GNU Linux-libre 6.8.7-gnu
[releases.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41         int feature_bit = 0;
42         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44         xstate_bv &= XFEATURE_MASK_EXTEND;
45         while (xstate_bv) {
46                 if (xstate_bv & 0x1) {
47                         u32 eax, ebx, ecx, edx, offset;
48                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49                         /* ECX[1]: 64B alignment in compacted form */
50                         if (compacted)
51                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52                         else
53                                 offset = ebx;
54                         ret = max(ret, offset + eax);
55                 }
56
57                 xstate_bv >>= 1;
58                 feature_bit++;
59         }
60
61         return ret;
62 }
63
64 #define F feature_bit
65
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name)                                                \
68 ({                                                              \
69         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
70         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
71 })
72
73 /*
74  * Magic value used by KVM when querying userspace-provided CPUID entries and
75  * doesn't care about the CPIUD index because the index of the function in
76  * question is not significant.  Note, this magic value must have at least one
77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78  * to avoid false positives when processing guest CPUID input.
79  */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85         struct kvm_cpuid_entry2 *e;
86         int i;
87
88         /*
89          * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90          * with IRQs disabled is disallowed.  The CPUID model can legitimately
91          * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92          * typically disabled in KVM only when KVM is in a performance critical
93          * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94          * if this rule is violated, this assertion is purely to flag potential
95          * performance issues.  If this fires, consider moving the lookup out
96          * of the hotpath, e.g. by caching information during CPUID updates.
97          */
98         lockdep_assert_irqs_enabled();
99
100         for (i = 0; i < nent; i++) {
101                 e = &entries[i];
102
103                 if (e->function != function)
104                         continue;
105
106                 /*
107                  * If the index isn't significant, use the first entry with a
108                  * matching function.  It's userspace's responsibility to not
109                  * provide "duplicate" entries in all cases.
110                  */
111                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112                         return e;
113
114
115                 /*
116                  * Similarly, use the first matching entry if KVM is doing a
117                  * lookup (as opposed to emulating CPUID) for a function that's
118                  * architecturally defined as not having a significant index.
119                  */
120                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121                         /*
122                          * Direct lookups from KVM should not diverge from what
123                          * KVM defines internally (the architectural behavior).
124                          */
125                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
126                         return e;
127                 }
128         }
129
130         return NULL;
131 }
132
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134                            struct kvm_cpuid_entry2 *entries,
135                            int nent)
136 {
137         struct kvm_cpuid_entry2 *best;
138         u64 xfeatures;
139
140         /*
141          * The existing code assumes virtual address is 48-bit or 57-bit in the
142          * canonical address checks; exit if it is ever changed.
143          */
144         best = cpuid_entry2_find(entries, nent, 0x80000008,
145                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146         if (best) {
147                 int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150                         return -EINVAL;
151         }
152
153         /*
154          * Exposing dynamic xfeatures to the guest requires additional
155          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156          */
157         best = cpuid_entry2_find(entries, nent, 0xd, 0);
158         if (!best)
159                 return 0;
160
161         xfeatures = best->eax | ((u64)best->edx << 32);
162         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163         if (!xfeatures)
164                 return 0;
165
166         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171                                  int nent)
172 {
173         struct kvm_cpuid_entry2 *orig;
174         int i;
175
176         if (nent != vcpu->arch.cpuid_nent)
177                 return -EINVAL;
178
179         for (i = 0; i < nent; i++) {
180                 orig = &vcpu->arch.cpuid_entries[i];
181                 if (e2[i].function != orig->function ||
182                     e2[i].index != orig->index ||
183                     e2[i].flags != orig->flags ||
184                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186                         return -EINVAL;
187         }
188
189         return 0;
190 }
191
192 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
193                                                             const char *sig)
194 {
195         struct kvm_hypervisor_cpuid cpuid = {};
196         struct kvm_cpuid_entry2 *entry;
197         u32 base;
198
199         for_each_possible_hypervisor_cpuid_base(base) {
200                 entry = kvm_find_cpuid_entry(vcpu, base);
201
202                 if (entry) {
203                         u32 signature[3];
204
205                         signature[0] = entry->ebx;
206                         signature[1] = entry->ecx;
207                         signature[2] = entry->edx;
208
209                         if (!memcmp(signature, sig, sizeof(signature))) {
210                                 cpuid.base = base;
211                                 cpuid.limit = entry->eax;
212                                 break;
213                         }
214                 }
215         }
216
217         return cpuid;
218 }
219
220 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
221                                               struct kvm_cpuid_entry2 *entries, int nent)
222 {
223         u32 base = vcpu->arch.kvm_cpuid.base;
224
225         if (!base)
226                 return NULL;
227
228         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
229                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
230 }
231
232 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
233 {
234         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
235                                              vcpu->arch.cpuid_nent);
236 }
237
238 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
239 {
240         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
241
242         /*
243          * save the feature bitmap to avoid cpuid lookup for every PV
244          * operation
245          */
246         if (best)
247                 vcpu->arch.pv_cpuid.features = best->eax;
