GNU Linux-libre 6.1.24-gnu
[releases.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include <asm/cpuid.h>
23 #include "cpuid.h"
24 #include "lapic.h"
25 #include "mmu.h"
26 #include "trace.h"
27 #include "pmu.h"
28
29 /*
30  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
31  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
32  */
33 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
34 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
35
36 u32 xstate_required_size(u64 xstate_bv, bool compacted)
37 {
38         int feature_bit = 0;
39         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
40
41         xstate_bv &= XFEATURE_MASK_EXTEND;
42         while (xstate_bv) {
43                 if (xstate_bv & 0x1) {
44                         u32 eax, ebx, ecx, edx, offset;
45                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
46                         /* ECX[1]: 64B alignment in compacted form */
47                         if (compacted)
48                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
49                         else
50                                 offset = ebx;
51                         ret = max(ret, offset + eax);
52                 }
53
54                 xstate_bv >>= 1;
55                 feature_bit++;
56         }
57
58         return ret;
59 }
60
61 /*
62  * This one is tied to SSB in the user API, and not
63  * visible in /proc/cpuinfo.
64  */
65 #define KVM_X86_FEATURE_PSFD            (13*32+28) /* Predictive Store Forwarding Disable */
66
67 #define F feature_bit
68 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
69
70 /*
71  * Magic value used by KVM when querying userspace-provided CPUID entries and
72  * doesn't care about the CPIUD index because the index of the function in
73  * question is not significant.  Note, this magic value must have at least one
74  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
75  * to avoid false positives when processing guest CPUID input.
76  */
77 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
78
79 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
80         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
81 {
82         struct kvm_cpuid_entry2 *e;
83         int i;
84
85         for (i = 0; i < nent; i++) {
86                 e = &entries[i];
87
88                 if (e->function != function)
89                         continue;
90
91                 /*
92                  * If the index isn't significant, use the first entry with a
93                  * matching function.  It's userspace's responsibilty to not
94                  * provide "duplicate" entries in all cases.
95                  */
96                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
97                         return e;
98
99
100                 /*
101                  * Similarly, use the first matching entry if KVM is doing a
102                  * lookup (as opposed to emulating CPUID) for a function that's
103                  * architecturally defined as not having a significant index.
104                  */
105                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
106                         /*
107                          * Direct lookups from KVM should not diverge from what
108                          * KVM defines internally (the architectural behavior).
109                          */
110                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
111                         return e;
112                 }
113         }
114
115         return NULL;
116 }
117
118 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
119                            struct kvm_cpuid_entry2 *entries,
120                            int nent)
121 {
122         struct kvm_cpuid_entry2 *best;
123         u64 xfeatures;
124
125         /*
126          * The existing code assumes virtual address is 48-bit or 57-bit in the
127          * canonical address checks; exit if it is ever changed.
128          */
129         best = cpuid_entry2_find(entries, nent, 0x80000008,
130                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
131         if (best) {
132                 int vaddr_bits = (best->eax & 0xff00) >> 8;
133
134                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135                         return -EINVAL;
136         }
137
138         /*
139          * Exposing dynamic xfeatures to the guest requires additional
140          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
141          */
142         best = cpuid_entry2_find(entries, nent, 0xd, 0);
143         if (!best)
144                 return 0;
145
146         xfeatures = best->eax | ((u64)best->edx << 32);
147         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
148         if (!xfeatures)
149                 return 0;
150
151         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
152 }
153
154 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
155 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
156                                  int nent)
157 {
158         struct kvm_cpuid_entry2 *orig;
159         int i;
160
161         if (nent != vcpu->arch.cpuid_nent)
162                 return -EINVAL;
163
164         for (i = 0; i < nent; i++) {
165                 orig = &vcpu->arch.cpuid_entries[i];
166                 if (e2[i].function != orig->function ||
167                     e2[i].index != orig->index ||
168                     e2[i].flags != orig->flags ||
169                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
170                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
171                         return -EINVAL;
172         }
173
174         return 0;
175 }
176
177 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
178 {
179         u32 function;
180         struct kvm_cpuid_entry2 *entry;
181
182         vcpu->arch.kvm_cpuid_base = 0;
183
184         for_each_possible_hypervisor_cpuid_base(function) {
185                 entry = kvm_find_cpuid_entry(vcpu, function);
186
187                 if (entry) {
188                         u32 signature[3];
189
190                         signature[0] = entry->ebx;
191                         signature[1] = entry->ecx;
192                         signature[2] = entry->edx;
193
194                         BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
195                         if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
196                                 vcpu->arch.kvm_cpuid_base = function;
197                                 break;
198                         }
199                 }
200         }
201 }
202
203 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
204                                               struct kvm_cpuid_entry2 *entries, int nent)
205 {
206         u32 base = vcpu->arch.kvm_cpuid_base;
207
208         if (!base)
209                 return NULL;
210
211         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
212                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
213 }
214
215 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
216 {
217         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
218                                              vcpu->arch.cpuid_nent);
219 }
220
221 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
222 {
223         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
224
225         /*
226          * save the feature bitmap to avoid cpuid lookup for every PV
