make_mmu_pages_available(vcpu);
3429         if (r < 0)
3430                 goto out_unlock;
3431
3432         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3433                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3434                 mmu->root_hpa = root;
3435         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3436                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3437                 mmu->root_hpa = root;
3438         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3439                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3440                         r = -EIO;
3441                         goto out_unlock;
3442                 }
3443
3444                 for (i = 0; i < 4; ++i) {
3445                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3446
3447                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3448                                               i << 30, PT32_ROOT_LEVEL, true);
3449                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3450                                            shadow_me_mask;
3451                 }
3452                 mmu->root_hpa = __pa(mmu->pae_root);
3453         } else {
3454                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3455                 r = -EIO;
3456                 goto out_unlock;
3457         }
3458
3459         /* root_pgd is ignored for direct MMUs. */
3460         mmu->root_pgd = 0;
3461 out_unlock:
3462         write_unlock(&vcpu->kvm->mmu_lock);
3463         return r;
3464 }
3465
3466 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3467 {
3468         struct kvm_mmu *mmu = vcpu->arch.mmu;
3469         u64 pdptrs[4], pm_mask;
3470         gfn_t root_gfn, root_pgd;
3471         hpa_t root;
3472         unsigned i;
3473         int r;
3474
3475         root_pgd = mmu->get_guest_pgd(vcpu);
3476         root_gfn = root_pgd >> PAGE_SHIFT;
3477
3478         if (mmu_check_root(vcpu, root_gfn))
3479                 return 1;
3480
3481         /*
3482          * On SVM, reading PDPTRs might access guest memory, which might fault
3483          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3484          */
3485         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3486                 for (i = 0; i < 4; ++i) {
3487                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3488                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3489                                 continue;
3490
3491                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3492                                 return 1;
3493                 }
3494         }
3495
3496         r = alloc_all_memslots_rmaps(vcpu->kvm);
3497         if (r)
3498                 return r;
3499
3500         write_lock(&vcpu->kvm->mmu_lock);
3501         r = make_mmu_pages_available(vcpu);
3502         if (r < 0)
3503                 goto out_unlock;
3504
3505         /*
3506          * Do we shadow a long mode page table? If so we need to
3507          * write-protect the guests page table root.
3508          */
3509         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3510                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3511                                       mmu->shadow_root_level, false);
3512                 mmu->root_hpa = root;
3513                 goto set_root_pgd;
3514         }
3515
3516         if (WARN_ON_ONCE(!mmu->pae_root)) {
3517                 r = -EIO;
3518                 goto out_unlock;
3519         }
3520
3521         /*
3522          * We shadow a 32 bit page table. This may be a legacy 2-level
3523          * or a PAE 3-level page table. In either case we need to be aware that
3524          * the shadow page table may be a PAE or a long mode page table.
3525          */
3526         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3527         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3528                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3529
3530                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3531                         r = -EIO;
3532                         goto out_unlock;
3533                 }
3534                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3535
3536                 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3537                         if (WARN_ON_ONCE(!mmu->pml5_root)) {
3538                                 r = -EIO;
3539                                 goto out_unlock;
3540                         }
3541                         mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3542                 }
3543         }
3544
3545         for (i = 0; i < 4; ++i) {
3546                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3547
3548                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3549                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3550                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3551                                 continue;
3552                         }
3553                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3554                 }
3555
3556                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3557                                       PT32_ROOT_LEVEL, false);
3558                 mmu->pae_root[i] = root | pm_mask;
3559         }
3560
3561         if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3562                 mmu->root_hpa = __pa(mmu->pml5_root);
3563         else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3564                 mmu->root_hpa = __pa(mmu->pml4_root);
3565         else
3566                 mmu->root_hpa = __pa(mmu->pae_root);
3567
3568 set_root_pgd:
3569         mmu->root_pgd = root_pgd;
3570 out_unlock:
3571         write_unlock(&vcpu->kvm->mmu_lock);
3572
3573         return r;
3574 }
3575
3576 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3577 {
3578         struct kvm_mmu *mmu = vcpu->arch.mmu;
3579         bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3580         u64 *pml5_root = NULL;
3581         u64 *pml4_root = NULL;
3582         u64 *pae_root;
3583
3584         /*
3585          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3586          * tables are allocated and initialized at root creation as there is no
3587          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3588          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3589          */
3590         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3591             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3592                 return 0;
3593
3594         /*
3595          * NPT, the only paging mode that uses this horror, uses a fixed number
3596          * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3597          * all MMus are 5-level.  Thus, this can safely require that pml5_root
3598          * is allocated if the other roots are valid and pml5 is needed, as any
3599          * prior MMU would also have required pml5.
3600          */
3601         if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3602                 return 0;
3603
3604         /*
3605          * The special roots should always be allocated in concert.  Yell and
3606          * bail if KVM ends up in a state where only one of the roots is valid.
3607          */
3608         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3609                          (need_pml5 && mmu->pml5_root)))
3610                 return -EIO;
3611
3612         /*
3613          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3614          * doesn't need to be decrypted.
3615          */
3616         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3617         if (!pae_root)
3618                 return -ENOMEM;
3619
3620 #ifdef CONFIG_X86_64
3621         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3622         if (!pml4_root)
3623                 goto err_pml4;
3624
3625         if (need_pml5) {
3626                 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3627                 if (!pml5_root)
3628                         goto err_pml5;
3629         }
3630 #endif
3631
3632         mmu->pae_root = pae_root;
3633         mmu->pml4_root = pml4_root;
3634         mmu->pml5_root = pml5_root;
3635
3636         return 0;
3637
3638 #ifdef CONFIG_X86_64
3639 err_pml5:
3640         free_page((unsigned long)pml4_root);
3641 err_pml4:
3642         free_page((unsigned long)pae_root);
3643         return -ENOMEM;
3644 #endif
3645 }
3646
3647 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3648 {
3649         int i;
3650         struct kvm_mmu_page *sp;
3651
3652         if (vcpu->arch.mmu->direct_map)
3653                 return;
3654
3655         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3656                 return;
3657
3658         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3659
3660         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3661                 hpa_t root = vcpu->arch.mmu->root_hpa;
3662                 sp = to_shadow_page(root);
3663
3664                 /*
3665                  * Even if another CPU was marking the SP as unsync-ed
3666                  * simultaneously, any guest page table changes are not
3667                  * guaranteed to be visible anyway until this VCPU issues a TLB
3668                  * flush strictly after those changes are made. We only need to
3669                  * ensure that the other CPU sets these flags before any actual
3670                  * changes to the page tables are made. The comments in
3671                  * mmu_try_to_unsync_pages() describe what could go wrong if
3672                  * this requirement isn't satisfied.
3673                  */
3674                 if (!smp_load_acquire(&sp->unsync) &&
3675                     !smp_load_acquire(&sp->unsync_children))
3676                         return;
3677
3678                 write_lock(&vcpu->kvm->mmu_lock);
3679                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3680
3681                 mmu_sync_children(vcpu, sp, true);
3682
3683                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3684                 write_unlock(&vcpu->kvm->mmu_lock);
3685                 return;
3686         }
3687
3688         write_lock(&vcpu->kvm->mmu_lock);
3689         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3690
3691         for (i = 0; i < 4; ++i) {
3692                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3693
3694                 if (IS_VALID_PAE_ROOT(root)) {
3695                         root &= PT64_BASE_ADDR_MASK;
3696                         sp = to_shadow_page(root);
3697                         mmu_sync_children(vcpu, sp, true);
3698                 }
3699         }
3700
3701         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3702         write_unlock(&vcpu->kvm->mmu_lock);
3703 }
3704
3705 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3706                                   u32 access, struct x86_exception *exception)
3707 {
3708         if (exception)
3709                 exception->error_code = 0;
3710         return vaddr;
3711 }
3712
3713 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3714                                          u32 access,
3715                                          struct x86_exception *exception)
3716 {
3717         if (exception)
3718                 exception->error_code = 0;
3719         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3720 }
3721
3722 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3723 {
3724         /*
3725          * A nested guest cannot use the MMIO cache if it is using nested
3726          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3727          */
3728         if (mmu_is_nested(vcpu))
3729                 return false;
3730
3731         if (direct)
3732                 return vcpu_match_mmio_gpa(vcpu, addr);
3733
3734         return vcpu_match_mmio_gva(vcpu, addr);
3735 }
3736
3737 /*
3738  * Return the level of the lowest level SPTE added to sptes.
3739  * That SPTE may be non-present.
3740  *
3741  * Must be called between walk_shadow_page_lockless_{begin,end}.
3742  */
3743 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3744 {
3745         struct kvm_shadow_walk_iterator iterator;
3746         int leaf = -1;
3747         u64 spte;
3748
3749         for (shadow_walk_init(&iterator, vcpu, addr),
3750              *root_level = iterator.level;
3751              shadow_walk_okay(&iterator);
3752              __shadow_walk_next(&iterator, spte)) {
3753                 leaf = iterator.level;
3754                 spte = mmu_spte_get_lockless(iterator.sptep);
3755
3756                 sptes[leaf] = spte;
3757
3758                 if (!is_shadow_present_pte(spte))
3759                         break;
3760         }
3761
3762         return leaf;
3763 }
3764
3765 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3766 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3767 {
3768         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3769         struct rsvd_bits_validate *rsvd_check;
3770         int root, leaf, level;
3771         bool reserved = false;
3772
3773         walk_shadow_page_lockless_begin(vcpu);
3774
3775         if (is_tdp_mmu(vcpu->arch.mmu))
3776                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3777         else
3778                 leaf = get_walk(vcpu, addr, sptes, &root);
3779
3780         walk_shadow_page_lockless_end(vcpu);
3781
3782         if (unlikely(leaf < 0)) {
3783                 *sptep = 0ull;
3784                 return reserved;
3785         }
3786
3787         *sptep = sptes[leaf];
3788
3789         /*
3790          * Skip reserved bits checks on the terminal leaf if it's not a valid
3791          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3792          * design, always have reserved bits set.  The purpose of the checks is
3793          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3794          */
3795         if (!is_shadow_present_pte(sptes[leaf]))
3796                 leaf++;
3797
3798         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3799
3800         for (level = root; level >= leaf; level--)
3801                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3802
3803         if (reserved) {
3804                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3805                        __func__, addr);
3806                 for (level = root; level >= leaf; level--)
3807                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3808                                sptes[level], level,
3809                                get_rsvd_bits(rsvd_check, sptes[level], level));
3810         }
3811
3812         return reserved;
3813 }
3814
3815 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3816 {
3817         u64 spte;
3818         bool reserved;
3819
3820         if (mmio_info_in_cache(vcpu, addr, direct))
3821                 return RET_PF_EMULATE;
3822
3823         reserved = get_mmio_spte(vcpu, addr, &spte);
3824         if (WARN_ON(reserved))
3825                 return -EINVAL;
3826
3827         if (is_mmio_spte(spte)) {
3828                 gfn_t gfn = get_mmio_spte_gfn(spte);
3829                 unsigned int access = get_mmio_spte_access(spte);
3830
3831                 if (!check_mmio_spte(vcpu, spte))
3832                         return RET_PF_INVALID;
3833
3834                 if (direct)
3835                         addr = 0;
3836
3837                 trace_handle_mmio_page_fault(addr, gfn, access);
3838                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3839                 return RET_PF_EMULATE;
3840         }
3841
3842         /*
3843          * If the page table is zapped by other cpus, let CPU fault again on
3844          * the address.