248 }
249
250 /*
251  * Calculate guest's supported XCR0 taking into account guest CPUID data and
252  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
253  */
254 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
255 {
256         struct kvm_cpuid_entry2 *best;
257
258         best = cpuid_entry2_find(entries, nent, 0xd, 0);
259         if (!best)
260                 return 0;
261
262         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
263 }
264
265 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
266                                        int nent)
267 {
268         struct kvm_cpuid_entry2 *best;
269
270         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
271         if (best) {
272                 /* Update OSXSAVE bit */
273                 if (boot_cpu_has(X86_FEATURE_XSAVE))
274                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
275                                            kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
276
277                 cpuid_entry_change(best, X86_FEATURE_APIC,
278                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
279         }
280
281         best = cpuid_entry2_find(entries, nent, 7, 0);
282         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
283                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
284                                    kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
285
286         best = cpuid_entry2_find(entries, nent, 0xD, 0);
287         if (best)
288                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
289
290         best = cpuid_entry2_find(entries, nent, 0xD, 1);
291         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
292                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
293                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
294
295         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
296         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
297                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
298                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
299
300         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
301                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
302                 if (best)
303                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
304                                            vcpu->arch.ia32_misc_enable_msr &
305                                            MSR_IA32_MISC_ENABLE_MWAIT);
306         }
307 }
308
309 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
310 {
311         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
312 }
313 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
314
315 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
316 {
317 #ifdef CONFIG_KVM_HYPERV
318         struct kvm_cpuid_entry2 *entry;
319
320         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
321                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
322         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
323 #else
324         return false;
325 #endif
326 }
327
328 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
329 {
330         struct kvm_lapic *apic = vcpu->arch.apic;
331         struct kvm_cpuid_entry2 *best;
332         bool allow_gbpages;
333
334         BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
335         bitmap_zero(vcpu->arch.governed_features.enabled,
336                     KVM_MAX_NR_GOVERNED_FEATURES);
337
338         /*
339          * If TDP is enabled, let the guest use GBPAGES if they're supported in
340          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
341          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
342          * walk for performance and complexity reasons.  Not to mention KVM
343          * _can't_ solve the problem because GVA->GPA walks aren't visible to
344          * KVM once a TDP translation is installed.  Mimic hardware behavior so
345          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
346          * If TDP is disabled, honor *only* guest CPUID as KVM has full control
347          * and can install smaller shadow pages if the host lacks 1GiB support.
348          */
349         allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
350                                       guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
351         if (allow_gbpages)
352                 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
353
354         best = kvm_find_cpuid_entry(vcpu, 1);
355         if (best && apic) {
356                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
357                         apic->lapic_timer.timer_mode_mask = 3 << 17;
358                 else
359                         apic->lapic_timer.timer_mode_mask = 1 << 17;
360
361                 kvm_apic_set_version(vcpu);
362         }
363
364         vcpu->arch.guest_supported_xcr0 =
365                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
366
367         kvm_update_pv_runtime(vcpu);
368
369         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
370         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
371
372         kvm_pmu_refresh(vcpu);
373         vcpu->arch.cr4_guest_rsvd_bits =
374             __cr4_reserved_bits(guest_cpuid_has, vcpu);
375
376         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
377                                                     vcpu->arch.cpuid_nent));
378
379         /* Invoke the vendor callback only after the above state is updated. */
380         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
381
382         /*
383          * Except for the MMU, which needs to do its thing any vendor specific
384          * adjustments to the reserved GPA bits.
385          */
386         kvm_mmu_after_set_cpuid(vcpu);
387 }
388
389 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
390 {
391         struct kvm_cpuid_entry2 *best;
392
393         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
394         if (!best || best->eax < 0x80000008)
395                 goto not_found;
396         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
397         if (best)
398                 return best->eax & 0xff;
399 not_found:
400         return 36;
401 }
402
403 /*
404  * This "raw" version returns the reserved GPA bits without any adjustments for
405  * encryption technologies that usurp bits.  The raw mask should be used if and
406  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
407  */
408 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
409 {
410         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
411 }
412
413 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
414                         int nent)
415 {
416         int r;
417
418         __kvm_update_cpuid_runtime(vcpu, e2, nent);
419
420         /*
421          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
422          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
423          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
424          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
425          * the core vCPU model on the fly. It would've been better to forbid any
426          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
427          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
428          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
429          * whether the supplied CPUID data is equal to what's already set.
