GNU Linux-libre 4.9.297-gnu1
[releases.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         if (apic) {
84                 if (best->ecx & F(TSC_DEADLINE_TIMER))
85                         apic->lapic_timer.timer_mode_mask = 3 << 17;
86                 else
87                         apic->lapic_timer.timer_mode_mask = 1 << 17;
88         }
89
90         best = kvm_find_cpuid_entry(vcpu, 7, 0);
91         if (best) {
92                 /* Update OSPKE bit */
93                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
94                         best->ecx &= ~F(OSPKE);
95                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
96                                 best->ecx |= F(OSPKE);
97                 }
98         }
99
100         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
101         if (!best) {
102                 vcpu->arch.guest_supported_xcr0 = 0;
103                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
104         } else {
105                 vcpu->arch.guest_supported_xcr0 =
106                         (best->eax | ((u64)best->edx << 32)) &
107                         kvm_supported_xcr0();
108                 vcpu->arch.guest_xstate_size = best->ebx =
109                         xstate_required_size(vcpu->arch.xcr0, false);
110         }
111
112         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
113         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
114                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
115
116         kvm_x86_ops->fpu_activate(vcpu);
117
118         /*
119          * The existing code assumes virtual address is 48-bit in the canonical
120          * address checks; exit if it is ever changed.
121          */
122         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
123         if (best && ((best->eax & 0xff00) >> 8) != 48 &&
124                 ((best->eax & 0xff00) >> 8) != 0)
125                 return -EINVAL;
126
127         /* Update physical-address width */
128         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
129
130         kvm_pmu_refresh(vcpu);
131         return 0;
132 }
133
134 static int is_efer_nx(void)
135 {
136         unsigned long long efer = 0;
137
138         rdmsrl_safe(MSR_EFER, &efer);
139         return efer & EFER_NX;
140 }
141
142 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
143 {
144         int i;
145         struct kvm_cpuid_entry2 *e, *entry;
146
147         entry = NULL;
148         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
149                 e = &vcpu->arch.cpuid_entries[i];
150                 if (e->function == 0x80000001) {
151                         entry = e;
152                         break;
153                 }
154         }
155         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
156                 entry->edx &= ~F(NX);
157                 printk(KERN_INFO "kvm: guest NX capability removed\n");
158         }
159 }
160
161 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
162 {
163         struct kvm_cpuid_entry2 *best;
164
165         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
166         if (!best || best->eax < 0x80000008)
167                 goto not_found;
168         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
169         if (best)
170                 return best->eax & 0xff;
171 not_found:
172         return 36;
173 }
174 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
175
176 /* when an old userspace process fills a new kernel module */
177 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
178                              struct kvm_cpuid *cpuid,
179                              struct kvm_cpuid_entry __user *entries)
180 {
181         int r, i;
182         struct kvm_cpuid_entry *cpuid_entries = NULL;
183
184         r = -E2BIG;
185         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
186                 goto out;
187         r = -ENOMEM;
188         if (cpuid->nent) {
189                 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
190                                         cpuid->nent);
191                 if (!cpuid_entries)
192                         goto out;
193                 r = -EFAULT;
194                 if (copy_from_user(cpuid_entries, entries,
195                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
196                         goto out;
197         }
198         for (i = 0; i < cpuid->nent; i++) {
199                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
200                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
201                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
202                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
203                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
204                 vcpu->arch.cpuid_entries[i].index = 0;
205                 vcpu->arch.cpuid_entries[i].flags = 0;
206                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
207                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
208                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
209         }
210         vcpu->arch.cpuid_nent = cpuid->nent;
211         cpuid_fix_nx_cap(vcpu);
212         kvm_apic_set_version(vcpu);
213         kvm_x86_ops->cpuid_update(vcpu);
214         r = kvm_update_cpuid(vcpu);
215
216 out:
217         vfree(cpuid_entries);
218         return r;
219 }
220
221 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
222                               struct kvm_cpuid2 *cpuid,
223                               struct kvm_cpuid_entry2 __user *entries)
224 {
225         int r;
226
227         r = -E2BIG;
228         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
