GNU Linux-libre 4.4.283-gnu1
[releases.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (cpu_has_xsave && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         if (apic) {
84                 if (best->ecx & F(TSC_DEADLINE_TIMER))
85                         apic->lapic_timer.timer_mode_mask = 3 << 17;
86                 else
87                         apic->lapic_timer.timer_mode_mask = 1 << 17;
88         }
89
90         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
91         if (!best) {
92                 vcpu->arch.guest_supported_xcr0 = 0;
93                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
94         } else {
95                 vcpu->arch.guest_supported_xcr0 =
96                         (best->eax | ((u64)best->edx << 32)) &
97                         kvm_supported_xcr0();
98                 vcpu->arch.guest_xstate_size = best->ebx =
99                         xstate_required_size(vcpu->arch.xcr0, false);
100         }
101
102         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
103         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
104                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
105
106         kvm_x86_ops->fpu_activate(vcpu);
107
108         /*
109          * The existing code assumes virtual address is 48-bit in the canonical
110          * address checks; exit if it is ever changed.
111          */
112         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
113         if (best && ((best->eax & 0xff00) >> 8) != 48 &&
114                 ((best->eax & 0xff00) >> 8) != 0)
115                 return -EINVAL;
116
117         /* Update physical-address width */
118         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
119
120         kvm_pmu_refresh(vcpu);
121         return 0;
122 }
123
124 static int is_efer_nx(void)
125 {
126         unsigned long long efer = 0;
127
128         rdmsrl_safe(MSR_EFER, &efer);
129         return efer & EFER_NX;
130 }
131
132 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
133 {
134         int i;
135         struct kvm_cpuid_entry2 *e, *entry;
136
137         entry = NULL;
138         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
139                 e = &vcpu->arch.cpuid_entries[i];
140                 if (e->function == 0x80000001) {
141                         entry = e;
142                         break;
143                 }
144         }
145         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
146                 entry->edx &= ~F(NX);
147                 printk(KERN_INFO "kvm: guest NX capability removed\n");
148         }
149 }
150
151 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
152 {
153         struct kvm_cpuid_entry2 *best;
154
155         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
156         if (!best || best->eax < 0x80000008)
157                 goto not_found;
158         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
159         if (best)
160                 return best->eax & 0xff;
161 not_found:
162         return 36;
163 }
164 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
165
166 /* when an old userspace process fills a new kernel module */
167 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
168                              struct kvm_cpuid *cpuid,
169                              struct kvm_cpuid_entry __user *entries)
170 {
171         int r, i;
172         struct kvm_cpuid_entry *cpuid_entries;
173
174         r = -E2BIG;
175         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
176                 goto out;
177         r = -ENOMEM;
178         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
179         if (!cpuid_entries)
180                 goto out;
181         r = -EFAULT;
182         if (copy_from_user(cpuid_entries, entries,
183                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
184                 goto out_free;
185         for (i = 0; i < cpuid->nent; i++) {
186                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
187                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
188                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
189                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
190                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
191                 vcpu->arch.cpuid_entries[i].index = 0;
192                 vcpu->arch.cpuid_entries[i].flags = 0;
193                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
194                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
195                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
196         }
197         vcpu->arch.cpuid_nent = cpuid->nent;
198         cpuid_fix_nx_cap(vcpu);
199         kvm_apic_set_version(vcpu);
200         kvm_x86_ops->cpuid_update(vcpu);
201         r = kvm_update_cpuid(vcpu);
202
203 out_free:
204         vfree(cpuid_entries);
205 out:
206         return r;
207 }
208
209 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
210                               struct kvm_cpuid2 *cpuid,
211                               struct kvm_cpuid_entry2 __user *entries)
212 {
213         int r;
214
215         r = -E2BIG;
216         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
217                 goto out;
218         r = -EFAULT;
219         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
220                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
221                 goto out;
222         vcpu->arch.cpuid_nent = cpuid->nent;
223         kvm_apic_set_version(vcpu);
224         kvm_x86_ops->cpuid_update(vcpu);
225         r = kvm_update_cpuid(vcpu);