227          * operation
228          */
229         if (best)
230                 vcpu->arch.pv_cpuid.features = best->eax;
231 }
232
233 /*
234  * Calculate guest's supported XCR0 taking into account guest CPUID data and
235  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
236  */
237 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
238 {
239         struct kvm_cpuid_entry2 *best;
240
241         best = cpuid_entry2_find(entries, nent, 0xd, 0);
242         if (!best)
243                 return 0;
244
245         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
246 }
247
248 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
249                                        int nent)
250 {
251         struct kvm_cpuid_entry2 *best;
252         u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
253
254         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
255         if (best) {
256                 /* Update OSXSAVE bit */
257                 if (boot_cpu_has(X86_FEATURE_XSAVE))
258                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
259                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
260
261                 cpuid_entry_change(best, X86_FEATURE_APIC,
262                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
263         }
264
265         best = cpuid_entry2_find(entries, nent, 7, 0);
266         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
267                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
268                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
269
270         best = cpuid_entry2_find(entries, nent, 0xD, 0);
271         if (best)
272                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
273
274         best = cpuid_entry2_find(entries, nent, 0xD, 1);
275         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
276                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
277                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
278
279         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
280         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
281                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
282                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
283
284         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
285                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
286                 if (best)
287                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
288                                            vcpu->arch.ia32_misc_enable_msr &
289                                            MSR_IA32_MISC_ENABLE_MWAIT);
290         }
291
292         /*
293          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
294          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
295          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
296          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
297          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
298          * '1' even on CPUs that don't support XSAVE.
299          */
300         best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
301         if (best) {
302                 best->ecx &= guest_supported_xcr0 & 0xffffffff;
303                 best->edx &= guest_supported_xcr0 >> 32;
304                 best->ecx |= XFEATURE_MASK_FPSSE;
305         }
306 }
307
308 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
309 {
310         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
311 }
312 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
313
314 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
315 {
316         struct kvm_cpuid_entry2 *entry;
317
318         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
319                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
320         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
321 }
322
323 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
324 {
325         struct kvm_lapic *apic = vcpu->arch.apic;
326         struct kvm_cpuid_entry2 *best;
327
328         best = kvm_find_cpuid_entry(vcpu, 1);
329         if (best && apic) {
330                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
331                         apic->lapic_timer.timer_mode_mask = 3 << 17;
332                 else
333                         apic->lapic_timer.timer_mode_mask = 1 << 17;
334
335                 kvm_apic_set_version(vcpu);
336         }
337
338         vcpu->arch.guest_supported_xcr0 =
339                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
340
341         /*
342          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
343          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
344          * supported by the host.
345          */
346         vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
347                                                        XFEATURE_MASK_FPSSE;
348
349         kvm_update_pv_runtime(vcpu);
350
351         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
352         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
353
354         kvm_pmu_refresh(vcpu);
355         vcpu->arch.cr4_guest_rsvd_bits =
356             __cr4_reserved_bits(guest_cpuid_has, vcpu);
357
358         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
359                                                     vcpu->arch.cpuid_nent));
360
361         /* Invoke the vendor callback only after the above state is updated. */
362         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
363
364         /*
365          * Except for the MMU, which needs to do its thing any vendor specific
366          * adjustments to the reserved GPA bits.
367          */
368         kvm_mmu_after_set_cpuid(vcpu);
369 }
370
371 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
372 {
373         struct kvm_cpuid_entry2 *best;
374
375         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
376         if (!best || best->eax < 0x80000008)
377                 goto not_found;
378         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
379         if (best)
380                 return best->eax & 0xff;
381 not_found:
382         return 36;
383 }
384
385 /*
386  * This "raw" version returns the reserved GPA bits without any adjustments for
387  * encryption technologies that usurp bits.  The raw mask should be used if and
388  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
389  */
390 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
391 {
392         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
393 }
394
395 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
396                         int nent)
397 {
398         int r;
399
400         __kvm_update_cpuid_runtime(vcpu, e2, nent);
401
402         /*
403          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
404          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
405          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
406          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
407          * the core vCPU model on the fly. It would've been better to forbid any
408          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
409          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
410          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
411          * whether the supplied CPUID data is equal to what's already set.
