GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36         int feature_bit = 0;
37         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39         xstate_bv &= XFEATURE_MASK_EXTEND;
40         while (xstate_bv) {
41                 if (xstate_bv & 0x1) {
42                         u32 eax, ebx, ecx, edx, offset;
43                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44                         offset = compacted ? ret : ebx;
45                         ret = max(ret, offset + eax);
46                 }
47
48                 xstate_bv >>= 1;
49                 feature_bit++;
50         }
51
52         return ret;
53 }
54
55 #define F feature_bit
56
57 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
58         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
59 {
60         struct kvm_cpuid_entry2 *e;
61         int i;
62
63         for (i = 0; i < nent; i++) {
64                 e = &entries[i];
65
66                 if (e->function == function && (e->index == index ||
67                     !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
68                         return e;
69         }
70
71         return NULL;
72 }
73
74 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
75 {
76         struct kvm_cpuid_entry2 *best;
77
78         /*
79          * The existing code assumes virtual address is 48-bit or 57-bit in the
80          * canonical address checks; exit if it is ever changed.
81          */
82         best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
83         if (best) {
84                 int vaddr_bits = (best->eax & 0xff00) >> 8;
85
86                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
87                         return -EINVAL;
88         }
89
90         return 0;
91 }
92
93 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
94 {
95         struct kvm_cpuid_entry2 *best;
96
97         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
98
99         /*
100          * save the feature bitmap to avoid cpuid lookup for every PV
101          * operation
102          */
103         if (best)
104                 vcpu->arch.pv_cpuid.features = best->eax;
105 }
106
107 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
108 {
109         struct kvm_cpuid_entry2 *best;
110
111         best = kvm_find_cpuid_entry(vcpu, 1, 0);
112         if (best) {
113                 /* Update OSXSAVE bit */
114                 if (boot_cpu_has(X86_FEATURE_XSAVE))
115                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
116                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
117
118                 cpuid_entry_change(best, X86_FEATURE_APIC,
119                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
120         }
121
122         best = kvm_find_cpuid_entry(vcpu, 7, 0);
123         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
124                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
125                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
126
127         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
128         if (best)
129                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
130
131         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
132         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
133                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
134                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
135
136         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
137         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
138                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
139                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
140
141         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
142                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
143                 if (best)
144                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
145                                            vcpu->arch.ia32_misc_enable_msr &
146                                            MSR_IA32_MISC_ENABLE_MWAIT);
147         }
148 }
149
150 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
151 {
152         struct kvm_lapic *apic = vcpu->arch.apic;
153         struct kvm_cpuid_entry2 *best;
154
155         best = kvm_find_cpuid_entry(vcpu, 1, 0);
156         if (best && apic) {
157                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
158                         apic->lapic_timer.timer_mode_mask = 3 << 17;
159                 else
160                         apic->lapic_timer.timer_mode_mask = 1 << 17;
161
162                 kvm_apic_set_version(vcpu);
163         }
164
165         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
166         if (!best)
167                 vcpu->arch.guest_supported_xcr0 = 0;
168         else
169                 vcpu->arch.guest_supported_xcr0 =
170                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
171
172         kvm_update_pv_runtime(vcpu);
173
174         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
175         kvm_mmu_reset_context(vcpu);
176
177         kvm_pmu_refresh(vcpu);
178         vcpu->arch.cr4_guest_rsvd_bits =
179             __cr4_reserved_bits(guest_cpuid_has, vcpu);
180
181         vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
182
183         /* Invoke the vendor callback only after the above state is updated. */
184         kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
185 }
186
187 static int is_efer_nx(void)
188 {
189         return host_efer & EFER_NX;
190 }
191
192 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
193 {
194         int i;
