GNU Linux-libre 5.15.54-gnu
[releases.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
28 /*
29  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
30  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31  */
32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
33 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34
35 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
36 {
37         int feature_bit = 0;
38         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39
40         xstate_bv &= XFEATURE_MASK_EXTEND;
41         while (xstate_bv) {
42                 if (xstate_bv & 0x1) {
43                         u32 eax, ebx, ecx, edx, offset;
44                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
45                         offset = compacted ? ret : ebx;
46                         ret = max(ret, offset + eax);
47                 }
48
49                 xstate_bv >>= 1;
50                 feature_bit++;
51         }
52
53         return ret;
54 }
55
56 #define F feature_bit
57 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
58
59 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
60         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
61 {
62         struct kvm_cpuid_entry2 *e;
63         int i;
64
65         for (i = 0; i < nent; i++) {
66                 e = &entries[i];
67
68                 if (e->function == function &&
69                     (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
70                         return e;
71         }
72
73         return NULL;
74 }
75
76 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
77 {
78         struct kvm_cpuid_entry2 *best;
79
80         /*
81          * The existing code assumes virtual address is 48-bit or 57-bit in the
82          * canonical address checks; exit if it is ever changed.
83          */
84         best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
85         if (best) {
86                 int vaddr_bits = (best->eax & 0xff00) >> 8;
87
88                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
89                         return -EINVAL;
90         }
91
92         return 0;
93 }
94
95 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
96 {
97         struct kvm_cpuid_entry2 *best;
98
99         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
100
101         /*
102          * save the feature bitmap to avoid cpuid lookup for every PV
103          * operation
104          */
105         if (best)
106                 vcpu->arch.pv_cpuid.features = best->eax;
107 }
108
109 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
110 {
111         struct kvm_cpuid_entry2 *best;
112
113         best = kvm_find_cpuid_entry(vcpu, 1, 0);
114         if (best) {
115                 /* Update OSXSAVE bit */
116                 if (boot_cpu_has(X86_FEATURE_XSAVE))
117                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
118                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
119
120                 cpuid_entry_change(best, X86_FEATURE_APIC,
121                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
122         }
123
124         best = kvm_find_cpuid_entry(vcpu, 7, 0);
125         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
126                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
127                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
128
129         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
130         if (best)
131                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
132
133         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
134         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
135                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
136                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
137
138         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142
143         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
144                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
145                 if (best)
146                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
147                                            vcpu->arch.ia32_misc_enable_msr &
148                                            MSR_IA32_MISC_ENABLE_MWAIT);
149         }
150 }
151 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
152
153 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
154 {
155         struct kvm_lapic *apic = vcpu->arch.apic;
156         struct kvm_cpuid_entry2 *best;
157
158         best = kvm_find_cpuid_entry(vcpu, 1, 0);
159         if (best && apic) {
160                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
161                         apic->lapic_timer.timer_mode_mask = 3 << 17;
162                 else
163                         apic->lapic_timer.timer_mode_mask = 1 << 17;
164
165                 kvm_apic_set_version(vcpu);
166         }
167
168         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
169         if (!best)
170                 vcpu->arch.guest_supported_xcr0 = 0;
171         else
172                 vcpu->arch.guest_supported_xcr0 =
173                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
174
175         /*
176          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
177          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
178          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
179          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
180          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
181          * '1' even on CPUs that don't support XSAVE.
182          */
183         best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
184         if (best) {
185                 best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
186                 best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
187                 best->ecx |= XFEATURE_MASK_FPSSE;
188         }
189
190         kvm_update_pv_runtime(vcpu);
191
192         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
193         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
194
195         kvm_pmu_refresh(vcpu);
196         vcpu->arch.cr4_guest_rsvd_bits =
197             __cr4_reserved_bits(guest_cpuid_has, vcpu);
198
199         kvm_hv_set_cpuid(vcpu);
200
201         /* Invoke the vendor callback only after the above state is updated. */
202         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
203
204         /*
205          * Except for the MMU, which needs to do its thing any vendor specific
206          * adjustments to the reserved GPA bits.