226 out:
227         return r;
228 }
229
230 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
231                               struct kvm_cpuid2 *cpuid,
232                               struct kvm_cpuid_entry2 __user *entries)
233 {
234         int r;
235
236         r = -E2BIG;
237         if (cpuid->nent < vcpu->arch.cpuid_nent)
238                 goto out;
239         r = -EFAULT;
240         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
241                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
242                 goto out;
243         return 0;
244
245 out:
246         cpuid->nent = vcpu->arch.cpuid_nent;
247         return r;
248 }
249
250 static void cpuid_mask(u32 *word, int wordnum)
251 {
252         *word &= boot_cpu_data.x86_capability[wordnum];
253 }
254
255 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
256                            u32 index)
257 {
258         entry->function = function;
259         entry->index = index;
260         cpuid_count(entry->function, entry->index,
261                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
262         entry->flags = 0;
263 }
264
265 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
266                                    u32 func, u32 index, int *nent, int maxnent)
267 {
268         switch (func) {
269         case 0:
270                 entry->eax = 7;
271                 ++*nent;
272                 break;
273         case 1:
274                 entry->ecx = F(MOVBE);
275                 ++*nent;
276                 break;
277         case 7:
278                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
279                 if (index == 0)
280                         entry->ecx = F(RDPID);
281                 ++*nent;
282         default:
283                 break;
284         }
285
286         entry->function = func;
287         entry->index = index;
288
289         return 0;
290 }
291
292 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
293                                  u32 index, int *nent, int maxnent)
294 {
295         int r;
296         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
297 #ifdef CONFIG_X86_64
298         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
299                                 ? F(GBPAGES) : 0;
300         unsigned f_lm = F(LM);
301 #else
302         unsigned f_gbpages = 0;
303         unsigned f_lm = 0;
304 #endif
305         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
306         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
307         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
308         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
309
310         /* cpuid 1.edx */
311         const u32 kvm_supported_word0_x86_features =
312                 F(FPU) | F(VME) | F(DE) | F(PSE) |
313                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
314                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
315                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
316                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
317                 0 /* Reserved, DS, ACPI */ | F(MMX) |
318                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
319                 0 /* HTT, TM, Reserved, PBE */;
320         /* cpuid 0x80000001.edx */
321         const u32 kvm_supported_word1_x86_features =
322                 F(FPU) | F(VME) | F(DE) | F(PSE) |
323                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
324                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
325                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
326                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
327                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
328                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
329                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
330         /* cpuid 1.ecx */
331         const u32 kvm_supported_word4_x86_features =
332                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
333                  * but *not* advertised to guests via CPUID ! */
334                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
335                 0 /* DS-CPL, VMX, SMX, EST */ |
336                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
337                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
338                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
339                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
340                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
341                 F(F16C) | F(RDRAND);
342         /* cpuid 0x80000001.ecx */
343         const u32 kvm_supported_word6_x86_features =
344                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
345                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
346                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
347                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
348
349         /* cpuid 0x80000008.ebx */
350         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
351                 F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
352                 F(AMD_SSB_NO) | F(AMD_STIBP);
353
354         /* cpuid 0xC0000001.edx */
355         const u32 kvm_supported_word5_x86_features =
356                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
357                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
358                 F(PMM) | F(PMM_EN);
359
360         /* cpuid 7.0.ebx */