195         struct kvm_cpuid_entry2 *e, *entry;
196
197         entry = NULL;
198         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
199                 e = &vcpu->arch.cpuid_entries[i];
200                 if (e->function == 0x80000001) {
201                         entry = e;
202                         break;
203                 }
204         }
205         if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
206                 cpuid_entry_clear(entry, X86_FEATURE_NX);
207                 printk(KERN_INFO "kvm: guest NX capability removed\n");
208         }
209 }
210
211 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
212 {
213         struct kvm_cpuid_entry2 *best;
214
215         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
216         if (!best || best->eax < 0x80000008)
217                 goto not_found;
218         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
219         if (best)
220                 return best->eax & 0xff;
221 not_found:
222         return 36;
223 }
224
225 /* when an old userspace process fills a new kernel module */
226 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
227                              struct kvm_cpuid *cpuid,
228                              struct kvm_cpuid_entry __user *entries)
229 {
230         int r, i;
231         struct kvm_cpuid_entry *e = NULL;
232         struct kvm_cpuid_entry2 *e2 = NULL;
233
234         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
235                 return -E2BIG;
236
237         if (cpuid->nent) {
238                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
239                 if (IS_ERR(e))
240                         return PTR_ERR(e);
241
242                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
243                 if (!e2) {
244                         r = -ENOMEM;
245                         goto out_free_cpuid;
246                 }
247         }
248         for (i = 0; i < cpuid->nent; i++) {
249                 e2[i].function = e[i].function;
250                 e2[i].eax = e[i].eax;
251                 e2[i].ebx = e[i].ebx;
252                 e2[i].ecx = e[i].ecx;
253                 e2[i].edx = e[i].edx;
254                 e2[i].index = 0;
255                 e2[i].flags = 0;
256                 e2[i].padding[0] = 0;
257                 e2[i].padding[1] = 0;
258                 e2[i].padding[2] = 0;
259         }
260
261         r = kvm_check_cpuid(e2, cpuid->nent);
262         if (r) {
263                 kvfree(e2);
264                 goto out_free_cpuid;
265         }
266
267         kvfree(vcpu->arch.cpuid_entries);
268         vcpu->arch.cpuid_entries = e2;
269         vcpu->arch.cpuid_nent = cpuid->nent;
270
271         cpuid_fix_nx_cap(vcpu);
272         kvm_update_cpuid_runtime(vcpu);
273         kvm_vcpu_after_set_cpuid(vcpu);
274
275 out_free_cpuid:
276         kvfree(e);
277
278         return r;
279 }
280
281 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
282                               struct kvm_cpuid2 *cpuid,
283                               struct kvm_cpuid_entry2 __user *entries)
284 {
285         struct kvm_cpuid_entry2 *e2 = NULL;
286         int r;
287
288         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
289                 return -E2BIG;
290
291         if (cpuid->nent) {
292                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
293                 if (IS_ERR(e2))
294                         return PTR_ERR(e2);
295         }
296
297         r = kvm_check_cpuid(e2, cpuid->nent);
298         if (r) {
299                 kvfree(e2);
300                 return r;
301         }
302
303         kvfree(vcpu->arch.cpuid_entries);
304         vcpu->arch.cpuid_entries = e2;
305         vcpu->arch.cpuid_nent = cpuid->nent;
306
307         kvm_update_cpuid_runtime(vcpu);
308         kvm_vcpu_after_set_cpuid(vcpu);
309
310         return 0;
311 }
312
313 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
314                               struct kvm_cpuid2 *cpuid,
315                               struct kvm_cpuid_entry2 __user *entries)
316 {
317         int r;
318
319         r = -E2BIG;
320         if (cpuid->nent < vcpu->arch.cpuid_nent)
321                 goto out;
322         r = -EFAULT;
323         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
324                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
325                 goto out;
326         return 0;
327
328 out:
329         cpuid->nent = vcpu->arch.cpuid_nent;
330         return r;
331 }
332
333 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
334 {
335         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
336         struct kvm_cpuid_entry2 entry;
337
338         reverse_cpuid_check(leaf);
339         kvm_cpu_caps[leaf] &= mask;
340
341         cpuid_count(cpuid.function, cpuid.index,
342                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
343
344         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
345 }
346
347 void kvm_set_cpu_caps(void)
348 {
349         unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
350 #ifdef CONFIG_X86_64
351         unsigned int f_gbpages = F(GBPAGES);
352         unsigned int f_lm = F(LM);
353 #else
354         unsigned int f_gbpages = 0;
355         unsigned int f_lm = 0;
356 #endif
357
358         BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
359                      sizeof(boot_cpu_data.x86_capability));
360
361         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
362                sizeof(kvm_cpu_caps));
363
364         kvm_cpu_cap_mask(CPUID_1_ECX,
365                 /*
366                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
367                  * advertised to guests via CPUID!
