GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 #include "paging.h"
56
57 extern bool itlb_multihit_kvm_mitigation;
58
59 static int __read_mostly nx_huge_pages = -1;
60 #ifdef CONFIG_PREEMPT_RT
61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
63 #else
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65 #endif
66
67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
69
70 static const struct kernel_param_ops nx_huge_pages_ops = {
71         .set = set_nx_huge_pages,
72         .get = param_get_bool,
73 };
74
75 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
76         .set = set_nx_huge_pages_recovery_ratio,
77         .get = param_get_uint,
78 };
79
80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
81 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
83                 &nx_huge_pages_recovery_ratio, 0644);
84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
85
86 static bool __read_mostly force_flush_and_sync_on_reuse;
87 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
88
89 /*
90  * When setting this variable to true it enables Two-Dimensional-Paging
91  * where the hardware walks 2 page tables:
92  * 1. the guest-virtual to guest-physical
93  * 2. while doing 1. it walks guest-physical to host-physical
94  * If the hardware supports that we don't need to do shadow paging.
95  */
96 bool tdp_enabled = false;
97
98 static int max_huge_page_level __read_mostly;
99 static int max_tdp_level __read_mostly;
100
101 enum {
102         AUDIT_PRE_PAGE_FAULT,
103         AUDIT_POST_PAGE_FAULT,
104         AUDIT_PRE_PTE_WRITE,
105         AUDIT_POST_PTE_WRITE,
106         AUDIT_PRE_SYNC,
107         AUDIT_POST_SYNC
108 };
109
110 #ifdef MMU_DEBUG
111 bool dbg = 0;
112 module_param(dbg, bool, 0644);
113 #endif
114
115 #define PTE_PREFETCH_NUM                8
116
117 #define PT32_LEVEL_BITS 10
118
119 #define PT32_LEVEL_SHIFT(level) \
120                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
121
122 #define PT32_LVL_OFFSET_MASK(level) \
123         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124                                                 * PT32_LEVEL_BITS))) - 1))
125
126 #define PT32_INDEX(address, level)\
127         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
130 #define PT32_BASE_ADDR_MASK PAGE_MASK
131 #define PT32_DIR_BASE_ADDR_MASK \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
133 #define PT32_LVL_ADDR_MASK(level) \
134         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135                                             * PT32_LEVEL_BITS))) - 1))
136
137 #include <trace/events/kvm.h>
138
139 /* make pte_list_desc fit well in cache line */
140 #define PTE_LIST_EXT 3
141
142 struct pte_list_desc {
143         u64 *sptes[PTE_LIST_EXT];
144         struct pte_list_desc *more;
145 };
146
147 struct kvm_shadow_walk_iterator {
148         u64 addr;
149         hpa_t shadow_addr;
150         u64 *sptep;
151         int level;
152         unsigned index;
153 };
154
155 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
156         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
157                                          (_root), (_addr));                \
158              shadow_walk_okay(&(_walker));                                 \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
163              shadow_walk_okay(&(_walker));                      \
164              shadow_walk_next(&(_walker)))
165
166 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
167         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
168              shadow_walk_okay(&(_walker)) &&                            \
169                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
170              __shadow_walk_next(&(_walker), spte))
171
172 static struct kmem_cache *pte_list_desc_cache;
173 struct kmem_cache *mmu_page_header_cache;
174 static struct percpu_counter kvm_total_used_mmu_pages;
175
176 static void mmu_spte_set(u64 *sptep, u64 spte);
177 static union kvm_mmu_page_role
178 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
179
180 #define CREATE_TRACE_POINTS
181 #include "mmutrace.h"
182
183
184 static inline bool kvm_available_flush_tlb_with_range(void)
185 {
186         return kvm_x86_ops.tlb_remote_flush_with_range;
187 }
188
189 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
190                 struct kvm_tlb_range *range)
191 {
192         int ret = -ENOTSUPP;
193
194         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
195                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
196
197         if (ret)
198                 kvm_flush_remote_tlbs(kvm);
199 }
200
201 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
202                 u64 start_gfn, u64 pages)
203 {
204         struct kvm_tlb_range range;
205
206         range.start_gfn = start_gfn;
207         range.pages = pages;
208
209         kvm_flush_remote_tlbs_with_range(kvm, &range);
210 }
211
212 bool is_nx_huge_page_enabled(void)
213 {
214         return READ_ONCE(nx_huge_pages);
215 }
216
217 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
218                            unsigned int access)
219 {
220         u64 mask = make_mmio_spte(vcpu, gfn, access);
221
222         trace_mark_mmio_spte(sptep, gfn, mask);
223         mmu_spte_set(sptep, mask);
224 }
225
226 static gfn_t get_mmio_spte_gfn(u64 spte)
227 {
228         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
229
230         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
231                & shadow_nonpresent_or_rsvd_mask;
232
233         return gpa >> PAGE_SHIFT;
234 }
235
236 static unsigned get_mmio_spte_access(u64 spte)
237 {
238         return spte & shadow_mmio_access_mask;
239 }
240
241 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
242                           kvm_pfn_t pfn, unsigned int access)
243 {
244         if (unlikely(is_noslot_pfn(pfn))) {
245                 mark_mmio_spte(vcpu, sptep, gfn, access);
246                 return true;
247         }
248
249         return false;
250 }
251
252 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
253 {
254         u64 kvm_gen, spte_gen, gen;
255
256         gen = kvm_vcpu_memslots(vcpu)->generation;
257         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
258                 return false;
259
260         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
261         spte_gen = get_mmio_spte_generation(spte);
262
263         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
264         return likely(kvm_gen == spte_gen);
265 }
266
267 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
268                                   struct x86_exception *exception)
269 {
270         return gpa;
271 }
272
273 static int is_cpuid_PSE36(void)
274 {
275         return 1;
276 }
277
278 static int is_nx(struct kvm_vcpu *vcpu)
279 {
280         return vcpu->arch.efer & EFER_NX;
281 }
282
283 static gfn_t pse36_gfn_delta(u32 gpte)
284 {
285         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287         return (gpte & PT32_DIR_PSE36_MASK) << shift;
288 }
289
290 #ifdef CONFIG_X86_64
291 static void __set_spte(u64 *sptep, u64 spte)
292 {
293         WRITE_ONCE(*sptep, spte);
294 }
295
296 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
297 {
298         WRITE_ONCE(*sptep, spte);
299 }
300
301 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
302 {
303         return xchg(sptep, spte);
304 }
305
306 static u64 __get_spte_lockless(u64 *sptep)
307 {
308         return READ_ONCE(*sptep);
309 }
310 #else
311 union split_spte {
312         struct {
313                 u32 spte_low;
314                 u32 spte_high;
315         };
316         u64 spte;
317 };
318
319 static void count_spte_clear(u64 *sptep, u64 spte)
320 {
321         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
322
323         if (is_shadow_present_pte(spte))
324                 return;
325
326         /* Ensure the spte is completely set before we increase the count */
327         smp_wmb();
328         sp->clear_spte_count++;
329 }
330
331 static void __set_spte(u64 *sptep, u64 spte)
332 {
333         union split_spte *ssptep, sspte;
334
335         ssptep = (union split_spte *)sptep;
336         sspte = (union split_spte)spte;
337
338         ssptep->spte_high = sspte.spte_high;
339
340         /*
341          * If we map the spte from nonpresent to present, We should store
342          * the high bits firstly, then set present bit, so cpu can not
343          * fetch this spte while we are setting the spte.
344          */
345         smp_wmb();
346
347         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
348 }
349
350 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
351 {
352         union split_spte *ssptep, sspte;
353
354         ssptep = (union split_spte *)sptep;
355         sspte = (union split_spte)spte;
356
357         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
358
359         /*
360          * If we map the spte from present to nonpresent, we should clear
361          * present bit firstly to avoid vcpu fetch the old high bits.
362          */
363         smp_wmb();
364
365         ssptep->spte_high = sspte.spte_high;
366         count_spte_clear(sptep, spte);
367 }
368
369 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
370 {
371         union split_spte *ssptep, sspte, orig;
372
373         ssptep = (union split_spte *)sptep;
374         sspte = (union split_spte)spte;
375
376         /* xchg acts as a barrier before the setting of the high bits */
377         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
378         orig.spte_high = ssptep->spte_high;
379         ssptep->spte_high = sspte.spte_high;
380         count_spte_clear(sptep, spte);
381
382         return orig.spte;
383 }
384
385 /*
386  * The idea using the light way get the spte on x86_32 guest is from
387  * gup_get_pte (mm/gup.c).
388  *
389  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
390  * coalesces them and we are running out of the MMU lock.  Therefore
391  * we need to protect against in-progress updates of the spte.
392  *
393  * Reading the spte while an update is in progress may get the old value
394  * for the high part of the spte.  The race is fine for a present->non-present
395  * change (because the high part of the spte is ignored for non-present spte),
396  * but for a present->present change we must reread the spte.
397  *
398  * All such changes are done in two steps (present->non-present and
399  * non-present->present), hence it is enough to count the number of
400  * present->non-present updates: if it changed while reading the spte,
401  * we might have hit the race.  This is done using clear_spte_count.
402  */
403 static u64 __get_spte_lockless(u64 *sptep)
404 {
405         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
406         union split_spte spte, *orig = (union split_spte *)sptep;
407         int count;
408
409 retry:
410         count = sp->clear_spte_count;
411         smp_rmb();
412
413         spte.spte_low = orig->spte_low;
414         smp_rmb();
415
416         spte.spte_high = orig->spte_high;
417         smp_rmb();
418
419         if (unlikely(spte.spte_low != orig->spte_low ||
420               count != sp->clear_spte_count))
421                 goto retry;
422
423         return spte.spte;
424 }
425 #endif
426
427 static bool spte_has_volatile_bits(u64 spte)
428 {
429         if (!is_shadow_present_pte(spte))
430                 return false;
431
432         /*
433          * Always atomically update spte if it can be updated
434          * out of mmu-lock, it can ensure dirty bit is not lost,
435          * also, it can help us to get a stable is_writable_pte()
436          * to ensure tlb flush is not missed.
437          */
438         if (spte_can_locklessly_be_made_writable(spte) ||
439             is_access_track_spte(spte))
440                 return true;
441
442         if (spte_ad_enabled(spte)) {
443                 if ((spte & shadow_accessed_mask) == 0 ||
444                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
445                         return true;
446         }
447
448         return false;
449 }
450
451 /* Rules for using mmu_spte_set:
452  * Set the sptep from nonpresent to present.
453  * Note: the sptep being assigned *must* be either not present
454  * or in a state where the hardware will not attempt to update
455  * the spte.
456  */
457 static void mmu_spte_set(u64 *sptep, u64 new_spte)
458 {
459         WARN_ON(is_shadow_present_pte(*sptep));
460         __set_spte(sptep, new_spte);
461 }
462
463 /*
464  * Update the SPTE (excluding the PFN), but do not track changes in its
465  * accessed/dirty status.
466  */
467 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
468 {
469         u64 old_spte = *sptep;
470
471         WARN_ON(!is_shadow_present_pte(new_spte));
472
473         if (!is_shadow_present_pte(old_spte)) {
474                 mmu_spte_set(sptep, new_spte);
475                 return old_spte;
476         }
477
478         if (!spte_has_volatile_bits(old_spte))
479                 __update_clear_spte_fast(sptep, new_spte);
480         else
481                 old_spte = __update_clear_spte_slow(sptep, new_spte);
482
483         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
484
485         return old_spte;
486 }
487
488 /* Rules for using mmu_spte_update:
489  * Update the state bits, it means the mapped pfn is not changed.
490  *
491  * Whenever we overwrite a writable spte with a read-only one we
492  * should flush remote TLBs. Otherwise rmap_write_protect
493  * will find a read-only spte, even though the writable spte
494  * might be cached on a CPU's TLB, the return value indicates this
495  * case.
496  *
497  * Returns true if the TLB needs to be flushed
498  */
499 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
500 {
501         bool flush = false;
502         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
503
504         if (!is_shadow_present_pte(old_spte))
505                 return false;
506
507         /*
508          * For the spte updated out of mmu-lock is safe, since
509          * we always atomically update it, see the comments in
510          * spte_has_volatile_bits().
511          */
512         if (spte_can_locklessly_be_made_writable(old_spte) &&
513               !is_writable_pte(new_spte))
514                 flush = true;
515
516         /*
517          * Flush TLB when accessed/dirty states are changed in the page tables,
518          * to guarantee consistency between TLB and page tables.
519          */
520
521         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
522                 flush = true;
523                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
524         }
525
526         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
527                 flush = true;
528                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
529         }
530
531         return flush;
532 }
533
534 /*
535  * Rules for using mmu_spte_clear_track_bits:
536  * It sets the sptep from present to nonpresent, and track the
537  * state bits, it is used to clear the last level sptep.
538  * Returns non-zero if the PTE was previously valid.
539  */
540 static int mmu_spte_clear_track_bits(u64 *sptep)
541 {
542         kvm_pfn_t pfn;
543         u64 old_spte = *sptep;
544
545         if (!spte_has_volatile_bits(old_spte))
546                 __update_clear_spte_fast(sptep, 0ull);
547         else
548                 old_spte = __update_clear_spte_slow(sptep, 0ull);
549
550         if (!is_shadow_present_pte(old_spte))
551                 return 0;
552
553         pfn = spte_to_pfn(old_spte);
554
555         /*
556          * KVM does not hold the refcount of the page used by
557          * kvm mmu, before reclaiming the page, we should
558          * unmap it from mmu first.
559          */
560         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
561
562         if (is_accessed_spte(old_spte))
563                 kvm_set_pfn_accessed(pfn);
564
565         if (is_dirty_spte(old_spte))
566                 kvm_set_pfn_dirty(pfn);
567
568         return 1;
569 }
570
571 /*
572  * Rules for using mmu_spte_clear_no_track:
573  * Directly clear spte without caring the state bits of sptep,
574  * it is used to set the upper level spte.
575  */
576 static void mmu_spte_clear_no_track(u64 *sptep)
577 {
578         __update_clear_spte_fast(sptep, 0ull);
579 }
580
581 static u64 mmu_spte_get_lockless(u64 *sptep)
582 {
583         return __get_spte_lockless(sptep);
584 }
585
586 /* Restore an acc-track PTE back to a regular PTE */
587 static u64 restore_acc_track_spte(u64 spte)
588 {
589         u64 new_spte = spte;
590         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
591                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
592
593         WARN_ON_ONCE(spte_ad_enabled(spte));
594         WARN_ON_ONCE(!is_access_track_spte(spte));
595
596         new_spte &= ~shadow_acc_track_mask;
597         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
598                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
599         new_spte |= saved_bits;
600
601         return new_spte;
602 }
603
604 /* Returns the Accessed status of the PTE and resets it at the same time. */
605 static bool mmu_spte_age(u64 *sptep)
606 {
607         u64 spte = mmu_spte_get_lockless(sptep);
608
609         if (!is_accessed_spte(spte))
610                 return false;
611
612         if (spte_ad_enabled(spte)) {
613                 clear_bit((ffs(shadow_accessed_mask) - 1),
614                           (unsigned long *)sptep);
615         } else {
616                 /*
617                  * Capture the dirty status of the page, so that it doesn't get
618                  * lost when the SPTE is marked for access tracking.
619                  */
620                 if (is_writable_pte(spte))
621                         kvm_set_pfn_dirty(spte_to_pfn(spte));
622
623                 spte = mark_spte_for_access_track(spte);
624                 mmu_spte_update_no_track(sptep, spte);
625         }
626
627         return true;
628 }
629
630 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
631 {
632         /*
633          * Prevent page table teardown by making any free-er wait during
634          * kvm_flush_remote_tlbs() IPI to all active vcpus.
635          */
636         local_irq_disable();
637
638         /*
639          * Make sure a following spte read is not reordered ahead of the write
640          * to vcpu->mode.
641          */
642         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
643 }
644
645 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
646 {
647         /*
648          * Make sure the write to vcpu->mode is not reordered in front of
649          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
650          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
651          */
652         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
653         local_irq_enable();
654 }
655
656 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
657 {
658         int r;
659
660         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
661         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
662                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
663         if (r)
664                 return r;
665         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
666                                        PT64_ROOT_MAX_LEVEL);
667         if (r)
668                 return r;
669         if (maybe_indirect) {
670                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
671                                                PT64_ROOT_MAX_LEVEL);
672                 if (r)
673                         return r;
674         }
675         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
676                                           PT64_ROOT_MAX_LEVEL);
677 }
678
679 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
680 {
681         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
682         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
683         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
684         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
685 }
686
687 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
688 {
689         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
690 }
691
692 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
693 {
694         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
695 }
696
697 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
698 {
699         if (!sp->role.direct)
700                 return sp->gfns[index];
701
702         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
703 }
704
705 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
706 {
707         if (!sp->role.direct) {
708                 sp->gfns[index] = gfn;
709                 return;
710         }
711
712         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
713                 pr_err_ratelimited("gfn mismatch under direct page %llx "
714                                    "(expected %llx, got %llx)\n",
715                                    sp->gfn,
716                                    kvm_mmu_page_get_gfn(sp, index), gfn);
717 }
718
719 /*
720  * Return the pointer to the large page information for a given gfn,
721  * handling slots that are not large page aligned.
722  */
723 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724                                               struct kvm_memory_slot *slot,
725                                               int level)
726 {
727         unsigned long idx;
728
729         idx = gfn_to_index(gfn, slot->base_gfn, level);
730         return &slot->arch.lpage_info[level - 2][idx];
731 }
732
733 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
734                                             gfn_t gfn, int count)
735 {
736         struct kvm_lpage_info *linfo;
737         int i;
738
739         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
740                 linfo = lpage_info_slot(gfn, slot, i);
741                 linfo->disallow_lpage += count;
742                 WARN_ON(linfo->disallow_lpage < 0);
743         }
744 }
745
746 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
747 {
748         update_gfn_disallow_lpage_count(slot, gfn, 1);
749 }
750
751 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
752 {
753         update_gfn_disallow_lpage_count(slot, gfn, -1);
754 }
755
756 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
757 {
758         struct kvm_memslots *slots;
759         struct kvm_memory_slot *slot;
760         gfn_t gfn;
761
762         kvm->arch.indirect_shadow_pages++;
763         gfn = sp->gfn;
764         slots = kvm_memslots_for_spte_role(kvm, sp->role);
765         slot = __gfn_to_memslot(slots, gfn);
766
767         /* the non-leaf shadow pages are keeping readonly. */
768         if (sp->role.level > PG_LEVEL_4K)
769                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
770                                                     KVM_PAGE_TRACK_WRITE);
771
772         kvm_mmu_gfn_disallow_lpage(slot, gfn);
773 }
774
775 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
776 {
777         if (sp->lpage_disallowed)
778                 return;
779
780         ++kvm->stat.nx_lpage_splits;
781         list_add_tail(&sp->lpage_disallowed_link,
782                       &kvm->arch.lpage_disallowed_mmu_pages);
783         sp->lpage_disallowed = true;
784 }
785
786 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
787 {
788         struct kvm_memslots *slots;
789         struct kvm_memory_slot *slot;
790         gfn_t gfn;
791
792         kvm->arch.indirect_shadow_pages--;
793         gfn = sp->gfn;
794         slots = kvm_memslots_for_spte_role(kvm, sp->role);
795         slot = __gfn_to_memslot(slots, gfn);
796         if (sp->role.level > PG_LEVEL_4K)
797                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
798                                                        KVM_PAGE_TRACK_WRITE);
799
800         kvm_mmu_gfn_allow_lpage(slot, gfn);
801 }
802
803 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805         --kvm->stat.nx_lpage_splits;
806         sp->lpage_disallowed = false;
807         list_del(&sp->lpage_disallowed_link);
808 }
809
810 static struct kvm_memory_slot *
811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812                             bool no_dirty_log)
813 {
814         struct kvm_memory_slot *slot;
815
816         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
817         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
818                 return NULL;
819         if (no_dirty_log && slot->dirty_bitmap)
820                 return NULL;
821
822         return slot;
823 }
824
825 /*
826  * About rmap_head encoding:
827  *
828  * If the bit zero of rmap_head->val is clear, then it points to the only spte
829  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
830  * pte_list_desc containing more mappings.
831  */
832
833 /*
834  * Returns the number of pointers in the rmap chain, not counting the new one.