207          */
208         kvm_mmu_after_set_cpuid(vcpu);
209 }
210
211 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
212 {
213         struct kvm_cpuid_entry2 *best;
214
215         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
216         if (!best || best->eax < 0x80000008)
217                 goto not_found;
218         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
219         if (best)
220                 return best->eax & 0xff;
221 not_found:
222         return 36;
223 }
224
225 /*
226  * This "raw" version returns the reserved GPA bits without any adjustments for
227  * encryption technologies that usurp bits.  The raw mask should be used if and
228  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
229  */
230 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
231 {
232         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
233 }
234
235 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
236                         int nent)
237 {
238     int r;
239
240     r = kvm_check_cpuid(e2, nent);
241     if (r)
242         return r;
243
244     kvfree(vcpu->arch.cpuid_entries);
245     vcpu->arch.cpuid_entries = e2;
246     vcpu->arch.cpuid_nent = nent;
247
248     kvm_update_cpuid_runtime(vcpu);
249     kvm_vcpu_after_set_cpuid(vcpu);
250
251     return 0;
252 }
253
254 /* when an old userspace process fills a new kernel module */
255 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
256                              struct kvm_cpuid *cpuid,
257                              struct kvm_cpuid_entry __user *entries)
258 {
259         int r, i;
260         struct kvm_cpuid_entry *e = NULL;
261         struct kvm_cpuid_entry2 *e2 = NULL;
262
263         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
264                 return -E2BIG;
265
266         if (cpuid->nent) {
267                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
268                 if (IS_ERR(e))
269                         return PTR_ERR(e);
270
271                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
272                 if (!e2) {
273                         r = -ENOMEM;
274                         goto out_free_cpuid;
275                 }
276         }
277         for (i = 0; i < cpuid->nent; i++) {
278                 e2[i].function = e[i].function;
279                 e2[i].eax = e[i].eax;
280                 e2[i].ebx = e[i].ebx;
281                 e2[i].ecx = e[i].ecx;
282                 e2[i].edx = e[i].edx;
283                 e2[i].index = 0;
284                 e2[i].flags = 0;
285                 e2[i].padding[0] = 0;
286                 e2[i].padding[1] = 0;
287                 e2[i].padding[2] = 0;
288         }
289
290         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
291         if (r)
292                 kvfree(e2);
293
294 out_free_cpuid:
295         kvfree(e);
296
297         return r;
298 }
299
300 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
301                               struct kvm_cpuid2 *cpuid,
302                               struct kvm_cpuid_entry2 __user *entries)
303 {
304         struct kvm_cpuid_entry2 *e2 = NULL;
305         int r;
306
307         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
308                 return -E2BIG;
309
310         if (cpuid->nent) {
311                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
312                 if (IS_ERR(e2))
313                         return PTR_ERR(e2);
314         }
315
316         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
317         if (r)
318                 kvfree(e2);
319
320         return r;
321 }
322
323 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
324                               struct kvm_cpuid2 *cpuid,
325                               struct kvm_cpuid_entry2 __user *entries)
326 {
327         int r;
328
329         r = -E2BIG;
330         if (cpuid->nent < vcpu->arch.cpuid_nent)
331                 goto out;
332         r = -EFAULT;
333         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
334                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
335                 goto out;
336         return 0;
337
338 out:
339         cpuid->nent = vcpu->arch.cpuid_nent;
340         return r;
341 }
342
343 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
344 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
345 {
346         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
347         struct kvm_cpuid_entry2 entry;
348
349         reverse_cpuid_check(leaf);
350
351         cpuid_count(cpuid.function, cpuid.index,
352                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
353
354         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
355 }
356
357 static __always_inline
358 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
359 {
360         /* Use kvm_cpu_cap_mask for non-scattered leafs. */
361         BUILD_BUG_ON(leaf < NCAPINTS);
362
363         kvm_cpu_caps[leaf] = mask;
364
365         __kvm_cpu_cap_mask(leaf);
366 }
367
368 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
369 {
370         /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
371         BUILD_BUG_ON(leaf >= NCAPINTS);
372
373         kvm_cpu_caps[leaf] &= mask;
374
375         __kvm_cpu_cap_mask(leaf);
376 }
377
378 void kvm_set_cpu_caps(void)
379 {
380 #ifdef CONFIG_X86_64
381         unsigned int f_gbpages = F(GBPAGES);
382         unsigned int f_lm = F(LM);
383 #else
384         unsigned int f_gbpages = 0;
385         unsigned int f_lm = 0;
386 #endif
387         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
388
389         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
390                      sizeof(boot_cpu_data.x86_capability));
391
392         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
393                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
394
395         kvm_cpu_cap_mask(CPUID_1_ECX,
396                 /*
397                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
398                  * advertised to guests via CPUID!
