GNU Linux-libre 5.19-rc6-gnu
[releases.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include <asm/cpuid.h>
23 #include "cpuid.h"
24 #include "lapic.h"
25 #include "mmu.h"
26 #include "trace.h"
27 #include "pmu.h"
28
29 /*
30  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
31  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
32  */
33 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
34 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
35
36 u32 xstate_required_size(u64 xstate_bv, bool compacted)
37 {
38         int feature_bit = 0;
39         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
40
41         xstate_bv &= XFEATURE_MASK_EXTEND;
42         while (xstate_bv) {
43                 if (xstate_bv & 0x1) {
44                         u32 eax, ebx, ecx, edx, offset;
45                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
46                         /* ECX[1]: 64B alignment in compacted form */
47                         if (compacted)
48                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
49                         else
50                                 offset = ebx;
51                         ret = max(ret, offset + eax);
52                 }
53
54                 xstate_bv >>= 1;
55                 feature_bit++;
56         }
57
58         return ret;
59 }
60
61 /*
62  * This one is tied to SSB in the user API, and not
63  * visible in /proc/cpuinfo.
64  */
65 #define KVM_X86_FEATURE_PSFD            (13*32+28) /* Predictive Store Forwarding Disable */
66
67 #define F feature_bit
68 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
69
70
71 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
72         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
73 {
74         struct kvm_cpuid_entry2 *e;
75         int i;
76
77         for (i = 0; i < nent; i++) {
78                 e = &entries[i];
79
80                 if (e->function == function &&
81                     (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
82                         return e;
83         }
84
85         return NULL;
86 }
87
88 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
89                            struct kvm_cpuid_entry2 *entries,
90                            int nent)
91 {
92         struct kvm_cpuid_entry2 *best;
93         u64 xfeatures;
94
95         /*
96          * The existing code assumes virtual address is 48-bit or 57-bit in the
97          * canonical address checks; exit if it is ever changed.
98          */
99         best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
100         if (best) {
101                 int vaddr_bits = (best->eax & 0xff00) >> 8;
102
103                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
104                         return -EINVAL;
105         }
106
107         /*
108          * Exposing dynamic xfeatures to the guest requires additional
109          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
110          */
111         best = cpuid_entry2_find(entries, nent, 0xd, 0);
112         if (!best)
113                 return 0;
114
115         xfeatures = best->eax | ((u64)best->edx << 32);
116         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
117         if (!xfeatures)
118                 return 0;
119
120         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
121 }
122
123 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
124 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
125                                  int nent)
126 {
127         struct kvm_cpuid_entry2 *orig;
128         int i;
129
130         if (nent != vcpu->arch.cpuid_nent)
131                 return -EINVAL;
132
133         for (i = 0; i < nent; i++) {
134                 orig = &vcpu->arch.cpuid_entries[i];
135                 if (e2[i].function != orig->function ||
136                     e2[i].index != orig->index ||
137                     e2[i].flags != orig->flags ||
138                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
139                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
140                         return -EINVAL;
141         }
142
143         return 0;
144 }
145
146 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
147 {
148         u32 function;
149         struct kvm_cpuid_entry2 *entry;
150
151         vcpu->arch.kvm_cpuid_base = 0;
152
153         for_each_possible_hypervisor_cpuid_base(function) {
154                 entry = kvm_find_cpuid_entry(vcpu, function, 0);
155
156                 if (entry) {
157                         u32 signature[3];
158
159                         signature[0] = entry->ebx;
160                         signature[1] = entry->ecx;
161                         signature[2] = entry->edx;
162
163                         BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
164                         if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
165                                 vcpu->arch.kvm_cpuid_base = function;
166                                 break;
167                         }
168                 }
169         }
170 }
171
172 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
173                                               struct kvm_cpuid_entry2 *entries, int nent)
174 {
175         u32 base = vcpu->arch.kvm_cpuid_base;
176
177         if (!base)
178                 return NULL;
179
180         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES, 0);
181 }
182
183 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
184 {
185         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
186                                              vcpu->arch.cpuid_nent);
187 }
188
189 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
190 {
191         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
192
193         /*
194          * save the feature bitmap to avoid cpuid lookup for every PV
195          * operation
196          */
197         if (best)
198                 vcpu->arch.pv_cpuid.features = best->eax;
199 }
200
201 /*
202  * Calculate guest's supported XCR0 taking into account guest CPUID data and
203  * supported_xcr0 (comprised of host configuration and KVM_SUPPORTED_XCR0).
