GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         best->edx &= ~F(APIC);
84         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85                 best->edx |= F(APIC);
86
87         if (apic) {
88                 if (best->ecx & F(TSC_DEADLINE_TIMER))
89                         apic->lapic_timer.timer_mode_mask = 3 << 17;
90                 else
91                         apic->lapic_timer.timer_mode_mask = 1 << 17;
92         }
93
94         best = kvm_find_cpuid_entry(vcpu, 7, 0);
95         if (best) {
96                 /* Update OSPKE bit */
97                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98                         best->ecx &= ~F(OSPKE);
99                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100                                 best->ecx |= F(OSPKE);
101                 }
102         }
103
104         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105         if (!best) {
106                 vcpu->arch.guest_supported_xcr0 = 0;
107                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108         } else {
109                 vcpu->arch.guest_supported_xcr0 =
110                         (best->eax | ((u64)best->edx << 32)) &
111                         kvm_supported_xcr0();
112                 vcpu->arch.guest_xstate_size = best->ebx =
113                         xstate_required_size(vcpu->arch.xcr0, false);
114         }
115
116         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120         /*
121          * The existing code assumes virtual address is 48-bit or 57-bit in the
122          * canonical address checks; exit if it is ever changed.
123          */
124         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125         if (best) {
126                 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129                         return -EINVAL;
130         }
131
132         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139                 if (best) {
140                         if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141                                 best->ecx |= F(MWAIT);
142                         else
143                                 best->ecx &= ~F(MWAIT);
144                 }
145         }
146
147         /* Update physical-address width */
148         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149         kvm_mmu_reset_context(vcpu);
150
151         kvm_pmu_refresh(vcpu);
152         return 0;
153 }
154
155 static int is_efer_nx(void)
156 {
157         unsigned long long efer = 0;
158
159         rdmsrl_safe(MSR_EFER, &efer);
160         return efer & EFER_NX;
161 }
162
163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
164 {
165         int i;
166         struct kvm_cpuid_entry2 *e, *entry;
167
168         entry = NULL;
169         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170                 e = &vcpu->arch.cpuid_entries[i];
171                 if (e->function == 0x80000001) {
172                         entry = e;
173                         break;
174                 }
175         }
176         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177                 entry->edx &= ~F(NX);
178                 printk(KERN_INFO "kvm: guest NX capability removed\n");
179         }
180 }
181
182 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
183 {
184         struct kvm_cpuid_entry2 *best;
185
186         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187         if (!best || best->eax < 0x80000008)
188                 goto not_found;
189         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190         if (best)
191                 return best->eax & 0xff;
192 not_found:
193         return 36;
194 }
195 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
196
197 /* when an old userspace process fills a new kernel module */
198 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199                              struct kvm_cpuid *cpuid,
200                              struct kvm_cpuid_entry __user *entries)
201 {
202         int r, i;
203         struct kvm_cpuid_entry *cpuid_entries = NULL;
204
205         r = -E2BIG;
206         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207                 goto out;
208         r = -ENOMEM;
209         if (cpuid->nent) {
210                 cpuid_entries =
211                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212                                            cpuid->nent));
213                 if (!cpuid_entries)
214                         goto out;
215                 r = -EFAULT;
216                 if (copy_from_user(cpuid_entries, entries,
217                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218                         goto out;
219         }
220         for (i = 0; i < cpuid->nent; i++) {
221                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226                 vcpu->arch.cpuid_entries[i].index = 0;
227                 vcpu->arch.cpuid_entries[i].flags = 0;
228                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
229                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
230                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
231         }
232         vcpu->arch.cpuid_nent = cpuid->nent;
233         cpuid_fix_nx_cap(vcpu);
234         kvm_apic_set_version(vcpu);
235         kvm_x86_ops->cpuid_update(vcpu);
236         r = kvm_update_cpuid(vcpu);
237
238 out:
239         vfree(cpuid_entries);
240         return r;
241 }
242
243 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244                               struct kvm_cpuid2 *cpuid,
245                               struct kvm_cpuid_entry2 __user *entries)
246 {
247         int r;
248
249         r = -E2BIG;
250         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251                 goto out;
252         r = -EFAULT;
253         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255                 goto out;