229                 goto out;
230         r = -EFAULT;
231         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
232                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
233                 goto out;
234         vcpu->arch.cpuid_nent = cpuid->nent;
235         kvm_apic_set_version(vcpu);
236         kvm_x86_ops->cpuid_update(vcpu);
237         r = kvm_update_cpuid(vcpu);
238 out:
239         return r;
240 }
241
242 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
243                               struct kvm_cpuid2 *cpuid,
244                               struct kvm_cpuid_entry2 __user *entries)
245 {
246         int r;
247
248         r = -E2BIG;
249         if (cpuid->nent < vcpu->arch.cpuid_nent)
250                 goto out;
251         r = -EFAULT;
252         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
253                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
254                 goto out;
255         return 0;
256
257 out:
258         cpuid->nent = vcpu->arch.cpuid_nent;
259         return r;
260 }
261
262 static void cpuid_mask(u32 *word, int wordnum)
263 {
264         *word &= boot_cpu_data.x86_capability[wordnum];
265 }
266
267 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
268                            u32 index)
269 {
270         entry->function = function;
271         entry->index = index;
272         cpuid_count(entry->function, entry->index,
273                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
274         entry->flags = 0;
275 }
276
277 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
278                                    u32 func, u32 index, int *nent, int maxnent)
279 {
280         switch (func) {
281         case 0:
282                 entry->eax = 7;
283                 ++*nent;
284                 break;
285         case 1:
286                 entry->ecx = F(MOVBE);
287                 ++*nent;
288                 break;
289         case 7:
290                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
291                 if (index == 0)
292                         entry->ecx = F(RDPID);
293                 ++*nent;
294         default:
295                 break;
296         }
297
298         entry->function = func;
299         entry->index = index;
300
301         return 0;
302 }
303
304 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
305                                  u32 index, int *nent, int maxnent)
306 {
307         int r;
308         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
309 #ifdef CONFIG_X86_64
310         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
311                                 ? F(GBPAGES) : 0;
312         unsigned f_lm = F(LM);
313 #else
314         unsigned f_gbpages = 0;
315         unsigned f_lm = 0;
316 #endif
317         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
318         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
319         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
320         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
321
322         /* cpuid 1.edx */
323         const u32 kvm_cpuid_1_edx_x86_features =
324                 F(FPU) | F(VME) | F(DE) | F(PSE) |
325                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
326                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
327                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
328                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
329                 0 /* Reserved, DS, ACPI */ | F(MMX) |
330                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
331                 0 /* HTT, TM, Reserved, PBE */;
332         /* cpuid 0x80000001.edx */
333         const u32 kvm_cpuid_8000_0001_edx_x86_features =
334                 F(FPU) | F(VME) | F(DE) | F(PSE) |
335                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
336                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
337                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
338                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
339                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
340                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
341                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
342         /* cpuid 1.ecx */
343         const u32 kvm_cpuid_1_ecx_x86_features =
344                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
345                  * but *not* advertised to guests via CPUID ! */
346                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
347                 0 /* DS-CPL, VMX, SMX, EST */ |
348                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
349                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
350                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
351                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
352                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
353                 F(F16C) | F(RDRAND);
354         /* cpuid 0x80000001.ecx */
355         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
356                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
357                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
358                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
359                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
360
361         /* cpuid 0x80000008.ebx */
362         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
363                 F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
364                 F(AMD_SSB_NO) | F(AMD_STIBP);
365
366         /* cpuid 0xC0000001.edx */