3845          */
3846         return RET_PF_RETRY;
3847 }
3848
3849 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3850                                          u32 error_code, gfn_t gfn)
3851 {
3852         if (unlikely(error_code & PFERR_RSVD_MASK))
3853                 return false;
3854
3855         if (!(error_code & PFERR_PRESENT_MASK) ||
3856               !(error_code & PFERR_WRITE_MASK))
3857                 return false;
3858
3859         /*
3860          * guest is writing the page which is write tracked which can
3861          * not be fixed by page fault handler.
3862          */
3863         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3864                 return true;
3865
3866         return false;
3867 }
3868
3869 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3870 {
3871         struct kvm_shadow_walk_iterator iterator;
3872         u64 spte;
3873
3874         walk_shadow_page_lockless_begin(vcpu);
3875         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3876                 clear_sp_write_flooding_count(iterator.sptep);
3877                 if (!is_shadow_present_pte(spte))
3878                         break;
3879         }
3880         walk_shadow_page_lockless_end(vcpu);
3881 }
3882
3883 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3884 {
3885         /* make sure the token value is not 0 */
3886         u32 id = vcpu->arch.apf.id;
3887
3888         if (id << 12 == 0)
3889                 vcpu->arch.apf.id = 1;
3890
3891         return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3892 }
3893
3894 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3895                                     gfn_t gfn)
3896 {
3897         struct kvm_arch_async_pf arch;
3898
3899         arch.token = alloc_apf_token(vcpu);
3900         arch.gfn = gfn;
3901         arch.direct_map = vcpu->arch.mmu->direct_map;
3902         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3903
3904         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3905                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3906 }
3907
3908 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3909                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3910                          bool write, bool *writable, int *r)
3911 {
3912         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3913         bool async;
3914
3915         /*
3916          * Retry the page fault if the gfn hit a memslot that is being deleted
3917          * or moved.  This ensures any existing SPTEs for the old memslot will
3918          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3919          */
3920         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3921                 goto out_retry;
3922
3923         if (!kvm_is_visible_memslot(slot)) {
3924                 /* Don't expose private memslots to L2. */
3925                 if (is_guest_mode(vcpu)) {
3926                         *pfn = KVM_PFN_NOSLOT;
3927                         *writable = false;
3928                         return false;
3929                 }
3930                 /*
3931                  * If the APIC access page exists but is disabled, go directly
3932                  * to emulation without caching the MMIO access or creating a
3933                  * MMIO SPTE.  That way the cache doesn't need to be purged
3934                  * when the AVIC is re-enabled.
3935                  */
3936                 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3937                     !kvm_apicv_activated(vcpu->kvm)) {
3938                         *r = RET_PF_EMULATE;
3939                         return true;
3940                 }
3941         }
3942
3943         async = false;
3944         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3945                                     write, writable, hva);
3946         if (!async)
3947                 return false; /* *pfn has correct page already */
3948
3949         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3950                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3951                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3952                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3953                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3954                         goto out_retry;
3955                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3956                         goto out_retry;
3957         }
3958
3959         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3960                                     write, writable, hva);
3961         return false;
3962
3963 out_retry:
3964         *r = RET_PF_RETRY;
3965         return true;
3966 }
3967
3968 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3969                              bool prefault, int max_level, bool is_tdp)
3970 {
3971         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3972         bool write = error_code & PFERR_WRITE_MASK;
3973         bool map_writable;
3974
3975         gfn_t gfn = gpa >> PAGE_SHIFT;
3976         unsigned long mmu_seq;
3977         kvm_pfn_t pfn;
3978         hva_t hva;
3979         int r;
3980
3981         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3982                 return RET_PF_EMULATE;
3983
3984         r = fast_page_fault(vcpu, gpa, error_code);
3985         if (r != RET_PF_INVALID)
3986                 return r;
3987
3988         r = mmu_topup_memory_caches(vcpu, false);
3989         if (r)
3990                 return r;
3991
3992         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3993         smp_rmb();
3994
3995         if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
3996                          write, &map_writable, &r))
3997                 return r;
3998
3999         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4000                 return r;
4001
4002         r = RET_PF_RETRY;
4003
4004         if (is_tdp_mmu_fault)
4005                 read_lock(&vcpu->kvm->mmu_lock);
4006         else
4007                 write_lock(&vcpu->kvm->mmu_lock);
4008
4009         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
4010                 goto out_unlock;
4011
4012         if (is_tdp_mmu_fault) {
4013                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
4014                                     pfn, prefault);
4015         } else {
4016                 r = make_mmu_pages_available(vcpu);
4017                 if (r)
4018                         goto out_unlock;
4019                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
4020                                  prefault, is_tdp);
4021         }
4022
4023 out_unlock:
4024         if (is_tdp_mmu_fault)
4025                 read_unlock(&vcpu->kvm->mmu_lock);
4026         else
4027                 write_unlock(&vcpu->kvm->mmu_lock);
4028         kvm_release_pfn_clean(pfn);
4029         return r;
4030 }
4031
4032 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4033                                 u32 error_code, bool prefault)
4034 {
4035         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4036
4037         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4038         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4039                                  PG_LEVEL_2M, false);
4040 }
4041
4042 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4043                                 u64 fault_address, char *insn, int insn_len)
4044 {
4045         int r = 1;
4046         u32 flags = vcpu->arch.apf.host_apf_flags;
4047
4048 #ifndef CONFIG_X86_64
4049         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4050         if (WARN_ON_ONCE(fault_address >> 32))
4051                 return -EFAULT;
4052 #endif
4053
4054         vcpu->arch.l1tf_flush_l1d = true;
4055         if (!flags) {
4056                 trace_kvm_page_fault(fault_address, error_code);
4057
4058                 if (kvm_event_needs_reinjection(vcpu))
4059                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4060                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4061                                 insn_len);
4062         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4063                 vcpu->arch.apf.host_apf_flags = 0;
4064                 local_irq_disable();
4065                 kvm_async_pf_task_wait_schedule(fault_address);
4066                 local_irq_enable();
4067         } else {
4068                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4069         }
4070
4071         return r;
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4074
4075 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4076                        bool prefault)
4077 {
4078         int max_level;
4079
4080         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4081              max_level > PG_LEVEL_4K;
4082              max_level--) {
4083                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4084                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4085
4086                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4087                         break;
4088         }
4089
4090         return direct_page_fault(vcpu, gpa, error_code, prefault,
4091                                  max_level, true);
4092 }
4093
4094 static void nonpaging_init_context(struct kvm_mmu *context)
4095 {
4096         context->page_fault = nonpaging_page_fault;
4097         context->gva_to_gpa = nonpaging_gva_to_gpa;
4098         context->sync_page = nonpaging_sync_page;
4099         context->invlpg = NULL;
4100         context->direct_map = true;
4101 }
4102
4103 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4104                                   union kvm_mmu_page_role role)
4105 {
4106         return (role.direct || pgd == root->pgd) &&
4107                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4108                role.word == to_shadow_page(root->hpa)->role.word;
4109 }
4110
4111 /*
4112  * Find out if a previously cached root matching the new pgd/role is available.
4113  * The current root is also inserted into the cache.
4114  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4115  * returned.
4116  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4117  * false is returned. This root should now be freed by the caller.
4118  */
4119 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4120                                   union kvm_mmu_page_role new_role)
4121 {
4122         uint i;
4123         struct kvm_mmu_root_info root;
4124         struct kvm_mmu *mmu = vcpu->arch.mmu;
4125
4126         root.pgd = mmu->root_pgd;
4127         root.hpa = mmu->root_hpa;
4128
4129         if (is_root_usable(&root, new_pgd, new_role))
4130                 return true;
4131
4132         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4133                 swap(root, mmu->prev_roots[i]);
4134
4135                 if (is_root_usable(&root, new_pgd, new_role))
4136                         break;
4137         }
4138
4139         mmu->root_hpa = root.hpa;
4140         mmu->root_pgd = root.pgd;
4141
4142         return i < KVM_MMU_NUM_PREV_ROOTS;
4143 }
4144
4145 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4146                             union kvm_mmu_page_role new_role)
4147 {
4148         struct kvm_mmu *mmu = vcpu->arch.mmu;
4149
4150         /*
4151          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4152          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4153          * later if necessary.
4154          */
4155         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4156             mmu->root_level >= PT64_ROOT_4LEVEL)
4157                 return cached_root_available(vcpu, new_pgd, new_role);
4158
4159         return false;
4160 }
4161
4162 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4163                               union kvm_mmu_page_role new_role)
4164 {
4165         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4166                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4167                 return;
4168         }
4169
4170         /*
4171          * It's possible that the cached previous root page is obsolete because
4172          * of a change in the MMU generation number. However, changing the
4173          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4174          * free the root set here and allocate a new one.
4175          */
4176         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4177
4178         if (force_flush_and_sync_on_reuse) {
4179                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4180                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4181         }
4182
4183         /*
4184          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4185          * switching to a new CR3, that GVA->GPA mapping may no longer be
4186          * valid. So clear any cached MMIO info even when we don't need to sync
4187          * the shadow page tables.