368                  */
369                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
370                 0 /* DS-CPL, VMX, SMX, EST */ |
371                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
372                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
373                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
374                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
375                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
376                 F(F16C) | F(RDRAND)
377         );
378         /* KVM emulates x2apic in software irrespective of host support. */
379         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
380
381         kvm_cpu_cap_mask(CPUID_1_EDX,
382                 F(FPU) | F(VME) | F(DE) | F(PSE) |
383                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
384                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
385                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
386                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
387                 0 /* Reserved, DS, ACPI */ | F(MMX) |
388                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
389                 0 /* HTT, TM, Reserved, PBE */
390         );
391
392         kvm_cpu_cap_mask(CPUID_7_0_EBX,
393                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
394                 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
395                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
396                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
397                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
398         );
399
400         kvm_cpu_cap_mask(CPUID_7_ECX,
401                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
402                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
403                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
404                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
405         );
406         /* Set LA57 based on hardware capability. */
407         if (cpuid_ecx(7) & F(LA57))
408                 kvm_cpu_cap_set(X86_FEATURE_LA57);
409
410         /*
411          * PKU not yet implemented for shadow paging and requires OSPKE
412          * to be set on the host. Clear it if that is not the case
413          */
414         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
415                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
416
417         kvm_cpu_cap_mask(CPUID_7_EDX,
418                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
419                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
420                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
421                 F(SERIALIZE) | F(TSXLDTRK)
422         );
423
424         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
425         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
426         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
427
428         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
429                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
430         if (boot_cpu_has(X86_FEATURE_STIBP))
431                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
432         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
433                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
434
435         kvm_cpu_cap_mask(CPUID_7_1_EAX,
436                 F(AVX512_BF16)
437         );
438
439         kvm_cpu_cap_mask(CPUID_D_1_EAX,
440                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
441         );
442
443         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
444                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
445                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
446                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
447                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
448                 F(TOPOEXT) | F(PERFCTR_CORE)
449         );
450
451         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
452                 F(FPU) | F(VME) | F(DE) | F(PSE) |
453                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
454                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
455                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
456                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
457                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
458                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
459                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
460         );
461
462         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
463                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
464
465         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
466                 F(CLZERO) | F(XSAVEERPTR) |
467                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
468                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
469         );
470
471         /*
472          * AMD has separate bits for each SPEC_CTRL bit.
473          * arch/x86/kernel/cpu/bugs.c is kind enough to
474          * record that in cpufeatures so use them.
475          */
476         if (boot_cpu_has(X86_FEATURE_IBPB))
477                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
478         if (boot_cpu_has(X86_FEATURE_IBRS))
479                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
480         if (boot_cpu_has(X86_FEATURE_STIBP))
481                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
482         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
483                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
484         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
485                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
486         /*
487          * The preference is to use SPEC CTRL MSR instead of the
488          * VIRT_SPEC MSR.
489          */
490         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
491             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
492                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
493
494         if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
495                 kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
496
497         /*
498          * Hide all SVM features by default, SVM will set the cap bits for
499          * features it emulates and/or exposes for L1.
500          */
501         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
502
503         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
504                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
505                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
506                 F(PMM) | F(PMM_EN)
507         );
508 }
509 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
510
511 struct kvm_cpuid_array {
512         struct kvm_cpuid_entry2 *entries;
513         int maxnent;
514         int nent;
515 };
516
517 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