256         vcpu->arch.cpuid_nent = cpuid->nent;
257         kvm_apic_set_version(vcpu);
258         kvm_x86_ops->cpuid_update(vcpu);
259         r = kvm_update_cpuid(vcpu);
260 out:
261         return r;
262 }
263
264 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265                               struct kvm_cpuid2 *cpuid,
266                               struct kvm_cpuid_entry2 __user *entries)
267 {
268         int r;
269
270         r = -E2BIG;
271         if (cpuid->nent < vcpu->arch.cpuid_nent)
272                 goto out;
273         r = -EFAULT;
274         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276                 goto out;
277         return 0;
278
279 out:
280         cpuid->nent = vcpu->arch.cpuid_nent;
281         return r;
282 }
283
284 static void cpuid_mask(u32 *word, int wordnum)
285 {
286         *word &= boot_cpu_data.x86_capability[wordnum];
287 }
288
289 static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
290                            u32 index)
291 {
292         entry->function = function;
293         entry->index = index;
294         entry->flags = 0;
295
296         cpuid_count(entry->function, entry->index,
297                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
298
299         switch (function) {
300         case 2:
301                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
302                 break;
303         case 4:
304         case 7:
305         case 0xb:
306         case 0xd:
307         case 0xf:
308         case 0x10:
309         case 0x12:
310         case 0x14:
311         case 0x17:
312         case 0x18:
313         case 0x1f:
314         case 0x8000001d:
315                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
316                 break;
317         }
318 }
319
320 static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
321                                     u32 func, int *nent, int maxnent)
322 {
323         entry->function = func;
324         entry->index = 0;
325         entry->flags = 0;
326
327         switch (func) {
328         case 0:
329                 entry->eax = 7;
330                 ++*nent;
331                 break;
332         case 1:
333                 entry->ecx = F(MOVBE);
334                 ++*nent;
335                 break;
336         case 7:
337                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
338                 entry->eax = 0;
339                 entry->ecx = F(RDPID);
340                 ++*nent;
341         default:
342                 break;
343         }
344
345         return 0;
346 }
347
348 static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
349 {
350         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
351         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
352         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
353         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
354         unsigned f_la57;
355         unsigned f_pku = kvm_x86_ops->pku_supported() ? F(PKU) : 0;
356
357         /* cpuid 7.0.ebx */
358         const u32 kvm_cpuid_7_0_ebx_x86_features =
359                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
360                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
361                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
362                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
363                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
364
365         /* cpuid 7.0.ecx*/
366         const u32 kvm_cpuid_7_0_ecx_x86_features =
367                 F(AVX512VBMI) | F(LA57) | 0 /*PKU*/ | 0 /*OSPKE*/ | F(RDPID) |
368                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
369                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
370                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
371
372         /* cpuid 7.0.edx*/
373         const u32 kvm_cpuid_7_0_edx_x86_features =
374                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
375                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
376                 F(MD_CLEAR);
377
378         /* cpuid 7.1.eax */
379         const u32 kvm_cpuid_7_1_eax_x86_features =
380                 F(AVX512_BF16);
381
382         switch (index) {
383         case 0:
384                 entry->eax = min(entry->eax, 1u);
385                 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
386                 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
387                 /* TSC_ADJUST is emulated */
388                 entry->ebx |= F(TSC_ADJUST);
389
390                 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
391                 f_la57 = entry->ecx & F(LA57);
392                 cpuid_mask(&entry->ecx, CPUID_7_ECX);
393                 /* Set LA57 based on hardware capability. */
394                 entry->ecx |= f_la57;
395                 entry->ecx |= f_umip;
396                 entry->ecx |= f_pku;
397                 /* PKU is not yet implemented for shadow paging. */
398                 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
399                         entry->ecx &= ~F(PKU);
400
401                 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
402                 cpuid_mask(&entry->edx, CPUID_7_EDX);
403                 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
404                         entry->edx |= F(SPEC_CTRL);
405                 if (boot_cpu_has(X86_FEATURE_STIBP))
406                         entry->edx |= F(INTEL_STIBP);
407                 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
408                     boot_cpu_has(X86_FEATURE_AMD_SSBD))
409                         entry->edx |= F(SPEC_CTRL_SSBD);
410                 /*
411                  * We emulate ARCH_CAPABILITIES in software even
412                  * if the host doesn't support it.