430          */
431         if (kvm_vcpu_has_run(vcpu)) {
432                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
433                 if (r)
434                         return r;
435
436                 kvfree(e2);
437                 return 0;
438         }
439
440 #ifdef CONFIG_KVM_HYPERV
441         if (kvm_cpuid_has_hyperv(e2, nent)) {
442                 r = kvm_hv_vcpu_init(vcpu);
443                 if (r)
444                         return r;
445         }
446 #endif
447
448         r = kvm_check_cpuid(vcpu, e2, nent);
449         if (r)
450                 return r;
451
452         kvfree(vcpu->arch.cpuid_entries);
453         vcpu->arch.cpuid_entries = e2;
454         vcpu->arch.cpuid_nent = nent;
455
456         vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
457 #ifdef CONFIG_KVM_XEN
458         vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
459 #endif
460         kvm_vcpu_after_set_cpuid(vcpu);
461
462         return 0;
463 }
464
465 /* when an old userspace process fills a new kernel module */
466 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
467                              struct kvm_cpuid *cpuid,
468                              struct kvm_cpuid_entry __user *entries)
469 {
470         int r, i;
471         struct kvm_cpuid_entry *e = NULL;
472         struct kvm_cpuid_entry2 *e2 = NULL;
473
474         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
475                 return -E2BIG;
476
477         if (cpuid->nent) {
478                 e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
479                 if (IS_ERR(e))
480                         return PTR_ERR(e);
481
482                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
483                 if (!e2) {
484                         r = -ENOMEM;
485                         goto out_free_cpuid;
486                 }
487         }
488         for (i = 0; i < cpuid->nent; i++) {
489                 e2[i].function = e[i].function;
490                 e2[i].eax = e[i].eax;
491                 e2[i].ebx = e[i].ebx;
492                 e2[i].ecx = e[i].ecx;
493                 e2[i].edx = e[i].edx;
494                 e2[i].index = 0;
495                 e2[i].flags = 0;
496                 e2[i].padding[0] = 0;
497                 e2[i].padding[1] = 0;
498                 e2[i].padding[2] = 0;
499         }
500
501         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
502         if (r)
503                 kvfree(e2);
504
505 out_free_cpuid:
506         kvfree(e);
507
508         return r;
509 }
510
511 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
512                               struct kvm_cpuid2 *cpuid,
513                               struct kvm_cpuid_entry2 __user *entries)
514 {
515         struct kvm_cpuid_entry2 *e2 = NULL;
516         int r;
517
518         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
519                 return -E2BIG;
520
521         if (cpuid->nent) {
522                 e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
523                 if (IS_ERR(e2))
524                         return PTR_ERR(e2);
525         }
526
527         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
528         if (r)
529                 kvfree(e2);
530
531         return r;
532 }
533
534 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
535                               struct kvm_cpuid2 *cpuid,
536                               struct kvm_cpuid_entry2 __user *entries)
537 {
538         if (cpuid->nent < vcpu->arch.cpuid_nent)
539                 return -E2BIG;
540
541         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
542                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
543                 return -EFAULT;
544
545         cpuid->nent = vcpu->arch.cpuid_nent;
546         return 0;
547 }
548
549 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
550 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
551 {
552         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
553         struct kvm_cpuid_entry2 entry;
554
555         reverse_cpuid_check(leaf);
556
557         cpuid_count(cpuid.function, cpuid.index,
558                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
559
560         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
561 }
562
563 static __always_inline
564 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
565 {
566         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
567         BUILD_BUG_ON(leaf < NCAPINTS);
568
569         kvm_cpu_caps[leaf] = mask;
570
571         __kvm_cpu_cap_mask(leaf);
572 }
573
574 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
575 {
576         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
577         BUILD_BUG_ON(leaf >= NCAPINTS);
578
579         kvm_cpu_caps[leaf] &= mask;
580
581         __kvm_cpu_cap_mask(leaf);
582 }
583
584 void kvm_set_cpu_caps(void)
585 {
586 #ifdef CONFIG_X86_64
587         unsigned int f_gbpages = F(GBPAGES);
588         unsigned int f_lm = F(LM);
589         unsigned int f_xfd = F(XFD);
590 #else
591         unsigned int f_gbpages = 0;
592         unsigned int f_lm = 0;
593         unsigned int f_xfd = 0;
594 #endif
595         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
596
597         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
598                      sizeof(boot_cpu_data.x86_capability));
599
600         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
601                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
602
603         kvm_cpu_cap_mask(CPUID_1_ECX,
604                 /*
605                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
606                  * advertised to guests via CPUID!
607                  */
608                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
609                 0 /* DS-CPL, VMX, SMX, EST */ |
610                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
611                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
612                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
613                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
614                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
615                 F(F16C) | F(RDRAND)
616         );
617         /* KVM emulates x2apic in software irrespective of host support. */
618         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
619
620         kvm_cpu_cap_mask(CPUID_1_EDX,
621                 F(FPU) | F(VME) | F(DE) | F(PSE) |
622                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
623                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
624                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
625                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
626                 0 /* Reserved, DS, ACPI */ | F(MMX) |
627                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
628                 0 /* HTT, TM, Reserved, PBE */
629         );
630
631         kvm_cpu_cap_mask(CPUID_7_0_EBX,
632                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
633                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
634                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
635                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
636                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
637                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
638                 F(AVX512VL));
639
640         kvm_cpu_cap_mask(CPUID_7_ECX,
641                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
642                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
643                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
644                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
645                 F(SGX_LC) | F(BUS_LOCK_DETECT)
646         );
647         /* Set LA57 based on hardware capability. */
648         if (cpuid_ecx(7) & F(LA57))
649                 kvm_cpu_cap_set(X86_FEATURE_LA57);
650
651         /*
652          * PKU not yet implemented for shadow paging and requires OSPKE
653          * to be set on the host. Clear it if that is not the case
654          */
655         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
656                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
657
658         kvm_cpu_cap_mask(CPUID_7_EDX,
659                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
660                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
661                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
662                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
663                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
664         );
665
666         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
667         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
668         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
669
670         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
671                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
672         if (boot_cpu_has(X86_FEATURE_STIBP))
673                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
674         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
675                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
676
677         kvm_cpu_cap_mask(CPUID_7_1_EAX,
678                 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
679                 F(FZRM) | F(FSRS) | F(FSRC) |
680                 F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
681         );
682
683         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
684                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
685                 F(AMX_COMPLEX)
686         );
687
688         kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
689                 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
690                 F(BHI_CTRL) | F(MCDT_NO)
691         );
692
693         kvm_cpu_cap_mask(CPUID_D_1_EAX,
694                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
695         );
696
697         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
698                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
699         );
700
701         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
702                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
703                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
704                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
705                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
706                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
707         );
708
709         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
710                 F(FPU) | F(VME) | F(DE) | F(PSE) |
711                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
712                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
713                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
714                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
715                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
716                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
717                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
718         );
719
720         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
721                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
722
723         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
724                 SF(CONSTANT_TSC)
725         );
726
727         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
728                 F(CLZERO) | F(XSAVEERPTR) |
729                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
730                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
731                 F(AMD_PSFD)
732         );
733
734         /*
735          * AMD has separate bits for each SPEC_CTRL bit.