204  */
205 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
206 {
207         struct kvm_cpuid_entry2 *best;
208
209         best = cpuid_entry2_find(entries, nent, 0xd, 0);
210         if (!best)
211                 return 0;
212
213         return (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
214 }
215
216 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
217                                        int nent)
218 {
219         struct kvm_cpuid_entry2 *best;
220         u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
221
222         best = cpuid_entry2_find(entries, nent, 1, 0);
223         if (best) {
224                 /* Update OSXSAVE bit */
225                 if (boot_cpu_has(X86_FEATURE_XSAVE))
226                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
227                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
228
229                 cpuid_entry_change(best, X86_FEATURE_APIC,
230                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
231         }
232
233         best = cpuid_entry2_find(entries, nent, 7, 0);
234         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
235                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
236                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
237
238         best = cpuid_entry2_find(entries, nent, 0xD, 0);
239         if (best)
240                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
241
242         best = cpuid_entry2_find(entries, nent, 0xD, 1);
243         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
244                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
245                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
246
247         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
248         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
249                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
250                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
251
252         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
253                 best = cpuid_entry2_find(entries, nent, 0x1, 0);
254                 if (best)
255                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
256                                            vcpu->arch.ia32_misc_enable_msr &
257                                            MSR_IA32_MISC_ENABLE_MWAIT);
258         }
259
260         /*
261          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
262          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
263          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
264          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
265          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
266          * '1' even on CPUs that don't support XSAVE.
267          */
268         best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
269         if (best) {
270                 best->ecx &= guest_supported_xcr0 & 0xffffffff;
271                 best->edx &= guest_supported_xcr0 >> 32;
272                 best->ecx |= XFEATURE_MASK_FPSSE;
273         }
274 }
275
276 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
277 {
278         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
279 }
280 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
281
282 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
283 {
284         struct kvm_lapic *apic = vcpu->arch.apic;
285         struct kvm_cpuid_entry2 *best;
286         u64 guest_supported_xcr0;
287
288         best = kvm_find_cpuid_entry(vcpu, 1, 0);
289         if (best && apic) {
290                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
291                         apic->lapic_timer.timer_mode_mask = 3 << 17;
292                 else
293                         apic->lapic_timer.timer_mode_mask = 1 << 17;
294
295                 kvm_apic_set_version(vcpu);
296         }
297
298         guest_supported_xcr0 =
299                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
300
301         vcpu->arch.guest_fpu.fpstate->user_xfeatures = guest_supported_xcr0;
302
303         kvm_update_pv_runtime(vcpu);
304
305         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
306         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
307
308         kvm_pmu_refresh(vcpu);
309         vcpu->arch.cr4_guest_rsvd_bits =
310             __cr4_reserved_bits(guest_cpuid_has, vcpu);
311
312         kvm_hv_set_cpuid(vcpu);
313
314         /* Invoke the vendor callback only after the above state is updated. */
315         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
316
317         /*
318          * Except for the MMU, which needs to do its thing any vendor specific
319          * adjustments to the reserved GPA bits.
320          */
321         kvm_mmu_after_set_cpuid(vcpu);
322 }
323
324 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
325 {
326         struct kvm_cpuid_entry2 *best;
327
328         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
329         if (!best || best->eax < 0x80000008)
330                 goto not_found;
331         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
332         if (best)
333                 return best->eax & 0xff;
334 not_found:
335         return 36;
336 }
337
338 /*
339  * This "raw" version returns the reserved GPA bits without any adjustments for
340  * encryption technologies that usurp bits.  The raw mask should be used if and
341  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
342  */
343 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
344 {
345         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
346 }
347
348 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
349                         int nent)
350 {
351         int r;
352
353         __kvm_update_cpuid_runtime(vcpu, e2, nent);
354
355         /*
356          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
357          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
358          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
359          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
360          * the core vCPU model on the fly. It would've been better to forbid any
361          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
362          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
363          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
364          * whether the supplied CPUID data is equal to what's already set.