4188          */
4189         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4190
4191         /*
4192          * If this is a direct root page, it doesn't have a write flooding
4193          * count. Otherwise, clear the write flooding count.
4194          */
4195         if (!new_role.direct)
4196                 __clear_sp_write_flooding_count(
4197                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4198 }
4199
4200 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4201 {
4202         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4203 }
4204 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4205
4206 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4207 {
4208         return kvm_read_cr3(vcpu);
4209 }
4210
4211 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4212                            unsigned int access, int *nr_present)
4213 {
4214         if (unlikely(is_mmio_spte(*sptep))) {
4215                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4216                         mmu_spte_clear_no_track(sptep);
4217                         return true;
4218                 }
4219
4220                 (*nr_present)++;
4221                 mark_mmio_spte(vcpu, sptep, gfn, access);
4222                 return true;
4223         }
4224
4225         return false;
4226 }
4227
4228 #define PTTYPE_EPT 18 /* arbitrary */
4229 #define PTTYPE PTTYPE_EPT
4230 #include "paging_tmpl.h"
4231 #undef PTTYPE
4232
4233 #define PTTYPE 64
4234 #include "paging_tmpl.h"
4235 #undef PTTYPE
4236
4237 #define PTTYPE 32
4238 #include "paging_tmpl.h"
4239 #undef PTTYPE
4240
4241 static void
4242 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4243                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4244                         bool pse, bool amd)
4245 {
4246         u64 gbpages_bit_rsvd = 0;
4247         u64 nonleaf_bit8_rsvd = 0;
4248         u64 high_bits_rsvd;
4249
4250         rsvd_check->bad_mt_xwr = 0;
4251
4252         if (!gbpages)
4253                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4254
4255         if (level == PT32E_ROOT_LEVEL)
4256                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4257         else
4258                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4259
4260         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4261         if (!nx)
4262                 high_bits_rsvd |= rsvd_bits(63, 63);
4263
4264         /*
4265          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4266          * leaf entries) on AMD CPUs only.
4267          */
4268         if (amd)
4269                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4270
4271         switch (level) {
4272         case PT32_ROOT_LEVEL:
4273                 /* no rsvd bits for 2 level 4K page table entries */
4274                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4275                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4276                 rsvd_check->rsvd_bits_mask[1][0] =
4277                         rsvd_check->rsvd_bits_mask[0][0];
4278
4279                 if (!pse) {
4280                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4281                         break;
4282                 }
4283
4284                 if (is_cpuid_PSE36())
4285                         /* 36bits PSE 4MB page */
4286                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4287                 else
4288                         /* 32 bits PSE 4MB page */
4289                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4290                 break;
4291         case PT32E_ROOT_LEVEL:
4292                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4293                                                    high_bits_rsvd |
4294                                                    rsvd_bits(5, 8) |
4295                                                    rsvd_bits(1, 2);     /* PDPTE */
4296                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4297                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4298                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4299                                                    rsvd_bits(13, 20);   /* large page */
4300                 rsvd_check->rsvd_bits_mask[1][0] =
4301                         rsvd_check->rsvd_bits_mask[0][0];
4302                 break;
4303         case PT64_ROOT_5LEVEL:
4304                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4305                                                    nonleaf_bit8_rsvd |
4306                                                    rsvd_bits(7, 7);
4307                 rsvd_check->rsvd_bits_mask[1][4] =
4308                         rsvd_check->rsvd_bits_mask[0][4];
4309                 fallthrough;
4310         case PT64_ROOT_4LEVEL:
4311                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4312                                                    nonleaf_bit8_rsvd |
4313                                                    rsvd_bits(7, 7);
4314                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4315                                                    gbpages_bit_rsvd;
4316                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4317                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4318                 rsvd_check->rsvd_bits_mask[1][3] =
4319                         rsvd_check->rsvd_bits_mask[0][3];
4320                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4321                                                    gbpages_bit_rsvd |
4322                                                    rsvd_bits(13, 29);
4323                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4324                                                    rsvd_bits(13, 20); /* large page */
4325                 rsvd_check->rsvd_bits_mask[1][0] =
4326                         rsvd_check->rsvd_bits_mask[0][0];
4327                 break;
4328         }
4329 }
4330
4331 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4332 {
4333         /*
4334          * If TDP is enabled, let the guest use GBPAGES if they're supported in
4335          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4336          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4337          * walk for performance and complexity reasons.  Not to mention KVM
4338          * _can't_ solve the problem because GVA->GPA walks aren't visible to
4339          * KVM once a TDP translation is installed.  Mimic hardware behavior so
4340          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4341          */
4342         return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4343                              guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4344 }
4345
4346 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4347                                   struct kvm_mmu *context)
4348 {
4349         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4350                                 vcpu->arch.reserved_gpa_bits,
4351                                 context->root_level, is_efer_nx(context),
4352                                 guest_can_use_gbpages(vcpu),
4353                                 is_cr4_pse(context),
4354                                 guest_cpuid_is_amd_or_hygon(vcpu));
4355 }
4356
4357 static void
4358 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4359                             u64 pa_bits_rsvd, bool execonly)
4360 {
4361         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4362         u64 bad_mt_xwr;
4363
4364         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4365         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4366         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4367         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4368         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4369
4370         /* large page */
4371         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4372         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4373         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4374         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4375         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4376
4377         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4378         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4379         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4380         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4381         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4382         if (!execonly) {
4383                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4384                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4385         }
4386         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4387 }
4388
4389 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4390                 struct kvm_mmu *context, bool execonly)
4391 {
4392         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4393                                     vcpu->arch.reserved_gpa_bits, execonly);
4394 }
4395
4396 static inline u64 reserved_hpa_bits(void)
4397 {
4398         return rsvd_bits(shadow_phys_bits, 63);
4399 }
4400
4401 /*
4402  * the page table on host is the shadow page table for the page
4403  * table in guest or amd nested guest, its mmu features completely
4404  * follow the features in guest.
4405  */
4406 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4407                                         struct kvm_mmu *context)
4408 {
4409         /*
4410          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4411          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4412          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4413          * The iTLB multi-hit workaround can be toggled at any time, so assume
4414          * NX can be used by any non-nested shadow MMU to avoid having to reset
4415          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4416          */
4417         bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4418
4419         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4420         bool is_amd = true;
4421         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4422         bool is_pse = false;
4423         struct rsvd_bits_validate *shadow_zero_check;
4424         int i;
4425
4426         WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4427
4428         shadow_zero_check = &context->shadow_zero_check;
4429         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4430                                 context->shadow_root_level, uses_nx,
4431                                 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4432
4433         if (!shadow_me_mask)
4434                 return;
4435
4436         for (i = context->shadow_root_level; --i >= 0;) {
4437                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4438                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4439         }
4440
4441 }
4442
4443 static inline bool boot_cpu_is_amd(void)
4444 {
4445         WARN_ON_ONCE(!tdp_enabled);
4446         return shadow_x_mask == 0;
4447 }
4448
4449 /*
4450  * the direct page table on host, use as much mmu features as
4451  * possible, however, kvm currently does not do execution-protection.
4452  */
4453 static void
4454 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4455                                 struct kvm_mmu *context)
4456 {
4457         struct rsvd_bits_validate *shadow_zero_check;
4458         int i;
4459
4460         shadow_zero_check = &context->shadow_zero_check;
4461
4462         if (boot_cpu_is_amd())
4463                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4464                                         context->shadow_root_level, false,
4465                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4466                                         false, true);
4467         else
4468                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4469                                             reserved_hpa_bits(), false);
4470
4471         if (!shadow_me_mask)
4472                 return;
4473
4474         for (i = context->shadow_root_level; --i >= 0;) {
4475                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4476                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4477         }
4478 }
4479
4480 /*
4481  * as the comments in reset_shadow_zero_bits_mask() except it
4482  * is the shadow page table for intel nested guest.
4483  */
4484 static void
4485 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4486                                 struct kvm_mmu *context, bool execonly)
4487 {
4488         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4489                                     reserved_hpa_bits(), execonly);
4490 }
4491
4492 #define BYTE_MASK(access) \
4493         ((1 & (access) ? 2 : 0) | \
4494          (2 & (access) ? 4 : 0) | \
4495          (3 & (access) ? 8 : 0) | \
4496          (4 & (access) ? 16 : 0) | \
4497          (5 & (access) ? 32 : 0) | \
4498          (6 & (access) ? 64 : 0) | \
4499          (7 & (access) ? 128 : 0))
4500
4501
4502 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4503 {
4504         unsigned byte;
4505
4506         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4507         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4508         const u8 u = BYTE_MASK(ACC_USER_MASK);
4509
4510         bool cr4_smep = is_cr4_smep(mmu);
4511         bool cr4_smap = is_cr4_smap(mmu);
4512         bool cr0_wp = is_cr0_wp(mmu);
4513         bool efer_nx = is_efer_nx(mmu);
4514
4515         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4516                 unsigned pfec = byte << 1;
4517
4518                 /*
4519                  * Each "*f" variable has a 1 bit for each UWX value
4520                  * that causes a fault with the given PFEC.
4521                  */
4522
4523                 /* Faults from writes to non-writable pages */
4524                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4525                 /* Faults from user mode accesses to supervisor pages */
4526                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4527                 /* Faults from fetches of non-executable pages*/
4528                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4529                 /* Faults from kernel mode fetches of user pages */
4530                 u8 smepf = 0;
4531                 /* Faults from kernel mode accesses of user pages */
4532                 u8 smapf = 0;
4533
4534                 if (!ept) {
4535                         /* Faults from kernel mode accesses to user pages */
4536                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4537
4538                         /* Not really needed: !nx will cause pte.nx to fault */
4539                         if (!efer_nx)
4540                                 ff = 0;
4541
4542                         /* Allow supervisor writes if !cr0.wp */
4543                         if (!cr0_wp)
4544                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4545
4546                         /* Disallow supervisor fetches of user code if cr4.smep */
4547                         if (cr4_smep)
4548                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4549
4550                         /*
4551                          * SMAP:kernel-mode data accesses from user-mode
4552                          * mappings should fault. A fault is considered
4553                          * as a SMAP violation if all of the following
4554                          * conditions are true:
4555                          *   - X86_CR4_SMAP is set in CR4
4556                          *   - A user page is accessed
4557                          *   - The access is not a fetch
4558                          *   - Page fault in kernel mode
4559                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4560                          *
4561                          * Here, we cover the first three conditions.