412          */
413         if (vcpu->arch.last_vmentry_cpu != -1) {
414                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
415                 if (r)
416                         return r;
417
418                 kvfree(e2);
419                 return 0;
420         }
421
422         if (kvm_cpuid_has_hyperv(e2, nent)) {
423                 r = kvm_hv_vcpu_init(vcpu);
424                 if (r)
425                         return r;
426         }
427
428         r = kvm_check_cpuid(vcpu, e2, nent);
429         if (r)
430                 return r;
431
432         kvfree(vcpu->arch.cpuid_entries);
433         vcpu->arch.cpuid_entries = e2;
434         vcpu->arch.cpuid_nent = nent;
435
436         kvm_update_kvm_cpuid_base(vcpu);
437         kvm_vcpu_after_set_cpuid(vcpu);
438
439         return 0;
440 }
441
442 /* when an old userspace process fills a new kernel module */
443 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
444                              struct kvm_cpuid *cpuid,
445                              struct kvm_cpuid_entry __user *entries)
446 {
447         int r, i;
448         struct kvm_cpuid_entry *e = NULL;
449         struct kvm_cpuid_entry2 *e2 = NULL;
450
451         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
452                 return -E2BIG;
453
454         if (cpuid->nent) {
455                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
456                 if (IS_ERR(e))
457                         return PTR_ERR(e);
458
459                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
460                 if (!e2) {
461                         r = -ENOMEM;
462                         goto out_free_cpuid;
463                 }
464         }
465         for (i = 0; i < cpuid->nent; i++) {
466                 e2[i].function = e[i].function;
467                 e2[i].eax = e[i].eax;
468                 e2[i].ebx = e[i].ebx;
469                 e2[i].ecx = e[i].ecx;
470                 e2[i].edx = e[i].edx;
471                 e2[i].index = 0;
472                 e2[i].flags = 0;
473                 e2[i].padding[0] = 0;
474                 e2[i].padding[1] = 0;
475                 e2[i].padding[2] = 0;
476         }
477
478         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
479         if (r)
480                 kvfree(e2);
481
482 out_free_cpuid:
483         kvfree(e);
484
485         return r;
486 }
487
488 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
489                               struct kvm_cpuid2 *cpuid,
490                               struct kvm_cpuid_entry2 __user *entries)
491 {
492         struct kvm_cpuid_entry2 *e2 = NULL;
493         int r;
494
495         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
496                 return -E2BIG;
497
498         if (cpuid->nent) {
499                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
500                 if (IS_ERR(e2))
501                         return PTR_ERR(e2);
502         }
503
504         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
505         if (r)
506                 kvfree(e2);
507
508         return r;
509 }
510
511 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
512                               struct kvm_cpuid2 *cpuid,
513                               struct kvm_cpuid_entry2 __user *entries)
514 {
515         int r;
516
517         r = -E2BIG;
518         if (cpuid->nent < vcpu->arch.cpuid_nent)
519                 goto out;
520         r = -EFAULT;
521         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
522                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
523                 goto out;
524         return 0;
525
526 out:
527         cpuid->nent = vcpu->arch.cpuid_nent;
528         return r;
529 }
530
531 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
532 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
533 {
534         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
535         struct kvm_cpuid_entry2 entry;
536
537         reverse_cpuid_check(leaf);
538
539         cpuid_count(cpuid.function, cpuid.index,
540                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
541
542         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
543 }
544
545 static __always_inline
546 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
547 {
548         /* Use kvm_cpu_cap_mask for non-scattered leafs. */
549         BUILD_BUG_ON(leaf < NCAPINTS);
550
551         kvm_cpu_caps[leaf] = mask;
552
553         __kvm_cpu_cap_mask(leaf);
554 }
555
556 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
557 {
558         /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
559         BUILD_BUG_ON(leaf >= NCAPINTS);
560
561         kvm_cpu_caps[leaf] &= mask;
562
563         __kvm_cpu_cap_mask(leaf);
564 }
565
566 void kvm_set_cpu_caps(void)
567 {
568 #ifdef CONFIG_X86_64
569         unsigned int f_gbpages = F(GBPAGES);
570         unsigned int f_lm = F(LM);
571         unsigned int f_xfd = F(XFD);
572 #else
573         unsigned int f_gbpages = 0;
574         unsigned int f_lm = 0;
575         unsigned int f_xfd = 0;
576 #endif
577         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
578
579         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
580                      sizeof(boot_cpu_data.x86_capability));
581
582         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
583                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
584
585         kvm_cpu_cap_mask(CPUID_1_ECX,
586                 /*
587                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
588                  * advertised to guests via CPUID!