835  */
836 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
837                         struct kvm_rmap_head *rmap_head)
838 {
839         struct pte_list_desc *desc;
840         int i, count = 0;
841
842         if (!rmap_head->val) {
843                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
844                 rmap_head->val = (unsigned long)spte;
845         } else if (!(rmap_head->val & 1)) {
846                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
847                 desc = mmu_alloc_pte_list_desc(vcpu);
848                 desc->sptes[0] = (u64 *)rmap_head->val;
849                 desc->sptes[1] = spte;
850                 rmap_head->val = (unsigned long)desc | 1;
851                 ++count;
852         } else {
853                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
854                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
855                 while (desc->sptes[PTE_LIST_EXT-1]) {
856                         count += PTE_LIST_EXT;
857
858                         if (!desc->more) {
859                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
860                                 desc = desc->more;
861                                 break;
862                         }
863                         desc = desc->more;
864                 }
865                 for (i = 0; desc->sptes[i]; ++i)
866                         ++count;
867                 desc->sptes[i] = spte;
868         }
869         return count;
870 }
871
872 static void
873 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
874                            struct pte_list_desc *desc, int i,
875                            struct pte_list_desc *prev_desc)
876 {
877         int j;
878
879         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
880                 ;
881         desc->sptes[i] = desc->sptes[j];
882         desc->sptes[j] = NULL;
883         if (j != 0)
884                 return;
885         if (!prev_desc && !desc->more)
886                 rmap_head->val = 0;
887         else
888                 if (prev_desc)
889                         prev_desc->more = desc->more;
890                 else
891                         rmap_head->val = (unsigned long)desc->more | 1;
892         mmu_free_pte_list_desc(desc);
893 }
894
895 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
896 {
897         struct pte_list_desc *desc;
898         struct pte_list_desc *prev_desc;
899         int i;
900
901         if (!rmap_head->val) {
902                 pr_err("%s: %p 0->BUG\n", __func__, spte);
903                 BUG();
904         } else if (!(rmap_head->val & 1)) {
905                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
906                 if ((u64 *)rmap_head->val != spte) {
907                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
908                         BUG();
909                 }
910                 rmap_head->val = 0;
911         } else {
912                 rmap_printk("%s:  %p many->many\n", __func__, spte);
913                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
914                 prev_desc = NULL;
915                 while (desc) {
916                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
917                                 if (desc->sptes[i] == spte) {
918                                         pte_list_desc_remove_entry(rmap_head,
919                                                         desc, i, prev_desc);
920                                         return;
921                                 }
922                         }
923                         prev_desc = desc;
924                         desc = desc->more;
925                 }
926                 pr_err("%s: %p many->many\n", __func__, spte);
927                 BUG();
928         }
929 }
930
931 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
932 {
933         mmu_spte_clear_track_bits(sptep);
934         __pte_list_remove(sptep, rmap_head);
935 }
936
937 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
938                                            struct kvm_memory_slot *slot)
939 {
940         unsigned long idx;
941
942         idx = gfn_to_index(gfn, slot->base_gfn, level);
943         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
944 }
945
946 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
947                                          struct kvm_mmu_page *sp)
948 {
949         struct kvm_memslots *slots;
950         struct kvm_memory_slot *slot;
951
952         slots = kvm_memslots_for_spte_role(kvm, sp->role);
953         slot = __gfn_to_memslot(slots, gfn);
954         return __gfn_to_rmap(gfn, sp->role.level, slot);
955 }
956
957 static bool rmap_can_add(struct kvm_vcpu *vcpu)
958 {
959         struct kvm_mmu_memory_cache *mc;
960
961         mc = &vcpu->arch.mmu_pte_list_desc_cache;
962         return kvm_mmu_memory_cache_nr_free_objects(mc);
963 }
964
965 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
966 {
967         struct kvm_mmu_page *sp;
968         struct kvm_rmap_head *rmap_head;
969
970         sp = sptep_to_sp(spte);
971         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
972         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
973         return pte_list_add(vcpu, spte, rmap_head);
974 }
975
976 static void rmap_remove(struct kvm *kvm, u64 *spte)
977 {
978         struct kvm_mmu_page *sp;
979         gfn_t gfn;
980         struct kvm_rmap_head *rmap_head;
981
982         sp = sptep_to_sp(spte);
983         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
984         rmap_head = gfn_to_rmap(kvm, gfn, sp);
985         __pte_list_remove(spte, rmap_head);
986 }
987
988 /*
989  * Used by the following functions to iterate through the sptes linked by a
990  * rmap.  All fields are private and not assumed to be used outside.
991  */
992 struct rmap_iterator {
993         /* private fields */
994         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
995         int pos;                        /* index of the sptep */
996 };
997
998 /*
999  * Iteration must be started by this function.  This should also be used after
1000  * removing/dropping sptes from the rmap link because in such cases the
1001  * information in the iterator may not be valid.
1002  *
1003  * Returns sptep if found, NULL otherwise.
1004  */
1005 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1006                            struct rmap_iterator *iter)
1007 {
1008         u64 *sptep;
1009
1010         if (!rmap_head->val)
1011                 return NULL;
1012
1013         if (!(rmap_head->val & 1)) {
1014                 iter->desc = NULL;
1015                 sptep = (u64 *)rmap_head->val;
1016                 goto out;
1017         }
1018
1019         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1020         iter->pos = 0;
1021         sptep = iter->desc->sptes[iter->pos];
1022 out:
1023         BUG_ON(!is_shadow_present_pte(*sptep));
1024         return sptep;
1025 }
1026
1027 /*
1028  * Must be used with a valid iterator: e.g. after rmap_get_first().
1029  *
1030  * Returns sptep if found, NULL otherwise.
1031  */
1032 static u64 *rmap_get_next(struct rmap_iterator *iter)
1033 {
1034         u64 *sptep;
1035
1036         if (iter->desc) {
1037                 if (iter->pos < PTE_LIST_EXT - 1) {
1038                         ++iter->pos;
1039                         sptep = iter->desc->sptes[iter->pos];
1040                         if (sptep)
1041                                 goto out;
1042                 }
1043
1044                 iter->desc = iter->desc->more;
1045
1046                 if (iter->desc) {
1047                         iter->pos = 0;
1048                         /* desc->sptes[0] cannot be NULL */
1049                         sptep = iter->desc->sptes[iter->pos];
1050                         goto out;
1051                 }
1052         }
1053
1054         return NULL;
1055 out:
1056         BUG_ON(!is_shadow_present_pte(*sptep));
1057         return sptep;
1058 }
1059
1060 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1061         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1062              _spte_; _spte_ = rmap_get_next(_iter_))
1063
1064 static void drop_spte(struct kvm *kvm, u64 *sptep)
1065 {
1066         if (mmu_spte_clear_track_bits(sptep))
1067                 rmap_remove(kvm, sptep);
1068 }
1069
1070
1071 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1072 {
1073         if (is_large_pte(*sptep)) {
1074                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1075                 drop_spte(kvm, sptep);
1076                 --kvm->stat.lpages;
1077                 return true;
1078         }
1079
1080         return false;
1081 }
1082
1083 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1084 {
1085         if (__drop_large_spte(vcpu->kvm, sptep)) {
1086                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1087
1088                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1089                         KVM_PAGES_PER_HPAGE(sp->role.level));
1090         }
1091 }
1092
1093 /*
1094  * Write-protect on the specified @sptep, @pt_protect indicates whether
1095  * spte write-protection is caused by protecting shadow page table.
1096  *
1097  * Note: write protection is difference between dirty logging and spte
1098  * protection:
1099  * - for dirty logging, the spte can be set to writable at anytime if
1100  *   its dirty bitmap is properly set.
1101  * - for spte protection, the spte can be writable only after unsync-ing
1102  *   shadow page.
1103  *
1104  * Return true if tlb need be flushed.
1105  */
1106 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1107 {
1108         u64 spte = *sptep;
1109
1110         if (!is_writable_pte(spte) &&
1111               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1112                 return false;
1113
1114         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1115
1116         if (pt_protect)
1117                 spte &= ~SPTE_MMU_WRITEABLE;
1118         spte = spte & ~PT_WRITABLE_MASK;
1119
1120         return mmu_spte_update(sptep, spte);
1121 }
1122
1123 static bool __rmap_write_protect(struct kvm *kvm,
1124                                  struct kvm_rmap_head *rmap_head,
1125                                  bool pt_protect)
1126 {
1127         u64 *sptep;
1128         struct rmap_iterator iter;
1129         bool flush = false;
1130
1131         for_each_rmap_spte(rmap_head, &iter, sptep)
1132                 flush |= spte_write_protect(sptep, pt_protect);
1133
1134         return flush;
1135 }
1136
1137 static bool spte_clear_dirty(u64 *sptep)
1138 {
1139         u64 spte = *sptep;
1140
1141         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1142
1143         MMU_WARN_ON(!spte_ad_enabled(spte));
1144         spte &= ~shadow_dirty_mask;
1145         return mmu_spte_update(sptep, spte);
1146 }
1147
1148 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1149 {
1150         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1151                                                (unsigned long *)sptep);
1152         if (was_writable && !spte_ad_enabled(*sptep))
1153                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1154
1155         return was_writable;
1156 }
1157
1158 /*
1159  * Gets the GFN ready for another round of dirty logging by clearing the
1160  *      - D bit on ad-enabled SPTEs, and
1161  *      - W bit on ad-disabled SPTEs.
1162  * Returns true iff any D or W bits were cleared.
1163  */
1164 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1165 {
1166         u64 *sptep;
1167         struct rmap_iterator iter;
1168         bool flush = false;
1169
1170         for_each_rmap_spte(rmap_head, &iter, sptep)
1171                 if (spte_ad_need_write_protect(*sptep))
1172                         flush |= spte_wrprot_for_clear_dirty(sptep);
1173                 else
1174                         flush |= spte_clear_dirty(sptep);
1175
1176         return flush;
1177 }
1178
1179 static bool spte_set_dirty(u64 *sptep)
1180 {
1181         u64 spte = *sptep;
1182
1183         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1184
1185         /*
1186          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1187          * do not bother adding back write access to pages marked
1188          * SPTE_AD_WRPROT_ONLY_MASK.
1189          */
1190         spte |= shadow_dirty_mask;
1191
1192         return mmu_spte_update(sptep, spte);
1193 }
1194
1195 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1196 {
1197         u64 *sptep;
1198         struct rmap_iterator iter;
1199         bool flush = false;
1200
1201         for_each_rmap_spte(rmap_head, &iter, sptep)
1202                 if (spte_ad_enabled(*sptep))
1203                         flush |= spte_set_dirty(sptep);
1204
1205         return flush;
1206 }
1207
1208 /**
1209  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1210  * @kvm: kvm instance
1211  * @slot: slot to protect
1212  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1213  * @mask: indicates which pages we should protect
1214  *
1215  * Used when we do not need to care about huge page mappings: e.g. during dirty
1216  * logging we do not have any such mappings.
1217  */
1218 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1219                                      struct kvm_memory_slot *slot,
1220                                      gfn_t gfn_offset, unsigned long mask)
1221 {
1222         struct kvm_rmap_head *rmap_head;
1223
1224         if (kvm->arch.tdp_mmu_enabled)
1225                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1226                                 slot->base_gfn + gfn_offset, mask, true);
1227         while (mask) {
1228                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1229                                           PG_LEVEL_4K, slot);
1230                 __rmap_write_protect(kvm, rmap_head, false);
1231
1232                 /* clear the first set bit */
1233                 mask &= mask - 1;
1234         }
1235 }
1236
1237 /**
1238  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1239  * protect the page if the D-bit isn't supported.
1240  * @kvm: kvm instance
1241  * @slot: slot to clear D-bit
1242  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1243  * @mask: indicates which pages we should clear D-bit
1244  *
1245  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1246  */
1247 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1248                                      struct kvm_memory_slot *slot,
1249                                      gfn_t gfn_offset, unsigned long mask)
1250 {
1251         struct kvm_rmap_head *rmap_head;
1252
1253         if (kvm->arch.tdp_mmu_enabled)
1254                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1255                                 slot->base_gfn + gfn_offset, mask, false);
1256         while (mask) {
1257                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258                                           PG_LEVEL_4K, slot);
1259                 __rmap_clear_dirty(kvm, rmap_head);
1260
1261                 /* clear the first set bit */
1262                 mask &= mask - 1;
1263         }
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1266
1267 /**
1268  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1269  * PT level pages.
1270  *
1271  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1272  * enable dirty logging for them.
1273  *
1274  * Used when we do not need to care about huge page mappings: e.g. during dirty
1275  * logging we do not have any such mappings.
1276  */
1277 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1278                                 struct kvm_memory_slot *slot,
1279                                 gfn_t gfn_offset, unsigned long mask)
1280 {
1281         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1282                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1283                                 mask);
1284         else
1285                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1286 }
1287
1288 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1289                                     struct kvm_memory_slot *slot, u64 gfn)
1290 {
1291         struct kvm_rmap_head *rmap_head;
1292         int i;
1293         bool write_protected = false;
1294
1295         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1296                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1297                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1298         }
1299
1300         if (kvm->arch.tdp_mmu_enabled)
1301                 write_protected |=
1302                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1303
1304         return write_protected;
1305 }
1306
1307 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1308 {
1309         struct kvm_memory_slot *slot;
1310
1311         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1312         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1313 }
1314
1315 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1316 {
1317         u64 *sptep;
1318         struct rmap_iterator iter;
1319         bool flush = false;
1320
1321         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1322                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1323
1324                 pte_list_remove(rmap_head, sptep);
1325                 flush = true;
1326         }
1327
1328         return flush;
1329 }
1330
1331 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1332                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1333                            unsigned long data)
1334 {
1335         return kvm_zap_rmapp(kvm, rmap_head);
1336 }
1337
1338 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1339                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1340                              unsigned long data)
1341 {
1342         u64 *sptep;
1343         struct rmap_iterator iter;
1344         int need_flush = 0;
1345         u64 new_spte;
1346         pte_t *ptep = (pte_t *)data;
1347         kvm_pfn_t new_pfn;
1348
1349         WARN_ON(pte_huge(*ptep));
1350         new_pfn = pte_pfn(*ptep);
1351
1352 restart:
1353         for_each_rmap_spte(rmap_head, &iter, sptep) {
1354                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1355                             sptep, *sptep, gfn, level);
1356
1357                 need_flush = 1;
1358
1359                 if (pte_write(*ptep)) {
1360                         pte_list_remove(rmap_head, sptep);
1361                         goto restart;
1362                 } else {
1363                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1364                                         *sptep, new_pfn);
1365
1366                         mmu_spte_clear_track_bits(sptep);
1367                         mmu_spte_set(sptep, new_spte);
1368                 }
1369         }
1370
1371         if (need_flush && kvm_available_flush_tlb_with_range()) {
1372                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1373                 return 0;
1374         }
1375
1376         return need_flush;
1377 }
1378
1379 struct slot_rmap_walk_iterator {
1380         /* input fields. */
1381         struct kvm_memory_slot *slot;
1382         gfn_t start_gfn;
1383         gfn_t end_gfn;
1384         int start_level;
1385         int end_level;
1386
1387         /* output fields. */
1388         gfn_t gfn;
1389         struct kvm_rmap_head *rmap;
1390         int level;
1391
1392         /* private field. */
1393         struct kvm_rmap_head *end_rmap;
1394 };
1395
1396 static void
1397 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1398 {
1399         iterator->level = level;
1400         iterator->gfn = iterator->start_gfn;
1401         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1402         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1403                                            iterator->slot);
1404 }
1405
1406 static void
1407 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1408                     struct kvm_memory_slot *slot, int start_level,
1409                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1410 {
1411         iterator->slot = slot;
1412         iterator->start_level = start_level;
1413         iterator->end_level = end_level;
1414         iterator->start_gfn = start_gfn;
1415         iterator->end_gfn = end_gfn;
1416
1417         rmap_walk_init_level(iterator, iterator->start_level);
1418 }
1419
1420 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1421 {
1422         return !!iterator->rmap;
1423 }
1424
1425 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1426 {
1427         if (++iterator->rmap <= iterator->end_rmap) {
1428                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1429                 return;
1430         }
1431
1432         if (++iterator->level > iterator->end_level) {
1433                 iterator->rmap = NULL;
1434                 return;
1435         }
1436
1437         rmap_walk_init_level(iterator, iterator->level);
1438 }
1439
1440 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1441            _start_gfn, _end_gfn, _iter_)                                \
1442         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1443                                  _end_level_, _start_gfn, _end_gfn);    \
1444              slot_rmap_walk_okay(_iter_);                               \
1445              slot_rmap_walk_next(_iter_))
1446
1447 static int kvm_handle_hva_range(struct kvm *kvm,
1448                                 unsigned long start,
1449                                 unsigned long end,
1450                                 unsigned long data,
1451                                 int (*handler)(struct kvm *kvm,
1452                                                struct kvm_rmap_head *rmap_head,
1453                                                struct kvm_memory_slot *slot,
1454                                                gfn_t gfn,
1455                                                int level,
1456                                                unsigned long data))
1457 {
1458         struct kvm_memslots *slots;
1459         struct kvm_memory_slot *memslot;
1460         struct slot_rmap_walk_iterator iterator;
1461         int ret = 0;
1462         int i;
1463
1464         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1465                 slots = __kvm_memslots(kvm, i);
1466                 kvm_for_each_memslot(memslot, slots) {
1467                         unsigned long hva_start, hva_end;
1468                         gfn_t gfn_start, gfn_end;
1469
1470                         hva_start = max(start, memslot->userspace_addr);
1471                         hva_end = min(end, memslot->userspace_addr +
1472                                       (memslot->npages << PAGE_SHIFT));
1473                         if (hva_start >= hva_end)
1474                                 continue;
1475                         /*
1476                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1477                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1478                          */
1479                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1480                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1481
1482                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1483                                                  KVM_MAX_HUGEPAGE_LEVEL,
1484                                                  gfn_start, gfn_end - 1,
1485                                                  &iterator)
1486                                 ret |= handler(kvm, iterator.rmap, memslot,
1487                                                iterator.gfn, iterator.level, data);
1488                 }
1489         }
1490
1491         return ret;
1492 }
1493
1494 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1495                           unsigned long data,
1496                           int (*handler)(struct kvm *kvm,
1497                                          struct kvm_rmap_head *rmap_head,
1498                                          struct kvm_memory_slot *slot,
1499                                          gfn_t gfn, int level,
1500                                          unsigned long data))
1501 {
1502         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1503 }
1504
1505 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1506                         unsigned flags)
1507 {
1508         int r;
1509
1510         r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1511
1512         if (kvm->arch.tdp_mmu_enabled)
1513                 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1514
1515         return r;
1516 }
1517
1518 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1519 {
1520         int r;
1521
1522         r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1523
1524         if (kvm->arch.tdp_mmu_enabled)
1525                 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1526
1527         return r;
1528 }
1529
1530 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1531                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1532                          unsigned long data)
1533 {
1534         u64 *sptep;
1535         struct rmap_iterator iter;
1536         int young = 0;
1537
1538         for_each_rmap_spte(rmap_head, &iter, sptep)
1539                 young |= mmu_spte_age(sptep);
1540
1541         trace_kvm_age_page(gfn, level, slot, young);
1542         return young;
1543 }
1544
1545 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1546                               struct kvm_memory_slot *slot, gfn_t gfn,
1547                               int level, unsigned long data)
1548 {
1549         u64 *sptep;
1550         struct rmap_iterator iter;
1551
1552         for_each_rmap_spte(rmap_head, &iter, sptep)
1553                 if (is_accessed_spte(*sptep))
1554                         return 1;
1555         return 0;
1556 }
1557
1558 #define RMAP_RECYCLE_THRESHOLD 1000
1559
1560 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1561 {
1562         struct kvm_rmap_head *rmap_head;
1563         struct kvm_mmu_page *sp;
1564
1565         sp = sptep_to_sp(spte);
1566
1567         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1568
1569         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1570         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1571                         KVM_PAGES_PER_HPAGE(sp->role.level));
1572 }
1573
1574 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1575 {
1576         int young = false;
1577
1578         young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1579         if (kvm->arch.tdp_mmu_enabled)
1580                 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1581
1582         return young;
1583 }
1584
1585 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1586 {
1587         int young = false;
1588
1589         young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1590         if (kvm->arch.tdp_mmu_enabled)
1591                 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1592
1593         return young;
1594 }
1595
1596 #ifdef MMU_DEBUG
1597 static int is_empty_shadow_page(u64 *spt)
1598 {
1599         u64 *pos;
1600         u64 *end;
1601
1602         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1603                 if (is_shadow_present_pte(*pos)) {
1604                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1605                                pos, *pos);
1606                         return 0;
1607                 }
1608         return 1;
1609 }
1610 #endif
1611
1612 /*
1613  * This value is the sum of all of the kvm instances's
1614  * kvm->arch.n_used_mmu_pages values.  We need a global,
1615  * aggregate version in order to make the slab shrinker
1616  * faster
1617  */
1618 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1619 {
1620         kvm->arch.n_used_mmu_pages += nr;
1621         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1622 }
1623
1624 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1625 {
1626         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1627         hlist_del(&sp->hash_link);
1628         list_del(&sp->link);
1629         free_page((unsigned long)sp->spt);
1630         if (!sp->role.direct)
1631                 free_page((unsigned long)sp->gfns);
1632         kmem_cache_free(mmu_page_header_cache, sp);
1633 }
1634
1635 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1636 {
1637         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1638 }
1639
1640 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1641                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1642 {
1643         if (!parent_pte)
1644                 return;
1645
1646         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1647 }
1648
1649 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1650                                        u64 *parent_pte)
1651 {
1652         __pte_list_remove(parent_pte, &sp->parent_ptes);
1653 }
1654
1655 static void drop_parent_pte(struct kvm_mmu_page *sp,
1656                             u64 *parent_pte)
1657 {
1658         mmu_page_remove_parent_pte(sp, parent_pte);
1659         mmu_spte_clear_no_track(parent_pte);
1660 }
1661
1662 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1663 {
1664         struct kvm_mmu_page *sp;
1665
1666         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1667         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1668         if (!direct)
1669                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1670         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1671
1672         /*
1673          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1674          * depends on valid pages being added to the head of the list.  See
1675          * comments in kvm_zap_obsolete_pages().
