2 * User-space Probes (UProbes) for x86
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2011
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
32 #include <asm/mmu_context.h>
34 /* Post-execution fixups. */
36 /* Adjust IP back to vicinity of actual insn */
37 #define UPROBE_FIX_IP 0x01
39 /* Adjust the return address of a call insn */
40 #define UPROBE_FIX_CALL 0x02
42 /* Instruction will modify TF, don't change it */
43 #define UPROBE_FIX_SETF 0x04
45 #define UPROBE_FIX_RIP_SI 0x08
46 #define UPROBE_FIX_RIP_DI 0x10
47 #define UPROBE_FIX_RIP_BX 0x20
48 #define UPROBE_FIX_RIP_MASK \
49 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
51 #define UPROBE_TRAP_NR UINT_MAX
53 /* Adaptations for mhiramat x86 decoder v14. */
54 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
55 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
56 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
57 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
59 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
60 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
61 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
62 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
63 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
67 * Good-instruction tables for 32-bit apps. This is non-const and volatile
68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
69 * some versions of gcc to think only *(unsigned long*) is used.
71 * Opcodes we'll probably never support:
72 * 6c-6f - ins,outs. SEGVs if used in userspace
73 * e4-e7 - in,out imm. SEGVs if used in userspace
74 * ec-ef - in,out acc. SEGVs if used in userspace
75 * cc - int3. SIGTRAP if used in userspace
76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
77 * (why we support bound (62) then? it's similar, and similarly unused...)
78 * f1 - int1. SIGTRAP if used in userspace
79 * f4 - hlt. SEGVs if used in userspace
80 * fa - cli. SEGVs if used in userspace
81 * fb - sti. SEGVs if used in userspace
83 * Opcodes which need some work to be supported:
84 * 07,17,1f - pop es/ss/ds
85 * Normally not used in userspace, but would execute if used.
86 * Can cause GP or stack exception if tries to load wrong segment descriptor.
87 * We hesitate to run them under single step since kernel's handling
88 * of userspace single-stepping (TF flag) is fragile.
89 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
90 * on the same grounds that they are never used.
92 * Used by userspace for "int 80" syscall entry. (Other "int N"
93 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
94 * Not supported since kernel's handling of userspace single-stepping
95 * (TF flag) is fragile.
96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
98 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
99 static volatile u32 good_insns_32[256 / 32] = {
100 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
101 /* ---------------------------------------------- */
102 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
103 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
104 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
105 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
106 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
107 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
108 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
109 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
110 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
111 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
112 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
113 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
114 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
115 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
116 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
117 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
118 /* ---------------------------------------------- */
119 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
122 #define good_insns_32 NULL
125 /* Good-instruction tables for 64-bit apps.
127 * Genuinely invalid opcodes:
128 * 06,07 - formerly push/pop es
129 * 0e - formerly push cs
130 * 16,17 - formerly push/pop ss
131 * 1e,1f - formerly push/pop ds
132 * 27,2f,37,3f - formerly daa/das/aaa/aas
133 * 60,61 - formerly pusha/popa
134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
135 * 82 - formerly redundant encoding of Group1
136 * 9a - formerly call seg:ofs
138 * d4,d5 - formerly aam/aad
139 * d6 - formerly undocumented salc
140 * ea - formerly jmp seg:ofs
142 * Opcodes we'll probably never support:
143 * 6c-6f - ins,outs. SEGVs if used in userspace
144 * e4-e7 - in,out imm. SEGVs if used in userspace
145 * ec-ef - in,out acc. SEGVs if used in userspace
146 * cc - int3. SIGTRAP if used in userspace
147 * f1 - int1. SIGTRAP if used in userspace
148 * f4 - hlt. SEGVs if used in userspace
149 * fa - cli. SEGVs if used in userspace
150 * fb - sti. SEGVs if used in userspace
152 * Opcodes which need some work to be supported:
154 * Used by userspace for "int 80" syscall entry. (Other "int N"
155 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
156 * Not supported since kernel's handling of userspace single-stepping
157 * (TF flag) is fragile.
158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
160 #if defined(CONFIG_X86_64)
161 static volatile u32 good_insns_64[256 / 32] = {
162 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
163 /* ---------------------------------------------- */
164 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
165 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
166 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
167 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
168 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
169 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
170 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
171 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
172 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
173 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
174 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
175 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
176 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
177 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
178 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
179 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
180 /* ---------------------------------------------- */
181 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
184 #define good_insns_64 NULL
187 /* Using this for both 64-bit and 32-bit apps.
188 * Opcodes we don't support:
189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
191 * Also encodes tons of other system insns if mod=11.