589                  */
590                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
591                 0 /* DS-CPL, VMX, SMX, EST */ |
592                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
593                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
594                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
595                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
596                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
597                 F(F16C) | F(RDRAND)
598         );
599         /* KVM emulates x2apic in software irrespective of host support. */
600         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
601
602         kvm_cpu_cap_mask(CPUID_1_EDX,
603                 F(FPU) | F(VME) | F(DE) | F(PSE) |
604                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
605                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
606                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
607                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
608                 0 /* Reserved, DS, ACPI */ | F(MMX) |
609                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
610                 0 /* HTT, TM, Reserved, PBE */
611         );
612
613         kvm_cpu_cap_mask(CPUID_7_0_EBX,
614                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
615                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
616                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
617                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
618                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
619                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
620                 F(AVX512VL));
621
622         kvm_cpu_cap_mask(CPUID_7_ECX,
623                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
624                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
625                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
626                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
627                 F(SGX_LC) | F(BUS_LOCK_DETECT)
628         );
629         /* Set LA57 based on hardware capability. */
630         if (cpuid_ecx(7) & F(LA57))
631                 kvm_cpu_cap_set(X86_FEATURE_LA57);
632
633         /*
634          * PKU not yet implemented for shadow paging and requires OSPKE
635          * to be set on the host. Clear it if that is not the case
636          */
637         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
638                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
639
640         kvm_cpu_cap_mask(CPUID_7_EDX,
641                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
642                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
643                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
644                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
645                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
646         );
647
648         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
649         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
650         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
651
652         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
653                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
654         if (boot_cpu_has(X86_FEATURE_STIBP))
655                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
656         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
657                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
658
659         kvm_cpu_cap_mask(CPUID_7_1_EAX,
660                 F(AVX_VNNI) | F(AVX512_BF16)
661         );
662
663         kvm_cpu_cap_mask(CPUID_D_1_EAX,
664                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
665         );
666
667         kvm_cpu_cap_init_scattered(CPUID_12_EAX,
668                 SF(SGX1) | SF(SGX2)
669         );
670
671         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
672                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
673                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
674                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
675                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
676                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
677         );
678
679         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
680                 F(FPU) | F(VME) | F(DE) | F(PSE) |
681                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
682                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
683                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
684                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
685                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
686                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
687                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
688         );
689
690         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
691                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
692
693         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
694                 F(CLZERO) | F(XSAVEERPTR) |
695                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
696                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
697                 __feature_bit(KVM_X86_FEATURE_PSFD)
698         );
699
700         /*
701          * AMD has separate bits for each SPEC_CTRL bit.
702          * arch/x86/kernel/cpu/bugs.c is kind enough to
703          * record that in cpufeatures so use them.
704          */
705         if (boot_cpu_has(X86_FEATURE_IBPB))
706                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
707         if (boot_cpu_has(X86_FEATURE_IBRS))
708                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
709         if (boot_cpu_has(X86_FEATURE_STIBP))
710                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
711         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
712                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
713         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
714                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
715         /*
716          * The preference is to use SPEC CTRL MSR instead of the
717          * VIRT_SPEC MSR.
718          */
719         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
720             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
721                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
722
723         /*
724          * Hide all SVM features by default, SVM will set the cap bits for
725          * features it emulates and/or exposes for L1.
726          */
727         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
728
729         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
730                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
731                 F(SME_COHERENT));
732
733         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
734                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
735                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
736                 F(PMM) | F(PMM_EN)
737         );
738
739         /*
740          * Hide RDTSCP and RDPID if either feature is reported as supported but
741          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
742          * should never happen, but the guest will likely crash if RDTSCP or
743          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
744          * the past.  For example, the sanity check may fire if this instance of
745          * KVM is running as L1 on top of an older, broken KVM.
746          */
747         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
748                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
749                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
750                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
751                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
752         }
753 }
754 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
755
756 struct kvm_cpuid_array {
757         struct kvm_cpuid_entry2 *entries;
758         int maxnent;
759         int nent;
760 };
761
762 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
763 {
764         if (array->nent >= array->maxnent)
765                 return NULL;
766
767         return &array->entries[array->nent++];
768 }
769
770 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
771                                               u32 function, u32 index)
772 {
773         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
774
775         if (!entry)
776                 return NULL;
777
778         memset(entry, 0, sizeof(*entry));
779         entry->function = function;
780         entry->index = index;
781         switch (function & 0xC0000000) {
782         case 0x40000000:
783                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
784                 return entry;
785
786         case 0x80000000:
787                 /*
788                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
789                  * would result in out-of-bounds calls to do_host_cpuid.
790                  */
791                 {
792                         static int max_cpuid_80000000;
793                         if (!READ_ONCE(max_cpuid_80000000))
794                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
795                         if (function > READ_ONCE(max_cpuid_80000000))
796                                 return entry;
797                 }
798                 break;
799
800         default:
801                 break;
802         }
803
804         cpuid_count(entry->function, entry->index,
805                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
806
807         if (cpuid_function_is_indexed(function))
808                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
809
810         return entry;
811 }
812
813 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
814 {
815         struct kvm_cpuid_entry2 *entry;
816
817         if (array->nent >= array->maxnent)
818                 return -E2BIG;
819
820         entry = &array->entries[array->nent];
821         entry->function = func;
822         entry->index = 0;
823         entry->flags = 0;
824
825         switch (func) {
826         case 0:
827                 entry->eax = 7;
828                 ++array->nent;
829                 break;
830         case 1:
831                 entry->ecx = F(MOVBE);
832                 ++array->nent;
833                 break;
834         case 7:
835                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
836                 entry->eax = 0;
837                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
838                         entry->ecx = F(RDPID);
839                 ++array->nent;
840                 break;
841         default:
842                 break;
843         }
844
845         return 0;
846 }
847
848 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
849 {
850         struct kvm_cpuid_entry2 *entry;
851         int r, i, max_idx;
852
853         /* all calls to cpuid_count() should be made on the same cpu */
854         get_cpu();
855
856         r = -E2BIG;
857
858         entry = do_host_cpuid(array, function, 0);
859         if (!entry)
860                 goto out;
861
862         switch (function) {
863         case 0:
864                 /* Limited to the highest leaf implemented in KVM. */
865                 entry->eax = min(entry->eax, 0x1fU);
866                 break;
867         case 1:
868                 cpuid_entry_override(entry, CPUID_1_EDX);
869                 cpuid_entry_override(entry, CPUID_1_ECX);
870                 break;
871         case 2:
872                 /*
873                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
874                  * CPUID(function=2, index=0) may return different results each
875                  * time, with the least-significant byte in EAX enumerating the
876                  * number of times software should do CPUID(2, 0).