361         const u32 kvm_supported_word9_x86_features =
362                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
363                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
364                 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
365                 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
366
367         /* cpuid 0xD.1.eax */
368         const u32 kvm_supported_word10_x86_features =
369                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
370
371         /* cpuid 7.0.edx*/
372         const u32 kvm_cpuid_7_0_edx_x86_features =
373                 F(SPEC_CTRL) | F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) |
374                 F(INTEL_STIBP) | F(MD_CLEAR);
375
376         /* all calls to cpuid_count() should be made on the same cpu */
377         get_cpu();
378
379         r = -E2BIG;
380
381         if (WARN_ON(*nent >= maxnent))
382                 goto out;
383
384         do_cpuid_1_ent(entry, function, index);
385         ++*nent;
386
387         switch (function) {
388         case 0:
389                 entry->eax = min(entry->eax, (u32)0xd);
390                 break;
391         case 1:
392                 entry->edx &= kvm_supported_word0_x86_features;
393                 cpuid_mask(&entry->edx, 0);
394                 entry->ecx &= kvm_supported_word4_x86_features;
395                 cpuid_mask(&entry->ecx, 4);
396                 /* we support x2apic emulation even if host does not support
397                  * it since we emulate x2apic in software */
398                 entry->ecx |= F(X2APIC);
399                 break;
400         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
401          * may return different values. This forces us to get_cpu() before
402          * issuing the first command, and also to emulate this annoying behavior
403          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
404         case 2: {
405                 int t, times = entry->eax & 0xff;
406
407                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
408                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
409                 for (t = 1; t < times; ++t) {
410                         if (*nent >= maxnent)
411                                 goto out;
412
413                         do_cpuid_1_ent(&entry[t], function, 0);
414                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
415                         ++*nent;
416                 }
417                 break;
418         }
419         /* function 4 has additional index. */
420         case 4: {
421                 int i, cache_type;
422
423                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424                 /* read more entries until cache_type is zero */
425                 for (i = 1; ; ++i) {
426                         if (*nent >= maxnent)
427                                 goto out;
428
429                         cache_type = entry[i - 1].eax & 0x1f;
430                         if (!cache_type)
431                                 break;
432                         do_cpuid_1_ent(&entry[i], function, i);
433                         entry[i].flags |=
434                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435                         ++*nent;
436                 }
437                 break;
438         }
439         case 6: /* Thermal management */
440                 entry->eax = 0x4; /* allow ARAT */
441                 entry->ebx = 0;
442                 entry->ecx = 0;
443                 entry->edx = 0;
444                 break;
445         case 7: {
446                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
447                 /* Mask ebx against host capability word 9 */
448                 if (index == 0) {
449                         entry->ebx &= kvm_supported_word9_x86_features;
450                         cpuid_mask(&entry->ebx, 9);
451                         // TSC_ADJUST is emulated
452                         entry->ebx |= F(TSC_ADJUST);
453                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
454                         cpuid_mask(&entry->edx, CPUID_7_EDX);
455                         if (boot_cpu_has(X86_FEATURE_IBPB) &&
456                             boot_cpu_has(X86_FEATURE_IBRS))
457                                 entry->edx |= F(SPEC_CTRL);
458                         if (boot_cpu_has(X86_FEATURE_STIBP))
459                                 entry->edx |= F(INTEL_STIBP);
460                         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
461                             boot_cpu_has(X86_FEATURE_AMD_SSBD))
462                                 entry->edx |= F(SPEC_CTRL_SSBD);
463                         /*
464                          * We emulate ARCH_CAPABILITIES in software even
465                          * if the host doesn't support it.
466                          */
467                         entry->edx |= F(ARCH_CAPABILITIES);
468                 } else {
469                         entry->ebx = 0;
470                         entry->edx = 0;
471                 }
472                 entry->eax = 0;
473                 entry->ecx = 0;
474                 break;
475         }
476         case 9:
477                 break;
478         case 0xa: { /* Architectural Performance Monitoring */
479                 struct x86_pmu_capability cap;
480                 union cpuid10_eax eax;
481                 union cpuid10_edx edx;
482
483                 perf_get_x86_pmu_capability(&cap);
484
485                 /*
486                  * Only support guest architectural pmu on a host
487                  * with architectural pmu.