1676          */
1677         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1678         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1679         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1680         return sp;
1681 }
1682
1683 static void mark_unsync(u64 *spte);
1684 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1685 {
1686         u64 *sptep;
1687         struct rmap_iterator iter;
1688
1689         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1690                 mark_unsync(sptep);
1691         }
1692 }
1693
1694 static void mark_unsync(u64 *spte)
1695 {
1696         struct kvm_mmu_page *sp;
1697         unsigned int index;
1698
1699         sp = sptep_to_sp(spte);
1700         index = spte - sp->spt;
1701         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1702                 return;
1703         if (sp->unsync_children++)
1704                 return;
1705         kvm_mmu_mark_parents_unsync(sp);
1706 }
1707
1708 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1709                                struct kvm_mmu_page *sp)
1710 {
1711         return 0;
1712 }
1713
1714 #define KVM_PAGE_ARRAY_NR 16
1715
1716 struct kvm_mmu_pages {
1717         struct mmu_page_and_offset {
1718                 struct kvm_mmu_page *sp;
1719                 unsigned int idx;
1720         } page[KVM_PAGE_ARRAY_NR];
1721         unsigned int nr;
1722 };
1723
1724 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1725                          int idx)
1726 {
1727         int i;
1728
1729         if (sp->unsync)
1730                 for (i=0; i < pvec->nr; i++)
1731                         if (pvec->page[i].sp == sp)
1732                                 return 0;
1733
1734         pvec->page[pvec->nr].sp = sp;
1735         pvec->page[pvec->nr].idx = idx;
1736         pvec->nr++;
1737         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1738 }
1739
1740 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1741 {
1742         --sp->unsync_children;
1743         WARN_ON((int)sp->unsync_children < 0);
1744         __clear_bit(idx, sp->unsync_child_bitmap);
1745 }
1746
1747 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1748                            struct kvm_mmu_pages *pvec)
1749 {
1750         int i, ret, nr_unsync_leaf = 0;
1751
1752         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1753                 struct kvm_mmu_page *child;
1754                 u64 ent = sp->spt[i];
1755
1756                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1757                         clear_unsync_child_bit(sp, i);
1758                         continue;
1759                 }
1760
1761                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1762
1763                 if (child->unsync_children) {
1764                         if (mmu_pages_add(pvec, child, i))
1765                                 return -ENOSPC;
1766
1767                         ret = __mmu_unsync_walk(child, pvec);
1768                         if (!ret) {
1769                                 clear_unsync_child_bit(sp, i);
1770                                 continue;
1771                         } else if (ret > 0) {
1772                                 nr_unsync_leaf += ret;
1773                         } else
1774                                 return ret;
1775                 } else if (child->unsync) {
1776                         nr_unsync_leaf++;
1777                         if (mmu_pages_add(pvec, child, i))
1778                                 return -ENOSPC;
1779                 } else
1780                         clear_unsync_child_bit(sp, i);
1781         }
1782
1783         return nr_unsync_leaf;
1784 }
1785
1786 #define INVALID_INDEX (-1)
1787
1788 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1789                            struct kvm_mmu_pages *pvec)
1790 {
1791         pvec->nr = 0;
1792         if (!sp->unsync_children)
1793                 return 0;
1794
1795         mmu_pages_add(pvec, sp, INVALID_INDEX);
1796         return __mmu_unsync_walk(sp, pvec);
1797 }
1798
1799 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1800 {
1801         WARN_ON(!sp->unsync);
1802         trace_kvm_mmu_sync_page(sp);
1803         sp->unsync = 0;
1804         --kvm->stat.mmu_unsync;
1805 }
1806
1807 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1808                                      struct list_head *invalid_list);
1809 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1810                                     struct list_head *invalid_list);
1811
1812 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1813         hlist_for_each_entry(_sp, _list, hash_link)                     \
1814                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1815                 } else
1816
1817 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1818         for_each_valid_sp(_kvm, _sp,                                    \
1819           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1820                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1821
1822 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1823 {
1824         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1825 }
1826
1827 /* @sp->gfn should be write-protected at the call site */
1828 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1829                             struct list_head *invalid_list)
1830 {
1831         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1832             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1833                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1834                 return false;
1835         }
1836
1837         return true;
1838 }
1839
1840 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1841                                         struct list_head *invalid_list,
1842                                         bool remote_flush)
1843 {
1844         if (!remote_flush && list_empty(invalid_list))
1845                 return false;
1846
1847         if (!list_empty(invalid_list))
1848                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1849         else
1850                 kvm_flush_remote_tlbs(kvm);
1851         return true;
1852 }
1853
1854 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1855                                  struct list_head *invalid_list,
1856                                  bool remote_flush, bool local_flush)
1857 {
1858         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1859                 return;
1860
1861         if (local_flush)
1862                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1863 }
1864
1865 #ifdef CONFIG_KVM_MMU_AUDIT
1866 #include "mmu_audit.c"
1867 #else
1868 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1869 static void mmu_audit_disable(void) { }
1870 #endif
1871
1872 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1873 {
1874         return sp->role.invalid ||
1875                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1876 }
1877
1878 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1879                          struct list_head *invalid_list)
1880 {
1881         kvm_unlink_unsync_page(vcpu->kvm, sp);
1882         return __kvm_sync_page(vcpu, sp, invalid_list);
1883 }
1884
1885 /* @gfn should be write-protected at the call site */
1886 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1887                            struct list_head *invalid_list)
1888 {
1889         struct kvm_mmu_page *s;
1890         bool ret = false;
1891
1892         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1893                 if (!s->unsync)
1894                         continue;
1895
1896                 WARN_ON(s->role.level != PG_LEVEL_4K);
1897                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1898         }
1899
1900         return ret;
1901 }
1902
1903 struct mmu_page_path {
1904         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1905         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1906 };
1907
1908 #define for_each_sp(pvec, sp, parents, i)                       \
1909                 for (i = mmu_pages_first(&pvec, &parents);      \
1910                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1911                         i = mmu_pages_next(&pvec, &parents, i))
1912
1913 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1914                           struct mmu_page_path *parents,
1915                           int i)
1916 {
1917         int n;
1918
1919         for (n = i+1; n < pvec->nr; n++) {
1920                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1921                 unsigned idx = pvec->page[n].idx;
1922                 int level = sp->role.level;
1923
1924                 parents->idx[level-1] = idx;
1925                 if (level == PG_LEVEL_4K)
1926                         break;
1927
1928                 parents->parent[level-2] = sp;
1929         }
1930
1931         return n;
1932 }
1933
1934 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1935                            struct mmu_page_path *parents)
1936 {
1937         struct kvm_mmu_page *sp;
1938         int level;
1939
1940         if (pvec->nr == 0)
1941                 return 0;
1942
1943         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1944
1945         sp = pvec->page[0].sp;
1946         level = sp->role.level;
1947         WARN_ON(level == PG_LEVEL_4K);
1948
1949         parents->parent[level-2] = sp;
1950
1951         /* Also set up a sentinel.  Further entries in pvec are all
1952          * children of sp, so this element is never overwritten.
1953          */
1954         parents->parent[level-1] = NULL;
1955         return mmu_pages_next(pvec, parents, 0);
1956 }
1957
1958 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1959 {
1960         struct kvm_mmu_page *sp;
1961         unsigned int level = 0;
1962
1963         do {
1964                 unsigned int idx = parents->idx[level];
1965                 sp = parents->parent[level];
1966                 if (!sp)
1967                         return;
1968
1969                 WARN_ON(idx == INVALID_INDEX);
1970                 clear_unsync_child_bit(sp, idx);
1971                 level++;
1972         } while (!sp->unsync_children);
1973 }
1974
1975 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1976                               struct kvm_mmu_page *parent)
1977 {
1978         int i;
1979         struct kvm_mmu_page *sp;
1980         struct mmu_page_path parents;
1981         struct kvm_mmu_pages pages;
1982         LIST_HEAD(invalid_list);
1983         bool flush = false;
1984
1985         while (mmu_unsync_walk(parent, &pages)) {
1986                 bool protected = false;
1987
1988                 for_each_sp(pages, sp, parents, i)
1989                         protected |= rmap_write_protect(vcpu, sp->gfn);
1990
1991                 if (protected) {
1992                         kvm_flush_remote_tlbs(vcpu->kvm);
1993                         flush = false;
1994                 }
1995
1996                 for_each_sp(pages, sp, parents, i) {
1997                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1998                         mmu_pages_clear_parents(&parents);
1999                 }
2000                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2001                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2002                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2003                         flush = false;
2004                 }
2005         }
2006
2007         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2008 }
2009
2010 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2011 {
2012         atomic_set(&sp->write_flooding_count,  0);
2013 }
2014
2015 static void clear_sp_write_flooding_count(u64 *spte)
2016 {
2017         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2018 }
2019
2020 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2021                                              gfn_t gfn,
2022                                              gva_t gaddr,
2023                                              unsigned level,
2024                                              int direct,
2025                                              unsigned int access)
2026 {
2027         bool direct_mmu = vcpu->arch.mmu->direct_map;
2028         union kvm_mmu_page_role role;
2029         struct hlist_head *sp_list;
2030         unsigned quadrant;
2031         struct kvm_mmu_page *sp;
2032         bool need_sync = false;
2033         bool flush = false;
2034         int collisions = 0;
2035         LIST_HEAD(invalid_list);
2036
2037         role = vcpu->arch.mmu->mmu_role.base;
2038         role.level = level;
2039         role.direct = direct;
2040         if (role.direct)
2041                 role.gpte_is_8_bytes = true;
2042         role.access = access;
2043         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2044                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2045                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2046                 role.quadrant = quadrant;
2047         }
2048
2049         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2050         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2051                 if (sp->gfn != gfn) {
2052                         collisions++;
2053                         continue;
2054                 }
2055
2056                 if (!need_sync && sp->unsync)
2057                         need_sync = true;
2058
2059                 if (sp->role.word != role.word)
2060                         continue;
2061
2062                 if (direct_mmu)
2063                         goto trace_get_page;
2064
2065                 if (sp->unsync) {
2066                         /* The page is good, but __kvm_sync_page might still end
2067                          * up zapping it.  If so, break in order to rebuild it.
2068                          */
2069                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2070                                 break;
2071
2072                         WARN_ON(!list_empty(&invalid_list));
2073                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2074                 }
2075
2076                 if (sp->unsync_children)
2077                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2078
2079                 __clear_sp_write_flooding_count(sp);
2080
2081 trace_get_page:
2082                 trace_kvm_mmu_get_page(sp, false);
2083                 goto out;
2084         }
2085
2086         ++vcpu->kvm->stat.mmu_cache_miss;
2087
2088         sp = kvm_mmu_alloc_page(vcpu, direct);
2089
2090         sp->gfn = gfn;
2091         sp->role = role;
2092         hlist_add_head(&sp->hash_link, sp_list);
2093         if (!direct) {
2094                 /*
2095                  * we should do write protection before syncing pages
2096                  * otherwise the content of the synced shadow page may
2097                  * be inconsistent with guest page table.
2098                  */
2099                 account_shadowed(vcpu->kvm, sp);
2100                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2101                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2102
2103                 if (level > PG_LEVEL_4K && need_sync)
2104                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2105         }
2106         trace_kvm_mmu_get_page(sp, true);
2107
2108         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2109 out:
2110         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2111                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2112         return sp;
2113 }
2114
2115 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2116                                         struct kvm_vcpu *vcpu, hpa_t root,
2117                                         u64 addr)
2118 {
2119         iterator->addr = addr;
2120         iterator->shadow_addr = root;
2121         iterator->level = vcpu->arch.mmu->shadow_root_level;
2122
2123         if (iterator->level == PT64_ROOT_4LEVEL &&
2124             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2125             !vcpu->arch.mmu->direct_map)
2126                 --iterator->level;
2127
2128         if (iterator->level == PT32E_ROOT_LEVEL) {
2129                 /*
2130                  * prev_root is currently only used for 64-bit hosts. So only
2131                  * the active root_hpa is valid here.
2132                  */
2133                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2134
2135                 iterator->shadow_addr
2136                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2137                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2138                 --iterator->level;
2139                 if (!iterator->shadow_addr)
2140                         iterator->level = 0;
2141         }
2142 }
2143
2144 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2145                              struct kvm_vcpu *vcpu, u64 addr)
2146 {
2147         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2148                                     addr);
2149 }
2150
2151 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2152 {
2153         if (iterator->level < PG_LEVEL_4K)
2154                 return false;
2155
2156         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2157         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2158         return true;
2159 }
2160
2161 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2162                                u64 spte)
2163 {
2164         if (is_last_spte(spte, iterator->level)) {
2165                 iterator->level = 0;
2166                 return;
2167         }
2168
2169         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2170         --iterator->level;
2171 }
2172
2173 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2174 {
2175         __shadow_walk_next(iterator, *iterator->sptep);
2176 }
2177
2178 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2179                              struct kvm_mmu_page *sp)
2180 {
2181         u64 spte;
2182
2183         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2184
2185         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2186
2187         mmu_spte_set(sptep, spte);
2188
2189         mmu_page_add_parent_pte(vcpu, sp, sptep);
2190
2191         if (sp->unsync_children || sp->unsync)
2192                 mark_unsync(sptep);
2193 }
2194
2195 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2196                                    unsigned direct_access)
2197 {
2198         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2199                 struct kvm_mmu_page *child;
2200
2201                 /*
2202                  * For the direct sp, if the guest pte's dirty bit
2203                  * changed form clean to dirty, it will corrupt the
2204                  * sp's access: allow writable in the read-only sp,
2205                  * so we should update the spte at this point to get
2206                  * a new sp with the correct access.
2207                  */
2208                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2209                 if (child->role.access == direct_access)
2210                         return;
2211
2212                 drop_parent_pte(child, sptep);
2213                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2214         }
2215 }
2216
2217 /* Returns the number of zapped non-leaf child shadow pages. */
2218 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2219                             u64 *spte, struct list_head *invalid_list)
2220 {
2221         u64 pte;
2222         struct kvm_mmu_page *child;
2223
2224         pte = *spte;
2225         if (is_shadow_present_pte(pte)) {
2226                 if (is_last_spte(pte, sp->role.level)) {
2227                         drop_spte(kvm, spte);
2228                         if (is_large_pte(pte))
2229                                 --kvm->stat.lpages;
2230                 } else {
2231                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2232                         drop_parent_pte(child, spte);
2233
2234                         /*
2235                          * Recursively zap nested TDP SPs, parentless SPs are
2236                          * unlikely to be used again in the near future.  This
2237                          * avoids retaining a large number of stale nested SPs.
2238                          */
2239                         if (tdp_enabled && invalid_list &&
2240                             child->role.guest_mode && !child->parent_ptes.val)
2241                                 return kvm_mmu_prepare_zap_page(kvm, child,
2242                                                                 invalid_list);
2243                 }
2244         } else if (is_mmio_spte(pte)) {
2245                 mmu_spte_clear_no_track(spte);
2246         }
2247         return 0;
2248 }
2249
2250 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2251                                         struct kvm_mmu_page *sp,
2252                                         struct list_head *invalid_list)
2253 {
2254         int zapped = 0;
2255         unsigned i;
2256
2257         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2258                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2259
2260         return zapped;
2261 }
2262
2263 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2264 {
2265         u64 *sptep;
2266         struct rmap_iterator iter;
2267
2268         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2269                 drop_parent_pte(sp, sptep);
2270 }
2271
2272 static int mmu_zap_unsync_children(struct kvm *kvm,
2273                                    struct kvm_mmu_page *parent,
2274                                    struct list_head *invalid_list)
2275 {
2276         int i, zapped = 0;
2277         struct mmu_page_path parents;
2278         struct kvm_mmu_pages pages;
2279
2280         if (parent->role.level == PG_LEVEL_4K)
2281                 return 0;
2282
2283         while (mmu_unsync_walk(parent, &pages)) {
2284                 struct kvm_mmu_page *sp;
2285
2286                 for_each_sp(pages, sp, parents, i) {
2287                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2288                         mmu_pages_clear_parents(&parents);
2289                         zapped++;
2290                 }
2291         }
2292
2293         return zapped;
2294 }
2295
2296 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2297                                        struct kvm_mmu_page *sp,
2298                                        struct list_head *invalid_list,
2299                                        int *nr_zapped)
2300 {
2301         bool list_unstable;
2302
2303         trace_kvm_mmu_prepare_zap_page(sp);
2304         ++kvm->stat.mmu_shadow_zapped;
2305         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2306         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2307         kvm_mmu_unlink_parents(kvm, sp);
2308
2309         /* Zapping children means active_mmu_pages has become unstable. */
2310         list_unstable = *nr_zapped;
2311
2312         if (!sp->role.invalid && !sp->role.direct)
2313                 unaccount_shadowed(kvm, sp);
2314
2315         if (sp->unsync)
2316                 kvm_unlink_unsync_page(kvm, sp);
2317         if (!sp->root_count) {
2318                 /* Count self */
2319                 (*nr_zapped)++;
2320
2321                 /*
2322                  * Already invalid pages (previously active roots) are not on
2323                  * the active page list.  See list_del() in the "else" case of
2324                  * !sp->root_count.
2325                  */
2326                 if (sp->role.invalid)
2327                         list_add(&sp->link, invalid_list);
2328                 else
2329                         list_move(&sp->link, invalid_list);
2330                 kvm_mod_used_mmu_pages(kvm, -1);
2331         } else {
2332                 /*
2333                  * Remove the active root from the active page list, the root
2334                  * will be explicitly freed when the root_count hits zero.
2335                  */
2336                 list_del(&sp->link);
2337
2338                 /*
2339                  * Obsolete pages cannot be used on any vCPUs, see the comment
2340                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2341                  * treats invalid shadow pages as being obsolete.
2342                  */
2343                 if (!is_obsolete_sp(kvm, sp))
2344                         kvm_reload_remote_mmus(kvm);
2345         }
2346
2347         if (sp->lpage_disallowed)
2348                 unaccount_huge_nx_page(kvm, sp);
2349
2350         sp->role.invalid = 1;
2351         return list_unstable;
2352 }
2353
2354 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2355                                      struct list_head *invalid_list)
2356 {
2357         int nr_zapped;
2358
2359         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2360         return nr_zapped;
2361 }
2362
2363 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2364                                     struct list_head *invalid_list)
2365 {
2366         struct kvm_mmu_page *sp, *nsp;
2367
2368         if (list_empty(invalid_list))
2369                 return;
2370
2371         /*
2372          * We need to make sure everyone sees our modifications to
2373          * the page tables and see changes to vcpu->mode here. The barrier
2374          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2375          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2376          *
2377          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2378          * guest mode and/or lockless shadow page table walks.
2379          */
2380         kvm_flush_remote_tlbs(kvm);
2381
2382         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2383                 WARN_ON(!sp->role.invalid || sp->root_count);
2384                 kvm_mmu_free_page(sp);
2385         }
2386 }
2387
2388 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2389                                                   unsigned long nr_to_zap)
2390 {
2391         unsigned long total_zapped = 0;
2392         struct kvm_mmu_page *sp, *tmp;
2393         LIST_HEAD(invalid_list);
2394         bool unstable;
2395         int nr_zapped;
2396
2397         if (list_empty(&kvm->arch.active_mmu_pages))
2398                 return 0;
2399
2400 restart:
2401         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2402                 /*
2403                  * Don't zap active root pages, the page itself can't be freed
2404                  * and zapping it will just force vCPUs to realloc and reload.