4562                          * The fourth is computed dynamically in permission_fault();
4563                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4564                          * *not* subject to SMAP restrictions.
4565                          */
4566                         if (cr4_smap)
4567                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4568                 }
4569
4570                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4571         }
4572 }
4573
4574 /*
4575 * PKU is an additional mechanism by which the paging controls access to
4576 * user-mode addresses based on the value in the PKRU register.  Protection
4577 * key violations are reported through a bit in the page fault error code.
4578 * Unlike other bits of the error code, the PK bit is not known at the
4579 * call site of e.g. gva_to_gpa; it must be computed directly in
4580 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4581 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4582 *
4583 * In particular the following conditions come from the error code, the
4584 * page tables and the machine state:
4585 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4586 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4587 * - PK is always zero if U=0 in the page tables
4588 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4589 *
4590 * The PKRU bitmask caches the result of these four conditions.  The error
4591 * code (minus the P bit) and the page table's U bit form an index into the
4592 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4593 * with the two bits of the PKRU register corresponding to the protection key.
4594 * For the first three conditions above the bits will be 00, thus masking
4595 * away both AD and WD.  For all reads or if the last condition holds, WD
4596 * only will be masked away.
4597 */
4598 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4599 {
4600         unsigned bit;
4601         bool wp;
4602
4603         mmu->pkru_mask = 0;
4604
4605         if (!is_cr4_pke(mmu))
4606                 return;
4607
4608         wp = is_cr0_wp(mmu);
4609
4610         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4611                 unsigned pfec, pkey_bits;
4612                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4613
4614                 pfec = bit << 1;
4615                 ff = pfec & PFERR_FETCH_MASK;
4616                 uf = pfec & PFERR_USER_MASK;
4617                 wf = pfec & PFERR_WRITE_MASK;
4618
4619                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4620                 pte_user = pfec & PFERR_RSVD_MASK;
4621
4622                 /*
4623                  * Only need to check the access which is not an
4624                  * instruction fetch and is to a user page.
4625                  */
4626                 check_pkey = (!ff && pte_user);
4627                 /*
4628                  * write access is controlled by PKRU if it is a
4629                  * user access or CR0.WP = 1.
4630                  */
4631                 check_write = check_pkey && wf && (uf || wp);
4632
4633                 /* PKRU.AD stops both read and write access. */
4634                 pkey_bits = !!check_pkey;
4635                 /* PKRU.WD stops write access. */
4636                 pkey_bits |= (!!check_write) << 1;
4637
4638                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4639         }
4640 }
4641
4642 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4643                                         struct kvm_mmu *mmu)
4644 {
4645         if (!is_cr0_pg(mmu))
4646                 return;
4647
4648         reset_rsvds_bits_mask(vcpu, mmu);
4649         update_permission_bitmask(mmu, false);
4650         update_pkru_bitmask(mmu);
4651 }
4652
4653 static void paging64_init_context(struct kvm_mmu *context)
4654 {
4655         context->page_fault = paging64_page_fault;
4656         context->gva_to_gpa = paging64_gva_to_gpa;
4657         context->sync_page = paging64_sync_page;
4658         context->invlpg = paging64_invlpg;
4659         context->direct_map = false;
4660 }
4661
4662 static void paging32_init_context(struct kvm_mmu *context)
4663 {
4664         context->page_fault = paging32_page_fault;
4665         context->gva_to_gpa = paging32_gva_to_gpa;
4666         context->sync_page = paging32_sync_page;
4667         context->invlpg = paging32_invlpg;
4668         context->direct_map = false;
4669 }
4670
4671 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4672                                                          struct kvm_mmu_role_regs *regs)
4673 {
4674         union kvm_mmu_extended_role ext = {0};
4675
4676         if (____is_cr0_pg(regs)) {
4677                 ext.cr0_pg = 1;
4678                 ext.cr4_pae = ____is_cr4_pae(regs);
4679                 ext.cr4_smep = ____is_cr4_smep(regs);
4680                 ext.cr4_smap = ____is_cr4_smap(regs);
4681                 ext.cr4_pse = ____is_cr4_pse(regs);
4682
4683                 /* PKEY and LA57 are active iff long mode is active. */
4684                 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4685                 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4686                 ext.efer_lma = ____is_efer_lma(regs);
4687         }
4688
4689         ext.valid = 1;
4690
4691         return ext;
4692 }
4693
4694 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4695                                                    struct kvm_mmu_role_regs *regs,
4696                                                    bool base_only)
4697 {
4698         union kvm_mmu_role role = {0};
4699
4700         role.base.access = ACC_ALL;
4701         if (____is_cr0_pg(regs)) {
4702                 role.base.efer_nx = ____is_efer_nx(regs);
4703                 role.base.cr0_wp = ____is_cr0_wp(regs);
4704         }
4705         role.base.smm = is_smm(vcpu);
4706         role.base.guest_mode = is_guest_mode(vcpu);
4707
4708         if (base_only)
4709                 return role;
4710
4711         role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4712
4713         return role;
4714 }
4715
4716 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4717 {
4718         /* tdp_root_level is architecture forced level, use it if nonzero */
4719         if (tdp_root_level)
4720                 return tdp_root_level;
4721
4722         /* Use 5-level TDP if and only if it's useful/necessary. */
4723         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4724                 return 4;
4725
4726         return max_tdp_level;
4727 }
4728
4729 static union kvm_mmu_role
4730 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4731                                 struct kvm_mmu_role_regs *regs, bool base_only)
4732 {
4733         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4734
4735         role.base.ad_disabled = (shadow_accessed_mask == 0);
4736         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4737         role.base.direct = true;
4738         role.base.gpte_is_8_bytes = true;
4739
4740         return role;
4741 }
4742
4743 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4744 {
4745         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4746         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4747         union kvm_mmu_role new_role =
4748                 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4749
4750         if (new_role.as_u64 == context->mmu_role.as_u64)
4751                 return;
4752
4753         context->mmu_role.as_u64 = new_role.as_u64;
4754         context->page_fault = kvm_tdp_page_fault;
4755         context->sync_page = nonpaging_sync_page;
4756         context->invlpg = NULL;
4757         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4758         context->direct_map = true;
4759         context->get_guest_pgd = get_cr3;
4760         context->get_pdptr = kvm_pdptr_read;
4761         context->inject_page_fault = kvm_inject_page_fault;
4762         context->root_level = role_regs_to_root_level(&regs);
4763
4764         if (!is_cr0_pg(context))
4765                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4766         else if (is_cr4_pae(context))
4767                 context->gva_to_gpa = paging64_gva_to_gpa;
4768         else
4769                 context->gva_to_gpa = paging32_gva_to_gpa;
4770
4771         reset_guest_paging_metadata(vcpu, context);
4772         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4773 }
4774
4775 static union kvm_mmu_role
4776 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4777                                       struct kvm_mmu_role_regs *regs, bool base_only)
4778 {
4779         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4780
4781         role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4782         role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4783         role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4784
4785         return role;
4786 }
4787
4788 static union kvm_mmu_role
4789 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4790                                    struct kvm_mmu_role_regs *regs, bool base_only)
4791 {
4792         union kvm_mmu_role role =
4793                 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4794
4795         role.base.direct = !____is_cr0_pg(regs);
4796
4797         if (!____is_efer_lma(regs))
4798                 role.base.level = PT32E_ROOT_LEVEL;
4799         else if (____is_cr4_la57(regs))
4800                 role.base.level = PT64_ROOT_5LEVEL;
4801         else
4802                 role.base.level = PT64_ROOT_4LEVEL;
4803
4804         return role;
4805 }
4806
4807 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4808                                     struct kvm_mmu_role_regs *regs,
4809                                     union kvm_mmu_role new_role)
4810 {
4811         if (new_role.as_u64 == context->mmu_role.as_u64)
4812                 return;
4813
4814         context->mmu_role.as_u64 = new_role.as_u64;
4815
4816         if (!is_cr0_pg(context))
4817                 nonpaging_init_context(context);
4818         else if (is_cr4_pae(context))
4819                 paging64_init_context(context);
4820         else
4821                 paging32_init_context(context);
4822         context->root_level = role_regs_to_root_level(regs);
4823
4824         reset_guest_paging_metadata(vcpu, context);
4825         context->shadow_root_level = new_role.base.level;
4826
4827         reset_shadow_zero_bits_mask(vcpu, context);
4828 }
4829
4830 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4831                                 struct kvm_mmu_role_regs *regs)
4832 {
4833         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4834         union kvm_mmu_role new_role =
4835                 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4836
4837         shadow_mmu_init_context(vcpu, context, regs, new_role);
4838 }
4839
4840 static union kvm_mmu_role
4841 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4842                                    struct kvm_mmu_role_regs *regs)
4843 {
4844         union kvm_mmu_role role =
4845                 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4846
4847         role.base.direct = false;
4848         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4849
4850         return role;
4851 }
4852
4853 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4854                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4855 {
4856         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4857         struct kvm_mmu_role_regs regs = {
4858                 .cr0 = cr0,
4859                 .cr4 = cr4 & ~X86_CR4_PKE,
4860                 .efer = efer,
4861         };
4862         union kvm_mmu_role new_role;
4863
4864         new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4865
4866         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4867
4868         shadow_mmu_init_context(vcpu, context, &regs, new_role);
4869 }
4870 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4871
4872 static union kvm_mmu_role
4873 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4874                                    bool execonly, u8 level)
4875 {
4876         union kvm_mmu_role role = {0};
4877
4878         /* SMM flag is inherited from root_mmu */
4879         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4880
4881         role.base.level = level;
4882         role.base.gpte_is_8_bytes = true;
4883         role.base.direct = false;
4884         role.base.ad_disabled = !accessed_dirty;
4885         role.base.guest_mode = true;
4886         role.base.access = ACC_ALL;
4887
4888         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4889         role.ext.word = 0;
4890         role.ext.execonly = execonly;
4891         role.ext.valid = 1;
4892
4893         return role;
4894 }
4895
4896 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4897                              bool accessed_dirty, gpa_t new_eptp)
4898 {
4899         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4900         u8 level = vmx_eptp_page_walk_level(new_eptp);
4901         union kvm_mmu_role new_role =
4902                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4903                                                    execonly, level);
4904
4905         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4906
4907         if (new_role.as_u64 == context->mmu_role.as_u64)
4908                 return;
4909
4910         context->mmu_role.as_u64 = new_role.as_u64;
4911
4912         context->shadow_root_level = level;
4913
4914         context->ept_ad = accessed_dirty;
4915         context->page_fault = ept_page_fault;
4916         context->gva_to_gpa = ept_gva_to_gpa;
4917         context->sync_page = ept_sync_page;
4918         context->invlpg = ept_invlpg;
4919         context->root_level = level;
4920         context->direct_map = false;
4921
4922         update_permission_bitmask(context, true);
4923         context->pkru_mask = 0;
4924         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4925         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4926 }
4927 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4928
4929 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4930 {
4931         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4932         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4933
4934         kvm_init_shadow_mmu(vcpu, &regs);
4935
4936         context->get_guest_pgd     = get_cr3;
4937         context->get_pdptr         = kvm_pdptr_read;
4938         context->inject_page_fault = kvm_inject_page_fault;
4939 }
4940
4941 static union kvm_mmu_role
4942 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4943 {
4944         union kvm_mmu_role role;
4945
4946         role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4947
4948         /*
4949          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4950          * shadow pages of their own and so "direct" has no meaning.   Set it
4951          * to "true" to try to detect bogus usage of the nested MMU.