488                  */
489                 if (!cap.version)
490                         memset(&cap, 0, sizeof(cap));
491
492                 eax.split.version_id = min(cap.version, 2);
493                 eax.split.num_counters = cap.num_counters_gp;
494                 eax.split.bit_width = cap.bit_width_gp;
495                 eax.split.mask_length = cap.events_mask_len;
496
497                 edx.split.num_counters_fixed = cap.num_counters_fixed;
498                 edx.split.bit_width_fixed = cap.bit_width_fixed;
499                 edx.split.reserved = 0;
500
501                 entry->eax = eax.full;
502                 entry->ebx = cap.events_mask;
503                 entry->ecx = 0;
504                 entry->edx = edx.full;
505                 break;
506         }
507         /* function 0xb has additional index. */
508         case 0xb: {
509                 int i, level_type;
510
511                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
512                 /* read more entries until level_type is zero */
513                 for (i = 1; ; ++i) {
514                         if (*nent >= maxnent)
515                                 goto out;
516
517                         level_type = entry[i - 1].ecx & 0xff00;
518                         if (!level_type)
519                                 break;
520                         do_cpuid_1_ent(&entry[i], function, i);
521                         entry[i].flags |=
522                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
523                         ++*nent;
524                 }
525                 break;
526         }
527         case 0xd: {
528                 int idx, i;
529                 u64 supported = kvm_supported_xcr0();
530
531                 entry->eax &= supported;
532                 entry->ebx = xstate_required_size(supported, false);
533                 entry->ecx = entry->ebx;
534                 entry->edx &= supported >> 32;
535                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
536                 if (!supported)
537                         break;
538
539                 for (idx = 1, i = 1; idx < 64; ++idx) {
540                         u64 mask = ((u64)1 << idx);
541                         if (*nent >= maxnent)
542                                 goto out;
543
544                         do_cpuid_1_ent(&entry[i], function, idx);
545                         if (idx == 1) {
546                                 entry[i].eax &= kvm_supported_word10_x86_features;
547                                 cpuid_mask(&entry[i].eax, 10);
548                                 entry[i].ebx = 0;
549                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
550                                         entry[i].ebx =
551                                                 xstate_required_size(supported,
552                                                                      true);
553                         } else {
554                                 if (entry[i].eax == 0 || !(supported & mask))
555                                         continue;
556                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
557                                         continue;
558                         }
559                         entry[i].ecx = 0;
560                         entry[i].edx = 0;
561                         entry[i].flags |=
562                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
563                         ++*nent;
564                         ++i;
565                 }
566                 break;
567         }
568         case KVM_CPUID_SIGNATURE: {
569                 static const char signature[12] = "KVMKVMKVM\0\0";
570                 const u32 *sigptr = (const u32 *)signature;
571                 entry->eax = KVM_CPUID_FEATURES;
572                 entry->ebx = sigptr[0];
573                 entry->ecx = sigptr[1];
574                 entry->edx = sigptr[2];
575                 break;
576         }
577         case KVM_CPUID_FEATURES:
578                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
579                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
580                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
581                              (1 << KVM_FEATURE_ASYNC_PF) |
582                              (1 << KVM_FEATURE_PV_EOI) |
583                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
584                              (1 << KVM_FEATURE_PV_UNHALT);
585
586                 if (sched_info_on())
587                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
588
589                 entry->ebx = 0;
590                 entry->ecx = 0;
591                 entry->edx = 0;
592                 break;
593         case 0x80000000:
594                 entry->eax = min(entry->eax, 0x8000001a);
595                 break;
596         case 0x80000001:
597                 entry->edx &= kvm_supported_word1_x86_features;
598                 cpuid_mask(&entry->edx, 1);
599                 entry->ecx &= kvm_supported_word6_x86_features;
600                 cpuid_mask(&entry->ecx, 6);
601                 break;
602         case 0x80000007: /* Advanced power management */
603                 /* invariant TSC is CPUID.80000007H:EDX[8] */
604                 entry->edx &= (1 << 8);
605                 /* mask against host */
606                 entry->edx &= boot_cpu_data.x86_power;
607                 entry->eax = entry->ebx = entry->ecx = 0;
608                 break;
609         case 0x80000008: {
610                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
611                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
612                 unsigned phys_as = entry->eax & 0xff;
613
614                 /*
615                  * Use bare metal's MAXPHADDR if the CPU doesn't report guest
616                  * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
617                  * guest version "applies only to guests using nested paging".