413                  */
414                 entry->edx |= F(ARCH_CAPABILITIES);
415                 break;
416         case 1:
417                 entry->eax &= kvm_cpuid_7_1_eax_x86_features;
418                 entry->ebx = 0;
419                 entry->ecx = 0;
420                 entry->edx = 0;
421                 break;
422         default:
423                 WARN_ON_ONCE(1);
424                 entry->eax = 0;
425                 entry->ebx = 0;
426                 entry->ecx = 0;
427                 entry->edx = 0;
428                 break;
429         }
430 }
431
432 static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
433                                   int *nent, int maxnent)
434 {
435         int r;
436         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
437 #ifdef CONFIG_X86_64
438         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
439                                 ? F(GBPAGES) : 0;
440         unsigned f_lm = F(LM);
441 #else
442         unsigned f_gbpages = 0;
443         unsigned f_lm = 0;
444 #endif
445         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
446         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
447         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
448
449         /* cpuid 1.edx */
450         const u32 kvm_cpuid_1_edx_x86_features =
451                 F(FPU) | F(VME) | F(DE) | F(PSE) |
452                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
453                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
454                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
455                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
456                 0 /* Reserved, DS, ACPI */ | F(MMX) |
457                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
458                 0 /* HTT, TM, Reserved, PBE */;
459         /* cpuid 0x80000001.edx */
460         const u32 kvm_cpuid_8000_0001_edx_x86_features =
461                 F(FPU) | F(VME) | F(DE) | F(PSE) |
462                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
463                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
464                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
465                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
466                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
467                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
468                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
469         /* cpuid 1.ecx */
470         const u32 kvm_cpuid_1_ecx_x86_features =
471                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
472                  * but *not* advertised to guests via CPUID ! */
473                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
474                 0 /* DS-CPL, VMX, SMX, EST */ |
475                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
476                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
477                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
478                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
479                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
480                 F(F16C) | F(RDRAND);
481         /* cpuid 0x80000001.ecx */
482         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
483                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
484                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
485                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
486                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
487                 F(TOPOEXT) | F(PERFCTR_CORE);
488
489         /* cpuid 0x80000008.ebx */
490         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
491                 F(CLZERO) | F(XSAVEERPTR) |
492                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
493                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
494
495         /* cpuid 0xC0000001.edx */
496         const u32 kvm_cpuid_C000_0001_edx_x86_features =
497                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
498                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
499                 F(PMM) | F(PMM_EN);
500
501         /* cpuid 0xD.1.eax */
502         const u32 kvm_cpuid_D_1_eax_x86_features =
503                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
504
505         /* all calls to cpuid_count() should be made on the same cpu */
506         get_cpu();
507
508         r = -E2BIG;
509
510         if (WARN_ON(*nent >= maxnent))
511                 goto out;
512
513         do_host_cpuid(entry, function, 0);
514         ++*nent;
515
516         switch (function) {
517         case 0:
518                 /* Limited to the highest leaf implemented in KVM. */
519                 entry->eax = min(entry->eax, 0x1fU);