367         const u32 kvm_cpuid_C000_0001_edx_x86_features =
368                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
369                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
370                 F(PMM) | F(PMM_EN);
371
372         /* cpuid 7.0.ebx */
373         const u32 kvm_cpuid_7_0_ebx_x86_features =
374                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
375                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
376                 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
377                 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
378                 F(AVX512BW) | F(AVX512VL);
379
380         /* cpuid 0xD.1.eax */
381         const u32 kvm_cpuid_D_1_eax_x86_features =
382                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
383
384         /* cpuid 7.0.ecx*/
385         const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
386
387         /* cpuid 7.0.edx*/
388         const u32 kvm_cpuid_7_0_edx_x86_features =
389                 F(SPEC_CTRL) | F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) |
390                 F(INTEL_STIBP) | F(MD_CLEAR);
391
392         /* all calls to cpuid_count() should be made on the same cpu */
393         get_cpu();
394
395         r = -E2BIG;
396
397         if (WARN_ON(*nent >= maxnent))
398                 goto out;
399
400         do_cpuid_1_ent(entry, function, index);
401         ++*nent;
402
403         switch (function) {
404         case 0:
405                 entry->eax = min(entry->eax, (u32)0xd);
406                 break;
407         case 1:
408                 entry->edx &= kvm_cpuid_1_edx_x86_features;
409                 cpuid_mask(&entry->edx, CPUID_1_EDX);
410                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
411                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
412                 /* we support x2apic emulation even if host does not support
413                  * it since we emulate x2apic in software */
414                 entry->ecx |= F(X2APIC);
415                 break;
416         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
417          * may return different values. This forces us to get_cpu() before
418          * issuing the first command, and also to emulate this annoying behavior
419          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
420         case 2: {
421                 int t, times = entry->eax & 0xff;
422
423                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
424                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
425                 for (t = 1; t < times; ++t) {
426                         if (*nent >= maxnent)
427                                 goto out;
428
429                         do_cpuid_1_ent(&entry[t], function, 0);
430                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
431                         ++*nent;
432                 }
433                 break;
434         }
435         /* function 4 has additional index. */
436         case 4: {
437                 int i, cache_type;
438
439                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
440                 /* read more entries until cache_type is zero */
441                 for (i = 1; ; ++i) {
442                         if (*nent >= maxnent)
443                                 goto out;
444
445                         cache_type = entry[i - 1].eax & 0x1f;
446                         if (!cache_type)
447                                 break;
448                         do_cpuid_1_ent(&entry[i], function, i);
449                         entry[i].flags |=
450                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
451                         ++*nent;
452                 }
453                 break;
454         }
455         case 6: /* Thermal management */
456                 entry->eax = 0x4; /* allow ARAT */
457                 entry->ebx = 0;
458                 entry->ecx = 0;
459                 entry->edx = 0;
460                 break;
461         case 7: {
462                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
463                 /* Mask ebx against host capability word 9 */
464                 if (index == 0) {
465                         entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
466                         cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
467                         // TSC_ADJUST is emulated
468                         entry->ebx |= F(TSC_ADJUST);
469                         entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
470                         cpuid_mask(&entry->ecx, CPUID_7_ECX);
471                         /* PKU is not yet implemented for shadow paging. */
472                         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
473                                 entry->ecx &= ~F(PKU);
474
475                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
476                         cpuid_mask(&entry->edx, CPUID_7_EDX);
477                         if (boot_cpu_has(X86_FEATURE_IBPB) &&
478                             boot_cpu_has(X86_FEATURE_IBRS))
479                                 entry->edx |= F(SPEC_CTRL);
480                         if (boot_cpu_has(X86_FEATURE_STIBP))
481                                 entry->edx |= F(INTEL_STIBP);
482                         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
483                             boot_cpu_has(X86_FEATURE_AMD_SSBD))
484                                 entry->edx |= F(SPEC_CTRL_SSBD);
485                         /*
486                          * We emulate ARCH_CAPABILITIES in software even
487                          * if the host doesn't support it.