518 {
519         if (array->nent >= array->maxnent)
520                 return NULL;
521
522         return &array->entries[array->nent++];
523 }
524
525 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
526                                               u32 function, u32 index)
527 {
528         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
529
530         if (!entry)
531                 return NULL;
532
533         entry->function = function;
534         entry->index = index;
535         entry->flags = 0;
536
537         cpuid_count(entry->function, entry->index,
538                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
539
540         switch (function) {
541         case 4:
542         case 7:
543         case 0xb:
544         case 0xd:
545         case 0xf:
546         case 0x10:
547         case 0x12:
548         case 0x14:
549         case 0x17:
550         case 0x18:
551         case 0x1f:
552         case 0x8000001d:
553                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
554                 break;
555         }
556
557         return entry;
558 }
559
560 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
561 {
562         struct kvm_cpuid_entry2 *entry;
563
564         if (array->nent >= array->maxnent)
565                 return -E2BIG;
566
567         entry = &array->entries[array->nent];
568         entry->function = func;
569         entry->index = 0;
570         entry->flags = 0;
571
572         switch (func) {
573         case 0:
574                 entry->eax = 7;
575                 ++array->nent;
576                 break;
577         case 1:
578                 entry->ecx = F(MOVBE);
579                 ++array->nent;
580                 break;
581         case 7:
582                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
583                 entry->eax = 0;
584                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
585                         entry->ecx = F(RDPID);
586                 ++array->nent;
587         default:
588                 break;
589         }
590
591         return 0;
592 }
593
594 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
595 {
596         struct kvm_cpuid_entry2 *entry;
597         int r, i, max_idx;
598
599         /* all calls to cpuid_count() should be made on the same cpu */
600         get_cpu();
601
602         r = -E2BIG;
603
604         entry = do_host_cpuid(array, function, 0);
605         if (!entry)
606                 goto out;
607
608         switch (function) {
609         case 0:
610                 /* Limited to the highest leaf implemented in KVM. */
611                 entry->eax = min(entry->eax, 0x1fU);
612                 break;
613         case 1:
614                 cpuid_entry_override(entry, CPUID_1_EDX);
615                 cpuid_entry_override(entry, CPUID_1_ECX);
616                 break;
617         case 2:
618                 /*
619                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
620                  * CPUID(function=2, index=0) may return different results each
621                  * time, with the least-significant byte in EAX enumerating the
622                  * number of times software should do CPUID(2, 0).
623                  *
624                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
625                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
626                  * return 01H. Software should ignore this value and not
627                  * interpret it as an informational descriptor", while AMD's
628                  * APM states that CPUID(2) is reserved.
629                  *
630                  * WARN if a frankenstein CPU that supports virtualization and
631                  * a stateful CPUID.0x2 is encountered.
632                  */
633                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
634                 break;
635         /* functions 4 and 0x8000001d have additional index. */
636         case 4:
637         case 0x8000001d:
638                 /*
639                  * Read entries until the cache type in the previous entry is
640                  * zero, i.e. indicates an invalid entry.
641                  */
642                 for (i = 1; entry->eax & 0x1f; ++i) {
643                         entry = do_host_cpuid(array, function, i);
644                         if (!entry)
645                                 goto out;
646                 }
647                 break;
648         case 6: /* Thermal management */
649                 entry->eax = 0x4; /* allow ARAT */
650                 entry->ebx = 0;
651                 entry->ecx = 0;
652                 entry->edx = 0;
653                 break;
654         /* function 7 has additional index. */
655         case 7:
656                 entry->eax = min(entry->eax, 1u);
657                 cpuid_entry_override(entry, CPUID_7_0_EBX);
658                 cpuid_entry_override(entry, CPUID_7_ECX);
659                 cpuid_entry_override(entry, CPUID_7_EDX);
660
661                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
662                 if (entry->eax == 1) {
663                         entry = do_host_cpuid(array, function, 1);
664                         if (!entry)
665                                 goto out;
666
667                         cpuid_entry_override(entry, CPUID_7_1_EAX);
668                         entry->ebx = 0;
669                         entry->ecx = 0;
670                         entry->edx = 0;
671                 }
672                 break;
673         case 0xa: { /* Architectural Performance Monitoring */
674                 struct x86_pmu_capability cap;
675                 union cpuid10_eax eax;
676                 union cpuid10_edx edx;
677
678                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
679                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
680                         break;
681                 }
682
683                 perf_get_x86_pmu_capability(&cap);
684
685                 /*
686                  * Only support guest architectural pmu on a host
687                  * with architectural pmu.
688                  */
689                 if (!cap.version)
690                         memset(&cap, 0, sizeof(cap));
691
692                 eax.split.version_id = min(cap.version, 2);
693                 eax.split.num_counters = cap.num_counters_gp;
694                 eax.split.bit_width = cap.bit_width_gp;
695                 eax.split.mask_length = cap.events_mask_len;
696
697                 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
698                 edx.split.bit_width_fixed = cap.bit_width_fixed;
699                 if (cap.version)
700                         edx.split.anythread_deprecated = 1;
701                 edx.split.reserved1 = 0;
702                 edx.split.reserved2 = 0;
703
704                 entry->eax = eax.full;
705                 entry->ebx = cap.events_mask;
706                 entry->ecx = 0;
707                 entry->edx = edx.full;
708                 break;
709         }
710         case 0x1f:
711         case 0xb:
712                 /*
713                  * No topology; a valid topology is indicated by the presence
714                  * of subleaf 1.