520                 break;
521         case 1:
522                 entry->edx &= kvm_cpuid_1_edx_x86_features;
523                 cpuid_mask(&entry->edx, CPUID_1_EDX);
524                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
525                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
526                 /* we support x2apic emulation even if host does not support
527                  * it since we emulate x2apic in software */
528                 entry->ecx |= F(X2APIC);
529                 break;
530         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
531          * may return different values. This forces us to get_cpu() before
532          * issuing the first command, and also to emulate this annoying behavior
533          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
534         case 2: {
535                 int t, times = entry->eax & 0xff;
536
537                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
538                 for (t = 1; t < times; ++t) {
539                         if (*nent >= maxnent)
540                                 goto out;
541
542                         do_host_cpuid(&entry[t], function, 0);
543                         ++*nent;
544                 }
545                 break;
546         }
547         /* functions 4 and 0x8000001d have additional index. */
548         case 4:
549         case 0x8000001d: {
550                 int i, cache_type;
551
552                 /* read more entries until cache_type is zero */
553                 for (i = 1; ; ++i) {
554                         if (*nent >= maxnent)
555                                 goto out;
556
557                         cache_type = entry[i - 1].eax & 0x1f;
558                         if (!cache_type)
559                                 break;
560                         do_host_cpuid(&entry[i], function, i);
561                         ++*nent;
562                 }
563                 break;
564         }
565         case 6: /* Thermal management */
566                 entry->eax = 0x4; /* allow ARAT */
567                 entry->ebx = 0;
568                 entry->ecx = 0;
569                 entry->edx = 0;
570                 break;
571         /* function 7 has additional index. */
572         case 7: {
573                 int i;
574
575                 for (i = 0; ; ) {
576                         do_cpuid_7_mask(&entry[i], i);
577                         if (i == entry->eax)
578                                 break;
579                         if (*nent >= maxnent)
580                                 goto out;
581
582                         ++i;
583                         do_host_cpuid(&entry[i], function, i);
584                         ++*nent;
585                 }
586                 break;
587         }
588         case 9:
589                 break;
590         case 0xa: { /* Architectural Performance Monitoring */
591                 struct x86_pmu_capability cap;
592                 union cpuid10_eax eax;
593                 union cpuid10_edx edx;
594
595                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
596                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
597                         break;
598                 }
599
600                 perf_get_x86_pmu_capability(&cap);
601
602                 /*
603                  * Only support guest architectural pmu on a host
604                  * with architectural pmu.
605                  */
606                 if (!cap.version)
607                         memset(&cap, 0, sizeof(cap));
608
609                 eax.split.version_id = min(cap.version, 2);
610                 eax.split.num_counters = cap.num_counters_gp;
611                 eax.split.bit_width = cap.bit_width_gp;
612                 eax.split.mask_length = cap.events_mask_len;
613
614                 edx.split.num_counters_fixed = cap.num_counters_fixed;
615                 edx.split.bit_width_fixed = cap.bit_width_fixed;
616                 edx.split.reserved = 0;
617
618                 entry->eax = eax.full;
619                 entry->ebx = cap.events_mask;
620                 entry->ecx = 0;
621                 entry->edx = edx.full;
622                 break;
623         }
624         /*
625          * Per Intel's SDM, the 0x1f is a superset of 0xb,
626          * thus they can be handled by common code.
627          */
628         case 0x1f:
629         case 0xb: {
630                 int i;
631
632                 /*
633                  * We filled in entry[0] for CPUID(EAX=<function>,
634                  * ECX=00H) above.  If its level type (ECX[15:8]) is
635                  * zero, then the leaf is unimplemented, and we're
636                  * done.  Otherwise, continue to populate entries
637                  * until the level type (ECX[15:8]) of the previously
638                  * added entry is zero.