618                  */
619                 if (!g_phys_as || !tdp_enabled)
620                         g_phys_as = phys_as;
621
622                 entry->eax = g_phys_as | (virt_as << 8);
623                 entry->edx = 0;
624                 /*
625                  * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
626                  * hardware cpuid
627                  */
628                 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
629                         entry->ebx |= F(AMD_IBPB);
630                 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
631                         entry->ebx |= F(AMD_IBRS);
632                 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
633                         entry->ebx |= F(VIRT_SSBD);
634                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
635                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
636                 /*
637                  * The preference is to use SPEC CTRL MSR instead of the
638                  * VIRT_SPEC MSR.
639                  */
640                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
641                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
642                         entry->ebx |= F(VIRT_SSBD);
643                 break;
644         }
645         case 0x80000019:
646                 entry->ecx = entry->edx = 0;
647                 break;
648         case 0x8000001a:
649                 break;
650         case 0x8000001d:
651                 break;
652         /*Add support for Centaur's CPUID instruction*/
653         case 0xC0000000:
654                 /*Just support up to 0xC0000004 now*/
655                 entry->eax = min(entry->eax, 0xC0000004);
656                 break;
657         case 0xC0000001:
658                 entry->edx &= kvm_supported_word5_x86_features;
659                 cpuid_mask(&entry->edx, 5);
660                 break;
661         case 3: /* Processor serial number */
662         case 5: /* MONITOR/MWAIT */
663         case 0xC0000002:
664         case 0xC0000003:
665         case 0xC0000004:
666         default:
667                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
668                 break;
669         }
670
671         kvm_x86_ops->set_supported_cpuid(function, entry);
672
673         r = 0;
674
675 out:
676         put_cpu();
677
678         return r;
679 }
680
681 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
682                         u32 idx, int *nent, int maxnent, unsigned int type)
683 {
684         if (*nent >= maxnent)
685                 return -E2BIG;
686
687         if (type == KVM_GET_EMULATED_CPUID)
688                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
689
690         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
691 }
692
693 #undef F
694
695 struct kvm_cpuid_param {
696         u32 func;
697         u32 idx;
698         bool has_leaf_count;
699         bool (*qualifier)(const struct kvm_cpuid_param *param);
700 };
701
702 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
703 {
704         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
705 }
706
707 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
708                                  __u32 num_entries, unsigned int ioctl_type)
709 {
710         int i;
711         __u32 pad[3];
712
713         if (ioctl_type != KVM_GET_EMULATED_CPUID)
714                 return false;
715
716         /*
717          * We want to make sure that ->padding is being passed clean from
718          * userspace in case we want to use it for something in the future.
719          *
720          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
721          * have to give ourselves satisfied only with the emulated side. /me
722          * sheds a tear.