715                  */
716                 entry->eax = entry->ebx = entry->ecx = 0;
717                 break;
718         case 0xd:
719                 entry->eax &= supported_xcr0;
720                 entry->ebx = xstate_required_size(supported_xcr0, false);
721                 entry->ecx = entry->ebx;
722                 entry->edx &= supported_xcr0 >> 32;
723                 if (!supported_xcr0)
724                         break;
725
726                 entry = do_host_cpuid(array, function, 1);
727                 if (!entry)
728                         goto out;
729
730                 cpuid_entry_override(entry, CPUID_D_1_EAX);
731                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
732                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
733                                                           true);
734                 else {
735                         WARN_ON_ONCE(supported_xss != 0);
736                         entry->ebx = 0;
737                 }
738                 entry->ecx &= supported_xss;
739                 entry->edx &= supported_xss >> 32;
740
741                 for (i = 2; i < 64; ++i) {
742                         bool s_state;
743                         if (supported_xcr0 & BIT_ULL(i))
744                                 s_state = false;
745                         else if (supported_xss & BIT_ULL(i))
746                                 s_state = true;
747                         else
748                                 continue;
749
750                         entry = do_host_cpuid(array, function, i);
751                         if (!entry)
752                                 goto out;
753
754                         /*
755                          * The supported check above should have filtered out
756                          * invalid sub-leafs.  Only valid sub-leafs should
757                          * reach this point, and they should have a non-zero
758                          * save state size.  Furthermore, check whether the
759                          * processor agrees with supported_xcr0/supported_xss
760                          * on whether this is an XCR0- or IA32_XSS-managed area.
761                          */
762                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
763                                 --array->nent;
764                                 continue;
765                         }
766                         entry->edx = 0;
767                 }
768                 break;
769         /* Intel PT */
770         case 0x14:
771                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
772                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
773                         break;
774                 }
775
776                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
777                         if (!do_host_cpuid(array, function, i))
778                                 goto out;
779                 }
780                 break;
781         case KVM_CPUID_SIGNATURE: {
782                 static const char signature[12] = "KVMKVMKVM\0\0";
783                 const u32 *sigptr = (const u32 *)signature;
784                 entry->eax = KVM_CPUID_FEATURES;
785                 entry->ebx = sigptr[0];
786                 entry->ecx = sigptr[1];
787                 entry->edx = sigptr[2];
788                 break;
789         }
790         case KVM_CPUID_FEATURES:
791                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
792                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
793                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
794                              (1 << KVM_FEATURE_ASYNC_PF) |
795                              (1 << KVM_FEATURE_PV_EOI) |
796                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
797                              (1 << KVM_FEATURE_PV_UNHALT) |
798                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
799                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
800                              (1 << KVM_FEATURE_PV_SEND_IPI) |
801                              (1 << KVM_FEATURE_POLL_CONTROL) |
802                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
803                              (1 << KVM_FEATURE_ASYNC_PF_INT);
804
805                 if (sched_info_on())
806                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
807
808                 entry->ebx = 0;
809                 entry->ecx = 0;
810                 entry->edx = 0;
811                 break;
812         case 0x80000000:
813                 entry->eax = min(entry->eax, 0x8000001f);
814                 break;
815         case 0x80000001:
816                 entry->ebx &= ~GENMASK(27, 16);
817                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
818                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
819                 break;
820         case 0x80000006:
821                 /* Drop reserved bits, pass host L2 cache and TLB info. */
822                 entry->edx &= ~GENMASK(17, 16);
823                 break;
824         case 0x80000007: /* Advanced power management */
825                 /* invariant TSC is CPUID.80000007H:EDX[8] */
826                 entry->edx &= (1 << 8);
827                 /* mask against host */
828                 entry->edx &= boot_cpu_data.x86_power;
829                 entry->eax = entry->ebx = entry->ecx = 0;
830                 break;
831         case 0x80000008: {
832                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
833                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
834                 unsigned phys_as = entry->eax & 0xff;
835
836                 /*
837                  * Use bare metal's MAXPHADDR if the CPU doesn't report guest
838                  * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
839                  * guest version "applies only to guests using nested paging".