4952          */
4953         role.base.direct = true;
4954         role.base.level = role_regs_to_root_level(regs);
4955         return role;
4956 }
4957
4958 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4959 {
4960         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4961         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4962         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4963
4964         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4965                 return;
4966
4967         g_context->mmu_role.as_u64 = new_role.as_u64;
4968         g_context->get_guest_pgd     = get_cr3;
4969         g_context->get_pdptr         = kvm_pdptr_read;
4970         g_context->inject_page_fault = kvm_inject_page_fault;
4971         g_context->root_level        = new_role.base.level;
4972
4973         /*
4974          * L2 page tables are never shadowed, so there is no need to sync
4975          * SPTEs.
4976          */
4977         g_context->invlpg            = NULL;
4978
4979         /*
4980          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4981          * L1's nested page tables (e.g. EPT12). The nested translation
4982          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4983          * L2's page tables as the first level of translation and L1's
4984          * nested page tables as the second level of translation. Basically
4985          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4986          */
4987         if (!is_paging(vcpu))
4988                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4989         else if (is_long_mode(vcpu))
4990                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4991         else if (is_pae(vcpu))
4992                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4993         else
4994                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4995
4996         reset_guest_paging_metadata(vcpu, g_context);
4997 }
4998
4999 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5000 {
5001         if (mmu_is_nested(vcpu))
5002                 init_kvm_nested_mmu(vcpu);
5003         else if (tdp_enabled)
5004                 init_kvm_tdp_mmu(vcpu);
5005         else
5006                 init_kvm_softmmu(vcpu);
5007 }
5008 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5009
5010 static union kvm_mmu_page_role
5011 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5012 {
5013         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5014         union kvm_mmu_role role;
5015
5016         if (tdp_enabled)
5017                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5018         else
5019                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5020
5021         return role.base;
5022 }
5023
5024 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5025 {
5026         /*
5027          * Invalidate all MMU roles to force them to reinitialize as CPUID
5028          * information is factored into reserved bit calculations.
5029          */
5030         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5031         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5032         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5033         kvm_mmu_reset_context(vcpu);
5034
5035         /*
5036          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5037          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5038          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
5039          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
5040          * sweep the problem under the rug.
5041          *
5042          * KVM's horrific CPUID ABI makes the problem all but impossible to
5043          * solve, as correctly handling multiple vCPU models (with respect to
5044          * paging and physical address properties) in a single VM would require
5045          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
5046          * is very undesirable as it would double the memory requirements for
5047          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
5048          * no sane VMM mucks with the core vCPU model on the fly.
5049          */
5050         if (vcpu->arch.last_vmentry_cpu != -1) {
5051                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
5052                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
5053         }
5054 }
5055
5056 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5057 {
5058         kvm_mmu_unload(vcpu);
5059         kvm_init_mmu(vcpu);
5060 }
5061 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5062
5063 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5064 {
5065         int r;
5066
5067         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5068         if (r)
5069                 goto out;
5070         r = mmu_alloc_special_roots(vcpu);
5071         if (r)
5072                 goto out;
5073         if (vcpu->arch.mmu->direct_map)
5074                 r = mmu_alloc_direct_roots(vcpu);
5075         else
5076                 r = mmu_alloc_shadow_roots(vcpu);
5077         if (r)
5078                 goto out;
5079
5080         kvm_mmu_sync_roots(vcpu);
5081
5082         kvm_mmu_load_pgd(vcpu);
5083         static_call(kvm_x86_tlb_flush_current)(vcpu);
5084 out:
5085         return r;
5086 }
5087
5088 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5089 {
5090         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5091         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5092         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5093         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5094 }
5095
5096 static bool need_remote_flush(u64 old, u64 new)
5097 {
5098         if (!is_shadow_present_pte(old))
5099                 return false;
5100         if (!is_shadow_present_pte(new))
5101                 return true;
5102         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5103                 return true;
5104         old ^= shadow_nx_mask;
5105         new ^= shadow_nx_mask;
5106         return (old & ~new & PT64_PERM_MASK) != 0;
5107 }
5108
5109 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5110                                     int *bytes)
5111 {
5112         u64 gentry = 0;
5113         int r;
5114
5115         /*
5116          * Assume that the pte write on a page table of the same type
5117          * as the current vcpu paging mode since we update the sptes only
5118          * when they have the same mode.
5119          */
5120         if (is_pae(vcpu) && *bytes == 4) {
5121                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5122                 *gpa &= ~(gpa_t)7;
5123                 *bytes = 8;
5124         }
5125
5126         if (*bytes == 4 || *bytes == 8) {
5127                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5128                 if (r)
5129                         gentry = 0;
5130         }
5131
5132         return gentry;
5133 }
5134
5135 /*
5136  * If we're seeing too many writes to a page, it may no longer be a page table,
5137  * or we may be forking, in which case it is better to unmap the page.
5138  */
5139 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5140 {
5141         /*
5142          * Skip write-flooding detected for the sp whose level is 1, because
5143          * it can become unsync, then the guest page is not write-protected.
5144          */
5145         if (sp->role.level == PG_LEVEL_4K)
5146                 return false;
5147
5148         atomic_inc(&sp->write_flooding_count);
5149         return atomic_read(&sp->write_flooding_count) >= 3;
5150 }
5151
5152 /*
5153  * Misaligned accesses are too much trouble to fix up; also, they usually
5154  * indicate a page is not used as a page table.
5155  */
5156 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5157                                     int bytes)
5158 {
5159         unsigned offset, pte_size, misaligned;
5160
5161         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5162                  gpa, bytes, sp->role.word);
5163
5164         offset = offset_in_page(gpa);
5165         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5166
5167         /*
5168          * Sometimes, the OS only writes the last one bytes to update status
5169          * bits, for example, in linux, andb instruction is used in clear_bit().
5170          */
5171         if (!(offset & (pte_size - 1)) && bytes == 1)
5172                 return false;
5173
5174         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5175         misaligned |= bytes < 4;
5176
5177         return misaligned;
5178 }
5179
5180 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5181 {
5182         unsigned page_offset, quadrant;
5183         u64 *spte;
5184         int level;
5185
5186         page_offset = offset_in_page(gpa);
5187         level = sp->role.level;
5188         *nspte = 1;
5189         if (!sp->role.gpte_is_8_bytes) {
5190                 page_offset <<= 1;      /* 32->64 */
5191                 /*
5192                  * A 32-bit pde maps 4MB while the shadow pdes map
5193                  * only 2MB.  So we need to double the offset again
5194                  * and zap two pdes instead of one.
5195                  */
5196                 if (level == PT32_ROOT_LEVEL) {
5197                         page_offset &= ~7; /* kill rounding error */
5198                         page_offset <<= 1;
5199                         *nspte = 2;
5200                 }
5201                 quadrant = page_offset >> PAGE_SHIFT;
5202                 page_offset &= ~PAGE_MASK;
5203                 if (quadrant != sp->role.quadrant)
5204                         return NULL;
5205         }
5206
5207         spte = &sp->spt[page_offset / sizeof(*spte)];
5208         return spte;
5209 }
5210
5211 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5212                               const u8 *new, int bytes,
5213                               struct kvm_page_track_notifier_node *node)
5214 {
5215         gfn_t gfn = gpa >> PAGE_SHIFT;
5216         struct kvm_mmu_page *sp;
5217         LIST_HEAD(invalid_list);
5218         u64 entry, gentry, *spte;
5219         int npte;
5220         bool remote_flush, local_flush;
5221
5222         /*
5223          * If we don't have indirect shadow pages, it means no page is
5224          * write-protected, so we can exit simply.
5225          */
5226         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5227                 return;
5228
5229         remote_flush = local_flush = false;
5230
5231         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5232
5233         /*
5234          * No need to care whether allocation memory is successful
5235          * or not since pte prefetch is skipped if it does not have
5236          * enough objects in the cache.