2405                  */
2406                 if (sp->root_count)
2407                         continue;
2408
2409                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2410                                                       &nr_zapped);
2411                 total_zapped += nr_zapped;
2412                 if (total_zapped >= nr_to_zap)
2413                         break;
2414
2415                 if (unstable)
2416                         goto restart;
2417         }
2418
2419         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2420
2421         kvm->stat.mmu_recycled += total_zapped;
2422         return total_zapped;
2423 }
2424
2425 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2426 {
2427         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2428                 return kvm->arch.n_max_mmu_pages -
2429                         kvm->arch.n_used_mmu_pages;
2430
2431         return 0;
2432 }
2433
2434 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2435 {
2436         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2437
2438         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2439                 return 0;
2440
2441         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2442
2443         if (!kvm_mmu_available_pages(vcpu->kvm))
2444                 return -ENOSPC;
2445         return 0;
2446 }
2447
2448 /*
2449  * Changing the number of mmu pages allocated to the vm
2450  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2451  */
2452 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2453 {
2454         spin_lock(&kvm->mmu_lock);
2455
2456         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2457                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2458                                                   goal_nr_mmu_pages);
2459
2460                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2461         }
2462
2463         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2464
2465         spin_unlock(&kvm->mmu_lock);
2466 }
2467
2468 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2469 {
2470         struct kvm_mmu_page *sp;
2471         LIST_HEAD(invalid_list);
2472         int r;
2473
2474         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2475         r = 0;
2476         spin_lock(&kvm->mmu_lock);
2477         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2478                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2479                          sp->role.word);
2480                 r = 1;
2481                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2482         }
2483         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2484         spin_unlock(&kvm->mmu_lock);
2485
2486         return r;
2487 }
2488 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2489
2490 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2491 {
2492         trace_kvm_mmu_unsync_page(sp);
2493         ++vcpu->kvm->stat.mmu_unsync;
2494         sp->unsync = 1;
2495
2496         kvm_mmu_mark_parents_unsync(sp);
2497 }
2498
2499 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2500                             bool can_unsync)
2501 {
2502         struct kvm_mmu_page *sp;
2503
2504         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2505                 return true;
2506
2507         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2508                 if (!can_unsync)
2509                         return true;
2510
2511                 if (sp->unsync)
2512                         continue;
2513
2514                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2515                 kvm_unsync_page(vcpu, sp);
2516         }
2517
2518         /*
2519          * We need to ensure that the marking of unsync pages is visible
2520          * before the SPTE is updated to allow writes because
2521          * kvm_mmu_sync_roots() checks the unsync flags without holding
2522          * the MMU lock and so can race with this. If the SPTE was updated
2523          * before the page had been marked as unsync-ed, something like the
2524          * following could happen:
2525          *
2526          * CPU 1                    CPU 2
2527          * ---------------------------------------------------------------------
2528          * 1.2 Host updates SPTE
2529          *     to be writable
2530          *                      2.1 Guest writes a GPTE for GVA X.
2531          *                          (GPTE being in the guest page table shadowed
2532          *                           by the SP from CPU 1.)
2533          *                          This reads SPTE during the page table walk.
2534          *                          Since SPTE.W is read as 1, there is no
2535          *                          fault.
2536          *
2537          *                      2.2 Guest issues TLB flush.
2538          *                          That causes a VM Exit.
2539          *
2540          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2541          *                          Since it is false, so it just returns.
2542          *
2543          *                      2.4 Guest accesses GVA X.
2544          *                          Since the mapping in the SP was not updated,
2545          *                          so the old mapping for GVA X incorrectly
2546          *                          gets used.
2547          * 1.1 Host marks SP
2548          *     as unsync
2549          *     (sp->unsync = true)
2550          *
2551          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2552          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2553          * pairs with this write barrier.
2554          */
2555         smp_wmb();
2556
2557         return false;
2558 }
2559
2560 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2561                     unsigned int pte_access, int level,
2562                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2563                     bool can_unsync, bool host_writable)
2564 {
2565         u64 spte;
2566         struct kvm_mmu_page *sp;
2567         int ret;
2568
2569         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2570                 return 0;
2571
2572         sp = sptep_to_sp(sptep);
2573
2574         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2575                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2576
2577         if (spte & PT_WRITABLE_MASK)
2578                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2579
2580         if (*sptep == spte)
2581                 ret |= SET_SPTE_SPURIOUS;
2582         else if (mmu_spte_update(sptep, spte))
2583                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2584         return ret;
2585 }
2586
2587 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2588                         unsigned int pte_access, bool write_fault, int level,
2589                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2590                         bool host_writable)
2591 {
2592         int was_rmapped = 0;
2593         int rmap_count;
2594         int set_spte_ret;
2595         int ret = RET_PF_FIXED;
2596         bool flush = false;
2597
2598         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2599                  *sptep, write_fault, gfn);
2600
2601         if (is_shadow_present_pte(*sptep)) {
2602                 /*
2603                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2604                  * the parent of the now unreachable PTE.
2605                  */
2606                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2607                         struct kvm_mmu_page *child;
2608                         u64 pte = *sptep;
2609
2610                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2611                         drop_parent_pte(child, sptep);
2612                         flush = true;
2613                 } else if (pfn != spte_to_pfn(*sptep)) {
2614                         pgprintk("hfn old %llx new %llx\n",
2615                                  spte_to_pfn(*sptep), pfn);
2616                         drop_spte(vcpu->kvm, sptep);
2617                         flush = true;
2618                 } else
2619                         was_rmapped = 1;
2620         }
2621
2622         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2623                                 speculative, true, host_writable);
2624         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2625                 if (write_fault)
2626                         ret = RET_PF_EMULATE;
2627                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2628         }
2629
2630         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2631                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2632                                 KVM_PAGES_PER_HPAGE(level));
2633
2634         if (unlikely(is_mmio_spte(*sptep)))
2635                 ret = RET_PF_EMULATE;
2636
2637         /*
2638          * The fault is fully spurious if and only if the new SPTE and old SPTE
2639          * are identical, and emulation is not required.
2640          */
2641         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2642                 WARN_ON_ONCE(!was_rmapped);
2643                 return RET_PF_SPURIOUS;
2644         }
2645
2646         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2647         trace_kvm_mmu_set_spte(level, gfn, sptep);
2648         if (!was_rmapped && is_large_pte(*sptep))
2649                 ++vcpu->kvm->stat.lpages;
2650
2651         if (is_shadow_present_pte(*sptep)) {
2652                 if (!was_rmapped) {
2653                         rmap_count = rmap_add(vcpu, sptep, gfn);
2654                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2655                                 rmap_recycle(vcpu, sptep, gfn);
2656                 }
2657         }
2658
2659         return ret;
2660 }
2661
2662 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2663                                      bool no_dirty_log)
2664 {
2665         struct kvm_memory_slot *slot;
2666
2667         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2668         if (!slot)
2669                 return KVM_PFN_ERR_FAULT;
2670
2671         return gfn_to_pfn_memslot_atomic(slot, gfn);
2672 }
2673
2674 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2675                                     struct kvm_mmu_page *sp,
2676                                     u64 *start, u64 *end)
2677 {
2678         struct page *pages[PTE_PREFETCH_NUM];
2679         struct kvm_memory_slot *slot;
2680         unsigned int access = sp->role.access;
2681         int i, ret;
2682         gfn_t gfn;
2683
2684         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2685         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2686         if (!slot)
2687                 return -1;
2688
2689         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2690         if (ret <= 0)
2691                 return -1;
2692
2693         for (i = 0; i < ret; i++, gfn++, start++) {
2694                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2695                              page_to_pfn(pages[i]), true, true);
2696                 put_page(pages[i]);
2697         }
2698
2699         return 0;
2700 }
2701
2702 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2703                                   struct kvm_mmu_page *sp, u64 *sptep)
2704 {
2705         u64 *spte, *start = NULL;
2706         int i;
2707
2708         WARN_ON(!sp->role.direct);
2709
2710         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2711         spte = sp->spt + i;
2712
2713         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2714                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2715                         if (!start)
2716                                 continue;
2717                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2718                                 break;
2719                         start = NULL;
2720                 } else if (!start)
2721                         start = spte;
2722         }
2723 }
2724
2725 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2726 {
2727         struct kvm_mmu_page *sp;
2728
2729         sp = sptep_to_sp(sptep);
2730
2731         /*
2732          * Without accessed bits, there's no way to distinguish between
2733          * actually accessed translations and prefetched, so disable pte
2734          * prefetch if accessed bits aren't available.
2735          */
2736         if (sp_ad_disabled(sp))
2737                 return;
2738
2739         if (sp->role.level > PG_LEVEL_4K)
2740                 return;
2741
2742         __direct_pte_prefetch(vcpu, sp, sptep);
2743 }
2744
2745 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2746                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2747 {
2748         unsigned long hva;
2749         pte_t *pte;
2750         int level;
2751
2752         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2753                 return PG_LEVEL_4K;
2754
2755         /*
2756          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2757          * is not solely for performance, it's also necessary to avoid the
2758          * "writable" check in __gfn_to_hva_many(), which will always fail on
2759          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2760          * page fault steps have already verified the guest isn't writing a
2761          * read-only memslot.
2762          */
2763         hva = __gfn_to_hva_memslot(slot, gfn);
2764
2765         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2766         if (unlikely(!pte))
2767                 return PG_LEVEL_4K;
2768
2769         return level;
2770 }
2771
2772 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2773                             int max_level, kvm_pfn_t *pfnp,
2774                             bool huge_page_disallowed, int *req_level)
2775 {
2776         struct kvm_memory_slot *slot;
2777         struct kvm_lpage_info *linfo;
2778         kvm_pfn_t pfn = *pfnp;
2779         kvm_pfn_t mask;
2780         int level;
2781
2782         *req_level = PG_LEVEL_4K;
2783
2784         if (unlikely(max_level == PG_LEVEL_4K))
2785                 return PG_LEVEL_4K;
2786
2787         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2788                 return PG_LEVEL_4K;
2789
2790         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2791         if (!slot)
2792                 return PG_LEVEL_4K;
2793
2794         max_level = min(max_level, max_huge_page_level);
2795         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2796                 linfo = lpage_info_slot(gfn, slot, max_level);
2797                 if (!linfo->disallow_lpage)
2798                         break;
2799         }
2800
2801         if (max_level == PG_LEVEL_4K)
2802                 return PG_LEVEL_4K;
2803
2804         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2805         if (level == PG_LEVEL_4K)
2806                 return level;
2807
2808         *req_level = level = min(level, max_level);
2809
2810         /*
2811          * Enforce the iTLB multihit workaround after capturing the requested
2812          * level, which will be used to do precise, accurate accounting.
2813          */
2814         if (huge_page_disallowed)
2815                 return PG_LEVEL_4K;
2816
2817         /*
2818          * mmu_notifier_retry() was successful and mmu_lock is held, so
2819          * the pmd can't be split from under us.
2820          */
2821         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2822         VM_BUG_ON((gfn & mask) != (pfn & mask));
2823         *pfnp = pfn & ~mask;
2824
2825         return level;
2826 }
2827
2828 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2829                                 kvm_pfn_t *pfnp, int *goal_levelp)
2830 {
2831         int level = *goal_levelp;
2832
2833         if (cur_level == level && level > PG_LEVEL_4K &&
2834             is_shadow_present_pte(spte) &&
2835             !is_large_pte(spte)) {
2836                 /*
2837                  * A small SPTE exists for this pfn, but FNAME(fetch)
2838                  * and __direct_map would like to create a large PTE
2839                  * instead: just force them to go down another level,
2840                  * patching back for them into pfn the next 9 bits of
2841                  * the address.
2842                  */
2843                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2844                                 KVM_PAGES_PER_HPAGE(level - 1);
2845                 *pfnp |= gfn & page_mask;
2846                 (*goal_levelp)--;
2847         }
2848 }
2849
2850 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2851                         int map_writable, int max_level, kvm_pfn_t pfn,
2852                         bool prefault, bool is_tdp)
2853 {
2854         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2855         bool write = error_code & PFERR_WRITE_MASK;
2856         bool exec = error_code & PFERR_FETCH_MASK;
2857         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2858         struct kvm_shadow_walk_iterator it;
2859         struct kvm_mmu_page *sp;
2860         int level, req_level, ret;
2861         gfn_t gfn = gpa >> PAGE_SHIFT;
2862         gfn_t base_gfn = gfn;
2863
2864         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2865                 return RET_PF_RETRY;
2866
2867         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2868                                         huge_page_disallowed, &req_level);
2869
2870         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2871         for_each_shadow_entry(vcpu, gpa, it) {
2872                 /*
2873                  * We cannot overwrite existing page tables with an NX
2874                  * large page, as the leaf could be executable.
2875                  */
2876                 if (nx_huge_page_workaround_enabled)
2877                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2878                                                    &pfn, &level);
2879
2880                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2881                 if (it.level == level)
2882                         break;
2883
2884                 drop_large_spte(vcpu, it.sptep);
2885                 if (!is_shadow_present_pte(*it.sptep)) {
2886                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2887                                               it.level - 1, true, ACC_ALL);
2888
2889                         link_shadow_page(vcpu, it.sptep, sp);
2890                         if (is_tdp && huge_page_disallowed &&
2891                             req_level >= it.level)
2892                                 account_huge_nx_page(vcpu->kvm, sp);
2893                 }
2894         }
2895
2896         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2897                            write, level, base_gfn, pfn, prefault,
2898                            map_writable);
2899         if (ret == RET_PF_SPURIOUS)
2900                 return ret;
2901
2902         direct_pte_prefetch(vcpu, it.sptep);
2903         ++vcpu->stat.pf_fixed;
2904         return ret;
2905 }
2906
2907 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2908 {
2909         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2910 }
2911
2912 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2913 {
2914         /*
2915          * Do not cache the mmio info caused by writing the readonly gfn
2916          * into the spte otherwise read access on readonly gfn also can
2917          * caused mmio page fault and treat it as mmio access.
2918          */
2919         if (pfn == KVM_PFN_ERR_RO_FAULT)
2920                 return RET_PF_EMULATE;
2921
2922         if (pfn == KVM_PFN_ERR_HWPOISON) {
2923                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2924                 return RET_PF_RETRY;
2925         }
2926
2927         return -EFAULT;
2928 }
2929
2930 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2931                                 kvm_pfn_t pfn, unsigned int access,
2932                                 int *ret_val)
2933 {
2934         /* The pfn is invalid, report the error! */
2935         if (unlikely(is_error_pfn(pfn))) {
2936                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2937                 return true;
2938         }
2939
2940         if (unlikely(is_noslot_pfn(pfn)))
2941                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2942                                      access & shadow_mmio_access_mask);
2943
2944         return false;
2945 }
2946
2947 static bool page_fault_can_be_fast(u32 error_code)
2948 {
2949         /*
2950          * Do not fix the mmio spte with invalid generation number which
2951          * need to be updated by slow page fault path.
2952          */
2953         if (unlikely(error_code & PFERR_RSVD_MASK))
2954                 return false;
2955
2956         /* See if the page fault is due to an NX violation */
2957         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2958                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2959                 return false;
2960
2961         /*
2962          * #PF can be fast if:
2963          * 1. The shadow page table entry is not present, which could mean that
2964          *    the fault is potentially caused by access tracking (if enabled).
2965          * 2. The shadow page table entry is present and the fault
2966          *    is caused by write-protect, that means we just need change the W
2967          *    bit of the spte which can be done out of mmu-lock.
2968          *
2969          * However, if access tracking is disabled we know that a non-present
2970          * page must be a genuine page fault where we have to create a new SPTE.
2971          * So, if access tracking is disabled, we return true only for write
2972          * accesses to a present page.
2973          */
2974
2975         return shadow_acc_track_mask != 0 ||
2976                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2977                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2978 }
2979
2980 /*
2981  * Returns true if the SPTE was fixed successfully. Otherwise,
2982  * someone else modified the SPTE from its original value.
2983  */
2984 static bool
2985 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2986                         u64 *sptep, u64 old_spte, u64 new_spte)
2987 {
2988         gfn_t gfn;
2989
2990         WARN_ON(!sp->role.direct);
2991
2992         /*
2993          * Theoretically we could also set dirty bit (and flush TLB) here in
2994          * order to eliminate unnecessary PML logging. See comments in
2995          * set_spte. But fast_page_fault is very unlikely to happen with PML
2996          * enabled, so we do not do this. This might result in the same GPA
2997          * to be logged in PML buffer again when the write really happens, and
2998          * eventually to be called by mark_page_dirty twice. But it's also no
2999          * harm. This also avoids the TLB flush needed after setting dirty bit
3000          * so non-PML cases won't be impacted.
3001          *
3002          * Compare with set_spte where instead shadow_dirty_mask is set.
3003          */
3004         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3005                 return false;
3006
3007         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3008                 /*
3009                  * The gfn of direct spte is stable since it is
3010                  * calculated by sp->gfn.
3011                  */
3012                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3013                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3014         }
3015
3016         return true;
3017 }
3018
3019 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3020 {
3021         if (fault_err_code & PFERR_FETCH_MASK)
3022                 return is_executable_pte(spte);
3023
3024         if (fault_err_code & PFERR_WRITE_MASK)
3025                 return is_writable_pte(spte);
3026
3027         /* Fault was on Read access */
3028         return spte & PT_PRESENT_MASK;
3029 }
3030
3031 /*
3032  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3033  */
3034 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3035                            u32 error_code)
3036 {
3037         struct kvm_shadow_walk_iterator iterator;
3038         struct kvm_mmu_page *sp;
3039         int ret = RET_PF_INVALID;
3040         u64 spte = 0ull;
3041         uint retry_count = 0;
3042
3043         if (!page_fault_can_be_fast(error_code))
3044                 return ret;
3045
3046         walk_shadow_page_lockless_begin(vcpu);
3047
3048         do {
3049                 u64 new_spte;
3050
3051                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3052                         if (!is_shadow_present_pte(spte))
3053                                 break;
3054
3055                 sp = sptep_to_sp(iterator.sptep);
3056                 if (!is_last_spte(spte, sp->role.level))
3057                         break;
3058
3059                 /*
3060                  * Check whether the memory access that caused the fault would
3061                  * still cause it if it were to be performed right now. If not,
3062                  * then this is a spurious fault caused by TLB lazily flushed,
3063                  * or some other CPU has already fixed the PTE after the
3064                  * current CPU took the fault.
3065                  *
3066                  * Need not check the access of upper level table entries since
3067                  * they are always ACC_ALL.
3068                  */
3069                 if (is_access_allowed(error_code, spte)) {
3070                         ret = RET_PF_SPURIOUS;
3071                         break;
3072                 }
3073
3074                 new_spte = spte;
3075
3076                 if (is_access_track_spte(spte))
3077                         new_spte = restore_acc_track_spte(new_spte);
3078
3079                 /*
3080                  * Currently, to simplify the code, write-protection can
3081                  * be removed in the fast path only if the SPTE was
3082                  * write-protected for dirty-logging or access tracking.
3083                  */
3084                 if ((error_code & PFERR_WRITE_MASK) &&
3085                     spte_can_locklessly_be_made_writable(spte)) {
3086                         new_spte |= PT_WRITABLE_MASK;
3087
3088                         /*
3089                          * Do not fix write-permission on the large spte.  Since
3090                          * we only dirty the first page into the dirty-bitmap in
3091                          * fast_pf_fix_direct_spte(), other pages are missed
3092                          * if its slot has dirty logging enabled.
3093                          *
3094                          * Instead, we let the slow page fault path create a
3095                          * normal spte to fix the access.
3096                          *
3097                          * See the comments in kvm_arch_commit_memory_region().
3098                          */
3099                         if (sp->role.level > PG_LEVEL_4K)
3100                                 break;
3101                 }
3102
3103                 /* Verify that the fault can be handled in the fast path */
3104                 if (new_spte == spte ||
3105                     !is_access_allowed(error_code, new_spte))
3106                         break;
3107
3108                 /*
3109                  * Currently, fast page fault only works for direct mapping
3110                  * since the gfn is not stable for indirect shadow page. See
3111                  * Documentation/virt/kvm/locking.rst to get more detail.