399                  */
400                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
401                 0 /* DS-CPL, VMX, SMX, EST */ |
402                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
403                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
404                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
405                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
406                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
407                 F(F16C) | F(RDRAND)
408         );
409         /* KVM emulates x2apic in software irrespective of host support. */
410         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
411
412         kvm_cpu_cap_mask(CPUID_1_EDX,
413                 F(FPU) | F(VME) | F(DE) | F(PSE) |
414                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
415                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
416                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
417                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
418                 0 /* Reserved, DS, ACPI */ | F(MMX) |
419                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
420                 0 /* HTT, TM, Reserved, PBE */
421         );
422
423         kvm_cpu_cap_mask(CPUID_7_0_EBX,
424                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
425                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
426                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
427                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
428                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
429                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
430                 F(AVX512VL));
431
432         kvm_cpu_cap_mask(CPUID_7_ECX,
433                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
434                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
435                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
436                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
437                 F(SGX_LC) | F(BUS_LOCK_DETECT)
438         );
439         /* Set LA57 based on hardware capability. */
440         if (cpuid_ecx(7) & F(LA57))
441                 kvm_cpu_cap_set(X86_FEATURE_LA57);
442
443         /*
444          * PKU not yet implemented for shadow paging and requires OSPKE
445          * to be set on the host. Clear it if that is not the case
446          */
447         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
448                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
449
450         kvm_cpu_cap_mask(CPUID_7_EDX,
451                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
452                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
453                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
454                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
455         );
456
457         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
458         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
459         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
460
461         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
462                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
463         if (boot_cpu_has(X86_FEATURE_STIBP))
464                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
465         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
466                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
467
468         kvm_cpu_cap_mask(CPUID_7_1_EAX,
469                 F(AVX_VNNI) | F(AVX512_BF16)
470         );
471
472         kvm_cpu_cap_mask(CPUID_D_1_EAX,
473                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
474         );
475
476         kvm_cpu_cap_init_scattered(CPUID_12_EAX,
477                 SF(SGX1) | SF(SGX2)
478         );
479
480         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
481                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
482                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
483                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
484                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
485                 F(TOPOEXT) | F(PERFCTR_CORE)
486         );
487
488         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
489                 F(FPU) | F(VME) | F(DE) | F(PSE) |
490                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
491                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
492                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
493                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
494                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
495                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
496                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
497         );
498
499         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
500                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
501
502         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
503                 F(CLZERO) | F(XSAVEERPTR) |
504                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
505                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
506         );
507
508         /*
509          * AMD has separate bits for each SPEC_CTRL bit.
510          * arch/x86/kernel/cpu/bugs.c is kind enough to
511          * record that in cpufeatures so use them.
512          */
513         if (boot_cpu_has(X86_FEATURE_IBPB))
514                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
515         if (boot_cpu_has(X86_FEATURE_IBRS))
516                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
517         if (boot_cpu_has(X86_FEATURE_STIBP))
518                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
519         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
520                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
521         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
522                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
523         /*
524          * The preference is to use SPEC CTRL MSR instead of the
525          * VIRT_SPEC MSR.
526          */
527         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
528             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
529                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
530
531         /*
532          * Hide all SVM features by default, SVM will set the cap bits for
533          * features it emulates and/or exposes for L1.