365          */
366         if (vcpu->arch.last_vmentry_cpu != -1) {
367                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
368                 if (r)
369                         return r;
370
371                 kvfree(e2);
372                 return 0;
373         }
374
375         r = kvm_check_cpuid(vcpu, e2, nent);
376         if (r)
377                 return r;
378
379         kvfree(vcpu->arch.cpuid_entries);
380         vcpu->arch.cpuid_entries = e2;
381         vcpu->arch.cpuid_nent = nent;
382
383         kvm_update_kvm_cpuid_base(vcpu);
384         kvm_vcpu_after_set_cpuid(vcpu);
385
386         return 0;
387 }
388
389 /* when an old userspace process fills a new kernel module */
390 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
391                              struct kvm_cpuid *cpuid,
392                              struct kvm_cpuid_entry __user *entries)
393 {
394         int r, i;
395         struct kvm_cpuid_entry *e = NULL;
396         struct kvm_cpuid_entry2 *e2 = NULL;
397
398         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
399                 return -E2BIG;
400
401         if (cpuid->nent) {
402                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
403                 if (IS_ERR(e))
404                         return PTR_ERR(e);
405
406                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
407                 if (!e2) {
408                         r = -ENOMEM;
409                         goto out_free_cpuid;
410                 }
411         }
412         for (i = 0; i < cpuid->nent; i++) {
413                 e2[i].function = e[i].function;
414                 e2[i].eax = e[i].eax;
415                 e2[i].ebx = e[i].ebx;
416                 e2[i].ecx = e[i].ecx;
417                 e2[i].edx = e[i].edx;
418                 e2[i].index = 0;
419                 e2[i].flags = 0;
420                 e2[i].padding[0] = 0;
421                 e2[i].padding[1] = 0;
422                 e2[i].padding[2] = 0;
423         }
424
425         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
426         if (r)
427                 kvfree(e2);
428
429 out_free_cpuid:
430         kvfree(e);
431
432         return r;
433 }
434
435 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
436                               struct kvm_cpuid2 *cpuid,
437                               struct kvm_cpuid_entry2 __user *entries)
438 {
439         struct kvm_cpuid_entry2 *e2 = NULL;
440         int r;
441
442         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
443                 return -E2BIG;
444
445         if (cpuid->nent) {
446                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
447                 if (IS_ERR(e2))
448                         return PTR_ERR(e2);
449         }
450
451         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
452         if (r)
453                 kvfree(e2);
454
455         return r;
456 }
457
458 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
459                               struct kvm_cpuid2 *cpuid,
460                               struct kvm_cpuid_entry2 __user *entries)
461 {
462         int r;
463
464         r = -E2BIG;
465         if (cpuid->nent < vcpu->arch.cpuid_nent)
466                 goto out;
467         r = -EFAULT;
468         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
469                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
470                 goto out;
471         return 0;
472
473 out:
474         cpuid->nent = vcpu->arch.cpuid_nent;
475         return r;
476 }
477
478 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
479 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
480 {
481         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
482         struct kvm_cpuid_entry2 entry;
483
484         reverse_cpuid_check(leaf);
485
486         cpuid_count(cpuid.function, cpuid.index,
487                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
488
489         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
490 }
491
492 static __always_inline
493 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
494 {
495         /* Use kvm_cpu_cap_mask for non-scattered leafs. */
496         BUILD_BUG_ON(leaf < NCAPINTS);
497
498         kvm_cpu_caps[leaf] = mask;
499
500         __kvm_cpu_cap_mask(leaf);
501 }
502
503 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
504 {
505         /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
506         BUILD_BUG_ON(leaf >= NCAPINTS);
507
508         kvm_cpu_caps[leaf] &= mask;
509
510         __kvm_cpu_cap_mask(leaf);
511 }
512
513 void kvm_set_cpu_caps(void)
514 {
515 #ifdef CONFIG_X86_64
516         unsigned int f_gbpages = F(GBPAGES);
517         unsigned int f_lm = F(LM);
518         unsigned int f_xfd = F(XFD);
519 #else
520         unsigned int f_gbpages = 0;
521         unsigned int f_lm = 0;
522         unsigned int f_xfd = 0;
523 #endif
524         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
525
526         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
527                      sizeof(boot_cpu_data.x86_capability));
528
529         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
530                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
531
532         kvm_cpu_cap_mask(CPUID_1_ECX,
533                 /*
534                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
535                  * advertised to guests via CPUID!
536                  */
537                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
538                 0 /* DS-CPL, VMX, SMX, EST */ |
539                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
540                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
541                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
542                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
543                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
544                 F(F16C) | F(RDRAND)
545         );
546         /* KVM emulates x2apic in software irrespective of host support. */
547         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
548
549         kvm_cpu_cap_mask(CPUID_1_EDX,
550                 F(FPU) | F(VME) | F(DE) | F(PSE) |
551                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
552                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
553                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
554                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
555                 0 /* Reserved, DS, ACPI */ | F(MMX) |
556                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
557                 0 /* HTT, TM, Reserved, PBE */
558         );
559
560         kvm_cpu_cap_mask(CPUID_7_0_EBX,
561                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
562                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
563                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
564                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
565                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
566                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
567                 F(AVX512VL));
568
569         kvm_cpu_cap_mask(CPUID_7_ECX,
570                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
571                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
572                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
573                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
574                 F(SGX_LC) | F(BUS_LOCK_DETECT)
575         );
576         /* Set LA57 based on hardware capability. */
577         if (cpuid_ecx(7) & F(LA57))
578                 kvm_cpu_cap_set(X86_FEATURE_LA57);
579
580         /*
581          * PKU not yet implemented for shadow paging and requires OSPKE
582          * to be set on the host. Clear it if that is not the case
583          */
584         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
585                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
586
587         kvm_cpu_cap_mask(CPUID_7_EDX,
588                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
589                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
590                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
591                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
592                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
593         );
594
595         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
596         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
597         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
598
599         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
600                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
601         if (boot_cpu_has(X86_FEATURE_STIBP))
602                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
603         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
604                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
605
606         kvm_cpu_cap_mask(CPUID_7_1_EAX,
607                 F(AVX_VNNI) | F(AVX512_BF16)
608         );
609
610         kvm_cpu_cap_mask(CPUID_D_1_EAX,
611                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
612         );
613
614         kvm_cpu_cap_init_scattered(CPUID_12_EAX,
615                 SF(SGX1) | SF(SGX2)
616         );
617
618         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
619                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
620                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
621                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
622                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
623                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
624         );
625
626         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
627                 F(FPU) | F(VME) | F(DE) | F(PSE) |
628                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
629                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
630                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
631                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
632                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
633                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
634                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
635         );
636
637         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
638                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
639
640         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
641                 F(CLZERO) | F(XSAVEERPTR) |
642                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
643                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
644                 __feature_bit(KVM_X86_FEATURE_PSFD)
645         );
646
647         /*
648          * AMD has separate bits for each SPEC_CTRL bit.