840                  */
841                 if (!g_phys_as || !tdp_enabled)
842                         g_phys_as = phys_as;
843
844                 entry->eax = g_phys_as | (virt_as << 8);
845                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
846                 entry->edx = 0;
847                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
848                 break;
849         }
850         case 0x8000000A:
851                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
852                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
853                         break;
854                 }
855                 entry->eax = 1; /* SVM revision 1 */
856                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
857                                    ASID emulation to nested SVM */
858                 entry->ecx = 0; /* Reserved */
859                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
860                 break;
861         case 0x80000019:
862                 entry->ecx = entry->edx = 0;
863                 break;
864         case 0x8000001a:
865                 entry->eax &= GENMASK(2, 0);
866                 entry->ebx = entry->ecx = entry->edx = 0;
867                 break;
868         case 0x8000001e:
869                 /* Do not return host topology information.  */
870                 entry->eax = entry->ebx = entry->ecx = 0;
871                 entry->edx = 0; /* reserved */
872                 break;
873         /* Support memory encryption cpuid if host supports it */
874         case 0x8000001F:
875                 if (!boot_cpu_has(X86_FEATURE_SEV))
876                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
877                 break;
878         /*Add support for Centaur's CPUID instruction*/
879         case 0xC0000000:
880                 /*Just support up to 0xC0000004 now*/
881                 entry->eax = min(entry->eax, 0xC0000004);
882                 break;
883         case 0xC0000001:
884                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
885                 break;
886         case 3: /* Processor serial number */
887         case 5: /* MONITOR/MWAIT */
888         case 0xC0000002:
889         case 0xC0000003:
890         case 0xC0000004:
891         default:
892                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
893                 break;
894         }
895
896         r = 0;
897
898 out:
899         put_cpu();
900
901         return r;
902 }
903
904 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
905                          unsigned int type)
906 {
907         if (type == KVM_GET_EMULATED_CPUID)
908                 return __do_cpuid_func_emulated(array, func);
909
910         return __do_cpuid_func(array, func);
911 }
912
913 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
914
915 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
916                           unsigned int type)
917 {
918         u32 limit;
919         int r;
920
921         if (func == CENTAUR_CPUID_SIGNATURE &&
922             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
923                 return 0;
924
925         r = do_cpuid_func(array, func, type);
926         if (r)
927                 return r;
928
929         limit = array->entries[array->nent - 1].eax;
930         for (func = func + 1; func <= limit; ++func) {
931                 r = do_cpuid_func(array, func, type);
932                 if (r)
933                         break;
934         }
935
936         return r;
937 }
938
939 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
940                                  __u32 num_entries, unsigned int ioctl_type)
941 {
942         int i;
943         __u32 pad[3];
944
945         if (ioctl_type != KVM_GET_EMULATED_CPUID)
946                 return false;
947
948         /*
949          * We want to make sure that ->padding is being passed clean from
950          * userspace in case we want to use it for something in the future.
951          *
952          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
953          * have to give ourselves satisfied only with the emulated side. /me
954          * sheds a tear.
955          */
956         for (i = 0; i < num_entries; i++) {
957                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
958                         return true;
959
960                 if (pad[0] || pad[1] || pad[2])
961                         return true;
962         }
963         return false;
964 }
965
966 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
967                             struct kvm_cpuid_entry2 __user *entries,
968                             unsigned int type)
969 {
970         static const u32 funcs[] = {
971                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
972         };
973
974         struct kvm_cpuid_array array = {
975                 .nent = 0,
976         };
977         int r, i;
978
979         if (cpuid->nent < 1)
980                 return -E2BIG;
981         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
982                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
983
984         if (sanity_check_entries(entries, cpuid->nent, type))
985                 return -EINVAL;
986
987         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
988                                            cpuid->nent));
989         if (!array.entries)
990                 return -ENOMEM;
991
992         array.maxnent = cpuid->nent;
993
994         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
995                 r = get_cpuid_func(&array, funcs[i], type);
996                 if (r)
997                         goto out_free;
998         }
999         cpuid->nent = array.nent;
1000
1001         if (copy_to_user(entries, array.entries,
1002                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1003                 r = -EFAULT;
1004
1005 out_free:
1006         vfree(array.entries);
1007         return r;
1008 }
1009
1010 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1011                                               u32 function, u32 index)
1012 {
1013         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1014                                  function, index);
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1017
1018 /*
1019  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1020  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1021  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1022  * range.  Centaur/VIA follows Intel semantics.