534          */
535         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
536
537         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
538                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
539                 F(SME_COHERENT));
540
541         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
542                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
543                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
544                 F(PMM) | F(PMM_EN)
545         );
546
547         /*
548          * Hide RDTSCP and RDPID if either feature is reported as supported but
549          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
550          * should never happen, but the guest will likely crash if RDTSCP or
551          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
552          * the past.  For example, the sanity check may fire if this instance of
553          * KVM is running as L1 on top of an older, broken KVM.
554          */
555         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
556                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
557                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
558                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
559                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
560         }
561 }
562 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
563
564 struct kvm_cpuid_array {
565         struct kvm_cpuid_entry2 *entries;
566         int maxnent;
567         int nent;
568 };
569
570 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
571                                               u32 function, u32 index)
572 {
573         struct kvm_cpuid_entry2 *entry;
574
575         if (array->nent >= array->maxnent)
576                 return NULL;
577
578         entry = &array->entries[array->nent++];
579
580         entry->function = function;
581         entry->index = index;
582         entry->flags = 0;
583
584         cpuid_count(entry->function, entry->index,
585                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
586
587         switch (function) {
588         case 4:
589         case 7:
590         case 0xb:
591         case 0xd:
592         case 0xf:
593         case 0x10:
594         case 0x12:
595         case 0x14:
596         case 0x17:
597         case 0x18:
598         case 0x1f:
599         case 0x8000001d:
600                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
601                 break;
602         }
603
604         return entry;
605 }
606
607 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
608 {
609         struct kvm_cpuid_entry2 *entry;
610
611         if (array->nent >= array->maxnent)
612                 return -E2BIG;
613
614         entry = &array->entries[array->nent];
615         entry->function = func;
616         entry->index = 0;
617         entry->flags = 0;
618
619         switch (func) {
620         case 0:
621                 entry->eax = 7;
622                 ++array->nent;
623                 break;
624         case 1:
625                 entry->ecx = F(MOVBE);
626                 ++array->nent;
627                 break;
628         case 7:
629                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
630                 entry->eax = 0;
631                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
632                         entry->ecx = F(RDPID);
633                 ++array->nent;
634                 break;
635         default:
636                 break;
637         }
638
639         return 0;
640 }
641
642 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
643 {
644         struct kvm_cpuid_entry2 *entry;
645         int r, i, max_idx;
646
647         /* all calls to cpuid_count() should be made on the same cpu */
648         get_cpu();
649
650         r = -E2BIG;
651
652         entry = do_host_cpuid(array, function, 0);
653         if (!entry)
654                 goto out;
655
656         switch (function) {
657         case 0:
658                 /* Limited to the highest leaf implemented in KVM. */
659                 entry->eax = min(entry->eax, 0x1fU);
660                 break;
661         case 1:
662                 cpuid_entry_override(entry, CPUID_1_EDX);
663                 cpuid_entry_override(entry, CPUID_1_ECX);
664                 break;
665         case 2:
666                 /*
667                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
668                  * CPUID(function=2, index=0) may return different results each
669                  * time, with the least-significant byte in EAX enumerating the
670                  * number of times software should do CPUID(2, 0).
671                  *
672                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
673                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
674                  * return 01H. Software should ignore this value and not
675                  * interpret it as an informational descriptor", while AMD's
676                  * APM states that CPUID(2) is reserved.
677                  *
678                  * WARN if a frankenstein CPU that supports virtualization and
679                  * a stateful CPUID.0x2 is encountered.
680                  */
681                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
682                 break;
683         /* functions 4 and 0x8000001d have additional index. */
684         case 4:
685         case 0x8000001d:
686                 /*
687                  * Read entries until the cache type in the previous entry is
688                  * zero, i.e. indicates an invalid entry.