5237          */
5238         mmu_topup_memory_caches(vcpu, true);
5239
5240         write_lock(&vcpu->kvm->mmu_lock);
5241
5242         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5243
5244         ++vcpu->kvm->stat.mmu_pte_write;
5245         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5246
5247         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5248                 if (detect_write_misaligned(sp, gpa, bytes) ||
5249                       detect_write_flooding(sp)) {
5250                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5251                         ++vcpu->kvm->stat.mmu_flooded;
5252                         continue;
5253                 }
5254
5255                 spte = get_written_sptes(sp, gpa, &npte);
5256                 if (!spte)
5257                         continue;
5258
5259                 local_flush = true;
5260                 while (npte--) {
5261                         entry = *spte;
5262                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5263                         if (gentry && sp->role.level != PG_LEVEL_4K)
5264                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5265                         if (need_remote_flush(entry, *spte))
5266                                 remote_flush = true;
5267                         ++spte;
5268                 }
5269         }
5270         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5271         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5272         write_unlock(&vcpu->kvm->mmu_lock);
5273 }
5274
5275 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5276                        void *insn, int insn_len)
5277 {
5278         int r, emulation_type = EMULTYPE_PF;
5279         bool direct = vcpu->arch.mmu->direct_map;
5280
5281         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5282                 return RET_PF_RETRY;
5283
5284         r = RET_PF_INVALID;
5285         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5286                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5287                 if (r == RET_PF_EMULATE)
5288                         goto emulate;
5289         }
5290
5291         if (r == RET_PF_INVALID) {
5292                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5293                                           lower_32_bits(error_code), false);
5294                 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5295                         return -EIO;
5296         }
5297
5298         if (r < 0)
5299                 return r;
5300         if (r != RET_PF_EMULATE)
5301                 return 1;
5302
5303         /*
5304          * Before emulating the instruction, check if the error code
5305          * was due to a RO violation while translating the guest page.
5306          * This can occur when using nested virtualization with nested
5307          * paging in both guests. If true, we simply unprotect the page
5308          * and resume the guest.
5309          */
5310         if (vcpu->arch.mmu->direct_map &&
5311             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5312                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5313                 return 1;
5314         }
5315
5316         /*
5317          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5318          * optimistically try to just unprotect the page and let the processor
5319          * re-execute the instruction that caused the page fault.  Do not allow
5320          * retrying MMIO emulation, as it's not only pointless but could also
5321          * cause us to enter an infinite loop because the processor will keep
5322          * faulting on the non-existent MMIO address.  Retrying an instruction
5323          * from a nested guest is also pointless and dangerous as we are only
5324          * explicitly shadowing L1's page tables, i.e. unprotecting something
5325          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5326          */
5327         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5328                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5329 emulate:
5330         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5331                                        insn_len);
5332 }
5333 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5334
5335 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5336                             gva_t gva, hpa_t root_hpa)
5337 {
5338         int i;
5339
5340         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5341         if (mmu != &vcpu->arch.guest_mmu) {
5342                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5343                 if (is_noncanonical_address(gva, vcpu))
5344                         return;
5345
5346                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5347         }
5348
5349         if (!mmu->invlpg)
5350                 return;
5351
5352         if (root_hpa == INVALID_PAGE) {
5353                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5354
5355                 /*
5356                  * INVLPG is required to invalidate any global mappings for the VA,
5357                  * irrespective of PCID. Since it would take us roughly similar amount
5358                  * of work to determine whether any of the prev_root mappings of the VA
5359                  * is marked global, or to just sync it blindly, so we might as well
5360                  * just always sync it.
5361                  *
5362                  * Mappings not reachable via the current cr3 or the prev_roots will be
5363                  * synced when switching to that cr3, so nothing needs to be done here
5364                  * for them.
5365                  */
5366                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5367                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5368                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5369         } else {
5370                 mmu->invlpg(vcpu, gva, root_hpa);
5371         }
5372 }
5373
5374 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5375 {
5376         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5377         ++vcpu->stat.invlpg;
5378 }
5379 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5380
5381
5382 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5383 {
5384         struct kvm_mmu *mmu = vcpu->arch.mmu;
5385         bool tlb_flush = false;
5386         uint i;
5387
5388         if (pcid == kvm_get_active_pcid(vcpu)) {
5389                 if (mmu->invlpg)
5390                         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5391                 tlb_flush = true;
5392         }
5393
5394         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5395                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5396                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5397                         if (mmu->invlpg)
5398                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5399                         tlb_flush = true;
5400                 }
5401         }
5402
5403         if (tlb_flush)
5404                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5405
5406         ++vcpu->stat.invlpg;
5407
5408         /*
5409          * Mappings not reachable via the current cr3 or the prev_roots will be
5410          * synced when switching to that cr3, so nothing needs to be done here
5411          * for them.
5412          */
5413 }
5414
5415 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5416                        int tdp_max_root_level, int tdp_huge_page_level)
5417 {
5418         tdp_enabled = enable_tdp;
5419         tdp_root_level = tdp_forced_root_level;
5420         max_tdp_level = tdp_max_root_level;
5421
5422         /*
5423          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5424          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5425          * the kernel is not.  But, KVM never creates a page size greater than
5426          * what is used by the kernel for any given HVA, i.e. the kernel's
5427          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5428          */
5429         if (tdp_enabled)
5430                 max_huge_page_level = tdp_huge_page_level;
5431         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5432                 max_huge_page_level = PG_LEVEL_1G;
5433         else
5434                 max_huge_page_level = PG_LEVEL_2M;
5435 }
5436 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5437
5438 /* The return value indicates if tlb flush on all vcpus is needed. */
5439 typedef bool (*slot_level_handler) (struct kvm *kvm,
5440                                     struct kvm_rmap_head *rmap_head,
5441                                     const struct kvm_memory_slot *slot);
5442
5443 /* The caller should hold mmu-lock before calling this function. */
5444 static __always_inline bool
5445 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5446                         slot_level_handler fn, int start_level, int end_level,
5447                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5448                         bool flush)
5449 {
5450         struct slot_rmap_walk_iterator iterator;
5451
5452         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5453                         end_gfn, &iterator) {
5454                 if (iterator.rmap)
5455                         flush |= fn(kvm, iterator.rmap, memslot);
5456
5457                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5458                         if (flush && flush_on_yield) {
5459                                 kvm_flush_remote_tlbs_with_address(kvm,
5460                                                 start_gfn,
5461                                                 iterator.gfn - start_gfn + 1);
5462                                 flush = false;
5463                         }
5464                         cond_resched_rwlock_write(&kvm->mmu_lock);
5465                 }
5466         }
5467
5468         return flush;
5469 }
5470
5471 static __always_inline bool
5472 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5473                   slot_level_handler fn, int start_level, int end_level,
5474                   bool flush_on_yield)
5475 {
5476         return slot_handle_level_range(kvm, memslot, fn, start_level,
5477                         end_level, memslot->base_gfn,
5478                         memslot->base_gfn + memslot->npages - 1,
5479                         flush_on_yield, false);
5480 }
5481
5482 static __always_inline bool
5483 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5484                      slot_level_handler fn, bool flush_on_yield)
5485 {
5486         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5487                                  PG_LEVEL_4K, flush_on_yield);
5488 }
5489
5490 static void free_mmu_pages(struct kvm_mmu *mmu)
5491 {
5492         if (!tdp_enabled && mmu->pae_root)
5493                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5494         free_page((unsigned long)mmu->pae_root);
5495         free_page((unsigned long)mmu->pml4_root);
5496         free_page((unsigned long)mmu->pml5_root);
5497 }
5498
5499 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5500 {
5501         struct page *page;
5502         int i;
5503
5504         mmu->root_hpa = INVALID_PAGE;
5505         mmu->root_pgd = 0;
5506         mmu->translate_gpa = translate_gpa;
5507         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5508                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5509
5510         /*
5511          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5512          * while the PDP table is a per-vCPU construct that's allocated at MMU
5513          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5514          * x86_64.  Therefore we need to allocate the PDP table in the first
5515          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5516          * generally doesn't use PAE paging and can skip allocating the PDP
5517          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5518          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5519          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5520          */
5521         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5522                 return 0;
5523
5524         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5525         if (!page)
5526                 return -ENOMEM;
5527
5528         mmu->pae_root = page_address(page);
5529
5530         /*
5531          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5532          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5533          * that KVM's writes and the CPU's reads get along.  Note, this is
5534          * only necessary when using shadow paging, as 64-bit NPT can get at
5535          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5536          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5537          */
5538         if (!tdp_enabled)
5539                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5540         else
5541                 WARN_ON_ONCE(shadow_me_mask);
5542
5543         for (i = 0; i < 4; ++i)
5544                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5545
5546         return 0;
5547 }
5548
5549 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5550 {
5551         int ret;
5552
5553         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5554         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5555
5556         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5557         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5558
5559         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5560
5561         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5562         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5563
5564         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5565
5566         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5567         if (ret)
5568                 return ret;
5569
5570         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5571         if (ret)
5572                 goto fail_allocate_root;
5573
5574         return ret;
5575  fail_allocate_root:
5576         free_mmu_pages(&vcpu->arch.guest_mmu);
5577         return ret;
5578 }
5579
5580 #define BATCH_ZAP_PAGES 10
5581 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5582 {
5583         struct kvm_mmu_page *sp, *node;
5584         int nr_zapped, batch = 0;
5585         bool unstable;
5586
5587 restart:
5588         list_for_each_entry_safe_reverse(sp, node,
5589               &kvm->arch.active_mmu_pages, link) {
5590                 /*
5591                  * No obsolete valid page exists before a newly created page
5592                  * since active_mmu_pages is a FIFO list.
5593                  */
5594                 if (!is_obsolete_sp(kvm, sp))
5595                         break;
5596
5597                 /*
5598                  * Invalid pages should never land back on the list of active
5599                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5600                  * infinite loop if the page gets put back on the list (again).
5601                  */
5602                 if (WARN_ON(sp->role.invalid))
5603                         continue;
5604
5605                 /*
5606                  * No need to flush the TLB since we're only zapping shadow
5607                  * pages with an obsolete generation number and all vCPUS have
5608                  * loaded a new root, i.e. the shadow pages being zapped cannot
5609                  * be in active use by the guest.
5610                  */
5611                 if (batch >= BATCH_ZAP_PAGES &&
5612                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5613                         batch = 0;
5614                         goto restart;
5615                 }
5616
5617                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5618                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
5619                 batch += nr_zapped;
5620
5621                 if (unstable)
5622                         goto restart;
5623         }
5624
5625         /*
5626          * Trigger a remote TLB flush before freeing the page tables to ensure
5627          * KVM is not in the middle of a lockless shadow page table walk, which
5628          * may reference the pages.
5629          */
5630         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5631 }
5632
5633 /*
5634  * Fast invalidate all shadow pages and use lock-break technique
5635  * to zap obsolete pages.