736          * arch/x86/kernel/cpu/bugs.c is kind enough to
737          * record that in cpufeatures so use them.
738          */
739         if (boot_cpu_has(X86_FEATURE_IBPB))
740                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
741         if (boot_cpu_has(X86_FEATURE_IBRS))
742                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
743         if (boot_cpu_has(X86_FEATURE_STIBP))
744                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
745         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
746                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
747         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
748                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
749         /*
750          * The preference is to use SPEC CTRL MSR instead of the
751          * VIRT_SPEC MSR.
752          */
753         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
754             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
755                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
756
757         /*
758          * Hide all SVM features by default, SVM will set the cap bits for
759          * features it emulates and/or exposes for L1.
760          */
761         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
762
763         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
764                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
765                 F(SME_COHERENT));
766
767         kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
768                 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
769                 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
770                 F(WRMSR_XX_BASE_NS)
771         );
772
773         kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
774         kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
775         kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
776
777         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
778                 F(PERFMON_V2)
779         );
780
781         /*
782          * Synthesize "LFENCE is serializing" into the AMD-defined entry in
783          * KVM's supported CPUID if the feature is reported as supported by the
784          * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
785          * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
786          * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
787          * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
788          * the mask with the raw host CPUID, and reporting support in AMD's
789          * leaf can make it easier for userspace to detect the feature.
790          */
791         if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
792                 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
793         if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
794                 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
795         kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
796
797         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
798                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
799                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
800                 F(PMM) | F(PMM_EN)
801         );
802
803         /*
804          * Hide RDTSCP and RDPID if either feature is reported as supported but
805          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
806          * should never happen, but the guest will likely crash if RDTSCP or
807          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
808          * the past.  For example, the sanity check may fire if this instance of
809          * KVM is running as L1 on top of an older, broken KVM.
810          */
811         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
812                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
813                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
814                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
815                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
816         }
817 }
818 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
819
820 struct kvm_cpuid_array {
821         struct kvm_cpuid_entry2 *entries;
822         int maxnent;
823         int nent;
824 };
825
826 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
827 {
828         if (array->nent >= array->maxnent)
829                 return NULL;
830
831         return &array->entries[array->nent++];
832 }
833
834 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
835                                               u32 function, u32 index)
836 {
837         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
838
839         if (!entry)
840                 return NULL;
841
842         memset(entry, 0, sizeof(*entry));
843         entry->function = function;
844         entry->index = index;
845         switch (function & 0xC0000000) {
846         case 0x40000000:
847                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
848                 return entry;
849
850         case 0x80000000:
851                 /*
852                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
853                  * would result in out-of-bounds calls to do_host_cpuid.
854                  */
855                 {
856                         static int max_cpuid_80000000;
857                         if (!READ_ONCE(max_cpuid_80000000))
858                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
859                         if (function > READ_ONCE(max_cpuid_80000000))
860                                 return entry;
861                 }
862                 break;
863
864         default:
865                 break;
866         }
867
868         cpuid_count(entry->function, entry->index,
869                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
870
871         if (cpuid_function_is_indexed(function))
872                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
873
874         return entry;
875 }
876
877 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
878 {
879         struct kvm_cpuid_entry2 *entry;
880
881         if (array->nent >= array->maxnent)
882                 return -E2BIG;
883
884         entry = &array->entries[array->nent];
885         entry->function = func;
886         entry->index = 0;
887         entry->flags = 0;
888
889         switch (func) {
890         case 0:
891                 entry->eax = 7;
892                 ++array->nent;
893                 break;
894         case 1:
895                 entry->ecx = F(MOVBE);
896                 ++array->nent;
897                 break;
898         case 7:
899                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
900                 entry->eax = 0;
901                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
902                         entry->ecx = F(RDPID);
903                 ++array->nent;
904                 break;
905         default:
906                 break;
907         }
908
909         return 0;
910 }
911
912 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
913 {
914         struct kvm_cpuid_entry2 *entry;
915         int r, i, max_idx;
916
917         /* all calls to cpuid_count() should be made on the same cpu */
918         get_cpu();
919
920         r = -E2BIG;
921
922         entry = do_host_cpuid(array, function, 0);
923         if (!entry)
924                 goto out;
925
926         switch (function) {
927         case 0:
928                 /* Limited to the highest leaf implemented in KVM. */
929                 entry->eax = min(entry->eax, 0x1fU);
930                 break;
931         case 1:
932                 cpuid_entry_override(entry, CPUID_1_EDX);
933                 cpuid_entry_override(entry, CPUID_1_ECX);
934                 break;
935         case 2:
936                 /*
937                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
938                  * CPUID(function=2, index=0) may return different results each
939                  * time, with the least-significant byte in EAX enumerating the
940                  * number of times software should do CPUID(2, 0).