639                  */
640                 for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
641                         if (*nent >= maxnent)
642                                 goto out;
643
644                         do_host_cpuid(&entry[i], function, i);
645                         ++*nent;
646                 }
647                 break;
648         }
649         case 0xd: {
650                 int idx, i;
651                 u64 supported = kvm_supported_xcr0();
652
653                 entry->eax &= supported;
654                 entry->ebx = xstate_required_size(supported, false);
655                 entry->ecx = entry->ebx;
656                 entry->edx &= supported >> 32;
657                 if (!supported)
658                         break;
659
660                 for (idx = 1, i = 1; idx < 64; ++idx) {
661                         u64 mask = ((u64)1 << idx);
662                         if (*nent >= maxnent)
663                                 goto out;
664
665                         do_host_cpuid(&entry[i], function, idx);
666                         if (idx == 1) {
667                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
668                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
669                                 entry[i].ebx = 0;
670                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
671                                         entry[i].ebx =
672                                                 xstate_required_size(supported,
673                                                                      true);
674                         } else {
675                                 if (entry[i].eax == 0 || !(supported & mask))
676                                         continue;
677                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
678                                         continue;
679                         }
680                         entry[i].ecx = 0;
681                         entry[i].edx = 0;
682                         ++*nent;
683                         ++i;
684                 }
685                 break;
686         }
687         /* Intel PT */
688         case 0x14: {
689                 int t, times = entry->eax;
690
691                 if (!f_intel_pt)
692                         break;
693
694                 for (t = 1; t <= times; ++t) {
695                         if (*nent >= maxnent)
696                                 goto out;
697                         do_host_cpuid(&entry[t], function, t);
698                         ++*nent;
699                 }
700                 break;
701         }
702         case KVM_CPUID_SIGNATURE: {
703                 static const char signature[12] = "KVMKVMKVM\0\0";
704                 const u32 *sigptr = (const u32 *)signature;
705                 entry->eax = KVM_CPUID_FEATURES;
706                 entry->ebx = sigptr[0];
707                 entry->ecx = sigptr[1];
708                 entry->edx = sigptr[2];
709                 break;
710         }
711         case KVM_CPUID_FEATURES:
712                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
713                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
714                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
715                              (1 << KVM_FEATURE_ASYNC_PF) |
716                              (1 << KVM_FEATURE_PV_EOI) |
717                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
718                              (1 << KVM_FEATURE_PV_UNHALT) |
719                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
720                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
721                              (1 << KVM_FEATURE_PV_SEND_IPI) |
722                              (1 << KVM_FEATURE_POLL_CONTROL) |
723                              (1 << KVM_FEATURE_PV_SCHED_YIELD);
724
725                 if (sched_info_on())
726                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
727
728                 entry->ebx = 0;
729                 entry->ecx = 0;
730                 entry->edx = 0;
731                 break;
732         case 0x80000000:
733                 entry->eax = min(entry->eax, 0x8000001f);
734                 break;
735         case 0x80000001:
736                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
737                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
738                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
739                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
740                 break;
741         case 0x80000007: /* Advanced power management */
742                 /* invariant TSC is CPUID.80000007H:EDX[8] */
743                 entry->edx &= (1 << 8);
744                 /* mask against host */
745                 entry->edx &= boot_cpu_data.x86_power;
746                 entry->eax = entry->ebx = entry->ecx = 0;
747                 break;
748         case 0x80000008: {
749                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
750                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
751                 unsigned phys_as = entry->eax & 0xff;
752
753                 /*
754                  * Use bare metal's MAXPHADDR if the CPU doesn't report guest
755                  * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
756                  * guest version "applies only to guests using nested paging".
757                  */
758                 if (!g_phys_as || !tdp_enabled)
759                         g_phys_as = phys_as;
760
761                 entry->eax = g_phys_as | (virt_as << 8);
762                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
763                 entry->edx = 0;
764                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
765                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
766                 /*
767                  * AMD has separate bits for each SPEC_CTRL bit.
768                  * arch/x86/kernel/cpu/bugs.c is kind enough to
769                  * record that in cpufeatures so use them.
770                  */
771                 if (boot_cpu_has(X86_FEATURE_IBPB))
772                         entry->ebx |= F(AMD_IBPB);
773                 if (boot_cpu_has(X86_FEATURE_IBRS))
774                         entry->ebx |= F(AMD_IBRS);
775                 if (boot_cpu_has(X86_FEATURE_STIBP))
776                         entry->ebx |= F(AMD_STIBP);
777                 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
778                     boot_cpu_has(X86_FEATURE_AMD_SSBD))
779                         entry->ebx |= F(AMD_SSBD);
780                 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
781                         entry->ebx |= F(AMD_SSB_NO);
782                 /*
783                  * The preference is to use SPEC CTRL MSR instead of the
784                  * VIRT_SPEC MSR.