649          * arch/x86/kernel/cpu/bugs.c is kind enough to
650          * record that in cpufeatures so use them.
651          */
652         if (boot_cpu_has(X86_FEATURE_IBPB))
653                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
654         if (boot_cpu_has(X86_FEATURE_IBRS))
655                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
656         if (boot_cpu_has(X86_FEATURE_STIBP))
657                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
658         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
659                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
660         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
661                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
662         /*
663          * The preference is to use SPEC CTRL MSR instead of the
664          * VIRT_SPEC MSR.
665          */
666         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
667             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
668                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
669
670         /*
671          * Hide all SVM features by default, SVM will set the cap bits for
672          * features it emulates and/or exposes for L1.
673          */
674         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
675
676         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
677                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
678                 F(SME_COHERENT));
679
680         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
681                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
682                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
683                 F(PMM) | F(PMM_EN)
684         );
685
686         /*
687          * Hide RDTSCP and RDPID if either feature is reported as supported but
688          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
689          * should never happen, but the guest will likely crash if RDTSCP or
690          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
691          * the past.  For example, the sanity check may fire if this instance of
692          * KVM is running as L1 on top of an older, broken KVM.
693          */
694         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
695                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
696                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
697                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
698                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
699         }
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
702
703 struct kvm_cpuid_array {
704         struct kvm_cpuid_entry2 *entries;
705         int maxnent;
706         int nent;
707 };
708
709 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
710                                               u32 function, u32 index)
711 {
712         struct kvm_cpuid_entry2 *entry;
713
714         if (array->nent >= array->maxnent)
715                 return NULL;
716
717         entry = &array->entries[array->nent++];
718
719         memset(entry, 0, sizeof(*entry));
720         entry->function = function;
721         entry->index = index;
722         switch (function & 0xC0000000) {
723         case 0x40000000:
724                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
725                 return entry;
726
727         case 0x80000000:
728                 /*
729                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
730                  * would result in out-of-bounds calls to do_host_cpuid.
731                  */
732                 {
733                         static int max_cpuid_80000000;
734                         if (!READ_ONCE(max_cpuid_80000000))
735                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
736                         if (function > READ_ONCE(max_cpuid_80000000))
737                                 return entry;
738                 }
739                 break;
740
741         default:
742                 break;
743         }
744
745         cpuid_count(entry->function, entry->index,
746                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
747
748         if (cpuid_function_is_indexed(function))
749                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
750
751         return entry;
752 }
753
754 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
755 {
756         struct kvm_cpuid_entry2 *entry;
757
758         if (array->nent >= array->maxnent)
759                 return -E2BIG;
760
761         entry = &array->entries[array->nent];
762         entry->function = func;
763         entry->index = 0;
764         entry->flags = 0;
765
766         switch (func) {
767         case 0:
768                 entry->eax = 7;
769                 ++array->nent;
770                 break;
771         case 1:
772                 entry->ecx = F(MOVBE);
773                 ++array->nent;
774                 break;
775         case 7:
776                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
777                 entry->eax = 0;
778                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
779                         entry->ecx = F(RDPID);
780                 ++array->nent;
781                 break;
782         default:
783                 break;
784         }
785
786         return 0;
787 }
788
789 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
790 {
791         struct kvm_cpuid_entry2 *entry;
792         int r, i, max_idx;
793
794         /* all calls to cpuid_count() should be made on the same cpu */
795         get_cpu();
796
797         r = -E2BIG;
798
799         entry = do_host_cpuid(array, function, 0);
800         if (!entry)
801                 goto out;
802
803         switch (function) {
804         case 0:
805                 /* Limited to the highest leaf implemented in KVM. */
806                 entry->eax = min(entry->eax, 0x1fU);
807                 break;
808         case 1:
809                 cpuid_entry_override(entry, CPUID_1_EDX);
810                 cpuid_entry_override(entry, CPUID_1_ECX);
811                 break;
812         case 2:
813                 /*
814                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
815                  * CPUID(function=2, index=0) may return different results each
816                  * time, with the least-significant byte in EAX enumerating the
817                  * number of times software should do CPUID(2, 0).