3112                  */
3113                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3114                                             new_spte)) {
3115                         ret = RET_PF_FIXED;
3116                         break;
3117                 }
3118
3119                 if (++retry_count > 4) {
3120                         printk_once(KERN_WARNING
3121                                 "kvm: Fast #PF retrying more than 4 times.\n");
3122                         break;
3123                 }
3124
3125         } while (true);
3126
3127         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3128                               spte, ret);
3129         walk_shadow_page_lockless_end(vcpu);
3130
3131         return ret;
3132 }
3133
3134 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3135                                struct list_head *invalid_list)
3136 {
3137         struct kvm_mmu_page *sp;
3138
3139         if (!VALID_PAGE(*root_hpa))
3140                 return;
3141
3142         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3143         if (WARN_ON(!sp))
3144                 return;
3145
3146         if (kvm_mmu_put_root(kvm, sp)) {
3147                 if (sp->tdp_mmu_page)
3148                         kvm_tdp_mmu_free_root(kvm, sp);
3149                 else if (sp->role.invalid)
3150                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3151         }
3152
3153         *root_hpa = INVALID_PAGE;
3154 }
3155
3156 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3157 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3158                         ulong roots_to_free)
3159 {
3160         struct kvm *kvm = vcpu->kvm;
3161         int i;
3162         LIST_HEAD(invalid_list);
3163         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3164
3165         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3166
3167         /* Before acquiring the MMU lock, see if we need to do any real work. */
3168         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3169                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3170                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3171                             VALID_PAGE(mmu->prev_roots[i].hpa))
3172                                 break;
3173
3174                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3175                         return;
3176         }
3177
3178         spin_lock(&kvm->mmu_lock);
3179
3180         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3181                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3182                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3183                                            &invalid_list);
3184
3185         if (free_active_root) {
3186                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3187                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3188                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3189                 } else if (mmu->pae_root) {
3190                         for (i = 0; i < 4; ++i)
3191                                 if (mmu->pae_root[i] != 0)
3192                                         mmu_free_root_page(kvm,
3193                                                            &mmu->pae_root[i],
3194                                                            &invalid_list);
3195                 }
3196                 mmu->root_hpa = INVALID_PAGE;
3197                 mmu->root_pgd = 0;
3198         }
3199
3200         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3201         spin_unlock(&kvm->mmu_lock);
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3204
3205 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3206 {
3207         int ret = 0;
3208
3209         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3210                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3211                 ret = 1;
3212         }
3213
3214         return ret;
3215 }
3216
3217 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3218                             u8 level, bool direct)
3219 {
3220         struct kvm_mmu_page *sp;
3221
3222         spin_lock(&vcpu->kvm->mmu_lock);
3223
3224         if (make_mmu_pages_available(vcpu)) {
3225                 spin_unlock(&vcpu->kvm->mmu_lock);
3226                 return INVALID_PAGE;
3227         }
3228         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3229         ++sp->root_count;
3230
3231         spin_unlock(&vcpu->kvm->mmu_lock);
3232         return __pa(sp->spt);
3233 }
3234
3235 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3236 {
3237         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3238         hpa_t root;
3239         unsigned i;
3240
3241         if (vcpu->kvm->arch.tdp_mmu_enabled) {
3242                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3243
3244                 if (!VALID_PAGE(root))
3245                         return -ENOSPC;
3246                 vcpu->arch.mmu->root_hpa = root;
3247         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3248                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3249                                       true);
3250
3251                 if (!VALID_PAGE(root))
3252                         return -ENOSPC;
3253                 vcpu->arch.mmu->root_hpa = root;
3254         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3255                 for (i = 0; i < 4; ++i) {
3256                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3257
3258                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3259                                               i << 30, PT32_ROOT_LEVEL, true);
3260                         if (!VALID_PAGE(root))
3261                                 return -ENOSPC;
3262                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3263                 }
3264                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3265         } else
3266                 BUG();
3267
3268         /* root_pgd is ignored for direct MMUs. */
3269         vcpu->arch.mmu->root_pgd = 0;
3270
3271         return 0;
3272 }
3273
3274 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3275 {
3276         u64 pdptr, pm_mask;
3277         gfn_t root_gfn, root_pgd;
3278         hpa_t root;
3279         int i;
3280
3281         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3282         root_gfn = root_pgd >> PAGE_SHIFT;
3283
3284         if (mmu_check_root(vcpu, root_gfn))
3285                 return 1;
3286
3287         /*
3288          * Do we shadow a long mode page table? If so we need to
3289          * write-protect the guests page table root.
3290          */
3291         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3292                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3293
3294                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3295                                       vcpu->arch.mmu->shadow_root_level, false);
3296                 if (!VALID_PAGE(root))
3297                         return -ENOSPC;
3298                 vcpu->arch.mmu->root_hpa = root;
3299                 goto set_root_pgd;
3300         }
3301
3302         /*
3303          * We shadow a 32 bit page table. This may be a legacy 2-level
3304          * or a PAE 3-level page table. In either case we need to be aware that
3305          * the shadow page table may be a PAE or a long mode page table.
3306          */
3307         pm_mask = PT_PRESENT_MASK;
3308         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3309                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3310
3311                 /*
3312                  * Allocate the page for the PDPTEs when shadowing 32-bit NPT
3313                  * with 64-bit only when needed.  Unlike 32-bit NPT, it doesn't
3314                  * need to be in low mem.  See also lm_root below.
3315                  */
3316                 if (!vcpu->arch.mmu->pae_root) {
3317                         WARN_ON_ONCE(!tdp_enabled);
3318
3319                         vcpu->arch.mmu->pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3320                         if (!vcpu->arch.mmu->pae_root)
3321                                 return -ENOMEM;
3322                 }
3323         }
3324
3325         for (i = 0; i < 4; ++i) {
3326                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3327                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3328                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3329                         if (!(pdptr & PT_PRESENT_MASK)) {
3330                                 vcpu->arch.mmu->pae_root[i] = 0;
3331                                 continue;
3332                         }
3333                         root_gfn = pdptr >> PAGE_SHIFT;
3334                         if (mmu_check_root(vcpu, root_gfn))
3335                                 return 1;
3336                 }
3337
3338                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3339                                       PT32_ROOT_LEVEL, false);
3340                 if (!VALID_PAGE(root))
3341                         return -ENOSPC;
3342                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3343         }
3344         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3345
3346         /*
3347          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3348          * tables are allocated and initialized at MMU creation as there is no
3349          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3350          * on demand, as running a 32-bit L1 VMM is very rare.  The PDP is
3351          * handled above (to share logic with PAE), deal with the PML4 here.
3352          */
3353         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3354                 if (vcpu->arch.mmu->lm_root == NULL) {
3355                         u64 *lm_root;
3356
3357                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3358                         if (!lm_root)
3359                                 return -ENOMEM;
3360
3361                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3362
3363                         vcpu->arch.mmu->lm_root = lm_root;
3364                 }
3365
3366                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3367         }
3368
3369 set_root_pgd:
3370         vcpu->arch.mmu->root_pgd = root_pgd;
3371
3372         return 0;
3373 }
3374
3375 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3376 {
3377         if (vcpu->arch.mmu->direct_map)
3378                 return mmu_alloc_direct_roots(vcpu);
3379         else
3380                 return mmu_alloc_shadow_roots(vcpu);
3381 }
3382
3383 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3384 {
3385         int i;
3386         struct kvm_mmu_page *sp;
3387
3388         if (vcpu->arch.mmu->direct_map)
3389                 return;
3390
3391         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3392                 return;
3393
3394         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3395
3396         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3397                 hpa_t root = vcpu->arch.mmu->root_hpa;
3398                 sp = to_shadow_page(root);
3399
3400                 /*
3401                  * Even if another CPU was marking the SP as unsync-ed
3402                  * simultaneously, any guest page table changes are not
3403                  * guaranteed to be visible anyway until this VCPU issues a TLB
3404                  * flush strictly after those changes are made. We only need to
3405                  * ensure that the other CPU sets these flags before any actual
3406                  * changes to the page tables are made. The comments in
3407                  * mmu_need_write_protect() describe what could go wrong if this
3408                  * requirement isn't satisfied.
3409                  */
3410                 if (!smp_load_acquire(&sp->unsync) &&
3411                     !smp_load_acquire(&sp->unsync_children))
3412                         return;
3413
3414                 spin_lock(&vcpu->kvm->mmu_lock);
3415                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3416
3417                 mmu_sync_children(vcpu, sp);
3418
3419                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3420                 spin_unlock(&vcpu->kvm->mmu_lock);
3421                 return;
3422         }
3423
3424         spin_lock(&vcpu->kvm->mmu_lock);
3425         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3426
3427         for (i = 0; i < 4; ++i) {
3428                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3429
3430                 if (root && VALID_PAGE(root)) {
3431                         root &= PT64_BASE_ADDR_MASK;
3432                         sp = to_shadow_page(root);
3433                         mmu_sync_children(vcpu, sp);
3434                 }
3435         }
3436
3437         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3438         spin_unlock(&vcpu->kvm->mmu_lock);
3439 }
3440 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3441
3442 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3443                                   u32 access, struct x86_exception *exception)
3444 {
3445         if (exception)
3446                 exception->error_code = 0;
3447         return vaddr;
3448 }
3449
3450 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3451                                          u32 access,
3452                                          struct x86_exception *exception)
3453 {
3454         if (exception)
3455                 exception->error_code = 0;
3456         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3457 }
3458
3459 static bool
3460 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3461 {
3462         int bit7 = (pte >> 7) & 1;
3463
3464         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3465 }
3466
3467 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3468 {
3469         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3470 }
3471
3472 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3473 {
3474         /*
3475          * A nested guest cannot use the MMIO cache if it is using nested
3476          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3477          */
3478         if (mmu_is_nested(vcpu))
3479                 return false;
3480
3481         if (direct)
3482                 return vcpu_match_mmio_gpa(vcpu, addr);
3483
3484         return vcpu_match_mmio_gva(vcpu, addr);
3485 }
3486
3487 /*
3488  * Return the level of the lowest level SPTE added to sptes.
3489  * That SPTE may be non-present.
3490  */
3491 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3492 {
3493         struct kvm_shadow_walk_iterator iterator;
3494         int leaf = -1;
3495         u64 spte;
3496
3497         walk_shadow_page_lockless_begin(vcpu);
3498
3499         for (shadow_walk_init(&iterator, vcpu, addr),
3500              *root_level = iterator.level;
3501              shadow_walk_okay(&iterator);
3502              __shadow_walk_next(&iterator, spte)) {
3503                 leaf = iterator.level;
3504                 spte = mmu_spte_get_lockless(iterator.sptep);
3505
3506                 sptes[leaf - 1] = spte;
3507
3508                 if (!is_shadow_present_pte(spte))
3509                         break;
3510         }
3511
3512         walk_shadow_page_lockless_end(vcpu);
3513
3514         return leaf;
3515 }
3516
3517 /* return true if reserved bit is detected on spte. */
3518 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3519 {
3520         u64 sptes[PT64_ROOT_MAX_LEVEL];
3521         struct rsvd_bits_validate *rsvd_check;
3522         int root, leaf, level;
3523         bool reserved = false;
3524
3525         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526                 *sptep = 0ull;
3527                 return reserved;
3528         }
3529
3530         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3532         else
3533                 leaf = get_walk(vcpu, addr, sptes, &root);
3534
3535         if (unlikely(leaf < 0)) {
3536                 *sptep = 0ull;
3537                 return reserved;
3538         }
3539
3540         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3541
3542         for (level = root; level >= leaf; level--) {
3543                 if (!is_shadow_present_pte(sptes[level - 1]))
3544                         break;
3545                 /*
3546                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3547                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3548                  * adding a Jcc in the loop.
3549                  */
3550                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) ||
3551                             __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3552                                                level);
3553         }
3554
3555         if (reserved) {
3556                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3557                        __func__, addr);
3558                 for (level = root; level >= leaf; level--)
3559                         pr_err("------ spte 0x%llx level %d.\n",
3560                                sptes[level - 1], level);
3561         }
3562
3563         *sptep = sptes[leaf - 1];
3564
3565         return reserved;
3566 }
3567
3568 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3569 {
3570         u64 spte;
3571         bool reserved;
3572
3573         if (mmio_info_in_cache(vcpu, addr, direct))
3574                 return RET_PF_EMULATE;
3575
3576         reserved = get_mmio_spte(vcpu, addr, &spte);
3577         if (WARN_ON(reserved))
3578                 return -EINVAL;
3579
3580         if (is_mmio_spte(spte)) {
3581                 gfn_t gfn = get_mmio_spte_gfn(spte);
3582                 unsigned int access = get_mmio_spte_access(spte);
3583
3584                 if (!check_mmio_spte(vcpu, spte))
3585                         return RET_PF_INVALID;
3586
3587                 if (direct)
3588                         addr = 0;
3589
3590                 trace_handle_mmio_page_fault(addr, gfn, access);
3591                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3592                 return RET_PF_EMULATE;
3593         }
3594
3595         /*
3596          * If the page table is zapped by other cpus, let CPU fault again on
3597          * the address.
3598          */
3599         return RET_PF_RETRY;
3600 }
3601
3602 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3603                                          u32 error_code, gfn_t gfn)
3604 {
3605         if (unlikely(error_code & PFERR_RSVD_MASK))
3606                 return false;
3607
3608         if (!(error_code & PFERR_PRESENT_MASK) ||
3609               !(error_code & PFERR_WRITE_MASK))
3610                 return false;
3611
3612         /*
3613          * guest is writing the page which is write tracked which can
3614          * not be fixed by page fault handler.
3615          */
3616         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3617                 return true;
3618
3619         return false;
3620 }
3621
3622 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3623 {
3624         struct kvm_shadow_walk_iterator iterator;
3625         u64 spte;
3626
3627         walk_shadow_page_lockless_begin(vcpu);
3628         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3629                 clear_sp_write_flooding_count(iterator.sptep);
3630                 if (!is_shadow_present_pte(spte))
3631                         break;
3632         }
3633         walk_shadow_page_lockless_end(vcpu);
3634 }
3635
3636 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3637 {
3638         /* make sure the token value is not 0 */
3639         u32 id = vcpu->arch.apf.id;
3640
3641         if (id << 12 == 0)
3642                 vcpu->arch.apf.id = 1;
3643
3644         return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3645 }
3646
3647 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3648                                     gfn_t gfn)
3649 {
3650         struct kvm_arch_async_pf arch;
3651
3652         arch.token = alloc_apf_token(vcpu);
3653         arch.gfn = gfn;
3654         arch.direct_map = vcpu->arch.mmu->direct_map;
3655         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3656
3657         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3658                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3659 }
3660
3661 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3662                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3663                          bool *writable)
3664 {
3665         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3666         bool async;
3667
3668         /*
3669          * Retry the page fault if the gfn hit a memslot that is being deleted
3670          * or moved.  This ensures any existing SPTEs for the old memslot will
3671          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3672          */
3673         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3674                 return true;
3675
3676         /* Don't expose private memslots to L2. */
3677         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3678                 *pfn = KVM_PFN_NOSLOT;
3679                 *writable = false;
3680                 return false;
3681         }
3682
3683         async = false;
3684         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3685         if (!async)
3686                 return false; /* *pfn has correct page already */
3687
3688         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3689                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3690                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3691                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3692                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3693                         return true;
3694                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3695                         return true;
3696         }
3697
3698         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3699         return false;
3700 }
3701
3702 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3703                              bool prefault, int max_level, bool is_tdp)
3704 {
3705         bool write = error_code & PFERR_WRITE_MASK;
3706         bool map_writable;
3707
3708         gfn_t gfn = gpa >> PAGE_SHIFT;
3709         unsigned long mmu_seq;
3710         kvm_pfn_t pfn;
3711         int r;
3712
3713         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3714                 return RET_PF_EMULATE;
3715
3716         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3717                 r = fast_page_fault(vcpu, gpa, error_code);
3718                 if (r != RET_PF_INVALID)
3719                         return r;
3720         }
3721
3722         r = mmu_topup_memory_caches(vcpu, false);
3723         if (r)
3724                 return r;
3725
3726         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3727         smp_rmb();
3728
3729         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3730                 return RET_PF_RETRY;
3731
3732         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3733                 return r;
3734
3735         r = RET_PF_RETRY;
3736         spin_lock(&vcpu->kvm->mmu_lock);
3737         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3738                 goto out_unlock;
3739         r = make_mmu_pages_available(vcpu);
3740         if (r)
3741                 goto out_unlock;
3742
3743         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3744                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3745                                     pfn, prefault);
3746         else
3747                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3748                                  prefault, is_tdp);
3749
3750 out_unlock:
3751         spin_unlock(&vcpu->kvm->mmu_lock);
3752         kvm_release_pfn_clean(pfn);
3753         return r;
3754 }
3755
3756 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3757                                 u32 error_code, bool prefault)
3758 {
3759         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3760
3761         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3762         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3763                                  PG_LEVEL_2M, false);
3764 }
3765
3766 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3767                                 u64 fault_address, char *insn, int insn_len)
3768 {
3769         int r = 1;
3770         u32 flags = vcpu->arch.apf.host_apf_flags;
3771
3772 #ifndef CONFIG_X86_64
3773         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3774         if (WARN_ON_ONCE(fault_address >> 32))
3775                 return -EFAULT;
3776 #endif
3777
3778         vcpu->arch.l1tf_flush_l1d = true;
3779         if (!flags) {
3780                 trace_kvm_page_fault(fault_address, error_code);
3781
3782                 if (kvm_event_needs_reinjection(vcpu))
3783                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3784                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3785                                 insn_len);
3786         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3787                 vcpu->arch.apf.host_apf_flags = 0;
3788                 local_irq_disable();
3789                 kvm_async_pf_task_wait_schedule(fault_address);
3790                 local_irq_enable();
3791         } else {
3792                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3793         }
3794
3795         return r;
3796 }
3797 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3798
3799 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3800                        bool prefault)
3801 {
3802         int max_level;
3803
3804         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3805              max_level > PG_LEVEL_4K;
3806              max_level--) {
3807                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3808                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3809
3810                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3811                         break;
3812         }
3813
3814         return direct_page_fault(vcpu, gpa, error_code, prefault,
3815                                  max_level, true);
3816 }
3817
3818 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3819                                    struct kvm_mmu *context)
3820 {
3821         context->page_fault = nonpaging_page_fault;
3822         context->gva_to_gpa = nonpaging_gva_to_gpa;
3823         context->sync_page = nonpaging_sync_page;
3824         context->invlpg = NULL;
3825         context->root_level = 0;
3826         context->shadow_root_level = PT32E_ROOT_LEVEL;
3827         context->direct_map = true;
3828         context->nx = false;
3829 }
3830
3831 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3832                                   union kvm_mmu_page_role role)
3833 {
3834         return (role.direct || pgd == root->pgd) &&
3835                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3836                role.word == to_shadow_page(root->hpa)->role.word;
3837 }
3838
3839 /*
3840  * Find out if a previously cached root matching the new pgd/role is available.
3841  * The current root is also inserted into the cache.
3842  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3843  * returned.
3844  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3845  * false is returned. This root should now be freed by the caller.
3846  */
3847 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3848                                   union kvm_mmu_page_role new_role)
3849 {
3850         uint i;
3851         struct kvm_mmu_root_info root;
3852         struct kvm_mmu *mmu = vcpu->arch.mmu;
3853
3854         root.pgd = mmu->root_pgd;
3855         root.hpa = mmu->root_hpa;
3856
3857         if (is_root_usable(&root, new_pgd, new_role))
3858                 return true;
3859
3860         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3861                 swap(root, mmu->prev_roots[i]);
3862
3863                 if (is_root_usable(&root, new_pgd, new_role))
3864                         break;
3865         }
3866
3867         mmu->root_hpa = root.hpa;
3868         mmu->root_pgd = root.pgd;
3869
3870         return i < KVM_MMU_NUM_PREV_ROOTS;
3871 }
3872
3873 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3874                             union kvm_mmu_page_role new_role)
3875 {
3876         struct kvm_mmu *mmu = vcpu->arch.mmu;
3877
3878         /*
3879          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3880          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3881          * later if necessary.
3882          */
3883         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3884             mmu->root_level >= PT64_ROOT_4LEVEL)
3885                 return cached_root_available(vcpu, new_pgd, new_role);
3886
3887         return false;
3888 }
3889
3890 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3891                               union kvm_mmu_page_role new_role,
3892                               bool skip_tlb_flush, bool skip_mmu_sync)
3893 {
3894         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3895                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3896                 return;
3897         }
3898
3899         /*
3900          * It's possible that the cached previous root page is obsolete because
3901          * of a change in the MMU generation number. However, changing the
3902          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3903          * free the root set here and allocate a new one.
3904          */
3905         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3906
3907         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3908                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3909         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3910                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3911
3912         /*
3913          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3914          * switching to a new CR3, that GVA->GPA mapping may no longer be
3915          * valid. So clear any cached MMIO info even when we don't need to sync
3916          * the shadow page tables.