785                  */
786                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
787                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
788                         entry->ebx |= F(VIRT_SSBD);
789                 break;
790         }
791         case 0x80000019:
792                 entry->ecx = entry->edx = 0;
793                 break;
794         case 0x8000001a:
795                 entry->eax &= GENMASK(2, 0);
796                 entry->ebx = entry->ecx = entry->edx = 0;
797                 break;
798         case 0x8000001e:
799                 break;
800         /*Add support for Centaur's CPUID instruction*/
801         case 0xC0000000:
802                 /*Just support up to 0xC0000004 now*/
803                 entry->eax = min(entry->eax, 0xC0000004);
804                 break;
805         case 0xC0000001:
806                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
807                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
808                 break;
809         case 3: /* Processor serial number */
810         case 5: /* MONITOR/MWAIT */
811         case 0xC0000002:
812         case 0xC0000003:
813         case 0xC0000004:
814         default:
815                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
816                 break;
817         }
818
819         kvm_x86_ops->set_supported_cpuid(function, entry);
820
821         r = 0;
822
823 out:
824         put_cpu();
825
826         return r;
827 }
828
829 static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
830                          int *nent, int maxnent, unsigned int type)
831 {
832         if (*nent >= maxnent)
833                 return -E2BIG;
834
835         if (type == KVM_GET_EMULATED_CPUID)
836                 return __do_cpuid_func_emulated(entry, func, nent, maxnent);
837
838         return __do_cpuid_func(entry, func, nent, maxnent);
839 }
840
841 #undef F
842
843 struct kvm_cpuid_param {
844         u32 func;
845         bool (*qualifier)(const struct kvm_cpuid_param *param);
846 };
847
848 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
849 {
850         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
851 }
852
853 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
854                                  __u32 num_entries, unsigned int ioctl_type)
855 {
856         int i;
857         __u32 pad[3];
858
859         if (ioctl_type != KVM_GET_EMULATED_CPUID)
860                 return false;
861
862         /*
863          * We want to make sure that ->padding is being passed clean from
864          * userspace in case we want to use it for something in the future.
865          *
866          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
867          * have to give ourselves satisfied only with the emulated side. /me
868          * sheds a tear.
869          */
870         for (i = 0; i < num_entries; i++) {
871                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
872                         return true;
873
874                 if (pad[0] || pad[1] || pad[2])
875                         return true;
876         }
877         return false;
878 }
879
880 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
881                             struct kvm_cpuid_entry2 __user *entries,
882                             unsigned int type)
883 {
884         struct kvm_cpuid_entry2 *cpuid_entries;
885         int limit, nent = 0, r = -E2BIG, i;
886         u32 func;
887         static const struct kvm_cpuid_param param[] = {
888                 { .func = 0 },
889                 { .func = 0x80000000 },
890                 { .func = 0xC0000000, .qualifier = is_centaur_cpu },
891                 { .func = KVM_CPUID_SIGNATURE },
892         };
893
894         if (cpuid->nent < 1)
895                 goto out;
896         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
897                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
898
899         if (sanity_check_entries(entries, cpuid->nent, type))
900                 return -EINVAL;
901
902         r = -ENOMEM;
903         cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
904                                            cpuid->nent));
905         if (!cpuid_entries)
906                 goto out;
907
908         r = 0;
909         for (i = 0; i < ARRAY_SIZE(param); i++) {
910                 const struct kvm_cpuid_param *ent = &param[i];
911
912                 if (ent->qualifier && !ent->qualifier(ent))
913                         continue;
914
915                 r = do_cpuid_func(&cpuid_entries[nent], ent->func,
916                                   &nent, cpuid->nent, type);
917
918                 if (r)
919                         goto out_free;
920
921                 limit = cpuid_entries[nent - 1].eax;
922                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
923                         r = do_cpuid_func(&cpuid_entries[nent], func,
924                                           &nent, cpuid->nent, type);
925
926                 if (r)
927                         goto out_free;
928         }
929
930         r = -EFAULT;
931         if (copy_to_user(entries, cpuid_entries,
932                          nent * sizeof(struct kvm_cpuid_entry2)))
933                 goto out_free;
934         cpuid->nent = nent;
935         r = 0;
936
937 out_free:
938         vfree(cpuid_entries);
939 out:
940         return r;
941 }
942
943 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
944 {
945         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
946         struct kvm_cpuid_entry2 *ej;
947         int j = i;
948         int nent = vcpu->arch.cpuid_nent;
949
950         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
951         /* when no next entry is found, the current entry[i] is reselected */
952         do {
953                 j = (j + 1) % nent;
954                 ej = &vcpu->arch.cpuid_entries[j];
955         } while (ej->function != e->function);
956
957         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
958
959         return j;
960 }
961
962 /* find an entry with matching function, matching index (if needed), and that
963  * should be read next (if it's stateful) */
964 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
965         u32 function, u32 index)
966 {
967         if (e->function != function)
968                 return 0;
969         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
970                 return 0;
971         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
972             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
973                 return 0;
974         return 1;
975 }
976
977 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
978                                               u32 function, u32 index)
979 {
980         int i;
981         struct kvm_cpuid_entry2 *best = NULL;
982
983         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
984                 struct kvm_cpuid_entry2 *e;
985
986                 e = &vcpu->arch.cpuid_entries[i];
987                 if (is_matching_cpuid_entry(e, function, index)) {
988                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
989                                 move_to_next_stateful_cpuid_entry(vcpu, i);
990                         best = e;
991                         break;
992                 }
993         }
994         return best;
995 }
996 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
997
998 /*
999  * If the basic or extended CPUID leaf requested is higher than the
1000  * maximum supported basic or extended leaf, respectively, then it is
1001  * out of range.
1002  */
1003 static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
1004 {
1005         struct kvm_cpuid_entry2 *max;
1006
1007         max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1008         return max && function <= max->eax;
1009 }
1010
1011 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1012                u32 *ecx, u32 *edx, bool check_limit)
1013 {
1014         u32 function = *eax, index = *ecx;
1015         struct kvm_cpuid_entry2 *entry;
1016         struct kvm_cpuid_entry2 *max;
1017         bool found;
1018
1019         entry = kvm_find_cpuid_entry(vcpu, function, index);
1020         found = entry;
1021         /*
1022          * Intel CPUID semantics treats any query for an out-of-range
1023          * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1024          * requested. AMD CPUID semantics returns all zeroes for any
1025          * undefined leaf, whether or not the leaf is in range.
1026          */
1027         if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1028             !cpuid_function_in_range(vcpu, function)) {
1029                 max = kvm_find_cpuid_entry(vcpu, 0, 0);
1030                 if (max) {
1031                         function = max->eax;
1032                         entry = kvm_find_cpuid_entry(vcpu, function, index);
1033                 }
1034         }
1035         if (entry) {
1036                 *eax = entry->eax;
1037                 *ebx = entry->ebx;
1038                 *ecx = entry->ecx;
1039                 *edx = entry->edx;
1040         } else {
1041                 *eax = *ebx = *ecx = *edx = 0;
1042                 /*
1043                  * When leaf 0BH or 1FH is defined, CL is pass-through
1044                  * and EDX is always the x2APIC ID, even for undefined
1045                  * subleaves. Index 1 will exist iff the leaf is
1046                  * implemented, so we pass through CL iff leaf 1
1047                  * exists. EDX can be copied from any existing index.
1048                  */
1049                 if (function == 0xb || function == 0x1f) {
1050                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1051                         if (entry) {
1052                                 *ecx = index & 0xff;
1053                                 *edx = entry->edx;
1054                         }
1055                 }
1056         }
1057         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1058         return found;
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_cpuid);
1061
1062 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1063 {
1064         u32 eax, ebx, ecx, edx;
1065
1066         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1067                 return 1;
1068
1069         eax = kvm_rax_read(vcpu);
1070         ecx = kvm_rcx_read(vcpu);
1071         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1072         kvm_rax_write(vcpu, eax);
1073         kvm_rbx_write(vcpu, ebx);
1074         kvm_rcx_write(vcpu, ecx);
1075         kvm_rdx_write(vcpu, edx);
1076         return kvm_skip_emulated_instruction(vcpu);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);