488                          */
489                         entry->edx |= F(ARCH_CAPABILITIES);
490                 } else {
491                         entry->ebx = 0;
492                         entry->ecx = 0;
493                         entry->edx = 0;
494                 }
495                 entry->eax = 0;
496                 break;
497         }
498         case 9:
499                 break;
500         case 0xa: { /* Architectural Performance Monitoring */
501                 struct x86_pmu_capability cap;
502                 union cpuid10_eax eax;
503                 union cpuid10_edx edx;
504
505                 perf_get_x86_pmu_capability(&cap);
506
507                 /*
508                  * Only support guest architectural pmu on a host
509                  * with architectural pmu.
510                  */
511                 if (!cap.version)
512                         memset(&cap, 0, sizeof(cap));
513
514                 eax.split.version_id = min(cap.version, 2);
515                 eax.split.num_counters = cap.num_counters_gp;
516                 eax.split.bit_width = cap.bit_width_gp;
517                 eax.split.mask_length = cap.events_mask_len;
518
519                 edx.split.num_counters_fixed = cap.num_counters_fixed;
520                 edx.split.bit_width_fixed = cap.bit_width_fixed;
521                 edx.split.reserved = 0;
522
523                 entry->eax = eax.full;
524                 entry->ebx = cap.events_mask;
525                 entry->ecx = 0;
526                 entry->edx = edx.full;
527                 break;
528         }
529         /* function 0xb has additional index. */
530         case 0xb: {
531                 int i, level_type;
532
533                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
534                 /* read more entries until level_type is zero */
535                 for (i = 1; ; ++i) {
536                         if (*nent >= maxnent)
537                                 goto out;
538
539                         level_type = entry[i - 1].ecx & 0xff00;
540                         if (!level_type)
541                                 break;
542                         do_cpuid_1_ent(&entry[i], function, i);
543                         entry[i].flags |=
544                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
545                         ++*nent;
546                 }
547                 break;
548         }
549         case 0xd: {
550                 int idx, i;
551                 u64 supported = kvm_supported_xcr0();
552
553                 entry->eax &= supported;
554                 entry->ebx = xstate_required_size(supported, false);
555                 entry->ecx = entry->ebx;
556                 entry->edx &= supported >> 32;
557                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
558                 if (!supported)
559                         break;
560
561                 for (idx = 1, i = 1; idx < 64; ++idx) {
562                         u64 mask = ((u64)1 << idx);
563                         if (*nent >= maxnent)
564                                 goto out;
565
566                         do_cpuid_1_ent(&entry[i], function, idx);
567                         if (idx == 1) {
568                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
569                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
570                                 entry[i].ebx = 0;
571                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
572                                         entry[i].ebx =
573                                                 xstate_required_size(supported,
574                                                                      true);
575                         } else {
576                                 if (entry[i].eax == 0 || !(supported & mask))
577                                         continue;
578                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
579                                         continue;
580                         }
581                         entry[i].ecx = 0;
582                         entry[i].edx = 0;
583                         entry[i].flags |=
584                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
585                         ++*nent;
586                         ++i;
587                 }
588                 break;
589         }
590         case KVM_CPUID_SIGNATURE: {
591                 static const char signature[12] = "KVMKVMKVM\0\0";
592                 const u32 *sigptr = (const u32 *)signature;
593                 entry->eax = KVM_CPUID_FEATURES;
594                 entry->ebx = sigptr[0];
595                 entry->ecx = sigptr[1];
596                 entry->edx = sigptr[2];
597                 break;
598         }
599         case KVM_CPUID_FEATURES:
600                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
601                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
602                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
603                              (1 << KVM_FEATURE_ASYNC_PF) |
604                              (1 << KVM_FEATURE_PV_EOI) |
605                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
606                              (1 << KVM_FEATURE_PV_UNHALT);
607
608                 if (sched_info_on())
609                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
610
611                 entry->ebx = 0;
612                 entry->ecx = 0;
613                 entry->edx = 0;
614                 break;
615         case 0x80000000:
616                 entry->eax = min(entry->eax, 0x8000001a);
617                 break;
618         case 0x80000001:
619                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
620                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
621                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
622                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
623                 break;
624         case 0x80000007: /* Advanced power management */
625                 /* invariant TSC is CPUID.80000007H:EDX[8] */
626                 entry->edx &= (1 << 8);
627                 /* mask against host */
628                 entry->edx &= boot_cpu_data.x86_power;
629                 entry->eax = entry->ebx = entry->ecx = 0;
630                 break;
631         case 0x80000008: {
632                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
633                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
634                 unsigned phys_as = entry->eax & 0xff;
635
636                 /*
637                  * Use bare metal's MAXPHADDR if the CPU doesn't report guest
638                  * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
639                  * guest version "applies only to guests using nested paging".