5636  *
5637  * It's required when memslot is being deleted or VM is being
5638  * destroyed, in these cases, we should ensure that KVM MMU does
5639  * not use any resource of the being-deleted slot or all slots
5640  * after calling the function.
5641  */
5642 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5643 {
5644         lockdep_assert_held(&kvm->slots_lock);
5645
5646         write_lock(&kvm->mmu_lock);
5647         trace_kvm_mmu_zap_all_fast(kvm);
5648
5649         /*
5650          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5651          * held for the entire duration of zapping obsolete pages, it's
5652          * impossible for there to be multiple invalid generations associated
5653          * with *valid* shadow pages at any given time, i.e. there is exactly
5654          * one valid generation and (at most) one invalid generation.
5655          */
5656         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5657
5658         /* In order to ensure all threads see this change when
5659          * handling the MMU reload signal, this must happen in the
5660          * same critical section as kvm_reload_remote_mmus, and
5661          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5662          * could drop the MMU lock and yield.
5663          */
5664         if (is_tdp_mmu_enabled(kvm))
5665                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5666
5667         /*
5668          * Notify all vcpus to reload its shadow page table and flush TLB.
5669          * Then all vcpus will switch to new shadow page table with the new
5670          * mmu_valid_gen.
5671          *
5672          * Note: we need to do this under the protection of mmu_lock,
5673          * otherwise, vcpu would purge shadow page but miss tlb flush.
5674          */
5675         kvm_reload_remote_mmus(kvm);
5676
5677         kvm_zap_obsolete_pages(kvm);
5678
5679         write_unlock(&kvm->mmu_lock);
5680
5681         if (is_tdp_mmu_enabled(kvm)) {
5682                 read_lock(&kvm->mmu_lock);
5683                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5684                 read_unlock(&kvm->mmu_lock);
5685         }
5686 }
5687
5688 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5689 {
5690         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5691 }
5692
5693 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5694                         struct kvm_memory_slot *slot,
5695                         struct kvm_page_track_notifier_node *node)
5696 {
5697         kvm_mmu_zap_all_fast(kvm);
5698 }
5699
5700 void kvm_mmu_init_vm(struct kvm *kvm)
5701 {
5702         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5703
5704         spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5705
5706         if (!kvm_mmu_init_tdp_mmu(kvm))
5707                 /*
5708                  * No smp_load/store wrappers needed here as we are in
5709                  * VM init and there cannot be any memslots / other threads
5710                  * accessing this struct kvm yet.
5711                  */
5712                 kvm->arch.memslots_have_rmaps = true;
5713
5714         node->track_write = kvm_mmu_pte_write;
5715         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5716         kvm_page_track_register_notifier(kvm, node);
5717 }
5718
5719 void kvm_mmu_uninit_vm(struct kvm *kvm)
5720 {
5721         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5722
5723         kvm_page_track_unregister_notifier(kvm, node);
5724
5725         kvm_mmu_uninit_tdp_mmu(kvm);
5726 }
5727
5728 /*
5729  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5730  * (not including it)
5731  */
5732 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5733 {
5734         struct kvm_memslots *slots;
5735         struct kvm_memory_slot *memslot;
5736         int i;
5737         bool flush = false;
5738
5739         write_lock(&kvm->mmu_lock);
5740
5741         kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5742
5743         if (kvm_memslots_have_rmaps(kvm)) {
5744                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5745                         slots = __kvm_memslots(kvm, i);
5746                         kvm_for_each_memslot(memslot, slots) {
5747                                 gfn_t start, end;
5748
5749                                 start = max(gfn_start, memslot->base_gfn);
5750                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5751                                 if (start >= end)
5752                                         continue;
5753
5754                                 flush = slot_handle_level_range(kvm,
5755                                                 (const struct kvm_memory_slot *) memslot,
5756                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5757                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5758                                                 end - 1, true, flush);
5759                         }
5760                 }
5761                 if (flush)
5762                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5763                                                            gfn_end - gfn_start);
5764         }
5765
5766         if (is_tdp_mmu_enabled(kvm)) {
5767                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5768                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5769                                                           gfn_end, flush);
5770         }
5771
5772         if (flush)
5773                 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5774                                                    gfn_end - gfn_start);
5775
5776         kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5777
5778         write_unlock(&kvm->mmu_lock);
5779 }
5780
5781 static bool slot_rmap_write_protect(struct kvm *kvm,
5782                                     struct kvm_rmap_head *rmap_head,
5783                                     const struct kvm_memory_slot *slot)
5784 {
5785         return __rmap_write_protect(kvm, rmap_head, false);
5786 }
5787
5788 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5789                                       const struct kvm_memory_slot *memslot,
5790                                       int start_level)
5791 {
5792         bool flush = false;
5793
5794         if (kvm_memslots_have_rmaps(kvm)) {
5795                 write_lock(&kvm->mmu_lock);
5796                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5797                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5798                                           false);
5799                 write_unlock(&kvm->mmu_lock);
5800         }
5801
5802         if (is_tdp_mmu_enabled(kvm)) {
5803                 read_lock(&kvm->mmu_lock);
5804                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5805                 read_unlock(&kvm->mmu_lock);
5806         }
5807
5808         /*
5809          * We can flush all the TLBs out of the mmu lock without TLB
5810          * corruption since we just change the spte from writable to
5811          * readonly so that we only need to care the case of changing
5812          * spte from present to present (changing the spte from present
5813          * to nonpresent will flush all the TLBs immediately), in other
5814          * words, the only case we care is mmu_spte_update() where we
5815          * have checked Host-writable | MMU-writable instead of
5816          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5817          * anymore.
5818          */
5819         if (flush)
5820                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5821 }
5822
5823 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5824                                          struct kvm_rmap_head *rmap_head,
5825                                          const struct kvm_memory_slot *slot)
5826 {
5827         u64 *sptep;
5828         struct rmap_iterator iter;
5829         int need_tlb_flush = 0;
5830         kvm_pfn_t pfn;
5831         struct kvm_mmu_page *sp;
5832
5833 restart:
5834         for_each_rmap_spte(rmap_head, &iter, sptep) {
5835                 sp = sptep_to_sp(sptep);
5836                 pfn = spte_to_pfn(*sptep);
5837
5838                 /*
5839                  * We cannot do huge page mapping for indirect shadow pages,
5840                  * which are found on the last rmap (level = 1) when not using
5841                  * tdp; such shadow pages are synced with the page table in
5842                  * the guest, and the guest page table is using 4K page size
5843                  * mapping if the indirect sp has level = 1.
5844                  */
5845                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5846                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5847                                                                pfn, PG_LEVEL_NUM)) {
5848                         pte_list_remove(kvm, rmap_head, sptep);
5849
5850                         if (kvm_available_flush_tlb_with_range())
5851                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5852                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5853                         else
5854                                 need_tlb_flush = 1;
5855
5856                         goto restart;
5857                 }
5858         }
5859
5860         return need_tlb_flush;
5861 }
5862
5863 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5864                                    const struct kvm_memory_slot *slot)
5865 {
5866         if (kvm_memslots_have_rmaps(kvm)) {
5867                 write_lock(&kvm->mmu_lock);
5868                 /*
5869                  * Zap only 4k SPTEs since the legacy MMU only supports dirty
5870                  * logging at a 4k granularity and never creates collapsible
5871                  * 2m SPTEs during dirty logging.
5872                  */
5873                 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5874                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5875                 write_unlock(&kvm->mmu_lock);
5876         }
5877
5878         if (is_tdp_mmu_enabled(kvm)) {
5879                 read_lock(&kvm->mmu_lock);
5880                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5881                 read_unlock(&kvm->mmu_lock);
5882         }
5883 }
5884
5885 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5886                                         const struct kvm_memory_slot *memslot)
5887 {
5888         /*
5889          * All current use cases for flushing the TLBs for a specific memslot
5890          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5891          * The interaction between the various operations on memslot must be
5892          * serialized by slots_locks to ensure the TLB flush from one operation
5893          * is observed by any other operation on the same memslot.
5894          */
5895         lockdep_assert_held(&kvm->slots_lock);
5896         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5897                                            memslot->npages);
5898 }
5899
5900 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5901                                    const struct kvm_memory_slot *memslot)
5902 {
5903         bool flush = false;
5904
5905         if (kvm_memslots_have_rmaps(kvm)) {
5906                 write_lock(&kvm->mmu_lock);
5907                 /*
5908                  * Clear dirty bits only on 4k SPTEs since the legacy MMU only
5909                  * support dirty logging at a 4k granularity.
5910                  */
5911                 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5912                 write_unlock(&kvm->mmu_lock);
5913         }
5914
5915         if (is_tdp_mmu_enabled(kvm)) {
5916                 read_lock(&kvm->mmu_lock);
5917                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5918                 read_unlock(&kvm->mmu_lock);
5919         }
5920
5921         /*
5922          * It's also safe to flush TLBs out of mmu lock here as currently this
5923          * function is only used for dirty logging, in which case flushing TLB
5924          * out of mmu lock also guarantees no dirty pages will be lost in
5925          * dirty_bitmap.
5926          */
5927         if (flush)
5928                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5929 }
5930
5931 void kvm_mmu_zap_all(struct kvm *kvm)
5932 {
5933         struct kvm_mmu_page *sp, *node;
5934         LIST_HEAD(invalid_list);
5935         int ign;
5936
5937         write_lock(&kvm->mmu_lock);
5938 restart:
5939         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5940                 if (WARN_ON(sp->role.invalid))
5941                         continue;
5942                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5943                         goto restart;
5944                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5945                         goto restart;
5946         }
5947
5948         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5949
5950         if (is_tdp_mmu_enabled(kvm))
5951                 kvm_tdp_mmu_zap_all(kvm);
5952
5953         write_unlock(&kvm->mmu_lock);
5954 }
5955
5956 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5957 {
5958         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5959
5960         gen &= MMIO_SPTE_GEN_MASK;
5961
5962         /*
5963          * Generation numbers are incremented in multiples of the number of
5964          * address spaces in order to provide unique generations across all
5965          * address spaces.  Strip what is effectively the address space
5966          * modifier prior to checking for a wrap of the MMIO generation so
5967          * that a wrap in any address space is detected.