3917          */
3918         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3919
3920         /*
3921          * If this is a direct root page, it doesn't have a write flooding
3922          * count. Otherwise, clear the write flooding count.
3923          */
3924         if (!new_role.direct)
3925                 __clear_sp_write_flooding_count(
3926                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
3927 }
3928
3929 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3930                      bool skip_mmu_sync)
3931 {
3932         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3933                           skip_tlb_flush, skip_mmu_sync);
3934 }
3935 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3936
3937 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3938 {
3939         return kvm_read_cr3(vcpu);
3940 }
3941
3942 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3943                            unsigned int access, int *nr_present)
3944 {
3945         if (unlikely(is_mmio_spte(*sptep))) {
3946                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3947                         mmu_spte_clear_no_track(sptep);
3948                         return true;
3949                 }
3950
3951                 (*nr_present)++;
3952                 mark_mmio_spte(vcpu, sptep, gfn, access);
3953                 return true;
3954         }
3955
3956         return false;
3957 }
3958
3959 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3960                                 unsigned level, unsigned gpte)
3961 {
3962         /*
3963          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3964          * If it is clear, there are no large pages at this level, so clear
3965          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3966          */
3967         gpte &= level - mmu->last_nonleaf_level;
3968
3969         /*
3970          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3971          * iff level <= PG_LEVEL_4K, which for our purpose means
3972          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3973          */
3974         gpte |= level - PG_LEVEL_4K - 1;
3975
3976         return gpte & PT_PAGE_SIZE_MASK;
3977 }
3978
3979 #define PTTYPE_EPT 18 /* arbitrary */
3980 #define PTTYPE PTTYPE_EPT
3981 #include "paging_tmpl.h"
3982 #undef PTTYPE
3983
3984 #define PTTYPE 64
3985 #include "paging_tmpl.h"
3986 #undef PTTYPE
3987
3988 #define PTTYPE 32
3989 #include "paging_tmpl.h"
3990 #undef PTTYPE
3991
3992 static void
3993 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3994                         struct rsvd_bits_validate *rsvd_check,
3995                         int maxphyaddr, int level, bool nx, bool gbpages,
3996                         bool pse, bool amd)
3997 {
3998         u64 exb_bit_rsvd = 0;
3999         u64 gbpages_bit_rsvd = 0;
4000         u64 nonleaf_bit8_rsvd = 0;
4001
4002         rsvd_check->bad_mt_xwr = 0;
4003
4004         if (!nx)
4005                 exb_bit_rsvd = rsvd_bits(63, 63);
4006         if (!gbpages)
4007                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4008
4009         /*
4010          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4011          * leaf entries) on AMD CPUs only.
4012          */
4013         if (amd)
4014                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4015
4016         switch (level) {
4017         case PT32_ROOT_LEVEL:
4018                 /* no rsvd bits for 2 level 4K page table entries */
4019                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4020                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4021                 rsvd_check->rsvd_bits_mask[1][0] =
4022                         rsvd_check->rsvd_bits_mask[0][0];
4023
4024                 if (!pse) {
4025                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4026                         break;
4027                 }
4028
4029                 if (is_cpuid_PSE36())
4030                         /* 36bits PSE 4MB page */
4031                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4032                 else
4033                         /* 32 bits PSE 4MB page */
4034                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4035                 break;
4036         case PT32E_ROOT_LEVEL:
4037                 rsvd_check->rsvd_bits_mask[0][2] =
4038                         rsvd_bits(maxphyaddr, 63) |
4039                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4040                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4041                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4042                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4043                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4044                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4045                         rsvd_bits(maxphyaddr, 62) |
4046                         rsvd_bits(13, 20);              /* large page */
4047                 rsvd_check->rsvd_bits_mask[1][0] =
4048                         rsvd_check->rsvd_bits_mask[0][0];
4049                 break;
4050         case PT64_ROOT_5LEVEL:
4051                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4052                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4053                         rsvd_bits(maxphyaddr, 51);
4054                 rsvd_check->rsvd_bits_mask[1][4] =
4055                         rsvd_check->rsvd_bits_mask[0][4];
4056                 fallthrough;
4057         case PT64_ROOT_4LEVEL:
4058                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4059                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4060                         rsvd_bits(maxphyaddr, 51);
4061                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4062                         gbpages_bit_rsvd |
4063                         rsvd_bits(maxphyaddr, 51);
4064                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4065                         rsvd_bits(maxphyaddr, 51);
4066                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4067                         rsvd_bits(maxphyaddr, 51);
4068                 rsvd_check->rsvd_bits_mask[1][3] =
4069                         rsvd_check->rsvd_bits_mask[0][3];
4070                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4071                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4072                         rsvd_bits(13, 29);
4073                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4074                         rsvd_bits(maxphyaddr, 51) |
4075                         rsvd_bits(13, 20);              /* large page */
4076                 rsvd_check->rsvd_bits_mask[1][0] =
4077                         rsvd_check->rsvd_bits_mask[0][0];
4078                 break;
4079         }
4080 }
4081
4082 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4083                                   struct kvm_mmu *context)
4084 {
4085         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4086                                 cpuid_maxphyaddr(vcpu), context->root_level,
4087                                 context->nx,
4088                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4089                                 is_pse(vcpu),
4090                                 guest_cpuid_is_amd_or_hygon(vcpu));
4091 }
4092
4093 static void
4094 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4095                             int maxphyaddr, bool execonly)
4096 {
4097         u64 bad_mt_xwr;
4098
4099         rsvd_check->rsvd_bits_mask[0][4] =
4100                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4101         rsvd_check->rsvd_bits_mask[0][3] =
4102                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4103         rsvd_check->rsvd_bits_mask[0][2] =
4104                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4105         rsvd_check->rsvd_bits_mask[0][1] =
4106                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4107         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4108
4109         /* large page */
4110         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4111         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4112         rsvd_check->rsvd_bits_mask[1][2] =
4113                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4114         rsvd_check->rsvd_bits_mask[1][1] =
4115                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4116         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4117
4118         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4119         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4120         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4121         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4122         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4123         if (!execonly) {
4124                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4125                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4126         }
4127         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4128 }
4129
4130 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4131                 struct kvm_mmu *context, bool execonly)
4132 {
4133         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4134                                     cpuid_maxphyaddr(vcpu), execonly);
4135 }
4136
4137 /*
4138  * the page table on host is the shadow page table for the page
4139  * table in guest or amd nested guest, its mmu features completely
4140  * follow the features in guest.
4141  */
4142 void
4143 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4144 {
4145         /*
4146          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4147          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4148          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4149          * The iTLB multi-hit workaround can be toggled at any time, so assume
4150          * NX can be used by any non-nested shadow MMU to avoid having to reset
4151          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4152          */
4153         bool uses_nx = context->nx || !tdp_enabled ||
4154                 context->mmu_role.base.smep_andnot_wp;
4155         struct rsvd_bits_validate *shadow_zero_check;
4156         int i;
4157
4158         /*
4159          * Passing "true" to the last argument is okay; it adds a check
4160          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4161          */
4162         shadow_zero_check = &context->shadow_zero_check;
4163         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4164                                 shadow_phys_bits,
4165                                 context->shadow_root_level, uses_nx,
4166                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4167                                 is_pse(vcpu), true);
4168
4169         if (!shadow_me_mask)
4170                 return;
4171
4172         for (i = context->shadow_root_level; --i >= 0;) {
4173                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4174                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4175         }
4176
4177 }
4178 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4179
4180 static inline bool boot_cpu_is_amd(void)
4181 {
4182         WARN_ON_ONCE(!tdp_enabled);
4183         return shadow_x_mask == 0;
4184 }
4185
4186 /*
4187  * the direct page table on host, use as much mmu features as
4188  * possible, however, kvm currently does not do execution-protection.
4189  */
4190 static void
4191 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4192                                 struct kvm_mmu *context)
4193 {
4194         struct rsvd_bits_validate *shadow_zero_check;
4195         int i;
4196
4197         shadow_zero_check = &context->shadow_zero_check;
4198
4199         if (boot_cpu_is_amd())
4200                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4201                                         shadow_phys_bits,
4202                                         context->shadow_root_level, false,
4203                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4204                                         true, true);
4205         else
4206                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4207                                             shadow_phys_bits,
4208                                             false);
4209
4210         if (!shadow_me_mask)
4211                 return;
4212
4213         for (i = context->shadow_root_level; --i >= 0;) {
4214                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4215                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4216         }
4217 }
4218
4219 /*
4220  * as the comments in reset_shadow_zero_bits_mask() except it
4221  * is the shadow page table for intel nested guest.
4222  */
4223 static void
4224 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4225                                 struct kvm_mmu *context, bool execonly)
4226 {
4227         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4228                                     shadow_phys_bits, execonly);
4229 }
4230
4231 #define BYTE_MASK(access) \
4232         ((1 & (access) ? 2 : 0) | \
4233          (2 & (access) ? 4 : 0) | \
4234          (3 & (access) ? 8 : 0) | \
4235          (4 & (access) ? 16 : 0) | \
4236          (5 & (access) ? 32 : 0) | \
4237          (6 & (access) ? 64 : 0) | \
4238          (7 & (access) ? 128 : 0))
4239
4240
4241 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4242                                       struct kvm_mmu *mmu, bool ept)
4243 {
4244         unsigned byte;
4245
4246         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4247         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4248         const u8 u = BYTE_MASK(ACC_USER_MASK);
4249
4250         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4251         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4252         bool cr0_wp = is_write_protection(vcpu);
4253
4254         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4255                 unsigned pfec = byte << 1;
4256
4257                 /*
4258                  * Each "*f" variable has a 1 bit for each UWX value
4259                  * that causes a fault with the given PFEC.
4260                  */
4261
4262                 /* Faults from writes to non-writable pages */
4263                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4264                 /* Faults from user mode accesses to supervisor pages */
4265                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4266                 /* Faults from fetches of non-executable pages*/
4267                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4268                 /* Faults from kernel mode fetches of user pages */
4269                 u8 smepf = 0;
4270                 /* Faults from kernel mode accesses of user pages */
4271                 u8 smapf = 0;
4272
4273                 if (!ept) {
4274                         /* Faults from kernel mode accesses to user pages */
4275                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4276
4277                         /* Not really needed: !nx will cause pte.nx to fault */
4278                         if (!mmu->nx)
4279                                 ff = 0;
4280
4281                         /* Allow supervisor writes if !cr0.wp */
4282                         if (!cr0_wp)
4283                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4284
4285                         /* Disallow supervisor fetches of user code if cr4.smep */
4286                         if (cr4_smep)
4287                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4288
4289                         /*
4290                          * SMAP:kernel-mode data accesses from user-mode
4291                          * mappings should fault. A fault is considered
4292                          * as a SMAP violation if all of the following
4293                          * conditions are true:
4294                          *   - X86_CR4_SMAP is set in CR4
4295                          *   - A user page is accessed
4296                          *   - The access is not a fetch
4297                          *   - Page fault in kernel mode
4298                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4299                          *
4300                          * Here, we cover the first three conditions.
4301                          * The fourth is computed dynamically in permission_fault();
4302                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4303                          * *not* subject to SMAP restrictions.
4304                          */
4305                         if (cr4_smap)
4306                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4307                 }
4308
4309                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4310         }
4311 }
4312
4313 /*
4314 * PKU is an additional mechanism by which the paging controls access to
4315 * user-mode addresses based on the value in the PKRU register.  Protection
4316 * key violations are reported through a bit in the page fault error code.
4317 * Unlike other bits of the error code, the PK bit is not known at the
4318 * call site of e.g. gva_to_gpa; it must be computed directly in
4319 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4320 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4321 *
4322 * In particular the following conditions come from the error code, the
4323 * page tables and the machine state:
4324 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4325 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4326 * - PK is always zero if U=0 in the page tables
4327 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4328 *
4329 * The PKRU bitmask caches the result of these four conditions.  The error
4330 * code (minus the P bit) and the page table's U bit form an index into the
4331 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4332 * with the two bits of the PKRU register corresponding to the protection key.
4333 * For the first three conditions above the bits will be 00, thus masking
4334 * away both AD and WD.  For all reads or if the last condition holds, WD
4335 * only will be masked away.
4336 */
4337 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4338                                 bool ept)
4339 {
4340         unsigned bit;
4341         bool wp;
4342
4343         if (ept) {
4344                 mmu->pkru_mask = 0;
4345                 return;
4346         }
4347
4348         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4349         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4350                 mmu->pkru_mask = 0;
4351                 return;
4352         }
4353
4354         wp = is_write_protection(vcpu);
4355
4356         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4357                 unsigned pfec, pkey_bits;
4358                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4359
4360                 pfec = bit << 1;
4361                 ff = pfec & PFERR_FETCH_MASK;
4362                 uf = pfec & PFERR_USER_MASK;
4363                 wf = pfec & PFERR_WRITE_MASK;
4364
4365                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4366                 pte_user = pfec & PFERR_RSVD_MASK;
4367
4368                 /*
4369                  * Only need to check the access which is not an
4370                  * instruction fetch and is to a user page.
4371                  */
4372                 check_pkey = (!ff && pte_user);
4373                 /*
4374                  * write access is controlled by PKRU if it is a
4375                  * user access or CR0.WP = 1.
4376                  */
4377                 check_write = check_pkey && wf && (uf || wp);
4378
4379                 /* PKRU.AD stops both read and write access. */
4380                 pkey_bits = !!check_pkey;
4381                 /* PKRU.WD stops write access. */
4382                 pkey_bits |= (!!check_write) << 1;
4383
4384                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4385         }
4386 }
4387
4388 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4389 {
4390         unsigned root_level = mmu->root_level;
4391
4392         mmu->last_nonleaf_level = root_level;
4393         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4394                 mmu->last_nonleaf_level++;
4395 }
4396
4397 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4398                                          struct kvm_mmu *context,
4399                                          int level)
4400 {
4401         context->nx = is_nx(vcpu);
4402         context->root_level = level;
4403
4404         reset_rsvds_bits_mask(vcpu, context);
4405         update_permission_bitmask(vcpu, context, false);
4406         update_pkru_bitmask(vcpu, context, false);
4407         update_last_nonleaf_level(vcpu, context);
4408
4409         MMU_WARN_ON(!is_pae(vcpu));
4410         context->page_fault = paging64_page_fault;
4411         context->gva_to_gpa = paging64_gva_to_gpa;
4412         context->sync_page = paging64_sync_page;
4413         context->invlpg = paging64_invlpg;
4414         context->shadow_root_level = level;
4415         context->direct_map = false;
4416 }
4417
4418 static void paging64_init_context(struct kvm_vcpu *vcpu,
4419                                   struct kvm_mmu *context)
4420 {
4421         int root_level = is_la57_mode(vcpu) ?
4422                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4423
4424         paging64_init_context_common(vcpu, context, root_level);
4425 }
4426
4427 static void paging32_init_context(struct kvm_vcpu *vcpu,
4428                                   struct kvm_mmu *context)
4429 {
4430         context->nx = false;
4431         context->root_level = PT32_ROOT_LEVEL;
4432
4433         reset_rsvds_bits_mask(vcpu, context);
4434         update_permission_bitmask(vcpu, context, false);
4435         update_pkru_bitmask(vcpu, context, false);
4436         update_last_nonleaf_level(vcpu, context);
4437
4438         context->page_fault = paging32_page_fault;
4439         context->gva_to_gpa = paging32_gva_to_gpa;
4440         context->sync_page = paging32_sync_page;
4441         context->invlpg = paging32_invlpg;
4442         context->shadow_root_level = PT32E_ROOT_LEVEL;
4443         context->direct_map = false;
4444 }
4445
4446 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4447                                    struct kvm_mmu *context)
4448 {
4449         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4450 }
4451
4452 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4453 {
4454         union kvm_mmu_extended_role ext = {0};
4455
4456         ext.cr0_pg = !!is_paging(vcpu);
4457         ext.cr4_pae = !!is_pae(vcpu);
4458         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4459         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4460         ext.cr4_pse = !!is_pse(vcpu);
4461         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4462         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4463         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4464
4465         ext.valid = 1;
4466
4467         return ext;
4468 }
4469
4470 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4471                                                    bool base_only)
4472 {
4473         union kvm_mmu_role role = {0};
4474
4475         role.base.access = ACC_ALL;
4476         role.base.nxe = !!is_nx(vcpu);
4477         role.base.cr0_wp = is_write_protection(vcpu);
4478         role.base.smm = is_smm(vcpu);
4479         role.base.guest_mode = is_guest_mode(vcpu);
4480
4481         if (base_only)
4482                 return role;
4483
4484         role.ext = kvm_calc_mmu_role_ext(vcpu);
4485
4486         return role;
4487 }
4488
4489 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4490 {
4491         /* Use 5-level TDP if and only if it's useful/necessary. */
4492         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4493                 return 4;
4494
4495         return max_tdp_level;
4496 }
4497
4498 static union kvm_mmu_role
4499 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4500 {
4501         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4502
4503         role.base.ad_disabled = (shadow_accessed_mask == 0);
4504         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4505         role.base.direct = true;
4506         role.base.gpte_is_8_bytes = true;
4507
4508         return role;
4509 }
4510
4511 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4512 {
4513         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4514         union kvm_mmu_role new_role =
4515                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4516
4517         if (new_role.as_u64 == context->mmu_role.as_u64)
4518                 return;
4519
4520         context->mmu_role.as_u64 = new_role.as_u64;
4521         context->page_fault = kvm_tdp_page_fault;
4522         context->sync_page = nonpaging_sync_page;
4523         context->invlpg = NULL;
4524         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4525         context->direct_map = true;
4526         context->get_guest_pgd = get_cr3;
4527         context->get_pdptr = kvm_pdptr_read;
4528         context->inject_page_fault = kvm_inject_page_fault;
4529
4530         if (!is_paging(vcpu)) {
4531                 context->nx = false;
4532                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4533                 context->root_level = 0;
4534         } else if (is_long_mode(vcpu)) {
4535                 context->nx = is_nx(vcpu);
4536                 context->root_level = is_la57_mode(vcpu) ?
4537                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4538                 reset_rsvds_bits_mask(vcpu, context);
4539                 context->gva_to_gpa = paging64_gva_to_gpa;
4540         } else if (is_pae(vcpu)) {
4541                 context->nx = is_nx(vcpu);
4542                 context->root_level = PT32E_ROOT_LEVEL;
4543                 reset_rsvds_bits_mask(vcpu, context);
4544                 context->gva_to_gpa = paging64_gva_to_gpa;
4545         } else {
4546                 context->nx = false;
4547                 context->root_level = PT32_ROOT_LEVEL;
4548                 reset_rsvds_bits_mask(vcpu, context);
4549                 context->gva_to_gpa = paging32_gva_to_gpa;
4550         }
4551
4552         update_permission_bitmask(vcpu, context, false);
4553         update_pkru_bitmask(vcpu, context, false);
4554         update_last_nonleaf_level(vcpu, context);
4555         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4556 }
4557
4558 static union kvm_mmu_role
4559 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4560 {
4561         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4562
4563         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4564                 !is_write_protection(vcpu);
4565         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4566                 !is_write_protection(vcpu);
4567         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4568
4569         return role;
4570 }
4571
4572 static union kvm_mmu_role
4573 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4574 {
4575         union kvm_mmu_role role =
4576                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4577
4578         role.base.direct = !is_paging(vcpu);
4579
4580         if (!is_long_mode(vcpu))
4581                 role.base.level = PT32E_ROOT_LEVEL;
4582         else if (is_la57_mode(vcpu))
4583                 role.base.level = PT64_ROOT_5LEVEL;
4584         else
4585                 role.base.level = PT64_ROOT_4LEVEL;
4586
4587         return role;
4588 }
4589
4590 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4591                                     u32 cr0, u32 cr4, u32 efer,
4592                                     union kvm_mmu_role new_role)
4593 {
4594         if (!(cr0 & X86_CR0_PG))
4595                 nonpaging_init_context(vcpu, context);
4596         else if (efer & EFER_LMA)
4597                 paging64_init_context(vcpu, context);
4598         else if (cr4 & X86_CR4_PAE)
4599                 paging32E_init_context(vcpu, context);
4600         else
4601                 paging32_init_context(vcpu, context);
4602
4603         context->mmu_role.as_u64 = new_role.as_u64;
4604         reset_shadow_zero_bits_mask(vcpu, context);
4605 }
4606
4607 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4608 {
4609         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4610         union kvm_mmu_role new_role =
4611                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4612
4613         if (new_role.as_u64 != context->mmu_role.as_u64)
4614                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4615 }
4616
4617 static union kvm_mmu_role
4618 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4619 {
4620         union kvm_mmu_role role =
4621                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4622
4623         role.base.direct = false;
4624         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4625
4626         return role;
4627 }
4628
4629 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4630                              gpa_t nested_cr3)
4631 {
4632         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4633         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4634
4635         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4636
4637         if (new_role.as_u64 != context->mmu_role.as_u64) {
4638                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4639
4640                 /*
4641                  * Override the level set by the common init helper, nested TDP
4642                  * always uses the host's TDP configuration.