941                  *
942                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
943                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
944                  * return 01H. Software should ignore this value and not
945                  * interpret it as an informational descriptor", while AMD's
946                  * APM states that CPUID(2) is reserved.
947                  *
948                  * WARN if a frankenstein CPU that supports virtualization and
949                  * a stateful CPUID.0x2 is encountered.
950                  */
951                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
952                 break;
953         /* functions 4 and 0x8000001d have additional index. */
954         case 4:
955         case 0x8000001d:
956                 /*
957                  * Read entries until the cache type in the previous entry is
958                  * zero, i.e. indicates an invalid entry.
959                  */
960                 for (i = 1; entry->eax & 0x1f; ++i) {
961                         entry = do_host_cpuid(array, function, i);
962                         if (!entry)
963                                 goto out;
964                 }
965                 break;
966         case 6: /* Thermal management */
967                 entry->eax = 0x4; /* allow ARAT */
968                 entry->ebx = 0;
969                 entry->ecx = 0;
970                 entry->edx = 0;
971                 break;
972         /* function 7 has additional index. */
973         case 7:
974                 max_idx = entry->eax = min(entry->eax, 2u);
975                 cpuid_entry_override(entry, CPUID_7_0_EBX);
976                 cpuid_entry_override(entry, CPUID_7_ECX);
977                 cpuid_entry_override(entry, CPUID_7_EDX);
978
979                 /* KVM only supports up to 0x7.2, capped above via min(). */
980                 if (max_idx >= 1) {
981                         entry = do_host_cpuid(array, function, 1);
982                         if (!entry)
983                                 goto out;
984
985                         cpuid_entry_override(entry, CPUID_7_1_EAX);
986                         cpuid_entry_override(entry, CPUID_7_1_EDX);
987                         entry->ebx = 0;
988                         entry->ecx = 0;
989                 }
990                 if (max_idx >= 2) {
991                         entry = do_host_cpuid(array, function, 2);
992                         if (!entry)
993                                 goto out;
994
995                         cpuid_entry_override(entry, CPUID_7_2_EDX);
996                         entry->ecx = 0;
997                         entry->ebx = 0;
998                         entry->eax = 0;
999                 }
1000                 break;
1001         case 0xa: { /* Architectural Performance Monitoring */
1002                 union cpuid10_eax eax;
1003                 union cpuid10_edx edx;
1004
1005                 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1006                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1007                         break;
1008                 }
1009
1010                 eax.split.version_id = kvm_pmu_cap.version;
1011                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1012                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1013                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1014                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1015                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1016
1017                 if (kvm_pmu_cap.version)
1018                         edx.split.anythread_deprecated = 1;
1019                 edx.split.reserved1 = 0;
1020                 edx.split.reserved2 = 0;
1021
1022                 entry->eax = eax.full;
1023                 entry->ebx = kvm_pmu_cap.events_mask;
1024                 entry->ecx = 0;
1025                 entry->edx = edx.full;
1026                 break;
1027         }
1028         case 0x1f:
1029         case 0xb:
1030                 /*
1031                  * No topology; a valid topology is indicated by the presence
1032                  * of subleaf 1.
1033                  */
1034                 entry->eax = entry->ebx = entry->ecx = 0;
1035                 break;
1036         case 0xd: {
1037                 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1038                 u64 permitted_xss = kvm_caps.supported_xss;
1039
1040                 entry->eax &= permitted_xcr0;
1041                 entry->ebx = xstate_required_size(permitted_xcr0, false);
1042                 entry->ecx = entry->ebx;
1043                 entry->edx &= permitted_xcr0 >> 32;
1044                 if (!permitted_xcr0)
1045                         break;
1046
1047                 entry = do_host_cpuid(array, function, 1);
1048                 if (!entry)
1049                         goto out;
1050
1051                 cpuid_entry_override(entry, CPUID_D_1_EAX);
1052                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1053                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1054                                                           true);
1055                 else {
1056                         WARN_ON_ONCE(permitted_xss != 0);
1057                         entry->ebx = 0;
1058                 }
1059                 entry->ecx &= permitted_xss;
1060                 entry->edx &= permitted_xss >> 32;
1061
1062                 for (i = 2; i < 64; ++i) {
1063                         bool s_state;
1064                         if (permitted_xcr0 & BIT_ULL(i))
1065                                 s_state = false;
1066                         else if (permitted_xss & BIT_ULL(i))
1067                                 s_state = true;
1068                         else
1069                                 continue;
1070
1071                         entry = do_host_cpuid(array, function, i);
1072                         if (!entry)
1073                                 goto out;
1074
1075                         /*
1076                          * The supported check above should have filtered out
1077                          * invalid sub-leafs.  Only valid sub-leafs should
1078                          * reach this point, and they should have a non-zero
1079                          * save state size.  Furthermore, check whether the
1080                          * processor agrees with permitted_xcr0/permitted_xss
1081                          * on whether this is an XCR0- or IA32_XSS-managed area.