818                  *
819                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
820                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
821                  * return 01H. Software should ignore this value and not
822                  * interpret it as an informational descriptor", while AMD's
823                  * APM states that CPUID(2) is reserved.
824                  *
825                  * WARN if a frankenstein CPU that supports virtualization and
826                  * a stateful CPUID.0x2 is encountered.
827                  */
828                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
829                 break;
830         /* functions 4 and 0x8000001d have additional index. */
831         case 4:
832         case 0x8000001d:
833                 /*
834                  * Read entries until the cache type in the previous entry is
835                  * zero, i.e. indicates an invalid entry.
836                  */
837                 for (i = 1; entry->eax & 0x1f; ++i) {
838                         entry = do_host_cpuid(array, function, i);
839                         if (!entry)
840                                 goto out;
841                 }
842                 break;
843         case 6: /* Thermal management */
844                 entry->eax = 0x4; /* allow ARAT */
845                 entry->ebx = 0;
846                 entry->ecx = 0;
847                 entry->edx = 0;
848                 break;
849         /* function 7 has additional index. */
850         case 7:
851                 entry->eax = min(entry->eax, 1u);
852                 cpuid_entry_override(entry, CPUID_7_0_EBX);
853                 cpuid_entry_override(entry, CPUID_7_ECX);
854                 cpuid_entry_override(entry, CPUID_7_EDX);
855
856                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
857                 if (entry->eax == 1) {
858                         entry = do_host_cpuid(array, function, 1);
859                         if (!entry)
860                                 goto out;
861
862                         cpuid_entry_override(entry, CPUID_7_1_EAX);
863                         entry->ebx = 0;
864                         entry->ecx = 0;
865                         entry->edx = 0;
866                 }
867                 break;
868         case 9:
869                 break;
870         case 0xa: { /* Architectural Performance Monitoring */
871                 struct x86_pmu_capability cap;
872                 union cpuid10_eax eax;
873                 union cpuid10_edx edx;
874
875                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
876                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
877                         break;
878                 }
879
880                 perf_get_x86_pmu_capability(&cap);
881
882                 /*
883                  * The guest architecture pmu is only supported if the architecture
884                  * pmu exists on the host and the module parameters allow it.
885                  */
886                 if (!cap.version || !enable_pmu)
887                         memset(&cap, 0, sizeof(cap));
888
889                 eax.split.version_id = min(cap.version, 2);
890                 eax.split.num_counters = cap.num_counters_gp;
891                 eax.split.bit_width = cap.bit_width_gp;
892                 eax.split.mask_length = cap.events_mask_len;
893
894                 edx.split.num_counters_fixed =
895                         min(cap.num_counters_fixed, KVM_PMC_MAX_FIXED);
896                 edx.split.bit_width_fixed = cap.bit_width_fixed;
897                 if (cap.version)
898                         edx.split.anythread_deprecated = 1;
899                 edx.split.reserved1 = 0;
900                 edx.split.reserved2 = 0;
901
902                 entry->eax = eax.full;
903                 entry->ebx = cap.events_mask;
904                 entry->ecx = 0;
905                 entry->edx = edx.full;
906                 break;
907         }
908         /*
909          * Per Intel's SDM, the 0x1f is a superset of 0xb,
910          * thus they can be handled by common code.
911          */
912         case 0x1f:
913         case 0xb:
914                 /*
915                  * Populate entries until the level type (ECX[15:8]) of the
916                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
917                  * the starting entry, filled by the primary do_host_cpuid().
918                  */
919                 for (i = 1; entry->ecx & 0xff00; ++i) {
920                         entry = do_host_cpuid(array, function, i);
921                         if (!entry)
922                                 goto out;
923                 }
924                 break;
925         case 0xd: {
926                 u64 permitted_xcr0 = supported_xcr0 & xstate_get_guest_group_perm();
927                 u64 permitted_xss = supported_xss;
928
929                 entry->eax &= permitted_xcr0;
930                 entry->ebx = xstate_required_size(permitted_xcr0, false);
931                 entry->ecx = entry->ebx;
932                 entry->edx &= permitted_xcr0 >> 32;
933                 if (!permitted_xcr0)
934                         break;
935
936                 entry = do_host_cpuid(array, function, 1);
937                 if (!entry)
938                         goto out;
939
940                 cpuid_entry_override(entry, CPUID_D_1_EAX);
941                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
942                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
943                                                           true);
944                 else {
945                         WARN_ON_ONCE(permitted_xss != 0);
946                         entry->ebx = 0;
947                 }
948                 entry->ecx &= permitted_xss;
949                 entry->edx &= permitted_xss >> 32;
950
951                 for (i = 2; i < 64; ++i) {
952                         bool s_state;
953                         if (permitted_xcr0 & BIT_ULL(i))
954                                 s_state = false;
955                         else if (permitted_xss & BIT_ULL(i))
956                                 s_state = true;
957                         else
958                                 continue;
959
960                         entry = do_host_cpuid(array, function, i);
961                         if (!entry)
962                                 goto out;
963
964                         /*
965                          * The supported check above should have filtered out
966                          * invalid sub-leafs.  Only valid sub-leafs should
967                          * reach this point, and they should have a non-zero
968                          * save state size.  Furthermore, check whether the
969                          * processor agrees with permitted_xcr0/permitted_xss
970                          * on whether this is an XCR0- or IA32_XSS-managed area.