4643                  */
4644                 context->shadow_root_level = new_role.base.level;
4645         }
4646 }
4647 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4648
4649 static union kvm_mmu_role
4650 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4651                                    bool execonly, u8 level)
4652 {
4653         union kvm_mmu_role role = {0};
4654
4655         /* SMM flag is inherited from root_mmu */
4656         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4657
4658         role.base.level = level;
4659         role.base.gpte_is_8_bytes = true;
4660         role.base.direct = false;
4661         role.base.ad_disabled = !accessed_dirty;
4662         role.base.guest_mode = true;
4663         role.base.access = ACC_ALL;
4664
4665         /*
4666          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4667          * SMAP variation to denote shadow EPT entries.
4668          */
4669         role.base.cr0_wp = true;
4670         role.base.smap_andnot_wp = true;
4671
4672         role.ext = kvm_calc_mmu_role_ext(vcpu);
4673         role.ext.execonly = execonly;
4674
4675         return role;
4676 }
4677
4678 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4679                              bool accessed_dirty, gpa_t new_eptp)
4680 {
4681         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4682         u8 level = vmx_eptp_page_walk_level(new_eptp);
4683         union kvm_mmu_role new_role =
4684                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4685                                                    execonly, level);
4686
4687         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4688
4689         if (new_role.as_u64 == context->mmu_role.as_u64)
4690                 return;
4691
4692         context->shadow_root_level = level;
4693
4694         context->nx = true;
4695         context->ept_ad = accessed_dirty;
4696         context->page_fault = ept_page_fault;
4697         context->gva_to_gpa = ept_gva_to_gpa;
4698         context->sync_page = ept_sync_page;
4699         context->invlpg = ept_invlpg;
4700         context->root_level = level;
4701         context->direct_map = false;
4702         context->mmu_role.as_u64 = new_role.as_u64;
4703
4704         update_permission_bitmask(vcpu, context, true);
4705         update_pkru_bitmask(vcpu, context, true);
4706         update_last_nonleaf_level(vcpu, context);
4707         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4708         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4709 }
4710 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4711
4712 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4713 {
4714         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4715
4716         kvm_init_shadow_mmu(vcpu,
4717                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4718                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4719                             vcpu->arch.efer);
4720
4721         context->get_guest_pgd     = get_cr3;
4722         context->get_pdptr         = kvm_pdptr_read;
4723         context->inject_page_fault = kvm_inject_page_fault;
4724 }
4725
4726 static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
4727 {
4728         union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);
4729
4730         /*
4731          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4732          * shadow pages of their own and so "direct" has no meaning.   Set it
4733          * to "true" to try to detect bogus usage of the nested MMU.
4734          */
4735         role.base.direct = true;
4736
4737         if (!is_paging(vcpu))
4738                 role.base.level = 0;
4739         else if (is_long_mode(vcpu))
4740                 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
4741                                                        PT64_ROOT_4LEVEL;
4742         else if (is_pae(vcpu))
4743                 role.base.level = PT32E_ROOT_LEVEL;
4744         else
4745                 role.base.level = PT32_ROOT_LEVEL;
4746
4747         return role;
4748 }
4749
4750 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4751 {
4752         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
4753         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4754
4755         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4756                 return;
4757
4758         g_context->mmu_role.as_u64 = new_role.as_u64;
4759         g_context->get_guest_pgd     = get_cr3;
4760         g_context->get_pdptr         = kvm_pdptr_read;
4761         g_context->inject_page_fault = kvm_inject_page_fault;
4762
4763         /*
4764          * L2 page tables are never shadowed, so there is no need to sync
4765          * SPTEs.
4766          */
4767         g_context->invlpg            = NULL;
4768
4769         /*
4770          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4771          * L1's nested page tables (e.g. EPT12). The nested translation
4772          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4773          * L2's page tables as the first level of translation and L1's
4774          * nested page tables as the second level of translation. Basically
4775          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4776          */
4777         if (!is_paging(vcpu)) {
4778                 g_context->nx = false;
4779                 g_context->root_level = 0;
4780                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4781         } else if (is_long_mode(vcpu)) {
4782                 g_context->nx = is_nx(vcpu);
4783                 g_context->root_level = is_la57_mode(vcpu) ?
4784                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4785                 reset_rsvds_bits_mask(vcpu, g_context);
4786                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4787         } else if (is_pae(vcpu)) {
4788                 g_context->nx = is_nx(vcpu);
4789                 g_context->root_level = PT32E_ROOT_LEVEL;
4790                 reset_rsvds_bits_mask(vcpu, g_context);
4791                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4792         } else {
4793                 g_context->nx = false;
4794                 g_context->root_level = PT32_ROOT_LEVEL;
4795                 reset_rsvds_bits_mask(vcpu, g_context);
4796                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4797         }
4798
4799         update_permission_bitmask(vcpu, g_context, false);
4800         update_pkru_bitmask(vcpu, g_context, false);
4801         update_last_nonleaf_level(vcpu, g_context);
4802 }
4803
4804 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4805 {
4806         if (reset_roots) {
4807                 uint i;
4808
4809                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4810
4811                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4812                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4813         }
4814
4815         if (mmu_is_nested(vcpu))
4816                 init_kvm_nested_mmu(vcpu);
4817         else if (tdp_enabled)
4818                 init_kvm_tdp_mmu(vcpu);
4819         else
4820                 init_kvm_softmmu(vcpu);
4821 }
4822 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4823
4824 static union kvm_mmu_page_role
4825 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4826 {
4827         union kvm_mmu_role role;
4828
4829         if (tdp_enabled)
4830                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4831         else
4832                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4833
4834         return role.base;
4835 }
4836
4837 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4838 {
4839         kvm_mmu_unload(vcpu);
4840         kvm_init_mmu(vcpu, true);
4841 }
4842 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4843
4844 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4845 {
4846         int r;
4847
4848         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4849         if (r)
4850                 goto out;
4851         r = mmu_alloc_roots(vcpu);
4852         kvm_mmu_sync_roots(vcpu);
4853         if (r)
4854                 goto out;
4855         kvm_mmu_load_pgd(vcpu);
4856         kvm_x86_ops.tlb_flush_current(vcpu);
4857 out:
4858         return r;
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4861
4862 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4863 {
4864         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4865         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4866         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4867         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4868 }
4869 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4870
4871 static bool need_remote_flush(u64 old, u64 new)
4872 {
4873         if (!is_shadow_present_pte(old))
4874                 return false;
4875         if (!is_shadow_present_pte(new))
4876                 return true;
4877         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4878                 return true;
4879         old ^= shadow_nx_mask;
4880         new ^= shadow_nx_mask;
4881         return (old & ~new & PT64_PERM_MASK) != 0;
4882 }
4883
4884 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4885                                     int *bytes)
4886 {
4887         u64 gentry = 0;
4888         int r;
4889
4890         /*
4891          * Assume that the pte write on a page table of the same type
4892          * as the current vcpu paging mode since we update the sptes only
4893          * when they have the same mode.
4894          */
4895         if (is_pae(vcpu) && *bytes == 4) {
4896                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4897                 *gpa &= ~(gpa_t)7;
4898                 *bytes = 8;
4899         }
4900
4901         if (*bytes == 4 || *bytes == 8) {
4902                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4903                 if (r)
4904                         gentry = 0;
4905         }
4906
4907         return gentry;
4908 }
4909
4910 /*
4911  * If we're seeing too many writes to a page, it may no longer be a page table,
4912  * or we may be forking, in which case it is better to unmap the page.
4913  */
4914 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4915 {
4916         /*
4917          * Skip write-flooding detected for the sp whose level is 1, because
4918          * it can become unsync, then the guest page is not write-protected.
4919          */
4920         if (sp->role.level == PG_LEVEL_4K)
4921                 return false;
4922
4923         atomic_inc(&sp->write_flooding_count);
4924         return atomic_read(&sp->write_flooding_count) >= 3;
4925 }
4926
4927 /*
4928  * Misaligned accesses are too much trouble to fix up; also, they usually
4929  * indicate a page is not used as a page table.
4930  */
4931 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4932                                     int bytes)
4933 {
4934         unsigned offset, pte_size, misaligned;
4935
4936         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4937                  gpa, bytes, sp->role.word);
4938
4939         offset = offset_in_page(gpa);
4940         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4941
4942         /*
4943          * Sometimes, the OS only writes the last one bytes to update status
4944          * bits, for example, in linux, andb instruction is used in clear_bit().
4945          */
4946         if (!(offset & (pte_size - 1)) && bytes == 1)
4947                 return false;
4948
4949         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4950         misaligned |= bytes < 4;
4951
4952         return misaligned;
4953 }
4954
4955 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4956 {
4957         unsigned page_offset, quadrant;
4958         u64 *spte;
4959         int level;
4960
4961         page_offset = offset_in_page(gpa);
4962         level = sp->role.level;
4963         *nspte = 1;
4964         if (!sp->role.gpte_is_8_bytes) {
4965                 page_offset <<= 1;      /* 32->64 */
4966                 /*
4967                  * A 32-bit pde maps 4MB while the shadow pdes map
4968                  * only 2MB.  So we need to double the offset again
4969                  * and zap two pdes instead of one.
4970                  */
4971                 if (level == PT32_ROOT_LEVEL) {
4972                         page_offset &= ~7; /* kill rounding error */
4973                         page_offset <<= 1;
4974                         *nspte = 2;
4975                 }
4976                 quadrant = page_offset >> PAGE_SHIFT;
4977                 page_offset &= ~PAGE_MASK;
4978                 if (quadrant != sp->role.quadrant)
4979                         return NULL;
4980         }
4981
4982         spte = &sp->spt[page_offset / sizeof(*spte)];
4983         return spte;
4984 }
4985
4986 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4987                               const u8 *new, int bytes,
4988                               struct kvm_page_track_notifier_node *node)
4989 {
4990         gfn_t gfn = gpa >> PAGE_SHIFT;
4991         struct kvm_mmu_page *sp;
4992         LIST_HEAD(invalid_list);
4993         u64 entry, gentry, *spte;
4994         int npte;
4995         bool remote_flush, local_flush;
4996
4997         /*
4998          * If we don't have indirect shadow pages, it means no page is
4999          * write-protected, so we can exit simply.
5000          */
5001         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5002                 return;
5003
5004         remote_flush = local_flush = false;
5005
5006         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5007
5008         /*
5009          * No need to care whether allocation memory is successful
5010          * or not since pte prefetch is skiped if it does not have
5011          * enough objects in the cache.
5012          */
5013         mmu_topup_memory_caches(vcpu, true);
5014
5015         spin_lock(&vcpu->kvm->mmu_lock);
5016
5017         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5018
5019         ++vcpu->kvm->stat.mmu_pte_write;
5020         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5021
5022         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5023                 if (detect_write_misaligned(sp, gpa, bytes) ||
5024                       detect_write_flooding(sp)) {
5025                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5026                         ++vcpu->kvm->stat.mmu_flooded;
5027                         continue;
5028                 }
5029
5030                 spte = get_written_sptes(sp, gpa, &npte);
5031                 if (!spte)
5032                         continue;
5033
5034                 local_flush = true;
5035                 while (npte--) {
5036                         entry = *spte;
5037                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5038                         if (gentry && sp->role.level != PG_LEVEL_4K)
5039                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5040                         if (need_remote_flush(entry, *spte))
5041                                 remote_flush = true;
5042                         ++spte;
5043                 }
5044         }
5045         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5046         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5047         spin_unlock(&vcpu->kvm->mmu_lock);
5048 }
5049
5050 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5051 {
5052         gpa_t gpa;
5053         int r;
5054
5055         if (vcpu->arch.mmu->direct_map)
5056                 return 0;
5057
5058         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5059
5060         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5061
5062         return r;
5063 }
5064 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5065
5066 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5067                        void *insn, int insn_len)
5068 {
5069         int r, emulation_type = EMULTYPE_PF;
5070         bool direct = vcpu->arch.mmu->direct_map;
5071
5072         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5073                 return RET_PF_RETRY;
5074
5075         r = RET_PF_INVALID;
5076         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5077                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5078                 if (r == RET_PF_EMULATE)
5079                         goto emulate;
5080         }
5081
5082         if (r == RET_PF_INVALID) {
5083                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5084                                           lower_32_bits(error_code), false);
5085                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5086                         return -EIO;
5087         }
5088
5089         if (r < 0)
5090                 return r;
5091         if (r != RET_PF_EMULATE)
5092                 return 1;
5093
5094         /*
5095          * Before emulating the instruction, check if the error code
5096          * was due to a RO violation while translating the guest page.
5097          * This can occur when using nested virtualization with nested
5098          * paging in both guests. If true, we simply unprotect the page
5099          * and resume the guest.
5100          */
5101         if (vcpu->arch.mmu->direct_map &&
5102             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5103                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5104                 return 1;
5105         }
5106
5107         /*
5108          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5109          * optimistically try to just unprotect the page and let the processor
5110          * re-execute the instruction that caused the page fault.  Do not allow
5111          * retrying MMIO emulation, as it's not only pointless but could also
5112          * cause us to enter an infinite loop because the processor will keep
5113          * faulting on the non-existent MMIO address.  Retrying an instruction
5114          * from a nested guest is also pointless and dangerous as we are only
5115          * explicitly shadowing L1's page tables, i.e. unprotecting something
5116          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5117          */
5118         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5119                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5120 emulate:
5121         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5122                                        insn_len);
5123 }
5124 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5125
5126 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5127                             gva_t gva, hpa_t root_hpa)
5128 {
5129         int i;
5130
5131         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5132         if (mmu != &vcpu->arch.guest_mmu) {
5133                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5134                 if (is_noncanonical_address(gva, vcpu))
5135                         return;
5136
5137                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5138         }
5139
5140         if (!mmu->invlpg)
5141                 return;
5142
5143         if (root_hpa == INVALID_PAGE) {
5144                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5145
5146                 /*
5147                  * INVLPG is required to invalidate any global mappings for the VA,
5148                  * irrespective of PCID. Since it would take us roughly similar amount
5149                  * of work to determine whether any of the prev_root mappings of the VA
5150                  * is marked global, or to just sync it blindly, so we might as well
5151                  * just always sync it.
5152                  *
5153                  * Mappings not reachable via the current cr3 or the prev_roots will be
5154                  * synced when switching to that cr3, so nothing needs to be done here
5155                  * for them.
5156                  */
5157                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5158                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5159                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5160         } else {
5161                 mmu->invlpg(vcpu, gva, root_hpa);
5162         }
5163 }
5164 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5165
5166 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5167 {
5168         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5169         ++vcpu->stat.invlpg;
5170 }
5171 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5172
5173
5174 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5175 {
5176         struct kvm_mmu *mmu = vcpu->arch.mmu;
5177         bool tlb_flush = false;
5178         uint i;
5179
5180         if (pcid == kvm_get_active_pcid(vcpu)) {
5181                 if (mmu->invlpg)
5182                         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5183                 tlb_flush = true;
5184         }
5185
5186         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5187                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5188                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5189                         if (mmu->invlpg)
5190                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5191                         tlb_flush = true;
5192                 }
5193         }
5194
5195         if (tlb_flush)
5196                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5197
5198         ++vcpu->stat.invlpg;
5199
5200         /*
5201          * Mappings not reachable via the current cr3 or the prev_roots will be
5202          * synced when switching to that cr3, so nothing needs to be done here
5203          * for them.
5204          */
5205 }
5206 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5207
5208 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5209                        int tdp_huge_page_level)
5210 {
5211         tdp_enabled = enable_tdp;
5212         max_tdp_level = tdp_max_root_level;
5213
5214         /*
5215          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5216          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5217          * the kernel is not.  But, KVM never creates a page size greater than
5218          * what is used by the kernel for any given HVA, i.e. the kernel's
5219          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5220          */
5221         if (tdp_enabled)
5222                 max_huge_page_level = tdp_huge_page_level;
5223         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5224                 max_huge_page_level = PG_LEVEL_1G;
5225         else
5226                 max_huge_page_level = PG_LEVEL_2M;
5227 }
5228 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5229
5230 /* The return value indicates if tlb flush on all vcpus is needed. */
5231 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5232
5233 /* The caller should hold mmu-lock before calling this function. */
5234 static __always_inline bool
5235 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5236                         slot_level_handler fn, int start_level, int end_level,
5237                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5238 {
5239         struct slot_rmap_walk_iterator iterator;
5240         bool flush = false;
5241
5242         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5243                         end_gfn, &iterator) {
5244                 if (iterator.rmap)
5245                         flush |= fn(kvm, iterator.rmap);
5246
5247                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5248                         if (flush && lock_flush_tlb) {
5249                                 kvm_flush_remote_tlbs_with_address(kvm,
5250                                                 start_gfn,
5251                                                 iterator.gfn - start_gfn + 1);
5252                                 flush = false;
5253                         }
5254                         cond_resched_lock(&kvm->mmu_lock);
5255                 }
5256         }
5257
5258         if (flush && lock_flush_tlb) {
5259                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5260                                                    end_gfn - start_gfn + 1);
5261                 flush = false;
5262         }
5263
5264         return flush;
5265 }
5266
5267 static __always_inline bool
5268 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5269                   slot_level_handler fn, int start_level, int end_level,
5270                   bool lock_flush_tlb)
5271 {
5272         return slot_handle_level_range(kvm, memslot, fn, start_level,
5273                         end_level, memslot->base_gfn,
5274                         memslot->base_gfn + memslot->npages - 1,
5275                         lock_flush_tlb);
5276 }
5277
5278 static __always_inline bool
5279 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5280                       slot_level_handler fn, bool lock_flush_tlb)
5281 {
5282         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5283                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5284 }
5285
5286 static __always_inline bool
5287 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5288                         slot_level_handler fn, bool lock_flush_tlb)
5289 {
5290         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5291                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5292 }
5293
5294 static __always_inline bool
5295 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5296                  slot_level_handler fn, bool lock_flush_tlb)
5297 {
5298         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5299                                  PG_LEVEL_4K, lock_flush_tlb);
5300 }
5301
5302 static void free_mmu_pages(struct kvm_mmu *mmu)
5303 {
5304         free_page((unsigned long)mmu->pae_root);
5305         free_page((unsigned long)mmu->lm_root);
5306 }
5307
5308 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5309 {
5310         struct page *page;
5311         int i;
5312
5313         mmu->root_hpa = INVALID_PAGE;
5314         mmu->root_pgd = 0;
5315         mmu->translate_gpa = translate_gpa;
5316         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5317                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5318
5319         /*
5320          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5321          * while the PDP table is a per-vCPU construct that's allocated at MMU
5322          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5323          * x86_64.  Therefore we need to allocate the PDP table in the first
5324          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5325          * generally doesn't use PAE paging and can skip allocating the PDP
5326          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5327          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5328          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5329          */
5330         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5331                 return 0;
5332
5333         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5334         if (!page)
5335                 return -ENOMEM;
5336
5337         mmu->pae_root = page_address(page);
5338         for (i = 0; i < 4; ++i)
5339                 mmu->pae_root[i] = INVALID_PAGE;
5340
5341         return 0;
5342 }
5343
5344 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5345 {
5346         int ret;
5347
5348         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5349         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5350
5351         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5352         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5353
5354         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5355
5356         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5357         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5358
5359         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5360
5361         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5362         if (ret)
5363                 return ret;
5364
5365         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5366         if (ret)
5367                 goto fail_allocate_root;
5368
5369         return ret;
5370  fail_allocate_root:
5371         free_mmu_pages(&vcpu->arch.guest_mmu);
5372         return ret;
5373 }
5374
5375 #define BATCH_ZAP_PAGES 10
5376 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5377 {
5378         struct kvm_mmu_page *sp, *node;
5379         int nr_zapped, batch = 0;
5380         bool unstable;
5381
5382 restart:
5383         list_for_each_entry_safe_reverse(sp, node,
5384               &kvm->arch.active_mmu_pages, link) {
5385                 /*
5386                  * No obsolete valid page exists before a newly created page
5387                  * since active_mmu_pages is a FIFO list.
5388                  */
5389                 if (!is_obsolete_sp(kvm, sp))
5390                         break;
5391
5392                 /*
5393                  * Invalid pages should never land back on the list of active
5394                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5395                  * infinite loop if the page gets put back on the list (again).