877                  *
878                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
879                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
880                  * return 01H. Software should ignore this value and not
881                  * interpret it as an informational descriptor", while AMD's
882                  * APM states that CPUID(2) is reserved.
883                  *
884                  * WARN if a frankenstein CPU that supports virtualization and
885                  * a stateful CPUID.0x2 is encountered.
886                  */
887                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
888                 break;
889         /* functions 4 and 0x8000001d have additional index. */
890         case 4:
891         case 0x8000001d:
892                 /*
893                  * Read entries until the cache type in the previous entry is
894                  * zero, i.e. indicates an invalid entry.
895                  */
896                 for (i = 1; entry->eax & 0x1f; ++i) {
897                         entry = do_host_cpuid(array, function, i);
898                         if (!entry)
899                                 goto out;
900                 }
901                 break;
902         case 6: /* Thermal management */
903                 entry->eax = 0x4; /* allow ARAT */
904                 entry->ebx = 0;
905                 entry->ecx = 0;
906                 entry->edx = 0;
907                 break;
908         /* function 7 has additional index. */
909         case 7:
910                 entry->eax = min(entry->eax, 1u);
911                 cpuid_entry_override(entry, CPUID_7_0_EBX);
912                 cpuid_entry_override(entry, CPUID_7_ECX);
913                 cpuid_entry_override(entry, CPUID_7_EDX);
914
915                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
916                 if (entry->eax == 1) {
917                         entry = do_host_cpuid(array, function, 1);
918                         if (!entry)
919                                 goto out;
920
921                         cpuid_entry_override(entry, CPUID_7_1_EAX);
922                         entry->ebx = 0;
923                         entry->ecx = 0;
924                         entry->edx = 0;
925                 }
926                 break;
927         case 0xa: { /* Architectural Performance Monitoring */
928                 union cpuid10_eax eax;
929                 union cpuid10_edx edx;
930
931                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
932                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
933                         break;
934                 }
935
936                 eax.split.version_id = kvm_pmu_cap.version;
937                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
938                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
939                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
940                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
941                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
942
943                 if (kvm_pmu_cap.version)
944                         edx.split.anythread_deprecated = 1;
945                 edx.split.reserved1 = 0;
946                 edx.split.reserved2 = 0;
947
948                 entry->eax = eax.full;
949                 entry->ebx = kvm_pmu_cap.events_mask;
950                 entry->ecx = 0;
951                 entry->edx = edx.full;
952                 break;
953         }
954         case 0x1f:
955         case 0xb:
956                 /*
957                  * No topology; a valid topology is indicated by the presence
958                  * of subleaf 1.
959                  */
960                 entry->eax = entry->ebx = entry->ecx = 0;
961                 break;
962         case 0xd: {
963                 u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
964                 u64 permitted_xss = kvm_caps.supported_xss;
965
966                 entry->eax &= permitted_xcr0;
967                 entry->ebx = xstate_required_size(permitted_xcr0, false);
968                 entry->ecx = entry->ebx;
969                 entry->edx &= permitted_xcr0 >> 32;
970                 if (!permitted_xcr0)
971                         break;
972
973                 entry = do_host_cpuid(array, function, 1);
974                 if (!entry)
975                         goto out;
976
977                 cpuid_entry_override(entry, CPUID_D_1_EAX);
978                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
979                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
980                                                           true);
981                 else {
982                         WARN_ON_ONCE(permitted_xss != 0);
983                         entry->ebx = 0;
984                 }
985                 entry->ecx &= permitted_xss;
986                 entry->edx &= permitted_xss >> 32;
987
988                 for (i = 2; i < 64; ++i) {
989                         bool s_state;
990                         if (permitted_xcr0 & BIT_ULL(i))
991                                 s_state = false;
992                         else if (permitted_xss & BIT_ULL(i))
993                                 s_state = true;
994                         else
995                                 continue;
996
997                         entry = do_host_cpuid(array, function, i);
998                         if (!entry)
999                                 goto out;
1000
1001                         /*
1002                          * The supported check above should have filtered out
1003                          * invalid sub-leafs.  Only valid sub-leafs should
1004                          * reach this point, and they should have a non-zero
1005                          * save state size.  Furthermore, check whether the
1006                          * processor agrees with permitted_xcr0/permitted_xss
1007                          * on whether this is an XCR0- or IA32_XSS-managed area.