689                  */
690                 for (i = 1; entry->eax & 0x1f; ++i) {
691                         entry = do_host_cpuid(array, function, i);
692                         if (!entry)
693                                 goto out;
694                 }
695                 break;
696         case 6: /* Thermal management */
697                 entry->eax = 0x4; /* allow ARAT */
698                 entry->ebx = 0;
699                 entry->ecx = 0;
700                 entry->edx = 0;
701                 break;
702         /* function 7 has additional index. */
703         case 7:
704                 entry->eax = min(entry->eax, 1u);
705                 cpuid_entry_override(entry, CPUID_7_0_EBX);
706                 cpuid_entry_override(entry, CPUID_7_ECX);
707                 cpuid_entry_override(entry, CPUID_7_EDX);
708
709                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
710                 if (entry->eax == 1) {
711                         entry = do_host_cpuid(array, function, 1);
712                         if (!entry)
713                                 goto out;
714
715                         cpuid_entry_override(entry, CPUID_7_1_EAX);
716                         entry->ebx = 0;
717                         entry->ecx = 0;
718                         entry->edx = 0;
719                 }
720                 break;
721         case 9:
722                 break;
723         case 0xa: { /* Architectural Performance Monitoring */
724                 struct x86_pmu_capability cap;
725                 union cpuid10_eax eax;
726                 union cpuid10_edx edx;
727
728                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
729                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
730                         break;
731                 }
732
733                 perf_get_x86_pmu_capability(&cap);
734
735                 /*
736                  * Only support guest architectural pmu on a host
737                  * with architectural pmu.
738                  */
739                 if (!cap.version)
740                         memset(&cap, 0, sizeof(cap));
741
742                 eax.split.version_id = min(cap.version, 2);
743                 eax.split.num_counters = cap.num_counters_gp;
744                 eax.split.bit_width = cap.bit_width_gp;
745                 eax.split.mask_length = cap.events_mask_len;
746
747                 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
748                 edx.split.bit_width_fixed = cap.bit_width_fixed;
749                 if (cap.version)
750                         edx.split.anythread_deprecated = 1;
751                 edx.split.reserved1 = 0;
752                 edx.split.reserved2 = 0;
753
754                 entry->eax = eax.full;
755                 entry->ebx = cap.events_mask;
756                 entry->ecx = 0;
757                 entry->edx = edx.full;
758                 break;
759         }
760         /*
761          * Per Intel's SDM, the 0x1f is a superset of 0xb,
762          * thus they can be handled by common code.
763          */
764         case 0x1f:
765         case 0xb:
766                 /*
767                  * Populate entries until the level type (ECX[15:8]) of the
768                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
769                  * the starting entry, filled by the primary do_host_cpuid().
770                  */
771                 for (i = 1; entry->ecx & 0xff00; ++i) {
772                         entry = do_host_cpuid(array, function, i);
773                         if (!entry)
774                                 goto out;
775                 }
776                 break;
777         case 0xd:
778                 entry->eax &= supported_xcr0;
779                 entry->ebx = xstate_required_size(supported_xcr0, false);
780                 entry->ecx = entry->ebx;
781                 entry->edx &= supported_xcr0 >> 32;
782                 if (!supported_xcr0)
783                         break;
784
785                 entry = do_host_cpuid(array, function, 1);
786                 if (!entry)
787                         goto out;
788
789                 cpuid_entry_override(entry, CPUID_D_1_EAX);
790                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
791                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
792                                                           true);
793                 else {
794                         WARN_ON_ONCE(supported_xss != 0);
795                         entry->ebx = 0;
796                 }
797                 entry->ecx &= supported_xss;
798                 entry->edx &= supported_xss >> 32;
799
800                 for (i = 2; i < 64; ++i) {
801                         bool s_state;
802                         if (supported_xcr0 & BIT_ULL(i))
803                                 s_state = false;
804                         else if (supported_xss & BIT_ULL(i))
805                                 s_state = true;
806                         else
807                                 continue;
808
809                         entry = do_host_cpuid(array, function, i);
810                         if (!entry)
811                                 goto out;
812
813                         /*
814                          * The supported check above should have filtered out
815                          * invalid sub-leafs.  Only valid sub-leafs should
816                          * reach this point, and they should have a non-zero
817                          * save state size.  Furthermore, check whether the
818                          * processor agrees with supported_xcr0/supported_xss
819                          * on whether this is an XCR0- or IA32_XSS-managed area.