1023  *
1024  * A leaf is considered out-of-range if its function is higher than the maximum
1025  * supported leaf of its associated class or if its associated class does not
1026  * exist.
1027  *
1028  * There are three primary classes to be considered, with their respective
1029  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1030  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1031  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1032  *
1033  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1034  *  - Hypervisor: 0x40000000 - 0x4fffffff
1035  *  - Extended:   0x80000000 - 0xbfffffff
1036  *  - Centaur:    0xc0000000 - 0xcfffffff
1037  *
1038  * The Hypervisor class is further subdivided into sub-classes that each act as
1039  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
1040  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1041  * CPUID sub-classes are:
1042  *
1043  *  - HyperV:     0x40000000 - 0x400000ff
1044  *  - KVM:        0x40000100 - 0x400001ff
1045  */
1046 static struct kvm_cpuid_entry2 *
1047 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1048 {
1049         struct kvm_cpuid_entry2 *basic, *class;
1050         u32 function = *fn_ptr;
1051
1052         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1053         if (!basic)
1054                 return NULL;
1055
1056         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1057             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1058                 return NULL;
1059
1060         if (function >= 0x40000000 && function <= 0x4fffffff)
1061                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1062         else if (function >= 0xc0000000)
1063                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1064         else
1065                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1066
1067         if (class && function <= class->eax)
1068                 return NULL;
1069
1070         /*
1071          * Leaf specific adjustments are also applied when redirecting to the
1072          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1073          * entry for CPUID.0xb.index (see below), then the output value for EDX
1074          * needs to be pulled from CPUID.0xb.1.
1075          */
1076         *fn_ptr = basic->eax;
1077
1078         /*
1079          * The class does not exist or the requested function is out of range;
1080          * the effective CPUID entry is the max basic leaf.  Note, the index of
1081          * the original requested leaf is observed!
1082          */
1083         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1084 }
1085
1086 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1087                u32 *ecx, u32 *edx, bool exact_only)
1088 {
1089         u32 orig_function = *eax, function = *eax, index = *ecx;
1090         struct kvm_cpuid_entry2 *entry;
1091         bool exact, used_max_basic = false;
1092
1093         entry = kvm_find_cpuid_entry(vcpu, function, index);
1094         exact = !!entry;
1095
1096         if (!entry && !exact_only) {
1097                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1098                 used_max_basic = !!entry;
1099         }
1100
1101         if (entry) {
1102                 *eax = entry->eax;
1103                 *ebx = entry->ebx;
1104                 *ecx = entry->ecx;
1105                 *edx = entry->edx;
1106                 if (function == 7 && index == 0) {
1107                         u64 data;
1108                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1109                             (data & TSX_CTRL_CPUID_CLEAR))
1110                                 *ebx &= ~(F(RTM) | F(HLE));
1111                 }
1112         } else {
1113                 *eax = *ebx = *ecx = *edx = 0;
1114                 /*
1115                  * When leaf 0BH or 1FH is defined, CL is pass-through
1116                  * and EDX is always the x2APIC ID, even for undefined
1117                  * subleaves. Index 1 will exist iff the leaf is
1118                  * implemented, so we pass through CL iff leaf 1
1119                  * exists. EDX can be copied from any existing index.
1120                  */
1121                 if (function == 0xb || function == 0x1f) {
1122                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1123                         if (entry) {
1124                                 *ecx = index & 0xff;
1125                                 *edx = entry->edx;
1126                         }
1127                 }
1128         }
1129         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1130                         used_max_basic);
1131         return exact;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_cpuid);
1134
1135 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1136 {
1137         u32 eax, ebx, ecx, edx;
1138
1139         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1140                 return 1;
1141
1142         eax = kvm_rax_read(vcpu);
1143         ecx = kvm_rcx_read(vcpu);
1144         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1145         kvm_rax_write(vcpu, eax);
1146         kvm_rbx_write(vcpu, ebx);
1147         kvm_rcx_write(vcpu, ecx);
1148         kvm_rdx_write(vcpu, edx);
1149         return kvm_skip_emulated_instruction(vcpu);
1150 }
1151 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);