5968          */
5969         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5970
5971         /*
5972          * The very rare case: if the MMIO generation number has wrapped,
5973          * zap all shadow pages.
5974          */
5975         if (unlikely(gen == 0)) {
5976                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5977                 kvm_mmu_zap_all_fast(kvm);
5978         }
5979 }
5980
5981 static unsigned long
5982 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5983 {
5984         struct kvm *kvm;
5985         int nr_to_scan = sc->nr_to_scan;
5986         unsigned long freed = 0;
5987
5988         mutex_lock(&kvm_lock);
5989
5990         list_for_each_entry(kvm, &vm_list, vm_list) {
5991                 int idx;
5992                 LIST_HEAD(invalid_list);
5993
5994                 /*
5995                  * Never scan more than sc->nr_to_scan VM instances.
5996                  * Will not hit this condition practically since we do not try
5997                  * to shrink more than one VM and it is very unlikely to see
5998                  * !n_used_mmu_pages so many times.
5999                  */
6000                 if (!nr_to_scan--)
6001                         break;
6002                 /*
6003                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6004                  * here. We may skip a VM instance errorneosly, but we do not
6005                  * want to shrink a VM that only started to populate its MMU
6006                  * anyway.
6007                  */
6008                 if (!kvm->arch.n_used_mmu_pages &&
6009                     !kvm_has_zapped_obsolete_pages(kvm))
6010                         continue;
6011
6012                 idx = srcu_read_lock(&kvm->srcu);
6013                 write_lock(&kvm->mmu_lock);
6014
6015                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6016                         kvm_mmu_commit_zap_page(kvm,
6017                               &kvm->arch.zapped_obsolete_pages);
6018                         goto unlock;
6019                 }
6020
6021                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6022
6023 unlock:
6024                 write_unlock(&kvm->mmu_lock);
6025                 srcu_read_unlock(&kvm->srcu, idx);
6026
6027                 /*
6028                  * unfair on small ones
6029                  * per-vm shrinkers cry out
6030                  * sadness comes quickly
6031                  */
6032                 list_move_tail(&kvm->vm_list, &vm_list);
6033                 break;
6034         }
6035
6036         mutex_unlock(&kvm_lock);
6037         return freed;
6038 }
6039
6040 static unsigned long
6041 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6042 {
6043         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6044 }
6045
6046 static struct shrinker mmu_shrinker = {
6047         .count_objects = mmu_shrink_count,
6048         .scan_objects = mmu_shrink_scan,
6049         .seeks = DEFAULT_SEEKS * 10,
6050 };
6051
6052 static void mmu_destroy_caches(void)
6053 {
6054         kmem_cache_destroy(pte_list_desc_cache);
6055         kmem_cache_destroy(mmu_page_header_cache);
6056 }
6057
6058 static bool get_nx_auto_mode(void)
6059 {
6060         /* Return true when CPU has the bug, and mitigations are ON */
6061         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6062 }
6063
6064 static void __set_nx_huge_pages(bool val)
6065 {
6066         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6067 }
6068
6069 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6070 {
6071         bool old_val = nx_huge_pages;
6072         bool new_val;
6073
6074         /* In "auto" mode deploy workaround only if CPU has the bug. */
6075         if (sysfs_streq(val, "off"))
6076                 new_val = 0;
6077         else if (sysfs_streq(val, "force"))
6078                 new_val = 1;
6079         else if (sysfs_streq(val, "auto"))
6080                 new_val = get_nx_auto_mode();
6081         else if (strtobool(val, &new_val) < 0)
6082                 return -EINVAL;
6083
6084         __set_nx_huge_pages(new_val);
6085
6086         if (new_val != old_val) {
6087                 struct kvm *kvm;
6088
6089                 mutex_lock(&kvm_lock);
6090
6091                 list_for_each_entry(kvm, &vm_list, vm_list) {
6092                         mutex_lock(&kvm->slots_lock);
6093                         kvm_mmu_zap_all_fast(kvm);
6094                         mutex_unlock(&kvm->slots_lock);
6095
6096                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6097                 }
6098                 mutex_unlock(&kvm_lock);
6099         }
6100
6101         return 0;
6102 }
6103
6104 /*
6105  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6106  * its default value of -1 is technically undefined behavior for a boolean.
6107  */
6108 void __init kvm_mmu_x86_module_init(void)
6109 {
6110         if (nx_huge_pages == -1)
6111                 __set_nx_huge_pages(get_nx_auto_mode());
6112 }
6113
6114 /*
6115  * The bulk of the MMU initialization is deferred until the vendor module is
6116  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6117  * to be reset when a potentially different vendor module is loaded.
6118  */
6119 int kvm_mmu_vendor_module_init(void)
6120 {
6121         int ret = -ENOMEM;
6122
6123         /*
6124          * MMU roles use union aliasing which is, generally speaking, an
6125          * undefined behavior. However, we supposedly know how compilers behave
6126          * and the current status quo is unlikely to change. Guardians below are
6127          * supposed to let us know if the assumption becomes false.
6128          */
6129         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6130         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6131         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6132
6133         kvm_mmu_reset_all_pte_masks();
6134
6135         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6136                                             sizeof(struct pte_list_desc),
6137                                             0, SLAB_ACCOUNT, NULL);
6138         if (!pte_list_desc_cache)
6139                 goto out;
6140
6141         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6142                                                   sizeof(struct kvm_mmu_page),
6143                                                   0, SLAB_ACCOUNT, NULL);
6144         if (!mmu_page_header_cache)
6145                 goto out;
6146
6147         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6148                 goto out;
6149
6150         ret = register_shrinker(&mmu_shrinker);
6151         if (ret)
6152                 goto out;
6153
6154         return 0;
6155
6156 out:
6157         mmu_destroy_caches();
6158         return ret;
6159 }
6160
6161 /*
6162  * Calculate mmu pages needed for kvm.
6163  */
6164 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6165 {
6166         unsigned long nr_mmu_pages;
6167         unsigned long nr_pages = 0;
6168         struct kvm_memslots *slots;
6169         struct kvm_memory_slot *memslot;
6170         int i;
6171
6172         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6173                 slots = __kvm_memslots(kvm, i);
6174
6175                 kvm_for_each_memslot(memslot, slots)
6176                         nr_pages += memslot->npages;
6177         }
6178
6179         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6180         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6181
6182         return nr_mmu_pages;
6183 }
6184
6185 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6186 {
6187         kvm_mmu_unload(vcpu);
6188         free_mmu_pages(&vcpu->arch.root_mmu);
6189         free_mmu_pages(&vcpu->arch.guest_mmu);
6190         mmu_free_memory_caches(vcpu);
6191 }
6192
6193 void kvm_mmu_vendor_module_exit(void)
6194 {
6195         mmu_destroy_caches();
6196         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6197         unregister_shrinker(&mmu_shrinker);
6198         mmu_audit_disable();
6199 }
6200
6201 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6202 {
6203         unsigned int old_val;
6204         int err;
6205
6206         old_val = nx_huge_pages_recovery_ratio;
6207         err = param_set_uint(val, kp);
6208         if (err)
6209                 return err;
6210
6211         if (READ_ONCE(nx_huge_pages) &&
6212             !old_val && nx_huge_pages_recovery_ratio) {
6213                 struct kvm *kvm;
6214
6215                 mutex_lock(&kvm_lock);
6216
6217                 list_for_each_entry(kvm, &vm_list, vm_list)
6218                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6219
6220                 mutex_unlock(&kvm_lock);
6221         }
6222
6223         return err;
6224 }
6225
6226 static void kvm_recover_nx_lpages(struct kvm *kvm)
6227 {
6228         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6229         int rcu_idx;
6230         struct kvm_mmu_page *sp;
6231         unsigned int ratio;
6232         LIST_HEAD(invalid_list);
6233         bool flush = false;
6234         ulong to_zap;
6235
6236         rcu_idx = srcu_read_lock(&kvm->srcu);
6237         write_lock(&kvm->mmu_lock);
6238
6239         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6240         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6241         for ( ; to_zap; --to_zap) {
6242                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6243                         break;
6244
6245                 /*
6246                  * We use a separate list instead of just using active_mmu_pages
6247                  * because the number of lpage_disallowed pages is expected to
6248                  * be relatively small compared to the total.
6249                  */
6250                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6251                                       struct kvm_mmu_page,
6252                                       lpage_disallowed_link);
6253                 WARN_ON_ONCE(!sp->lpage_disallowed);
6254                 if (is_tdp_mmu_page(sp)) {
6255                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6256                 } else {
6257                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6258                         WARN_ON_ONCE(sp->lpage_disallowed);
6259                 }
6260
6261                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6262                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6263                         cond_resched_rwlock_write(&kvm->mmu_lock);
6264                         flush = false;
6265                 }
6266         }
6267         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6268
6269         write_unlock(&kvm->mmu_lock);
6270         srcu_read_unlock(&kvm->srcu, rcu_idx);
6271 }
6272
6273 static long get_nx_lpage_recovery_timeout(u64 start_time)
6274 {
6275         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6276                 ? start_time + 60 * HZ - get_jiffies_64()
6277                 : MAX_SCHEDULE_TIMEOUT;
6278 }
6279
6280 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6281 {
6282         u64 start_time;
6283         long remaining_time;
6284
6285         while (true) {
6286                 start_time = get_jiffies_64();
6287                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6288
6289                 set_current_state(TASK_INTERRUPTIBLE);
6290                 while (!kthread_should_stop() && remaining_time > 0) {
6291                         schedule_timeout(remaining_time);
6292                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6293                         set_current_state(TASK_INTERRUPTIBLE);
6294                 }
6295
6296                 set_current_state(TASK_RUNNING);
6297
6298                 if (kthread_should_stop())
6299                         return 0;
6300
6301                 kvm_recover_nx_lpages(kvm);
6302         }
6303 }
6304
6305 int kvm_mmu_post_init_vm(struct kvm *kvm)
6306 {
6307         int err;
6308
6309         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6310                                           "kvm-nx-lpage-recovery",
6311                                           &kvm->arch.nx_lpage_recovery_thread);
6312         if (!err)
6313                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6314
6315         return err;
6316 }
6317
6318 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6319 {
6320         if (kvm->arch.nx_lpage_recovery_thread)
6321                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6322 }