192 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
194 * 0f 06 - clts (CPL0 insn)
196 * 0f 08 - invd (CPL0 insn)
197 * 0f 09 - wbinvd (CPL0 insn)
199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
205 * Note: with prefixes, these two opcodes are
206 * extrq/insertq/AVX512 convert vector ops.
207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
208 * {rd,wr}{fs,gs}base,{s,l,m}fence.
209 * Why? They are all user-executable.
211 static volatile u32 good_2byte_insns[256 / 32] = {
212 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
213 /* ---------------------------------------------- */
214 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
215 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
216 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
217 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
218 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
219 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
220 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
221 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
222 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
223 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
224 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
225 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
226 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
227 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
228 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
229 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
230 /* ---------------------------------------------- */
231 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
236 * opcodes we may need to refine support for:
238 * 0f - 2-byte instructions: For many of these instructions, the validity
239 * depends on the prefix and/or the reg field. On such instructions, we
240 * just consider the opcode combination valid if it corresponds to any
243 * 8f - Group 1 - only reg = 0 is OK
244 * c6-c7 - Group 11 - only reg = 0 is OK
245 * d9-df - fpu insns with some illegal encodings
246 * f2, f3 - repnz, repz prefixes. These are also the first byte for
247 * certain floating-point instructions, such as addsd.
249 * fe - Group 4 - only reg = 0 or 1 is OK
250 * ff - Group 5 - only reg = 0-6 is OK
252 * others -- Do we need to support these?
254 * 0f - (floating-point?) prefetch instructions
255 * 07, 17, 1f - pop es, pop ss, pop ds
256 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
257 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
265 * - Where necessary, examine the modrm byte and allow only valid instructions
266 * in the different Groups and fpu instructions.
269 static bool is_prefix_bad(struct insn *insn)
274 for_each_insn_prefix(insn, i, p) {
276 case 0x26: /* INAT_PFX_ES */
277 case 0x2E: /* INAT_PFX_CS */
278 case 0x36: /* INAT_PFX_DS */
279 case 0x3E: /* INAT_PFX_SS */
280 case 0xF0: /* INAT_PFX_LOCK */
287 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
289 u32 volatile *good_insns;
291 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
292 /* has the side-effect of processing the entire instruction */
293 insn_get_length(insn);
294 if (!insn_complete(insn))
297 if (is_prefix_bad(insn))
300 /* We should not singlestep on the exception masking instructions */
301 if (insn_masking_exception(insn))
305 good_insns = good_insns_64;
307 good_insns = good_insns_32;
309 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
312 if (insn->opcode.nbytes == 2) {
313 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
322 * If arch_uprobe->insn doesn't use rip-relative addressing, return
323 * immediately. Otherwise, rewrite the instruction so that it accesses
324 * its memory operand indirectly through a scratch register. Set
325 * defparam->fixups accordingly. (The contents of the scratch register
326 * will be saved before we single-step the modified instruction,
327 * and restored afterward).
329 * We do this because a rip-relative instruction can access only a
330 * relatively small area (+/- 2 GB from the instruction), and the XOL
331 * area typically lies beyond that area. At least for instructions
332 * that store to memory, we can't execute the original instruction
333 * and "fix things up" later, because the misdirected store could be
336 * Some useful facts about rip-relative instructions:
338 * - There's always a modrm byte with bit layout "00 reg 101".
339 * - There's never a SIB byte.
340 * - The displacement is always 4 bytes.
341 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
342 * has no effect on rip-relative mode. It doesn't make modrm byte
343 * with r/m=101 refer to register 1101 = R13.
345 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
351 if (!insn_rip_relative(insn))
355 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
356 * Clear REX.b bit (extension of MODRM.rm field):
357 * we want to encode low numbered reg, not r8+.
359 if (insn->rex_prefix.nbytes) {
360 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
361 /* REX byte has 0100wrxb layout, clearing REX.b bit */
365 * Similar treatment for VEX3/EVEX prefix.
366 * TODO: add XOP treatment when insn decoder supports them
368 if (insn->vex_prefix.nbytes >= 3) {
370 * vex2: c5 rvvvvLpp (has no b bit)
371 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
372 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
373 * Setting VEX3.b (setting because it has inverted meaning).
374 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
375 * is the 4th bit of MODRM.rm, and needs the same treatment.
376 * For VEX3-encoded insns, VEX3.x value has no effect in
377 * non-SIB encoding, the change is superfluous but harmless.
379 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
384 * Convert from rip-relative addressing to register-relative addressing
385 * via a scratch register.