5396                  */
5397                 if (WARN_ON(sp->role.invalid))
5398                         continue;
5399
5400                 /*
5401                  * No need to flush the TLB since we're only zapping shadow
5402                  * pages with an obsolete generation number and all vCPUS have
5403                  * loaded a new root, i.e. the shadow pages being zapped cannot
5404                  * be in active use by the guest.
5405                  */
5406                 if (batch >= BATCH_ZAP_PAGES &&
5407                     cond_resched_lock(&kvm->mmu_lock)) {
5408                         batch = 0;
5409                         goto restart;
5410                 }
5411
5412                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5413                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
5414                 batch += nr_zapped;
5415
5416                 if (unstable)
5417                         goto restart;
5418         }
5419
5420         /*
5421          * Trigger a remote TLB flush before freeing the page tables to ensure
5422          * KVM is not in the middle of a lockless shadow page table walk, which
5423          * may reference the pages.
5424          */
5425         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5426 }
5427
5428 /*
5429  * Fast invalidate all shadow pages and use lock-break technique
5430  * to zap obsolete pages.
5431  *
5432  * It's required when memslot is being deleted or VM is being
5433  * destroyed, in these cases, we should ensure that KVM MMU does
5434  * not use any resource of the being-deleted slot or all slots
5435  * after calling the function.
5436  */
5437 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5438 {
5439         lockdep_assert_held(&kvm->slots_lock);
5440
5441         spin_lock(&kvm->mmu_lock);
5442         trace_kvm_mmu_zap_all_fast(kvm);
5443
5444         /*
5445          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5446          * held for the entire duration of zapping obsolete pages, it's
5447          * impossible for there to be multiple invalid generations associated
5448          * with *valid* shadow pages at any given time, i.e. there is exactly
5449          * one valid generation and (at most) one invalid generation.
5450          */
5451         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5452
5453         /*
5454          * Notify all vcpus to reload its shadow page table and flush TLB.
5455          * Then all vcpus will switch to new shadow page table with the new
5456          * mmu_valid_gen.
5457          *
5458          * Note: we need to do this under the protection of mmu_lock,
5459          * otherwise, vcpu would purge shadow page but miss tlb flush.
5460          */
5461         kvm_reload_remote_mmus(kvm);
5462
5463         kvm_zap_obsolete_pages(kvm);
5464
5465         if (kvm->arch.tdp_mmu_enabled)
5466                 kvm_tdp_mmu_zap_all(kvm);
5467
5468         spin_unlock(&kvm->mmu_lock);
5469 }
5470
5471 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5472 {
5473         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5474 }
5475
5476 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5477                         struct kvm_memory_slot *slot,
5478                         struct kvm_page_track_notifier_node *node)
5479 {
5480         kvm_mmu_zap_all_fast(kvm);
5481 }
5482
5483 void kvm_mmu_init_vm(struct kvm *kvm)
5484 {
5485         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5486
5487         kvm_mmu_init_tdp_mmu(kvm);
5488
5489         node->track_write = kvm_mmu_pte_write;
5490         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5491         kvm_page_track_register_notifier(kvm, node);
5492 }
5493
5494 void kvm_mmu_uninit_vm(struct kvm *kvm)
5495 {
5496         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5497
5498         kvm_page_track_unregister_notifier(kvm, node);
5499
5500         kvm_mmu_uninit_tdp_mmu(kvm);
5501 }
5502
5503 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5504 {
5505         struct kvm_memslots *slots;
5506         struct kvm_memory_slot *memslot;
5507         int i;
5508         bool flush;
5509
5510         spin_lock(&kvm->mmu_lock);
5511         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5512                 slots = __kvm_memslots(kvm, i);
5513                 kvm_for_each_memslot(memslot, slots) {
5514                         gfn_t start, end;
5515
5516                         start = max(gfn_start, memslot->base_gfn);
5517                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5518                         if (start >= end)
5519                                 continue;
5520
5521                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5522                                                 PG_LEVEL_4K,
5523                                                 KVM_MAX_HUGEPAGE_LEVEL,
5524                                                 start, end - 1, true);
5525                 }
5526         }
5527
5528         if (kvm->arch.tdp_mmu_enabled) {
5529                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5530                 if (flush)
5531                         kvm_flush_remote_tlbs(kvm);
5532         }
5533
5534         spin_unlock(&kvm->mmu_lock);
5535 }
5536
5537 static bool slot_rmap_write_protect(struct kvm *kvm,
5538                                     struct kvm_rmap_head *rmap_head)
5539 {
5540         return __rmap_write_protect(kvm, rmap_head, false);
5541 }
5542
5543 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5544                                       struct kvm_memory_slot *memslot,
5545                                       int start_level)
5546 {
5547         bool flush;
5548
5549         spin_lock(&kvm->mmu_lock);
5550         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5551                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5552         if (kvm->arch.tdp_mmu_enabled)
5553                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5554         spin_unlock(&kvm->mmu_lock);
5555
5556         /*
5557          * We can flush all the TLBs out of the mmu lock without TLB
5558          * corruption since we just change the spte from writable to
5559          * readonly so that we only need to care the case of changing
5560          * spte from present to present (changing the spte from present
5561          * to nonpresent will flush all the TLBs immediately), in other
5562          * words, the only case we care is mmu_spte_update() where we
5563          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5564          * instead of PT_WRITABLE_MASK, that means it does not depend
5565          * on PT_WRITABLE_MASK anymore.
5566          */
5567         if (flush)
5568                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5569 }
5570
5571 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5572                                          struct kvm_rmap_head *rmap_head)
5573 {
5574         u64 *sptep;
5575         struct rmap_iterator iter;
5576         int need_tlb_flush = 0;
5577         kvm_pfn_t pfn;
5578         struct kvm_mmu_page *sp;
5579
5580 restart:
5581         for_each_rmap_spte(rmap_head, &iter, sptep) {
5582                 sp = sptep_to_sp(sptep);
5583                 pfn = spte_to_pfn(*sptep);
5584
5585                 /*
5586                  * We cannot do huge page mapping for indirect shadow pages,
5587                  * which are found on the last rmap (level = 1) when not using
5588                  * tdp; such shadow pages are synced with the page table in
5589                  * the guest, and the guest page table is using 4K page size
5590                  * mapping if the indirect sp has level = 1.
5591                  */
5592                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5593                     (kvm_is_zone_device_pfn(pfn) ||
5594                      PageCompound(pfn_to_page(pfn)))) {
5595                         pte_list_remove(rmap_head, sptep);
5596
5597                         if (kvm_available_flush_tlb_with_range())
5598                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5599                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5600                         else
5601                                 need_tlb_flush = 1;
5602
5603                         goto restart;
5604                 }
5605         }
5606
5607         return need_tlb_flush;
5608 }
5609
5610 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5611                                    const struct kvm_memory_slot *memslot)
5612 {
5613         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5614         spin_lock(&kvm->mmu_lock);
5615         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5616                          kvm_mmu_zap_collapsible_spte, true);
5617
5618         if (kvm->arch.tdp_mmu_enabled)
5619                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5620         spin_unlock(&kvm->mmu_lock);
5621 }
5622
5623 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5624                                         struct kvm_memory_slot *memslot)
5625 {
5626         /*
5627          * All current use cases for flushing the TLBs for a specific memslot
5628          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5629          * The interaction between the various operations on memslot must be
5630          * serialized by slots_locks to ensure the TLB flush from one operation
5631          * is observed by any other operation on the same memslot.
5632          */
5633         lockdep_assert_held(&kvm->slots_lock);
5634         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5635                                            memslot->npages);
5636 }
5637
5638 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5639                                    struct kvm_memory_slot *memslot)
5640 {
5641         bool flush;
5642
5643         spin_lock(&kvm->mmu_lock);
5644         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5645         if (kvm->arch.tdp_mmu_enabled)
5646                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5647         spin_unlock(&kvm->mmu_lock);
5648
5649         /*
5650          * It's also safe to flush TLBs out of mmu lock here as currently this
5651          * function is only used for dirty logging, in which case flushing TLB
5652          * out of mmu lock also guarantees no dirty pages will be lost in
5653          * dirty_bitmap.
5654          */
5655         if (flush)
5656                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5657 }
5658 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5659
5660 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5661                                         struct kvm_memory_slot *memslot)
5662 {
5663         bool flush;
5664
5665         spin_lock(&kvm->mmu_lock);
5666         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5667                                         false);
5668         if (kvm->arch.tdp_mmu_enabled)
5669                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5670         spin_unlock(&kvm->mmu_lock);
5671
5672         if (flush)
5673                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5674 }
5675 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5676
5677 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5678                             struct kvm_memory_slot *memslot)
5679 {
5680         bool flush;
5681
5682         spin_lock(&kvm->mmu_lock);
5683         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5684         if (kvm->arch.tdp_mmu_enabled)
5685                 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5686         spin_unlock(&kvm->mmu_lock);
5687
5688         if (flush)
5689                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5690 }
5691 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5692
5693 void kvm_mmu_zap_all(struct kvm *kvm)
5694 {
5695         struct kvm_mmu_page *sp, *node;
5696         LIST_HEAD(invalid_list);
5697         int ign;
5698
5699         spin_lock(&kvm->mmu_lock);
5700 restart:
5701         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5702                 if (WARN_ON(sp->role.invalid))
5703                         continue;
5704                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5705                         goto restart;
5706                 if (cond_resched_lock(&kvm->mmu_lock))
5707                         goto restart;
5708         }
5709
5710         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5711
5712         if (kvm->arch.tdp_mmu_enabled)
5713                 kvm_tdp_mmu_zap_all(kvm);
5714
5715         spin_unlock(&kvm->mmu_lock);
5716 }
5717
5718 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5719 {
5720         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5721
5722         gen &= MMIO_SPTE_GEN_MASK;
5723
5724         /*
5725          * Generation numbers are incremented in multiples of the number of
5726          * address spaces in order to provide unique generations across all
5727          * address spaces.  Strip what is effectively the address space
5728          * modifier prior to checking for a wrap of the MMIO generation so
5729          * that a wrap in any address space is detected.
5730          */
5731         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5732
5733         /*
5734          * The very rare case: if the MMIO generation number has wrapped,
5735          * zap all shadow pages.
5736          */
5737         if (unlikely(gen == 0)) {
5738                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5739                 kvm_mmu_zap_all_fast(kvm);
5740         }
5741 }
5742
5743 static unsigned long
5744 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5745 {
5746         struct kvm *kvm;
5747         int nr_to_scan = sc->nr_to_scan;
5748         unsigned long freed = 0;
5749
5750         mutex_lock(&kvm_lock);
5751
5752         list_for_each_entry(kvm, &vm_list, vm_list) {
5753                 int idx;
5754                 LIST_HEAD(invalid_list);
5755
5756                 /*
5757                  * Never scan more than sc->nr_to_scan VM instances.
5758                  * Will not hit this condition practically since we do not try
5759                  * to shrink more than one VM and it is very unlikely to see
5760                  * !n_used_mmu_pages so many times.
5761                  */
5762                 if (!nr_to_scan--)
5763                         break;
5764                 /*
5765                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5766                  * here. We may skip a VM instance errorneosly, but we do not
5767                  * want to shrink a VM that only started to populate its MMU
5768                  * anyway.
5769                  */
5770                 if (!kvm->arch.n_used_mmu_pages &&
5771                     !kvm_has_zapped_obsolete_pages(kvm))
5772                         continue;
5773
5774                 idx = srcu_read_lock(&kvm->srcu);
5775                 spin_lock(&kvm->mmu_lock);
5776
5777                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5778                         kvm_mmu_commit_zap_page(kvm,
5779                               &kvm->arch.zapped_obsolete_pages);
5780                         goto unlock;
5781                 }
5782
5783                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5784
5785 unlock:
5786                 spin_unlock(&kvm->mmu_lock);
5787                 srcu_read_unlock(&kvm->srcu, idx);
5788
5789                 /*
5790                  * unfair on small ones
5791                  * per-vm shrinkers cry out
5792                  * sadness comes quickly
5793                  */
5794                 list_move_tail(&kvm->vm_list, &vm_list);
5795                 break;
5796         }
5797
5798         mutex_unlock(&kvm_lock);
5799         return freed;
5800 }
5801
5802 static unsigned long
5803 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5804 {
5805         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5806 }
5807
5808 static struct shrinker mmu_shrinker = {
5809         .count_objects = mmu_shrink_count,
5810         .scan_objects = mmu_shrink_scan,
5811         .seeks = DEFAULT_SEEKS * 10,
5812 };
5813
5814 static void mmu_destroy_caches(void)
5815 {
5816         kmem_cache_destroy(pte_list_desc_cache);
5817         kmem_cache_destroy(mmu_page_header_cache);
5818 }
5819
5820 static void kvm_set_mmio_spte_mask(void)
5821 {
5822         u64 mask;
5823
5824         /*
5825          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5826          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5827          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5828          * 52-bit physical addresses then there are no reserved PA bits in the
5829          * PTEs and so the reserved PA approach must be disabled.
5830          */
5831         if (shadow_phys_bits < 52)
5832                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5833         else
5834                 mask = 0;
5835
5836         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5837 }
5838
5839 static bool get_nx_auto_mode(void)
5840 {
5841         /* Return true when CPU has the bug, and mitigations are ON */
5842         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5843 }
5844
5845 static void __set_nx_huge_pages(bool val)
5846 {
5847         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5848 }
5849
5850 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5851 {
5852         bool old_val = nx_huge_pages;
5853         bool new_val;
5854
5855         /* In "auto" mode deploy workaround only if CPU has the bug. */
5856         if (sysfs_streq(val, "off"))
5857                 new_val = 0;
5858         else if (sysfs_streq(val, "force"))
5859                 new_val = 1;
5860         else if (sysfs_streq(val, "auto"))
5861                 new_val = get_nx_auto_mode();
5862         else if (strtobool(val, &new_val) < 0)
5863                 return -EINVAL;
5864
5865         __set_nx_huge_pages(new_val);
5866
5867         if (new_val != old_val) {
5868                 struct kvm *kvm;
5869
5870                 mutex_lock(&kvm_lock);
5871
5872                 list_for_each_entry(kvm, &vm_list, vm_list) {
5873                         mutex_lock(&kvm->slots_lock);
5874                         kvm_mmu_zap_all_fast(kvm);
5875                         mutex_unlock(&kvm->slots_lock);
5876
5877                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5878                 }
5879                 mutex_unlock(&kvm_lock);
5880         }
5881
5882         return 0;
5883 }
5884
5885 /*
5886  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
5887  * its default value of -1 is technically undefined behavior for a boolean.
5888  */
5889 void __init kvm_mmu_x86_module_init(void)
5890 {
5891         if (nx_huge_pages == -1)
5892                 __set_nx_huge_pages(get_nx_auto_mode());
5893 }
5894
5895 /*
5896  * The bulk of the MMU initialization is deferred until the vendor module is
5897  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
5898  * to be reset when a potentially different vendor module is loaded.
5899  */
5900 int kvm_mmu_vendor_module_init(void)
5901 {
5902         int ret = -ENOMEM;
5903
5904         /*
5905          * MMU roles use union aliasing which is, generally speaking, an
5906          * undefined behavior. However, we supposedly know how compilers behave
5907          * and the current status quo is unlikely to change. Guardians below are
5908          * supposed to let us know if the assumption becomes false.
5909          */
5910         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5911         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5912         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5913
5914         kvm_mmu_reset_all_pte_masks();
5915
5916         kvm_set_mmio_spte_mask();
5917
5918         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5919                                             sizeof(struct pte_list_desc),
5920                                             0, SLAB_ACCOUNT, NULL);
5921         if (!pte_list_desc_cache)
5922                 goto out;
5923
5924         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5925                                                   sizeof(struct kvm_mmu_page),
5926                                                   0, SLAB_ACCOUNT, NULL);
5927         if (!mmu_page_header_cache)
5928                 goto out;
5929
5930         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5931                 goto out;
5932
5933         ret = register_shrinker(&mmu_shrinker);
5934         if (ret)
5935                 goto out;
5936
5937         return 0;
5938
5939 out:
5940         mmu_destroy_caches();
5941         return ret;
5942 }
5943
5944 /*
5945  * Calculate mmu pages needed for kvm.
5946  */
5947 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5948 {
5949         unsigned long nr_mmu_pages;
5950         unsigned long nr_pages = 0;
5951         struct kvm_memslots *slots;
5952         struct kvm_memory_slot *memslot;
5953         int i;
5954
5955         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5956                 slots = __kvm_memslots(kvm, i);
5957
5958                 kvm_for_each_memslot(memslot, slots)
5959                         nr_pages += memslot->npages;
5960         }
5961
5962         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5963         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5964
5965         return nr_mmu_pages;
5966 }
5967
5968 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5969 {
5970         kvm_mmu_unload(vcpu);
5971         free_mmu_pages(&vcpu->arch.root_mmu);
5972         free_mmu_pages(&vcpu->arch.guest_mmu);
5973         mmu_free_memory_caches(vcpu);
5974 }
5975
5976 void kvm_mmu_vendor_module_exit(void)
5977 {
5978         mmu_destroy_caches();
5979         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5980         unregister_shrinker(&mmu_shrinker);
5981         mmu_audit_disable();
5982 }
5983
5984 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5985 {
5986         unsigned int old_val;
5987         int err;
5988
5989         old_val = nx_huge_pages_recovery_ratio;
5990         err = param_set_uint(val, kp);
5991         if (err)
5992                 return err;
5993
5994         if (READ_ONCE(nx_huge_pages) &&
5995             !old_val && nx_huge_pages_recovery_ratio) {
5996                 struct kvm *kvm;
5997
5998                 mutex_lock(&kvm_lock);
5999
6000                 list_for_each_entry(kvm, &vm_list, vm_list)
6001                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6002
6003                 mutex_unlock(&kvm_lock);
6004         }
6005
6006         return err;
6007 }
6008
6009 static void kvm_recover_nx_lpages(struct kvm *kvm)
6010 {
6011         int rcu_idx;
6012         struct kvm_mmu_page *sp;
6013         unsigned int ratio;
6014         LIST_HEAD(invalid_list);
6015         bool flush = false;
6016         ulong to_zap;
6017
6018         rcu_idx = srcu_read_lock(&kvm->srcu);
6019         spin_lock(&kvm->mmu_lock);
6020
6021         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6022         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6023         for ( ; to_zap; --to_zap) {
6024                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6025                         break;
6026
6027                 /*
6028                  * We use a separate list instead of just using active_mmu_pages
6029                  * because the number of lpage_disallowed pages is expected to
6030                  * be relatively small compared to the total.
6031                  */
6032                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6033                                       struct kvm_mmu_page,
6034                                       lpage_disallowed_link);
6035                 WARN_ON_ONCE(!sp->lpage_disallowed);
6036                 if (sp->tdp_mmu_page) {
6037                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6038                 } else {
6039                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6040                         WARN_ON_ONCE(sp->lpage_disallowed);
6041                 }
6042
6043                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6044                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6045                         cond_resched_lock(&kvm->mmu_lock);
6046                         flush = false;
6047                 }
6048         }
6049         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6050
6051         spin_unlock(&kvm->mmu_lock);
6052         srcu_read_unlock(&kvm->srcu, rcu_idx);
6053 }
6054
6055 static long get_nx_lpage_recovery_timeout(u64 start_time)
6056 {
6057         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6058                 ? start_time + 60 * HZ - get_jiffies_64()
6059                 : MAX_SCHEDULE_TIMEOUT;
6060 }
6061
6062 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6063 {
6064         u64 start_time;
6065         long remaining_time;
6066
6067         while (true) {
6068                 start_time = get_jiffies_64();
6069                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6070
6071                 set_current_state(TASK_INTERRUPTIBLE);
6072                 while (!kthread_should_stop() && remaining_time > 0) {
6073                         schedule_timeout(remaining_time);
6074                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6075                         set_current_state(TASK_INTERRUPTIBLE);
6076                 }
6077
6078                 set_current_state(TASK_RUNNING);
6079
6080                 if (kthread_should_stop())
6081                         return 0;
6082
6083                 kvm_recover_nx_lpages(kvm);
6084         }
6085 }
6086
6087 int kvm_mmu_post_init_vm(struct kvm *kvm)
6088 {
6089         int err;
6090
6091         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6092                                           "kvm-nx-lpage-recovery",
6093                                           &kvm->arch.nx_lpage_recovery_thread);
6094         if (!err)
6095                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6096
6097         return err;
6098 }
6099
6100 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6101 {
6102         if (kvm->arch.nx_lpage_recovery_thread)
6103                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6104 }