1082                          */
1083                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1084                                 --array->nent;
1085                                 continue;
1086                         }
1087
1088                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1089                                 entry->ecx &= ~BIT_ULL(2);
1090                         entry->edx = 0;
1091                 }
1092                 break;
1093         }
1094         case 0x12:
1095                 /* Intel SGX */
1096                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1097                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1098                         break;
1099                 }
1100
1101                 /*
1102                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1103                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1104                  * are restricted by kernel and KVM capabilities (like most
1105                  * feature flags), while enclave size is unrestricted.
1106                  */
1107                 cpuid_entry_override(entry, CPUID_12_EAX);
1108                 entry->ebx &= SGX_MISC_EXINFO;
1109
1110                 entry = do_host_cpuid(array, function, 1);
1111                 if (!entry)
1112                         goto out;
1113
1114                 /*
1115                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1116                  * feature flags.  Advertise all supported flags, including
1117                  * privileged attributes that require explicit opt-in from
1118                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1119                  * expected to derive it from supported XCR0.
1120                  */
1121                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1122                 entry->ebx &= 0;
1123                 break;
1124         /* Intel PT */
1125         case 0x14:
1126                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1127                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1128                         break;
1129                 }
1130
1131                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1132                         if (!do_host_cpuid(array, function, i))
1133                                 goto out;
1134                 }
1135                 break;
1136         /* Intel AMX TILE */
1137         case 0x1d:
1138                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1139                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1140                         break;
1141                 }
1142
1143                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1144                         if (!do_host_cpuid(array, function, i))
1145                                 goto out;
1146                 }
1147                 break;
1148         case 0x1e: /* TMUL information */
1149                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1150                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151                         break;
1152                 }
1153                 break;
1154         case KVM_CPUID_SIGNATURE: {
1155                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1156                 entry->eax = KVM_CPUID_FEATURES;
1157                 entry->ebx = sigptr[0];
1158                 entry->ecx = sigptr[1];
1159                 entry->edx = sigptr[2];
1160                 break;
1161         }
1162         case KVM_CPUID_FEATURES:
1163                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1164                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1165                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1166                              (1 << KVM_FEATURE_ASYNC_PF) |
1167                              (1 << KVM_FEATURE_PV_EOI) |
1168                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1169                              (1 << KVM_FEATURE_PV_UNHALT) |
1170                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1171                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1172                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1173                              (1 << KVM_FEATURE_POLL_CONTROL) |
1174                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1175                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1176
1177                 if (sched_info_on())
1178                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1179
1180                 entry->ebx = 0;
1181                 entry->ecx = 0;
1182                 entry->edx = 0;
1183                 break;
1184         case 0x80000000:
1185                 entry->eax = min(entry->eax, 0x80000022);
1186                 /*
1187                  * Serializing LFENCE is reported in a multitude of ways, and
1188                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1189                  * userspace by providing the CPUID leaf ourselves.
1190                  *
1191                  * However, only do it if the host has CPUID leaf 0x8000001d.
1192                  * QEMU thinks that it can query the host blindly for that
1193                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1194                  * above.  The processor merrily returns values from the
1195                  * highest Intel leaf which QEMU tries to use as the guest's
1196                  * 0x8000001d.  Even worse, this can result in an infinite
1197                  * loop if said highest leaf has no subleaves indexed by ECX.
1198                  */
1199                 if (entry->eax >= 0x8000001d &&
1200                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1201                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1202                         entry->eax = max(entry->eax, 0x80000021);
1203                 break;
1204         case 0x80000001:
1205                 entry->ebx &= ~GENMASK(27, 16);
1206                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1207                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1208                 break;
1209         case 0x80000005:
1210                 /*  Pass host L1 cache and TLB info. */
1211                 break;
1212         case 0x80000006:
1213                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1214                 entry->edx &= ~GENMASK(17, 16);
1215                 break;
1216         case 0x80000007: /* Advanced power management */
1217                 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1218
1219                 /* mask against host */
1220                 entry->edx &= boot_cpu_data.x86_power;
1221                 entry->eax = entry->ebx = entry->ecx = 0;
1222                 break;
1223         case 0x80000008: {
1224                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1225                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1226                 unsigned phys_as = entry->eax & 0xff;
1227
1228                 /*
1229                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1230                  * the guest operates in the same PA space as the host, i.e.