387 * This is tricky since there are insns with modrm byte
388 * which also use registers not encoded in modrm byte:
389 * [i]div/[i]mul: implicitly use dx:ax
390 * shift ops: implicitly use cx
391 * cmpxchg: implicitly uses ax
392 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
393 * Encoding: 0f c7/1 modrm
394 * The code below thinks that reg=1 (cx), chooses si as scratch.
395 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
396 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
397 * Example where none of bx,cx,dx can be used as scratch reg:
398 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
399 * [v]pcmpistri: implicitly uses cx, xmm0
400 * [v]pcmpistrm: implicitly uses xmm0
401 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
402 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
403 * Evil SSE4.2 string comparison ops from hell.
404 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
405 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
406 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
407 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
408 * and that it can have only register operands, not mem
409 * (its modrm byte must have mode=11).
410 * If these restrictions will ever be lifted,
411 * we'll need code to prevent selection of di as scratch reg!
413 * Summary: I don't know any insns with modrm byte which
414 * use SI register implicitly. DI register is used only
415 * by one insn (maskmovq) and BX register is used
416 * only by one too (cmpxchg8b).
417 * BP is stack-segment based (may be a problem?).
418 * AX, DX, CX are off-limits (many implicit users).
419 * SP is unusable (it's stack pointer - think about "pop mem";
420 * also, rsp+disp32 needs sib encoding -> insn length change).
423 reg = MODRM_REG(insn); /* Fetch modrm.reg */
424 reg2 = 0xff; /* Fetch vex.vvvv */
425 if (insn->vex_prefix.nbytes)
426 reg2 = insn->vex_prefix.bytes[2];
428 * TODO: add XOP vvvv reading.
430 * vex.vvvv field is in bits 6-3, bits are inverted.
431 * But in 32-bit mode, high-order bit may be ignored.
432 * Therefore, let's consider only 3 low-order bits.
434 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
436 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
438 * Choose scratch reg. Order is important: must not select bx
439 * if we can use si (cmpxchg8b case!)
441 if (reg != 6 && reg2 != 6) {
443 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
444 } else if (reg != 7 && reg2 != 7) {
446 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
447 /* TODO (paranoia): force maskmovq to not use di */
450 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
453 * Point cursor at the modrm byte. The next 4 bytes are the
454 * displacement. Beyond the displacement, for some instructions,
455 * is the immediate operand.
457 cursor = auprobe->insn + insn_offset_modrm(insn);
459 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
460 * 89 05 disp32 mov %eax,disp32(%rip) becomes
461 * 89 86 disp32 mov %eax,disp32(%rsi)
463 *cursor = 0x80 | (reg << 3) | reg2;
466 static inline unsigned long *
467 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
469 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
471 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
477 * If we're emulating a rip-relative instruction, save the contents
478 * of the scratch register and store the target address in that register.
480 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
482 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
483 struct uprobe_task *utask = current->utask;
484 unsigned long *sr = scratch_reg(auprobe, regs);
486 utask->autask.saved_scratch_register = *sr;
487 *sr = utask->vaddr + auprobe->defparam.ilen;
491 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
493 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
494 struct uprobe_task *utask = current->utask;
495 unsigned long *sr = scratch_reg(auprobe, regs);
497 *sr = utask->autask.saved_scratch_register;
502 * No RIP-relative addressing on 32-bit
504 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
507 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
510 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
513 #endif /* CONFIG_X86_64 */
515 struct uprobe_xol_ops {
516 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
517 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
518 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
519 void (*abort)(struct arch_uprobe *, struct pt_regs *);
522 static inline int sizeof_long(struct pt_regs *regs)
525 * Check registers for mode as in_xxx_syscall() does not apply here.
527 return user_64bit_mode(regs) ? 8 : 4;
530 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
532 riprel_pre_xol(auprobe, regs);
536 static int push_ret_address(struct pt_regs *regs, unsigned long ip)
538 unsigned long new_sp = regs->sp - sizeof_long(regs);
540 if (copy_to_user((void __user *)new_sp, &ip, sizeof_long(regs)))
548 * We have to fix things up as follows:
550 * Typically, the new ip is relative to the copied instruction. We need
551 * to make it relative to the original instruction (FIX_IP). Exceptions
552 * are return instructions and absolute or indirect jump or call instructions.
554 * If the single-stepped instruction was a call, the return address that
555 * is atop the stack is the address following the copied instruction. We
556 * need to make it the address following the original instruction (FIX_CALL).