640                  */
641                 if (!g_phys_as || !tdp_enabled)
642                         g_phys_as = phys_as;
643
644                 entry->eax = g_phys_as | (virt_as << 8);
645                 entry->edx = 0;
646                 /*
647                  * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
648                  * hardware cpuid
649                  */
650                 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
651                         entry->ebx |= F(AMD_IBPB);
652                 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
653                         entry->ebx |= F(AMD_IBRS);
654                 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
655                         entry->ebx |= F(VIRT_SSBD);
656                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
657                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
658                 /*
659                  * The preference is to use SPEC CTRL MSR instead of the
660                  * VIRT_SPEC MSR.
661                  */
662                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
663                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
664                         entry->ebx |= F(VIRT_SSBD);
665                 break;
666         }
667         case 0x80000019:
668                 entry->ecx = entry->edx = 0;
669                 break;
670         case 0x8000001a:
671                 break;
672         case 0x8000001d:
673                 break;
674         /*Add support for Centaur's CPUID instruction*/
675         case 0xC0000000:
676                 /*Just support up to 0xC0000004 now*/
677                 entry->eax = min(entry->eax, 0xC0000004);
678                 break;
679         case 0xC0000001:
680                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
681                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
682                 break;
683         case 3: /* Processor serial number */
684         case 5: /* MONITOR/MWAIT */
685         case 0xC0000002:
686         case 0xC0000003:
687         case 0xC0000004:
688         default:
689                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
690                 break;
691         }
692
693         kvm_x86_ops->set_supported_cpuid(function, entry);
694
695         r = 0;
696
697 out:
698         put_cpu();
699
700         return r;
701 }
702
703 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
704                         u32 idx, int *nent, int maxnent, unsigned int type)
705 {
706         if (*nent >= maxnent)
707                 return -E2BIG;
708
709         if (type == KVM_GET_EMULATED_CPUID)
710                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
711
712         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
713 }
714
715 #undef F
716
717 struct kvm_cpuid_param {
718         u32 func;
719         u32 idx;
720         bool has_leaf_count;
721         bool (*qualifier)(const struct kvm_cpuid_param *param);
722 };
723
724 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
725 {
726         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
727 }
728
729 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
730                                  __u32 num_entries, unsigned int ioctl_type)
731 {
732         int i;
733         __u32 pad[3];
734
735         if (ioctl_type != KVM_GET_EMULATED_CPUID)
736                 return false;
737
738         /*
739          * We want to make sure that ->padding is being passed clean from
740          * userspace in case we want to use it for something in the future.
741          *
742          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
743          * have to give ourselves satisfied only with the emulated side. /me
744          * sheds a tear.