723          */
724         for (i = 0; i < num_entries; i++) {
725                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
726                         return true;
727
728                 if (pad[0] || pad[1] || pad[2])
729                         return true;
730         }
731         return false;
732 }
733
734 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
735                             struct kvm_cpuid_entry2 __user *entries,
736                             unsigned int type)
737 {
738         struct kvm_cpuid_entry2 *cpuid_entries;
739         int limit, nent = 0, r = -E2BIG, i;
740         u32 func;
741         static const struct kvm_cpuid_param param[] = {
742                 { .func = 0, .has_leaf_count = true },
743                 { .func = 0x80000000, .has_leaf_count = true },
744                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
745                 { .func = KVM_CPUID_SIGNATURE },
746                 { .func = KVM_CPUID_FEATURES },
747         };
748
749         if (cpuid->nent < 1)
750                 goto out;
751         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
752                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
753
754         if (sanity_check_entries(entries, cpuid->nent, type))
755                 return -EINVAL;
756
757         r = -ENOMEM;
758         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
759         if (!cpuid_entries)
760                 goto out;
761
762         r = 0;
763         for (i = 0; i < ARRAY_SIZE(param); i++) {
764                 const struct kvm_cpuid_param *ent = &param[i];
765
766                 if (ent->qualifier && !ent->qualifier(ent))
767                         continue;
768
769                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
770                                 &nent, cpuid->nent, type);
771
772                 if (r)
773                         goto out_free;
774
775                 if (!ent->has_leaf_count)
776                         continue;
777
778                 limit = cpuid_entries[nent - 1].eax;
779                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
780                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
781                                      &nent, cpuid->nent, type);
782
783                 if (r)
784                         goto out_free;
785         }
786
787         r = -EFAULT;
788         if (copy_to_user(entries, cpuid_entries,
789                          nent * sizeof(struct kvm_cpuid_entry2)))
790                 goto out_free;
791         cpuid->nent = nent;
792         r = 0;
793
794 out_free:
795         vfree(cpuid_entries);
796 out:
797         return r;
798 }
799
800 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
801 {
802         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
803         struct kvm_cpuid_entry2 *ej;
804         int j = i;
805         int nent = vcpu->arch.cpuid_nent;
806
807         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
808         /* when no next entry is found, the current entry[i] is reselected */
809         do {
810                 j = (j + 1) % nent;
811                 ej = &vcpu->arch.cpuid_entries[j];
812         } while (ej->function != e->function);
813
814         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
815
816         return j;
817 }
818
819 /* find an entry with matching function, matching index (if needed), and that
820  * should be read next (if it's stateful) */
821 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
822         u32 function, u32 index)
823 {
824         if (e->function != function)
825                 return 0;
826         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
827                 return 0;
828         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
829             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
830                 return 0;
831         return 1;
832 }
833
834 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
835                                               u32 function, u32 index)
836 {
837         int i;
838         struct kvm_cpuid_entry2 *best = NULL;
839
840         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
841                 struct kvm_cpuid_entry2 *e;
842
843                 e = &vcpu->arch.cpuid_entries[i];
844                 if (is_matching_cpuid_entry(e, function, index)) {
845                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
846                                 move_to_next_stateful_cpuid_entry(vcpu, i);
847                         best = e;
848                         break;
849                 }
850         }
851         return best;
852 }
853 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
854
855 /*
856  * If no match is found, check whether we exceed the vCPU's limit
857  * and return the content of the highest valid _standard_ leaf instead.
858  * This is to satisfy the CPUID specification.
859  */
860 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
861                                                   u32 function, u32 index)
862 {
863         struct kvm_cpuid_entry2 *maxlevel;
864
865         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
866         if (!maxlevel || maxlevel->eax >= function)
867                 return NULL;
868         if (function & 0x80000000) {
869                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
870                 if (!maxlevel)
871                         return NULL;
872         }
873         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
874 }
875
876 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
877 {
878         u32 function = *eax, index = *ecx;
879         struct kvm_cpuid_entry2 *best;
880
881         best = kvm_find_cpuid_entry(vcpu, function, index);
882
883         if (!best)
884                 best = check_cpuid_limit(vcpu, function, index);
885
886         if (best) {
887                 *eax = best->eax;
888                 *ebx = best->ebx;
889                 *ecx = best->ecx;
890                 *edx = best->edx;
891         } else
892                 *eax = *ebx = *ecx = *edx = 0;
893         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
894 }
895 EXPORT_SYMBOL_GPL(kvm_cpuid);
896
897 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
898 {
899         u32 function, eax, ebx, ecx, edx;
900
901         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
902         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
903         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
904         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
905         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
906         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
907         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
908         kvm_x86_ops->skip_emulated_instruction(vcpu);
909 }
910 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);