558 * If the original instruction was a rip-relative instruction such as
559 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
560 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
561 * We need to restore the contents of the scratch register
564 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
566 struct uprobe_task *utask = current->utask;
568 riprel_post_xol(auprobe, regs);
569 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
570 long correction = utask->vaddr - utask->xol_vaddr;
571 regs->ip += correction;
572 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
573 regs->sp += sizeof_long(regs); /* Pop incorrect return address */
574 if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
577 /* popf; tell the caller to not touch TF */
578 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
579 utask->autask.saved_tf = true;
584 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
586 riprel_post_xol(auprobe, regs);
589 static const struct uprobe_xol_ops default_xol_ops = {
590 .pre_xol = default_pre_xol_op,
591 .post_xol = default_post_xol_op,
592 .abort = default_abort_op,
595 static bool branch_is_call(struct arch_uprobe *auprobe)
597 return auprobe->branch.opc1 == 0xe8;
601 COND(70, 71, XF(OF)) \
602 COND(72, 73, XF(CF)) \
603 COND(74, 75, XF(ZF)) \
604 COND(78, 79, XF(SF)) \
605 COND(7a, 7b, XF(PF)) \
606 COND(76, 77, XF(CF) || XF(ZF)) \
607 COND(7c, 7d, XF(SF) != XF(OF)) \
608 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
610 #define COND(op_y, op_n, expr) \
611 case 0x ## op_y: DO((expr) != 0) \
612 case 0x ## op_n: DO((expr) == 0)
614 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
616 static bool is_cond_jmp_opcode(u8 opcode)
629 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
631 unsigned long flags = regs->flags;
633 switch (auprobe->branch.opc1) {
639 default: /* not a conditional jmp */
648 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
650 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
651 unsigned long offs = (long)auprobe->branch.offs;
653 if (branch_is_call(auprobe)) {
655 * If it fails we execute this (mangled, see the comment in
656 * branch_clear_offset) insn out-of-line. In the likely case
657 * this should trigger the trap, and the probed application
658 * should die or restart the same insn after it handles the
659 * signal, arch_uprobe_post_xol() won't be even called.
661 * But there is corner case, see the comment in ->post_xol().
663 if (push_ret_address(regs, new_ip))
665 } else if (!check_jmp_cond(auprobe, regs)) {
669 regs->ip = new_ip + offs;
673 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
675 BUG_ON(!branch_is_call(auprobe));
677 * We can only get here if branch_emulate_op() failed to push the ret
678 * address _and_ another thread expanded our stack before the (mangled)
679 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680 * We could also restore ->ip and try to call branch_emulate_op() again.
682 regs->sp += sizeof_long(regs);
686 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
689 * Turn this insn into "call 1f; 1:", this is what we will execute
690 * out-of-line if ->emulate() fails. We only need this to generate
691 * a trap, so that the probed task receives the correct signal with
692 * the properly filled siginfo.
694 * But see the comment in ->post_xol(), in the unlikely case it can
695 * succeed. So we need to ensure that the new ->ip can not fall into
696 * the non-canonical area and trigger #GP.
698 * We could turn it into (say) "pushf", but then we would need to
699 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700 * of ->insn[] for set_orig_insn().
702 memset(auprobe->insn + insn_offset_immediate(insn),
703 0, insn->immediate.nbytes);
706 static const struct uprobe_xol_ops branch_xol_ops = {
707 .emulate = branch_emulate_op,
708 .post_xol = branch_post_xol_op,
711 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
712 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
714 u8 opc1 = OPCODE1(insn);
719 case 0xeb: /* jmp 8 */
720 case 0xe9: /* jmp 32 */
721 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
724 case 0xe8: /* call relative */
725 branch_clear_offset(auprobe, insn);
729 if (insn->opcode.nbytes != 2)
732 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
733 * OPCODE1() of the "short" jmp which checks the same condition.
735 opc1 = OPCODE2(insn) - 0x10;
737 if (!is_cond_jmp_opcode(opc1))
742 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
743 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
744 * No one uses these insns, reject any branch insns with such prefix.
746 for_each_insn_prefix(insn, i, p) {
751 auprobe->branch.opc1 = opc1;
752 auprobe->branch.ilen = insn->length;
753 auprobe->branch.offs = insn->immediate.value;
755 auprobe->ops = &branch_xol_ops;
760 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
761 * @mm: the probed address space.
762 * @arch_uprobe: the probepoint information.
763 * @addr: virtual address at which to install the probepoint
764 * Return 0 on success or a -ve number on error.
766 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
769 u8 fix_ip_or_call = UPROBE_FIX_IP;
772 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
776 ret = branch_setup_xol_ops(auprobe, &insn);
781 * Figure out which fixups default_post_xol_op() will need to perform,
782 * and annotate defparam->fixups accordingly.