745          */
746         for (i = 0; i < num_entries; i++) {
747                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
748                         return true;
749
750                 if (pad[0] || pad[1] || pad[2])
751                         return true;
752         }
753         return false;
754 }
755
756 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
757                             struct kvm_cpuid_entry2 __user *entries,
758                             unsigned int type)
759 {
760         struct kvm_cpuid_entry2 *cpuid_entries;
761         int limit, nent = 0, r = -E2BIG, i;
762         u32 func;
763         static const struct kvm_cpuid_param param[] = {
764                 { .func = 0, .has_leaf_count = true },
765                 { .func = 0x80000000, .has_leaf_count = true },
766                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
767                 { .func = KVM_CPUID_SIGNATURE },
768                 { .func = KVM_CPUID_FEATURES },
769         };
770
771         if (cpuid->nent < 1)
772                 goto out;
773         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
774                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
775
776         if (sanity_check_entries(entries, cpuid->nent, type))
777                 return -EINVAL;
778
779         r = -ENOMEM;
780         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
781         if (!cpuid_entries)
782                 goto out;
783
784         r = 0;
785         for (i = 0; i < ARRAY_SIZE(param); i++) {
786                 const struct kvm_cpuid_param *ent = &param[i];
787
788                 if (ent->qualifier && !ent->qualifier(ent))
789                         continue;
790
791                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
792                                 &nent, cpuid->nent, type);
793
794                 if (r)
795                         goto out_free;
796
797                 if (!ent->has_leaf_count)
798                         continue;
799
800                 limit = cpuid_entries[nent - 1].eax;
801                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
802                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
803                                      &nent, cpuid->nent, type);
804
805                 if (r)
806                         goto out_free;
807         }
808
809         r = -EFAULT;
810         if (copy_to_user(entries, cpuid_entries,
811                          nent * sizeof(struct kvm_cpuid_entry2)))
812                 goto out_free;
813         cpuid->nent = nent;
814         r = 0;
815
816 out_free:
817         vfree(cpuid_entries);
818 out:
819         return r;
820 }
821
822 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
823 {
824         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
825         struct kvm_cpuid_entry2 *ej;
826         int j = i;
827         int nent = vcpu->arch.cpuid_nent;
828
829         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
830         /* when no next entry is found, the current entry[i] is reselected */
831         do {
832                 j = (j + 1) % nent;
833                 ej = &vcpu->arch.cpuid_entries[j];
834         } while (ej->function != e->function);
835
836         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
837
838         return j;
839 }
840
841 /* find an entry with matching function, matching index (if needed), and that
842  * should be read next (if it's stateful) */
843 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
844         u32 function, u32 index)
845 {
846         if (e->function != function)
847                 return 0;
848         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
849                 return 0;
850         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
851             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
852                 return 0;
853         return 1;
854 }
855
856 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
857                                               u32 function, u32 index)
858 {
859         int i;
860         struct kvm_cpuid_entry2 *best = NULL;
861
862         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
863                 struct kvm_cpuid_entry2 *e;
864
865                 e = &vcpu->arch.cpuid_entries[i];
866                 if (is_matching_cpuid_entry(e, function, index)) {
867                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
868                                 move_to_next_stateful_cpuid_entry(vcpu, i);
869                         best = e;
870                         break;
871                 }
872         }
873         return best;
874 }
875 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
876
877 /*
878  * If no match is found, check whether we exceed the vCPU's limit
879  * and return the content of the highest valid _standard_ leaf instead.
880  * This is to satisfy the CPUID specification.
881  */
882 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
883                                                   u32 function, u32 index)
884 {
885         struct kvm_cpuid_entry2 *maxlevel;
886
887         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
888         if (!maxlevel || maxlevel->eax >= function)
889                 return NULL;
890         if (function & 0x80000000) {
891                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
892                 if (!maxlevel)
893                         return NULL;
894         }
895         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
896 }
897
898 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
899 {
900         u32 function = *eax, index = *ecx;
901         struct kvm_cpuid_entry2 *best;
902
903         best = kvm_find_cpuid_entry(vcpu, function, index);
904
905         if (!best)
906                 best = check_cpuid_limit(vcpu, function, index);
907
908         if (best) {
909                 *eax = best->eax;
910                 *ebx = best->ebx;
911                 *ecx = best->ecx;
912                 *edx = best->edx;
913         } else
914                 *eax = *ebx = *ecx = *edx = 0;
915         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
916 }
917 EXPORT_SYMBOL_GPL(kvm_cpuid);
918
919 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
920 {
921         u32 function, eax, ebx, ecx, edx;
922
923         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
924         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
926         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
927         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
928         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
929         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
930         kvm_x86_ops->skip_emulated_instruction(vcpu);
931 }
932 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);