1008                          */
1009                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1010                                 --array->nent;
1011                                 continue;
1012                         }
1013
1014                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1015                                 entry->ecx &= ~BIT_ULL(2);
1016                         entry->edx = 0;
1017                 }
1018                 break;
1019         }
1020         case 0x12:
1021                 /* Intel SGX */
1022                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1023                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1024                         break;
1025                 }
1026
1027                 /*
1028                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1029                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1030                  * are restricted by kernel and KVM capabilities (like most
1031                  * feature flags), while enclave size is unrestricted.
1032                  */
1033                 cpuid_entry_override(entry, CPUID_12_EAX);
1034                 entry->ebx &= SGX_MISC_EXINFO;
1035
1036                 entry = do_host_cpuid(array, function, 1);
1037                 if (!entry)
1038                         goto out;
1039
1040                 /*
1041                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1042                  * feature flags.  Advertise all supported flags, including
1043                  * privileged attributes that require explicit opt-in from
1044                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1045                  * expected to derive it from supported XCR0.
1046                  */
1047                 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
1048                               SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
1049                               SGX_ATTR_KSS;
1050                 entry->ebx &= 0;
1051                 break;
1052         /* Intel PT */
1053         case 0x14:
1054                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1055                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1056                         break;
1057                 }
1058
1059                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1060                         if (!do_host_cpuid(array, function, i))
1061                                 goto out;
1062                 }
1063                 break;
1064         /* Intel AMX TILE */
1065         case 0x1d:
1066                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1067                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1068                         break;
1069                 }
1070
1071                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1072                         if (!do_host_cpuid(array, function, i))
1073                                 goto out;
1074                 }
1075                 break;
1076         case 0x1e: /* TMUL information */
1077                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1078                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1079                         break;
1080                 }
1081                 break;
1082         case KVM_CPUID_SIGNATURE: {
1083                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1084                 entry->eax = KVM_CPUID_FEATURES;
1085                 entry->ebx = sigptr[0];
1086                 entry->ecx = sigptr[1];
1087                 entry->edx = sigptr[2];
1088                 break;
1089         }
1090         case KVM_CPUID_FEATURES:
1091                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1092                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1093                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1094                              (1 << KVM_FEATURE_ASYNC_PF) |
1095                              (1 << KVM_FEATURE_PV_EOI) |
1096                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1097                              (1 << KVM_FEATURE_PV_UNHALT) |
1098                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1099                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1100                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1101                              (1 << KVM_FEATURE_POLL_CONTROL) |
1102                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1103                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1104
1105                 if (sched_info_on())
1106                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1107
1108                 entry->ebx = 0;
1109                 entry->ecx = 0;
1110                 entry->edx = 0;
1111                 break;
1112         case 0x80000000:
1113                 entry->eax = min(entry->eax, 0x80000021);
1114                 /*
1115                  * Serializing LFENCE is reported in a multitude of ways, and
1116                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1117                  * userspace by providing the CPUID leaf ourselves.
1118                  *
1119                  * However, only do it if the host has CPUID leaf 0x8000001d.
1120                  * QEMU thinks that it can query the host blindly for that
1121                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1122                  * above.  The processor merrily returns values from the
1123                  * highest Intel leaf which QEMU tries to use as the guest's
1124                  * 0x8000001d.  Even worse, this can result in an infinite
1125                  * loop if said highest leaf has no subleaves indexed by ECX.
1126                  */
1127                 if (entry->eax >= 0x8000001d &&
1128                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1129                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1130                         entry->eax = max(entry->eax, 0x80000021);
1131                 break;
1132         case 0x80000001:
1133                 entry->ebx &= ~GENMASK(27, 16);
1134                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1135                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1136                 break;
1137         case 0x80000006:
1138                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1139                 entry->edx &= ~GENMASK(17, 16);
1140                 break;
1141         case 0x80000007: /* Advanced power management */
1142                 /* invariant TSC is CPUID.80000007H:EDX[8] */
1143                 entry->edx &= (1 << 8);
1144                 /* mask against host */
1145                 entry->edx &= boot_cpu_data.x86_power;
1146                 entry->eax = entry->ebx = entry->ecx = 0;
1147                 break;
1148         case 0x80000008: {
1149                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1150                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1151                 unsigned phys_as = entry->eax & 0xff;
1152
1153                 /*
1154                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1155                  * the guest operates in the same PA space as the host, i.e.
1156                  * reductions in MAXPHYADDR for memory encryption affect shadow
1157                  * paging, too.
1158                  *
1159                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1160                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1161                  * the HPAs do not affect GPAs.