971                          */
972                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
973                                 --array->nent;
974                                 continue;
975                         }
976
977                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
978                                 entry->ecx &= ~BIT_ULL(2);
979                         entry->edx = 0;
980                 }
981                 break;
982         }
983         case 0x12:
984                 /* Intel SGX */
985                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
986                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
987                         break;
988                 }
989
990                 /*
991                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
992                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
993                  * are restricted by kernel and KVM capabilities (like most
994                  * feature flags), while enclave size is unrestricted.
995                  */
996                 cpuid_entry_override(entry, CPUID_12_EAX);
997                 entry->ebx &= SGX_MISC_EXINFO;
998
999                 entry = do_host_cpuid(array, function, 1);
1000                 if (!entry)
1001                         goto out;
1002
1003                 /*
1004                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1005                  * feature flags.  Advertise all supported flags, including
1006                  * privileged attributes that require explicit opt-in from
1007                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1008                  * expected to derive it from supported XCR0.
1009                  */
1010                 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
1011                               SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
1012                               SGX_ATTR_KSS;
1013                 entry->ebx &= 0;
1014                 break;
1015         /* Intel PT */
1016         case 0x14:
1017                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1018                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1019                         break;
1020                 }
1021
1022                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1023                         if (!do_host_cpuid(array, function, i))
1024                                 goto out;
1025                 }
1026                 break;
1027         /* Intel AMX TILE */
1028         case 0x1d:
1029                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1030                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1031                         break;
1032                 }
1033
1034                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1035                         if (!do_host_cpuid(array, function, i))
1036                                 goto out;
1037                 }
1038                 break;
1039         case 0x1e: /* TMUL information */
1040                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1041                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1042                         break;
1043                 }
1044                 break;
1045         case KVM_CPUID_SIGNATURE: {
1046                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1047                 entry->eax = KVM_CPUID_FEATURES;
1048                 entry->ebx = sigptr[0];
1049                 entry->ecx = sigptr[1];
1050                 entry->edx = sigptr[2];
1051                 break;
1052         }
1053         case KVM_CPUID_FEATURES:
1054                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1055                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1056                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1057                              (1 << KVM_FEATURE_ASYNC_PF) |
1058                              (1 << KVM_FEATURE_PV_EOI) |
1059                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1060                              (1 << KVM_FEATURE_PV_UNHALT) |
1061                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1062                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1063                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1064                              (1 << KVM_FEATURE_POLL_CONTROL) |
1065                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1066                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1067
1068                 if (sched_info_on())
1069                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1070
1071                 entry->ebx = 0;
1072                 entry->ecx = 0;
1073                 entry->edx = 0;
1074                 break;
1075         case 0x80000000:
1076                 entry->eax = min(entry->eax, 0x80000021);
1077                 /*
1078                  * Serializing LFENCE is reported in a multitude of ways, and
1079                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1080                  * userspace by providing the CPUID leaf ourselves.
1081                  *
1082                  * However, only do it if the host has CPUID leaf 0x8000001d.
1083                  * QEMU thinks that it can query the host blindly for that
1084                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1085                  * above.  The processor merrily returns values from the
1086                  * highest Intel leaf which QEMU tries to use as the guest's
1087                  * 0x8000001d.  Even worse, this can result in an infinite
1088                  * loop if said highest leaf has no subleaves indexed by ECX.
1089                  */
1090                 if (entry->eax >= 0x8000001d &&
1091                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1092                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1093                         entry->eax = max(entry->eax, 0x80000021);
1094                 break;
1095         case 0x80000001:
1096                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1097                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1098                 break;
1099         case 0x80000006:
1100                 /* L2 cache and TLB: pass through host info. */
1101                 break;
1102         case 0x80000007: /* Advanced power management */
1103                 /* invariant TSC is CPUID.80000007H:EDX[8] */
1104                 entry->edx &= (1 << 8);
1105                 /* mask against host */
1106                 entry->edx &= boot_cpu_data.x86_power;
1107                 entry->eax = entry->ebx = entry->ecx = 0;
1108                 break;
1109         case 0x80000008: {
1110                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1111                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1112                 unsigned phys_as = entry->eax & 0xff;
1113
1114                 /*
1115                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1116                  * the guest operates in the same PA space as the host, i.e.
1117                  * reductions in MAXPHYADDR for memory encryption affect shadow
1118                  * paging, too.