820                          */
821                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
822                                 --array->nent;
823                                 continue;
824                         }
825                         entry->edx = 0;
826                 }
827                 break;
828         case 0x12:
829                 /* Intel SGX */
830                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
831                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
832                         break;
833                 }
834
835                 /*
836                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
837                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
838                  * are restricted by kernel and KVM capabilities (like most
839                  * feature flags), while enclave size is unrestricted.
840                  */
841                 cpuid_entry_override(entry, CPUID_12_EAX);
842                 entry->ebx &= SGX_MISC_EXINFO;
843
844                 entry = do_host_cpuid(array, function, 1);
845                 if (!entry)
846                         goto out;
847
848                 /*
849                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
850                  * feature flags.  Advertise all supported flags, including
851                  * privileged attributes that require explicit opt-in from
852                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
853                  * expected to derive it from supported XCR0.
854                  */
855                 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
856                               SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
857                               SGX_ATTR_KSS;
858                 entry->ebx &= 0;
859                 break;
860         /* Intel PT */
861         case 0x14:
862                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
863                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
864                         break;
865                 }
866
867                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
868                         if (!do_host_cpuid(array, function, i))
869                                 goto out;
870                 }
871                 break;
872         case KVM_CPUID_SIGNATURE: {
873                 static const char signature[12] = "KVMKVMKVM\0\0";
874                 const u32 *sigptr = (const u32 *)signature;
875                 entry->eax = KVM_CPUID_FEATURES;
876                 entry->ebx = sigptr[0];
877                 entry->ecx = sigptr[1];
878                 entry->edx = sigptr[2];
879                 break;
880         }
881         case KVM_CPUID_FEATURES:
882                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
883                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
884                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
885                              (1 << KVM_FEATURE_ASYNC_PF) |
886                              (1 << KVM_FEATURE_PV_EOI) |
887                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
888                              (1 << KVM_FEATURE_PV_UNHALT) |
889                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
890                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
891                              (1 << KVM_FEATURE_PV_SEND_IPI) |
892                              (1 << KVM_FEATURE_POLL_CONTROL) |
893                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
894                              (1 << KVM_FEATURE_ASYNC_PF_INT);
895
896                 if (sched_info_on())
897                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
898
899                 entry->ebx = 0;
900                 entry->ecx = 0;
901                 entry->edx = 0;
902                 break;
903         case 0x80000000:
904                 entry->eax = min(entry->eax, 0x8000001f);
905                 break;
906         case 0x80000001:
907                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
908                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
909                 break;
910         case 0x80000006:
911                 /* L2 cache and TLB: pass through host info. */
912                 break;
913         case 0x80000007: /* Advanced power management */
914                 /* invariant TSC is CPUID.80000007H:EDX[8] */
915                 entry->edx &= (1 << 8);
916                 /* mask against host */
917                 entry->edx &= boot_cpu_data.x86_power;
918                 entry->eax = entry->ebx = entry->ecx = 0;
919                 break;
920         case 0x80000008: {
921                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
922                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
923                 unsigned phys_as = entry->eax & 0xff;
924
925                 /*
926                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
927                  * the guest operates in the same PA space as the host, i.e.
928                  * reductions in MAXPHYADDR for memory encryption affect shadow
929                  * paging, too.
930                  *
931                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
932                  * provided, use the raw bare metal MAXPHYADDR as reductions to
933                  * the HPAs do not affect GPAs.
934                  */
935                 if (!tdp_enabled)
936                         g_phys_as = boot_cpu_data.x86_phys_bits;
937                 else if (!g_phys_as)
938                         g_phys_as = phys_as;
939
940                 entry->eax = g_phys_as | (virt_as << 8);
941                 entry->edx = 0;
942                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
943                 break;
944         }
945         case 0x8000000A:
946                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
947                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
948                         break;
949                 }
950                 entry->eax = 1; /* SVM revision 1 */
951                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
952                                    ASID emulation to nested SVM */
953                 entry->ecx = 0; /* Reserved */
954                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
955                 break;
956         case 0x80000019:
957                 entry->ecx = entry->edx = 0;
958                 break;
959         case 0x8000001a:
960         case 0x8000001e:
961                 break;
962         case 0x8000001F:
963                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
964                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
965                 } else {
966                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
967
968                         /*
969                          * Enumerate '0' for "PA bits reduction", the adjusted
970                          * MAXPHYADDR is enumerated directly (see 0x80000008).