1162                  */
1163                 if (!tdp_enabled)
1164                         g_phys_as = boot_cpu_data.x86_phys_bits;
1165                 else if (!g_phys_as)
1166                         g_phys_as = phys_as;
1167
1168                 entry->eax = g_phys_as | (virt_as << 8);
1169                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1170                 entry->edx = 0;
1171                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1172                 break;
1173         }
1174         case 0x8000000A:
1175                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1176                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1177                         break;
1178                 }
1179                 entry->eax = 1; /* SVM revision 1 */
1180                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1181                                    ASID emulation to nested SVM */
1182                 entry->ecx = 0; /* Reserved */
1183                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1184                 break;
1185         case 0x80000019:
1186                 entry->ecx = entry->edx = 0;
1187                 break;
1188         case 0x8000001a:
1189                 entry->eax &= GENMASK(2, 0);
1190                 entry->ebx = entry->ecx = entry->edx = 0;
1191                 break;
1192         case 0x8000001e:
1193                 /* Do not return host topology information.  */
1194                 entry->eax = entry->ebx = entry->ecx = 0;
1195                 entry->edx = 0; /* reserved */
1196                 break;
1197         case 0x8000001F:
1198                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1199                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1200                 } else {
1201                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1202                         /* Clear NumVMPL since KVM does not support VMPL.  */
1203                         entry->ebx &= ~GENMASK(31, 12);
1204                         /*
1205                          * Enumerate '0' for "PA bits reduction", the adjusted
1206                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1207                          */
1208                         entry->ebx &= ~GENMASK(11, 6);
1209                 }
1210                 break;
1211         case 0x80000020:
1212                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1213                 break;
1214         case 0x80000021:
1215                 entry->ebx = entry->ecx = entry->edx = 0;
1216                 /*
1217                  * Pass down these bits:
1218                  *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1219                  *    EAX      2      LAS, LFENCE always serializing
1220                  *    EAX      6      NSCB, Null selector clear base
1221                  *
1222                  * Other defined bits are for MSRs that KVM does not expose:
1223                  *   EAX      3      SPCL, SMM page configuration lock
1224                  *   EAX      13     PCMSR, Prefetch control MSR
1225                  */
1226                 entry->eax &= BIT(0) | BIT(2) | BIT(6);
1227                 if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1228                         entry->eax |= BIT(2);
1229                 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1230                         entry->eax |= BIT(6);
1231                 break;
1232         /*Add support for Centaur's CPUID instruction*/
1233         case 0xC0000000:
1234                 /*Just support up to 0xC0000004 now*/
1235                 entry->eax = min(entry->eax, 0xC0000004);
1236                 break;
1237         case 0xC0000001:
1238                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1239                 break;
1240         case 3: /* Processor serial number */
1241         case 5: /* MONITOR/MWAIT */
1242         case 0xC0000002:
1243         case 0xC0000003:
1244         case 0xC0000004:
1245         default:
1246                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1247                 break;
1248         }
1249
1250         r = 0;
1251
1252 out:
1253         put_cpu();
1254
1255         return r;
1256 }
1257
1258 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1259                          unsigned int type)
1260 {
1261         if (type == KVM_GET_EMULATED_CPUID)
1262                 return __do_cpuid_func_emulated(array, func);
1263
1264         return __do_cpuid_func(array, func);
1265 }
1266
1267 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1268
1269 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1270                           unsigned int type)
1271 {
1272         u32 limit;
1273         int r;
1274
1275         if (func == CENTAUR_CPUID_SIGNATURE &&
1276             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1277                 return 0;
1278
1279         r = do_cpuid_func(array, func, type);
1280         if (r)
1281                 return r;
1282
1283         limit = array->entries[array->nent - 1].eax;
1284         for (func = func + 1; func <= limit; ++func) {
1285                 r = do_cpuid_func(array, func, type);
1286                 if (r)
1287                         break;
1288         }
1289
1290         return r;
1291 }
1292
1293 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1294                                  __u32 num_entries, unsigned int ioctl_type)
1295 {
1296         int i;
1297         __u32 pad[3];
1298
1299         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1300                 return false;
1301
1302         /*
1303          * We want to make sure that ->padding is being passed clean from
1304          * userspace in case we want to use it for something in the future.
1305          *
1306          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1307          * have to give ourselves satisfied only with the emulated side. /me
1308          * sheds a tear.