1119                  *
1120                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1121                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1122                  * the HPAs do not affect GPAs.
1123                  */
1124                 if (!tdp_enabled)
1125                         g_phys_as = boot_cpu_data.x86_phys_bits;
1126                 else if (!g_phys_as)
1127                         g_phys_as = phys_as;
1128
1129                 entry->eax = g_phys_as | (virt_as << 8);
1130                 entry->edx = 0;
1131                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1132                 break;
1133         }
1134         case 0x8000000A:
1135                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1136                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1137                         break;
1138                 }
1139                 entry->eax = 1; /* SVM revision 1 */
1140                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1141                                    ASID emulation to nested SVM */
1142                 entry->ecx = 0; /* Reserved */
1143                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1144                 break;
1145         case 0x80000019:
1146                 entry->ecx = entry->edx = 0;
1147                 break;
1148         case 0x8000001a:
1149         case 0x8000001e:
1150                 break;
1151         case 0x8000001F:
1152                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1153                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1154                 } else {
1155                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1156
1157                         /*
1158                          * Enumerate '0' for "PA bits reduction", the adjusted
1159                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1160                          */
1161                         entry->ebx &= ~GENMASK(11, 6);
1162                 }
1163                 break;
1164         case 0x80000020:
1165                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1166                 break;
1167         case 0x80000021:
1168                 entry->ebx = entry->ecx = entry->edx = 0;
1169                 /*
1170                  * Pass down these bits:
1171                  *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1172                  *    EAX      2      LAS, LFENCE always serializing
1173                  *    EAX      6      NSCB, Null selector clear base
1174                  *
1175                  * Other defined bits are for MSRs that KVM does not expose:
1176                  *   EAX      3      SPCL, SMM page configuration lock
1177                  *   EAX      13     PCMSR, Prefetch control MSR
1178                  */
1179                 entry->eax &= BIT(0) | BIT(2) | BIT(6);
1180                 if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1181                         entry->eax |= BIT(2);
1182                 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1183                         entry->eax |= BIT(6);
1184                 break;
1185         /*Add support for Centaur's CPUID instruction*/
1186         case 0xC0000000:
1187                 /*Just support up to 0xC0000004 now*/
1188                 entry->eax = min(entry->eax, 0xC0000004);
1189                 break;
1190         case 0xC0000001:
1191                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1192                 break;
1193         case 3: /* Processor serial number */
1194         case 5: /* MONITOR/MWAIT */
1195         case 0xC0000002:
1196         case 0xC0000003:
1197         case 0xC0000004:
1198         default:
1199                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1200                 break;
1201         }
1202
1203         r = 0;
1204
1205 out:
1206         put_cpu();
1207
1208         return r;
1209 }
1210
1211 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1212                          unsigned int type)
1213 {
1214         if (type == KVM_GET_EMULATED_CPUID)
1215                 return __do_cpuid_func_emulated(array, func);
1216
1217         return __do_cpuid_func(array, func);
1218 }
1219
1220 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1221
1222 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1223                           unsigned int type)
1224 {
1225         u32 limit;
1226         int r;
1227
1228         if (func == CENTAUR_CPUID_SIGNATURE &&
1229             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1230                 return 0;
1231
1232         r = do_cpuid_func(array, func, type);
1233         if (r)
1234                 return r;
1235
1236         limit = array->entries[array->nent - 1].eax;
1237         for (func = func + 1; func <= limit; ++func) {
1238                 r = do_cpuid_func(array, func, type);
1239                 if (r)
1240                         break;
1241         }
1242
1243         return r;
1244 }
1245
1246 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1247                                  __u32 num_entries, unsigned int ioctl_type)
1248 {
1249         int i;
1250         __u32 pad[3];
1251
1252         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1253                 return false;
1254
1255         /*
1256          * We want to make sure that ->padding is being passed clean from
1257          * userspace in case we want to use it for something in the future.
1258          *
1259          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1260          * have to give ourselves satisfied only with the emulated side. /me
1261          * sheds a tear.
1262          */
1263         for (i = 0; i < num_entries; i++) {
1264                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1265                         return true;
1266
1267                 if (pad[0] || pad[1] || pad[2])
1268                         return true;
1269         }
1270         return false;
1271 }
1272
1273 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1274                             struct kvm_cpuid_entry2 __user *entries,
1275                             unsigned int type)
1276 {
1277         static const u32 funcs[] = {
1278                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1279         };
1280
1281         struct kvm_cpuid_array array = {
1282                 .nent = 0,
1283         };
1284         int r, i;
1285
1286         if (cpuid->nent < 1)
1287                 return -E2BIG;
1288         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1289                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1290
1291         if (sanity_check_entries(entries, cpuid->nent, type))
1292                 return -EINVAL;
1293
1294         array.entries = kvcalloc(sizeof(struct kvm_cpuid_entry2), cpuid->nent, GFP_KERNEL);
1295         if (!array.entries)
1296                 return -ENOMEM;
1297
1298         array.maxnent = cpuid->nent;
1299
1300         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1301                 r = get_cpuid_func(&array, funcs[i], type);
1302                 if (r)
1303                         goto out_free;
1304         }
1305         cpuid->nent = array.nent;
1306
1307         if (copy_to_user(entries, array.entries,
1308                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1309                 r = -EFAULT;
1310
1311 out_free:
1312         kvfree(array.entries);
1313         return r;
1314 }
1315
1316 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1317                                               u32 function, u32 index)
1318 {
1319         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1320                                  function, index);
1321 }
1322 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1323
1324 /*
1325  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1326  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1327  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1328  * range.  Centaur/VIA follows Intel semantics.