971                          */
972                         entry->ebx &= ~GENMASK(11, 6);
973                 }
974                 break;
975         /*Add support for Centaur's CPUID instruction*/
976         case 0xC0000000:
977                 /*Just support up to 0xC0000004 now*/
978                 entry->eax = min(entry->eax, 0xC0000004);
979                 break;
980         case 0xC0000001:
981                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
982                 break;
983         case 3: /* Processor serial number */
984         case 5: /* MONITOR/MWAIT */
985         case 0xC0000002:
986         case 0xC0000003:
987         case 0xC0000004:
988         default:
989                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
990                 break;
991         }
992
993         r = 0;
994
995 out:
996         put_cpu();
997
998         return r;
999 }
1000
1001 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1002                          unsigned int type)
1003 {
1004         if (type == KVM_GET_EMULATED_CPUID)
1005                 return __do_cpuid_func_emulated(array, func);
1006
1007         return __do_cpuid_func(array, func);
1008 }
1009
1010 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1011
1012 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1013                           unsigned int type)
1014 {
1015         u32 limit;
1016         int r;
1017
1018         if (func == CENTAUR_CPUID_SIGNATURE &&
1019             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1020                 return 0;
1021
1022         r = do_cpuid_func(array, func, type);
1023         if (r)
1024                 return r;
1025
1026         limit = array->entries[array->nent - 1].eax;
1027         for (func = func + 1; func <= limit; ++func) {
1028                 r = do_cpuid_func(array, func, type);
1029                 if (r)
1030                         break;
1031         }
1032
1033         return r;
1034 }
1035
1036 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1037                                  __u32 num_entries, unsigned int ioctl_type)
1038 {
1039         int i;
1040         __u32 pad[3];
1041
1042         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1043                 return false;
1044
1045         /*
1046          * We want to make sure that ->padding is being passed clean from
1047          * userspace in case we want to use it for something in the future.
1048          *
1049          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1050          * have to give ourselves satisfied only with the emulated side. /me
1051          * sheds a tear.
1052          */
1053         for (i = 0; i < num_entries; i++) {
1054                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1055                         return true;
1056
1057                 if (pad[0] || pad[1] || pad[2])
1058                         return true;
1059         }
1060         return false;
1061 }
1062
1063 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1064                             struct kvm_cpuid_entry2 __user *entries,
1065                             unsigned int type)
1066 {
1067         static const u32 funcs[] = {
1068                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1069         };
1070
1071         struct kvm_cpuid_array array = {
1072                 .nent = 0,
1073         };
1074         int r, i;
1075
1076         if (cpuid->nent < 1)
1077                 return -E2BIG;
1078         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1079                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1080
1081         if (sanity_check_entries(entries, cpuid->nent, type))
1082                 return -EINVAL;
1083
1084         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1085                                            cpuid->nent));
1086         if (!array.entries)
1087                 return -ENOMEM;
1088
1089         array.maxnent = cpuid->nent;
1090
1091         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1092                 r = get_cpuid_func(&array, funcs[i], type);
1093                 if (r)
1094                         goto out_free;
1095         }
1096         cpuid->nent = array.nent;
1097
1098         if (copy_to_user(entries, array.entries,
1099                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1100                 r = -EFAULT;
1101
1102 out_free:
1103         vfree(array.entries);
1104         return r;
1105 }
1106
1107 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1108                                               u32 function, u32 index)
1109 {
1110         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1111                                  function, index);
1112 }
1113 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1114
1115 /*
1116  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1117  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1118  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1119  * range.  Centaur/VIA follows Intel semantics.
1120  *
1121  * A leaf is considered out-of-range if its function is higher than the maximum
1122  * supported leaf of its associated class or if its associated class does not
1123  * exist.