1309          */
1310         for (i = 0; i < num_entries; i++) {
1311                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1312                         return true;
1313
1314                 if (pad[0] || pad[1] || pad[2])
1315                         return true;
1316         }
1317         return false;
1318 }
1319
1320 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1321                             struct kvm_cpuid_entry2 __user *entries,
1322                             unsigned int type)
1323 {
1324         static const u32 funcs[] = {
1325                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1326         };
1327
1328         struct kvm_cpuid_array array = {
1329                 .nent = 0,
1330         };
1331         int r, i;
1332
1333         if (cpuid->nent < 1)
1334                 return -E2BIG;
1335         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1336                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1337
1338         if (sanity_check_entries(entries, cpuid->nent, type))
1339                 return -EINVAL;
1340
1341         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1342         if (!array.entries)
1343                 return -ENOMEM;
1344
1345         array.maxnent = cpuid->nent;
1346
1347         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1348                 r = get_cpuid_func(&array, funcs[i], type);
1349                 if (r)
1350                         goto out_free;
1351         }
1352         cpuid->nent = array.nent;
1353
1354         if (copy_to_user(entries, array.entries,
1355                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1356                 r = -EFAULT;
1357
1358 out_free:
1359         kvfree(array.entries);
1360         return r;
1361 }
1362
1363 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1364                                                     u32 function, u32 index)
1365 {
1366         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1367                                  function, index);
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1370
1371 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1372                                               u32 function)
1373 {
1374         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1375                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1376 }
1377 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1378
1379 /*
1380  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1381  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1382  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1383  * range.  Centaur/VIA follows Intel semantics.
1384  *
1385  * A leaf is considered out-of-range if its function is higher than the maximum
1386  * supported leaf of its associated class or if its associated class does not
1387  * exist.
1388  *
1389  * There are three primary classes to be considered, with their respective
1390  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1391  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1392  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1393  *
1394  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1395  *  - Hypervisor: 0x40000000 - 0x4fffffff
1396  *  - Extended:   0x80000000 - 0xbfffffff
1397  *  - Centaur:    0xc0000000 - 0xcfffffff
1398  *
1399  * The Hypervisor class is further subdivided into sub-classes that each act as
1400  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1401  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1402  * CPUID sub-classes are:
1403  *
1404  *  - HyperV:     0x40000000 - 0x400000ff
1405  *  - KVM:        0x40000100 - 0x400001ff
1406  */
1407 static struct kvm_cpuid_entry2 *
1408 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1409 {
1410         struct kvm_cpuid_entry2 *basic, *class;
1411         u32 function = *fn_ptr;
1412
1413         basic = kvm_find_cpuid_entry(vcpu, 0);
1414         if (!basic)
1415                 return NULL;
1416
1417         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1418             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1419                 return NULL;
1420
1421         if (function >= 0x40000000 && function <= 0x4fffffff)
1422                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1423         else if (function >= 0xc0000000)
1424                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1425         else
1426                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1427
1428         if (class && function <= class->eax)
1429                 return NULL;
1430
1431         /*
1432          * Leaf specific adjustments are also applied when redirecting to the
1433          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1434          * entry for CPUID.0xb.index (see below), then the output value for EDX
1435          * needs to be pulled from CPUID.0xb.1.
1436          */
1437         *fn_ptr = basic->eax;
1438
1439         /*
1440          * The class does not exist or the requested function is out of range;
1441          * the effective CPUID entry is the max basic leaf.  Note, the index of
1442          * the original requested leaf is observed!
1443          */
1444         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1445 }
1446
1447 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1448                u32 *ecx, u32 *edx, bool exact_only)
1449 {
1450         u32 orig_function = *eax, function = *eax, index = *ecx;
1451         struct kvm_cpuid_entry2 *entry;
1452         bool exact, used_max_basic = false;
1453
1454         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1455         exact = !!entry;
1456
1457         if (!entry && !exact_only) {
1458                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1459                 used_max_basic = !!entry;
1460         }
1461
1462         if (entry) {
1463                 *eax = entry->eax;
1464                 *ebx = entry->ebx;
1465                 *ecx = entry->ecx;
1466                 *edx = entry->edx;
1467                 if (function == 7 && index == 0) {
1468                         u64 data;
1469                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1470                             (data & TSX_CTRL_CPUID_CLEAR))
1471                                 *ebx &= ~(F(RTM) | F(HLE));
1472                 }
1473         } else {
1474                 *eax = *ebx = *ecx = *edx = 0;
1475                 /*
1476                  * When leaf 0BH or 1FH is defined, CL is pass-through
1477                  * and EDX is always the x2APIC ID, even for undefined
1478                  * subleaves. Index 1 will exist iff the leaf is
1479                  * implemented, so we pass through CL iff leaf 1
1480                  * exists. EDX can be copied from any existing index.
1481                  */
1482                 if (function == 0xb || function == 0x1f) {
1483                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1484                         if (entry) {
1485                                 *ecx = index & 0xff;
1486                                 *edx = entry->edx;
1487                         }
1488                 }
1489         }
1490         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1491                         used_max_basic);
1492         return exact;
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_cpuid);
1495
1496 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1497 {
1498         u32 eax, ebx, ecx, edx;
1499
1500         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1501                 return 1;
1502
1503         eax = kvm_rax_read(vcpu);
1504         ecx = kvm_rcx_read(vcpu);
1505         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1506         kvm_rax_write(vcpu, eax);
1507         kvm_rbx_write(vcpu, ebx);
1508         kvm_rcx_write(vcpu, ecx);
1509         kvm_rdx_write(vcpu, edx);
1510         return kvm_skip_emulated_instruction(vcpu);
1511 }
1512 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);