784 switch (OPCODE1(&insn)) {
785 case 0x9d: /* popf */
786 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
788 case 0xc3: /* ret or lret -- ip is correct */
792 case 0xea: /* jmp absolute -- ip is correct */
795 case 0x9a: /* call absolute - Fix return addr, not ip */
796 fix_ip_or_call = UPROBE_FIX_CALL;
799 switch (MODRM_REG(&insn)) {
800 case 2: case 3: /* call or lcall, indirect */
801 fix_ip_or_call = UPROBE_FIX_CALL;
803 case 4: case 5: /* jmp or ljmp, indirect */
809 riprel_analyze(auprobe, &insn);
812 auprobe->defparam.ilen = insn.length;
813 auprobe->defparam.fixups |= fix_ip_or_call;
815 auprobe->ops = &default_xol_ops;
820 * arch_uprobe_pre_xol - prepare to execute out of line.
821 * @auprobe: the probepoint information.
822 * @regs: reflects the saved user state of current task.
824 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
826 struct uprobe_task *utask = current->utask;
828 if (auprobe->ops->pre_xol) {
829 int err = auprobe->ops->pre_xol(auprobe, regs);
834 regs->ip = utask->xol_vaddr;
835 utask->autask.saved_trap_nr = current->thread.trap_nr;
836 current->thread.trap_nr = UPROBE_TRAP_NR;
838 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
839 regs->flags |= X86_EFLAGS_TF;
840 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
841 set_task_blockstep(current, false);
847 * If xol insn itself traps and generates a signal(Say,
848 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
849 * instruction jumps back to its own address. It is assumed that anything
850 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
852 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
853 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
854 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
856 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
858 if (t->thread.trap_nr != UPROBE_TRAP_NR)
865 * Called after single-stepping. To avoid the SMP problems that can
866 * occur when we temporarily put back the original opcode to
867 * single-step, we single-stepped a copy of the instruction.
869 * This function prepares to resume execution after the single-step.
871 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
873 struct uprobe_task *utask = current->utask;
874 bool send_sigtrap = utask->autask.saved_tf;
877 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
878 current->thread.trap_nr = utask->autask.saved_trap_nr;
880 if (auprobe->ops->post_xol) {
881 err = auprobe->ops->post_xol(auprobe, regs);
884 * Restore ->ip for restart or post mortem analysis.
885 * ->post_xol() must not return -ERESTART unless this
886 * is really possible.
888 regs->ip = utask->vaddr;
889 if (err == -ERESTART)
891 send_sigtrap = false;
895 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
896 * so we can get an extra SIGTRAP if we do not clear TF. We need
897 * to examine the opcode to make it right.
900 send_sig(SIGTRAP, current, 0);
902 if (!utask->autask.saved_tf)
903 regs->flags &= ~X86_EFLAGS_TF;
908 /* callback routine for handling exceptions. */
909 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
911 struct die_args *args = data;
912 struct pt_regs *regs = args->regs;
913 int ret = NOTIFY_DONE;
915 /* We are only interested in userspace traps */
916 if (regs && !user_mode(regs))
921 if (uprobe_pre_sstep_notifier(regs))
927 if (uprobe_post_sstep_notifier(regs))
938 * This function gets called when XOL instruction either gets trapped or
939 * the thread has a fatal signal. Reset the instruction pointer to its
940 * probed address for the potential restart or for post mortem analysis.
942 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
944 struct uprobe_task *utask = current->utask;
946 if (auprobe->ops->abort)
947 auprobe->ops->abort(auprobe, regs);
949 current->thread.trap_nr = utask->autask.saved_trap_nr;
950 regs->ip = utask->vaddr;
951 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
952 if (!utask->autask.saved_tf)
953 regs->flags &= ~X86_EFLAGS_TF;
956 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
958 if (auprobe->ops->emulate)
959 return auprobe->ops->emulate(auprobe, regs);
963 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
965 bool ret = __skip_sstep(auprobe, regs);
966 if (ret && (regs->flags & X86_EFLAGS_TF))
967 send_sig(SIGTRAP, current, 0);
972 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
974 int rasize = sizeof_long(regs), nleft;
975 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
977 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
980 /* check whether address has been already hijacked */
981 if (orig_ret_vaddr == trampoline_vaddr)
982 return orig_ret_vaddr;
984 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
986 return orig_ret_vaddr;
988 if (nleft != rasize) {
989 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
990 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
992 force_sig(SIGSEGV, current);
998 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
999 struct pt_regs *regs)
1001 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1002 return regs->sp < ret->stack;
1004 return regs->sp <= ret->stack;