1124  *
1125  * There are three primary classes to be considered, with their respective
1126  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1127  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1128  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1129  *
1130  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1131  *  - Hypervisor: 0x40000000 - 0x4fffffff
1132  *  - Extended:   0x80000000 - 0xbfffffff
1133  *  - Centaur:    0xc0000000 - 0xcfffffff
1134  *
1135  * The Hypervisor class is further subdivided into sub-classes that each act as
1136  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1137  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1138  * CPUID sub-classes are:
1139  *
1140  *  - HyperV:     0x40000000 - 0x400000ff
1141  *  - KVM:        0x40000100 - 0x400001ff
1142  */
1143 static struct kvm_cpuid_entry2 *
1144 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1145 {
1146         struct kvm_cpuid_entry2 *basic, *class;
1147         u32 function = *fn_ptr;
1148
1149         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1150         if (!basic)
1151                 return NULL;
1152
1153         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1154             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1155                 return NULL;
1156
1157         if (function >= 0x40000000 && function <= 0x4fffffff)
1158                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1159         else if (function >= 0xc0000000)
1160                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1161         else
1162                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1163
1164         if (class && function <= class->eax)
1165                 return NULL;
1166
1167         /*
1168          * Leaf specific adjustments are also applied when redirecting to the
1169          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1170          * entry for CPUID.0xb.index (see below), then the output value for EDX
1171          * needs to be pulled from CPUID.0xb.1.
1172          */
1173         *fn_ptr = basic->eax;
1174
1175         /*
1176          * The class does not exist or the requested function is out of range;
1177          * the effective CPUID entry is the max basic leaf.  Note, the index of
1178          * the original requested leaf is observed!
1179          */
1180         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1181 }
1182
1183 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1184                u32 *ecx, u32 *edx, bool exact_only)
1185 {
1186         u32 orig_function = *eax, function = *eax, index = *ecx;
1187         struct kvm_cpuid_entry2 *entry;
1188         bool exact, used_max_basic = false;
1189
1190         entry = kvm_find_cpuid_entry(vcpu, function, index);
1191         exact = !!entry;
1192
1193         if (!entry && !exact_only) {
1194                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1195                 used_max_basic = !!entry;
1196         }
1197
1198         if (entry) {
1199                 *eax = entry->eax;
1200                 *ebx = entry->ebx;
1201                 *ecx = entry->ecx;
1202                 *edx = entry->edx;
1203                 if (function == 7 && index == 0) {
1204                         u64 data;
1205                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1206                             (data & TSX_CTRL_CPUID_CLEAR))
1207                                 *ebx &= ~(F(RTM) | F(HLE));
1208                 }
1209         } else {
1210                 *eax = *ebx = *ecx = *edx = 0;
1211                 /*
1212                  * When leaf 0BH or 1FH is defined, CL is pass-through
1213                  * and EDX is always the x2APIC ID, even for undefined
1214                  * subleaves. Index 1 will exist iff the leaf is
1215                  * implemented, so we pass through CL iff leaf 1
1216                  * exists. EDX can be copied from any existing index.
1217                  */
1218                 if (function == 0xb || function == 0x1f) {
1219                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1220                         if (entry) {
1221                                 *ecx = index & 0xff;
1222                                 *edx = entry->edx;
1223                         }
1224                 }
1225         }
1226         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1227                         used_max_basic);
1228         return exact;
1229 }
1230 EXPORT_SYMBOL_GPL(kvm_cpuid);
1231
1232 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1233 {
1234         u32 eax, ebx, ecx, edx;
1235
1236         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1237                 return 1;
1238
1239         eax = kvm_rax_read(vcpu);
1240         ecx = kvm_rcx_read(vcpu);
1241         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1242         kvm_rax_write(vcpu, eax);
1243         kvm_rbx_write(vcpu, ebx);
1244         kvm_rcx_write(vcpu, ecx);
1245         kvm_rdx_write(vcpu, edx);
1246         return kvm_skip_emulated_instruction(vcpu);
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);