1329  *
1330  * A leaf is considered out-of-range if its function is higher than the maximum
1331  * supported leaf of its associated class or if its associated class does not
1332  * exist.
1333  *
1334  * There are three primary classes to be considered, with their respective
1335  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1336  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1337  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1338  *
1339  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1340  *  - Hypervisor: 0x40000000 - 0x4fffffff
1341  *  - Extended:   0x80000000 - 0xbfffffff
1342  *  - Centaur:    0xc0000000 - 0xcfffffff
1343  *
1344  * The Hypervisor class is further subdivided into sub-classes that each act as
1345  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1346  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1347  * CPUID sub-classes are:
1348  *
1349  *  - HyperV:     0x40000000 - 0x400000ff
1350  *  - KVM:        0x40000100 - 0x400001ff
1351  */
1352 static struct kvm_cpuid_entry2 *
1353 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1354 {
1355         struct kvm_cpuid_entry2 *basic, *class;
1356         u32 function = *fn_ptr;
1357
1358         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1359         if (!basic)
1360                 return NULL;
1361
1362         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1363             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1364                 return NULL;
1365
1366         if (function >= 0x40000000 && function <= 0x4fffffff)
1367                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1368         else if (function >= 0xc0000000)
1369                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1370         else
1371                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1372
1373         if (class && function <= class->eax)
1374                 return NULL;
1375
1376         /*
1377          * Leaf specific adjustments are also applied when redirecting to the
1378          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1379          * entry for CPUID.0xb.index (see below), then the output value for EDX
1380          * needs to be pulled from CPUID.0xb.1.
1381          */
1382         *fn_ptr = basic->eax;
1383
1384         /*
1385          * The class does not exist or the requested function is out of range;
1386          * the effective CPUID entry is the max basic leaf.  Note, the index of
1387          * the original requested leaf is observed!
1388          */
1389         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1390 }
1391
1392 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1393                u32 *ecx, u32 *edx, bool exact_only)
1394 {
1395         u32 orig_function = *eax, function = *eax, index = *ecx;
1396         struct kvm_cpuid_entry2 *entry;
1397         bool exact, used_max_basic = false;
1398
1399         entry = kvm_find_cpuid_entry(vcpu, function, index);
1400         exact = !!entry;
1401
1402         if (!entry && !exact_only) {
1403                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1404                 used_max_basic = !!entry;
1405         }
1406
1407         if (entry) {
1408                 *eax = entry->eax;
1409                 *ebx = entry->ebx;
1410                 *ecx = entry->ecx;
1411                 *edx = entry->edx;
1412                 if (function == 7 && index == 0) {
1413                         u64 data;
1414                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1415                             (data & TSX_CTRL_CPUID_CLEAR))
1416                                 *ebx &= ~(F(RTM) | F(HLE));
1417                 }
1418         } else {
1419                 *eax = *ebx = *ecx = *edx = 0;
1420                 /*
1421                  * When leaf 0BH or 1FH is defined, CL is pass-through
1422                  * and EDX is always the x2APIC ID, even for undefined
1423                  * subleaves. Index 1 will exist iff the leaf is
1424                  * implemented, so we pass through CL iff leaf 1
1425                  * exists. EDX can be copied from any existing index.
1426                  */
1427                 if (function == 0xb || function == 0x1f) {
1428                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1429                         if (entry) {
1430                                 *ecx = index & 0xff;
1431                                 *edx = entry->edx;
1432                         }
1433                 }
1434         }
1435         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1436                         used_max_basic);
1437         return exact;
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_cpuid);
1440
1441 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1442 {
1443         u32 eax, ebx, ecx, edx;
1444
1445         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1446                 return 1;
1447
1448         eax = kvm_rax_read(vcpu);
1449         ecx = kvm_rcx_read(vcpu);
1450         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1451         kvm_rax_write(vcpu, eax);
1452         kvm_rbx_write(vcpu, ebx);
1453         kvm_rcx_write(vcpu, ecx);
1454         kvm_rdx_write(vcpu, edx);
1455         return kvm_skip_emulated_instruction(vcpu);
1456 }
1457 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);