1231                  * reductions in MAXPHYADDR for memory encryption affect shadow
1232                  * paging, too.
1233                  *
1234                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1235                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1236                  * the HPAs do not affect GPAs.
1237                  */
1238                 if (!tdp_enabled)
1239                         g_phys_as = boot_cpu_data.x86_phys_bits;
1240                 else if (!g_phys_as)
1241                         g_phys_as = phys_as;
1242
1243                 entry->eax = g_phys_as | (virt_as << 8);
1244                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1245                 entry->edx = 0;
1246                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1247                 break;
1248         }
1249         case 0x8000000A:
1250                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1251                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1252                         break;
1253                 }
1254                 entry->eax = 1; /* SVM revision 1 */
1255                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1256                                    ASID emulation to nested SVM */
1257                 entry->ecx = 0; /* Reserved */
1258                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1259                 break;
1260         case 0x80000019:
1261                 entry->ecx = entry->edx = 0;
1262                 break;
1263         case 0x8000001a:
1264                 entry->eax &= GENMASK(2, 0);
1265                 entry->ebx = entry->ecx = entry->edx = 0;
1266                 break;
1267         case 0x8000001e:
1268                 /* Do not return host topology information.  */
1269                 entry->eax = entry->ebx = entry->ecx = 0;
1270                 entry->edx = 0; /* reserved */
1271                 break;
1272         case 0x8000001F:
1273                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1274                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1275                 } else {
1276                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1277                         /* Clear NumVMPL since KVM does not support VMPL.  */
1278                         entry->ebx &= ~GENMASK(31, 12);
1279                         /*
1280                          * Enumerate '0' for "PA bits reduction", the adjusted
1281                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1282                          */
1283                         entry->ebx &= ~GENMASK(11, 6);
1284                 }
1285                 break;
1286         case 0x80000020:
1287                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1288                 break;
1289         case 0x80000021:
1290                 entry->ebx = entry->ecx = entry->edx = 0;
1291                 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1292                 break;
1293         /* AMD Extended Performance Monitoring and Debug */
1294         case 0x80000022: {
1295                 union cpuid_0x80000022_ebx ebx;
1296
1297                 entry->ecx = entry->edx = 0;
1298                 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1299                         entry->eax = entry->ebx;
1300                         break;
1301                 }
1302
1303                 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1304
1305                 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1306                         ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1307                 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1308                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1309                 else
1310                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1311
1312                 entry->ebx = ebx.full;
1313                 break;
1314         }
1315         /*Add support for Centaur's CPUID instruction*/
1316         case 0xC0000000:
1317                 /*Just support up to 0xC0000004 now*/
1318                 entry->eax = min(entry->eax, 0xC0000004);
1319                 break;
1320         case 0xC0000001:
1321                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1322                 break;
1323         case 3: /* Processor serial number */
1324         case 5: /* MONITOR/MWAIT */
1325         case 0xC0000002:
1326         case 0xC0000003:
1327         case 0xC0000004:
1328         default:
1329                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1330                 break;
1331         }
1332
1333         r = 0;
1334
1335 out:
1336         put_cpu();
1337
1338         return r;
1339 }
1340
1341 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1342                          unsigned int type)
1343 {
1344         if (type == KVM_GET_EMULATED_CPUID)
1345                 return __do_cpuid_func_emulated(array, func);
1346
1347         return __do_cpuid_func(array, func);
1348 }
1349
1350 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1351
1352 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1353                           unsigned int type)
1354 {
1355         u32 limit;
1356         int r;
1357
1358         if (func == CENTAUR_CPUID_SIGNATURE &&
1359             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1360                 return 0;
1361
1362         r = do_cpuid_func(array, func, type);
1363         if (r)
1364                 return r;
1365
1366         limit = array->entries[array->nent - 1].eax;
1367         for (func = func + 1; func <= limit; ++func) {
1368                 r = do_cpuid_func(array, func, type);
1369                 if (r)
1370                         break;
1371         }
1372
1373         return r;
1374 }
1375
1376 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1377                                  __u32 num_entries, unsigned int ioctl_type)
1378 {
1379         int i;
1380         __u32 pad[3];
1381
1382         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1383                 return false;
1384
1385         /*
1386          * We want to make sure that ->padding is being passed clean from
1387          * userspace in case we want to use it for something in the future.
1388          *
1389          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1390          * have to give ourselves satisfied only with the emulated side. /me
1391          * sheds a tear.
1392          */
1393         for (i = 0; i < num_entries; i++) {
1394                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1395                         return true;
1396
1397                 if (pad[0] || pad[1] || pad[2])
1398                         return true;
1399         }
1400         return false;
1401 }
1402
1403 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1404                             struct kvm_cpuid_entry2 __user *entries,
1405                             unsigned int type)
1406 {
1407         static const u32 funcs[] = {
1408                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1409         };
1410
1411         struct kvm_cpuid_array array = {
1412                 .nent = 0,
1413         };
1414         int r, i;
1415
1416         if (cpuid->nent < 1)
1417                 return -E2BIG;
1418         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1419                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1420
1421         if (sanity_check_entries(entries, cpuid->nent, type))
1422                 return -EINVAL;
1423
1424         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1425         if (!array.entries)
1426                 return -ENOMEM;
1427
1428         array.maxnent = cpuid->nent;
1429
1430         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1431                 r = get_cpuid_func(&array, funcs[i], type);
1432                 if (r)
1433                         goto out_free;
1434         }
1435         cpuid->nent = array.nent;
1436
1437         if (copy_to_user(entries, array.entries,
1438                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1439                 r = -EFAULT;
1440
1441 out_free:
1442         kvfree(array.entries);
1443         return r;
1444 }
1445
1446 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1447                                                     u32 function, u32 index)
1448 {
1449         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1450                                  function, index);
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1453
1454 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1455                                               u32 function)
1456 {
1457         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1458                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1461
1462 /*
1463  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1464  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1465  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1466  * range.  Centaur/VIA follows Intel semantics.
1467  *
1468  * A leaf is considered out-of-range if its function is higher than the maximum
1469  * supported leaf of its associated class or if its associated class does not
1470  * exist.
1471  *
1472  * There are three primary classes to be considered, with their respective
1473  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1474  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1475  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1476  *
1477  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1478  *  - Hypervisor: 0x40000000 - 0x4fffffff
1479  *  - Extended:   0x80000000 - 0xbfffffff
1480  *  - Centaur:    0xc0000000 - 0xcfffffff
1481  *
1482  * The Hypervisor class is further subdivided into sub-classes that each act as
1483  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1484  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1485  * CPUID sub-classes are:
1486  *
1487  *  - HyperV:     0x40000000 - 0x400000ff
1488  *  - KVM:        0x40000100 - 0x400001ff
1489  */
1490 static struct kvm_cpuid_entry2 *
1491 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1492 {
1493         struct kvm_cpuid_entry2 *basic, *class;
1494         u32 function = *fn_ptr;
1495
1496         basic = kvm_find_cpuid_entry(vcpu, 0);
1497         if (!basic)
1498                 return NULL;
1499
1500         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1501             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1502                 return NULL;
1503
1504         if (function >= 0x40000000 && function <= 0x4fffffff)
1505                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1506         else if (function >= 0xc0000000)
1507                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1508         else
1509                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1510
1511         if (class && function <= class->eax)
1512                 return NULL;
1513
1514         /*
1515          * Leaf specific adjustments are also applied when redirecting to the
1516          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1517          * entry for CPUID.0xb.index (see below), then the output value for EDX
1518          * needs to be pulled from CPUID.0xb.1.
1519          */
1520         *fn_ptr = basic->eax;
1521
1522         /*
1523          * The class does not exist or the requested function is out of range;
1524          * the effective CPUID entry is the max basic leaf.  Note, the index of
1525          * the original requested leaf is observed!
1526          */
1527         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1528 }
1529
1530 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1531                u32 *ecx, u32 *edx, bool exact_only)
1532 {
1533         u32 orig_function = *eax, function = *eax, index = *ecx;
1534         struct kvm_cpuid_entry2 *entry;
1535         bool exact, used_max_basic = false;
1536
1537         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1538         exact = !!entry;
1539
1540         if (!entry && !exact_only) {
1541                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1542                 used_max_basic = !!entry;
1543         }
1544
1545         if (entry) {
1546                 *eax = entry->eax;
1547                 *ebx = entry->ebx;
1548                 *ecx = entry->ecx;
1549                 *edx = entry->edx;
1550                 if (function == 7 && index == 0) {
1551                         u64 data;
1552                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1553                             (data & TSX_CTRL_CPUID_CLEAR))
1554                                 *ebx &= ~(F(RTM) | F(HLE));
1555                 } else if (function == 0x80000007) {
1556                         if (kvm_hv_invtsc_suppressed(vcpu))
1557                                 *edx &= ~SF(CONSTANT_TSC);
1558                 }
1559         } else {
1560                 *eax = *ebx = *ecx = *edx = 0;
1561                 /*
1562                  * When leaf 0BH or 1FH is defined, CL is pass-through
1563                  * and EDX is always the x2APIC ID, even for undefined
1564                  * subleaves. Index 1 will exist iff the leaf is
1565                  * implemented, so we pass through CL iff leaf 1
1566                  * exists. EDX can be copied from any existing index.
1567                  */
1568                 if (function == 0xb || function == 0x1f) {
1569                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1570                         if (entry) {
1571                                 *ecx = index & 0xff;
1572                                 *edx = entry->edx;
1573                         }
1574                 }
1575         }
1576         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1577                         used_max_basic);
1578         return exact;
1579 }
1580 EXPORT_SYMBOL_GPL(kvm_cpuid);
1581
1582 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1583 {
1584         u32 eax, ebx, ecx, edx;
1585
1586         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1587                 return 1;
1588
1589         eax = kvm_rax_read(vcpu);
1590         ecx = kvm_rcx_read(vcpu);
1591         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1592         kvm_rax_write(vcpu, eax);
1593         kvm_rbx_write(vcpu, ebx);
1594         kvm_rcx_write(vcpu, ecx);
1595         kvm_rdx_write(vcpu, edx);
1596         return kvm_skip_emulated_instruction(vcpu);
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);