GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92
93 /* representing HT, core, and die siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102
103 struct mwait_cpu_dead {
104         unsigned int    control;
105         unsigned int    status;
106 };
107
108 /*
109  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
110  * that it's unlikely to be touched by other CPUs.
111  */
112 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
113
114 /* Logical package management. We might want to allocate that dynamically */
115 unsigned int __max_logical_packages __read_mostly;
116 EXPORT_SYMBOL(__max_logical_packages);
117 static unsigned int logical_packages __read_mostly;
118 static unsigned int logical_die __read_mostly;
119
120 /* Maximum number of SMT threads on any online core */
121 int __read_mostly __max_smt_threads = 1;
122
123 /* Flag to indicate if a complete sched domain rebuild is required */
124 bool x86_topology_update;
125
126 int arch_update_cpu_topology(void)
127 {
128         int retval = x86_topology_update;
129
130         x86_topology_update = false;
131         return retval;
132 }
133
134 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
135 {
136         unsigned long flags;
137
138         spin_lock_irqsave(&rtc_lock, flags);
139         CMOS_WRITE(0xa, 0xf);
140         spin_unlock_irqrestore(&rtc_lock, flags);
141         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
142                                                         start_eip >> 4;
143         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
144                                                         start_eip & 0xf;
145 }
146
147 static inline void smpboot_restore_warm_reset_vector(void)
148 {
149         unsigned long flags;
150
151         /*
152          * Paranoid:  Set warm reset code and vector here back
153          * to default values.
154          */
155         spin_lock_irqsave(&rtc_lock, flags);
156         CMOS_WRITE(0, 0xf);
157         spin_unlock_irqrestore(&rtc_lock, flags);
158
159         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
160 }
161
162 static void init_freq_invariance(bool secondary);
163
164 /*
165  * Report back to the Boot Processor during boot time or to the caller processor
166  * during CPU online.
167  */
168 static void smp_callin(void)
169 {
170         int cpuid;
171
172         /*
173          * If waken up by an INIT in an 82489DX configuration
174          * cpu_callout_mask guarantees we don't get here before
175          * an INIT_deassert IPI reaches our local APIC, so it is
176          * now safe to touch our local APIC.
177          */
178         cpuid = smp_processor_id();
179
180         /*
181          * the boot CPU has finished the init stage and is spinning
182          * on callin_map until we finish. We are free to set up this
183          * CPU, first the APIC. (this is probably redundant on most
184          * boards)
185          */
186         apic_ap_setup();
187
188         /*
189          * Save our processor parameters. Note: this information
190          * is needed for clock calibration.
191          */
192         smp_store_cpu_info(cpuid);
193
194         /*
195          * The topology information must be up to date before
196          * calibrate_delay() and notify_cpu_starting().
197          */
198         set_cpu_sibling_map(raw_smp_processor_id());
199
200         init_freq_invariance(true);
201
202         /*
203          * Get our bogomips.
204          * Update loops_per_jiffy in cpu_data. Previous call to
205          * smp_store_cpu_info() stored a value that is close but not as
206          * accurate as the value just calculated.
207          */
208         calibrate_delay();
209         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
210         pr_debug("Stack at about %p\n", &cpuid);
211
212         wmb();
213
214         notify_cpu_starting(cpuid);
215
216         /*
217          * Allow the master to continue.
218          */
219         cpumask_set_cpu(cpuid, cpu_callin_mask);
220 }
221
222 static int cpu0_logical_apicid;
223 static int enable_start_cpu0;
224 /*
225  * Activate a secondary processor.
226  */
227 static void notrace start_secondary(void *unused)
228 {
229         /*
230          * Don't put *anything* except direct CPU state initialization
231          * before cpu_init(), SMP booting is too fragile that we want to
232          * limit the things done here to the most necessary things.
233          */
234         cr4_init();
235
236 #ifdef CONFIG_X86_32
237         /* switch away from the initial page table */
238         load_cr3(swapper_pg_dir);
239         __flush_tlb_all();
240 #endif
241         cpu_init_secondary();
242         rcu_cpu_starting(raw_smp_processor_id());
243         x86_cpuinit.early_percpu_clock_init();
244         smp_callin();
245
246         enable_start_cpu0 = 0;
247
248         /* otherwise gcc will move up smp_processor_id before the cpu_init */
249         barrier();
250         /*
251          * Check TSC synchronization with the boot CPU:
252          */
253         check_tsc_sync_target();
254
255         speculative_store_bypass_ht_init();
256
257         /*
258          * Lock vector_lock, set CPU online and bring the vector
259          * allocator online. Online must be set with vector_lock held
260          * to prevent a concurrent irq setup/teardown from seeing a
261          * half valid vector space.
262          */
263         lock_vector_lock();
264         set_cpu_online(smp_processor_id(), true);
265         lapic_online();
266         unlock_vector_lock();
267         cpu_set_state_online(smp_processor_id());
268         x86_platform.nmi_init();
269
270         /* enable local interrupts */
271         local_irq_enable();
272
273         x86_cpuinit.setup_percpu_clockev();
274
275         wmb();
276         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
277 }
278
279 /**
280  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
281  * @cpu:        CPU to check
282  */
283 bool topology_is_primary_thread(unsigned int cpu)
284 {
285         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
286 }
287
288 /**
289  * topology_smt_supported - Check whether SMT is supported by the CPUs
290  */
291 bool topology_smt_supported(void)
292 {
293         return smp_num_siblings > 1;
294 }
295
296 /**
297  * topology_phys_to_logical_pkg - Map a physical package id to a logical
298  *
299  * Returns logical package id or -1 if not found
300  */
301 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
302 {
303         int cpu;
304
305         for_each_possible_cpu(cpu) {
306                 struct cpuinfo_x86 *c = &cpu_data(cpu);
307
308                 if (c->initialized && c->phys_proc_id == phys_pkg)
309                         return c->logical_proc_id;
310         }
311         return -1;
312 }
313 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
314 /**
315  * topology_phys_to_logical_die - Map a physical die id to logical
316  *
317  * Returns logical die id or -1 if not found
318  */
319 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
320 {
321         int cpu;
322         int proc_id = cpu_data(cur_cpu).phys_proc_id;
323
324         for_each_possible_cpu(cpu) {
325                 struct cpuinfo_x86 *c = &cpu_data(cpu);
326
327                 if (c->initialized && c->cpu_die_id == die_id &&
328                     c->phys_proc_id == proc_id)
329                         return c->logical_die_id;
330         }
331         return -1;
332 }
333 EXPORT_SYMBOL(topology_phys_to_logical_die);
334
335 /**
336  * topology_update_package_map - Update the physical to logical package map
337  * @pkg:        The physical package id as retrieved via CPUID
338  * @cpu:        The cpu for which this is updated
339  */
340 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
341 {
342         int new;
343
344         /* Already available somewhere? */
345         new = topology_phys_to_logical_pkg(pkg);
346         if (new >= 0)
347                 goto found;
348
349         new = logical_packages++;
350         if (new != pkg) {
351                 pr_info("CPU %u Converting physical %u to logical package %u\n",
352                         cpu, pkg, new);
353         }
354 found:
355         cpu_data(cpu).logical_proc_id = new;
356         return 0;
357 }
358 /**
359  * topology_update_die_map - Update the physical to logical die map
360  * @die:        The die id as retrieved via CPUID
361  * @cpu:        The cpu for which this is updated
362  */
363 int topology_update_die_map(unsigned int die, unsigned int cpu)
364 {
365         int new;
366
367         /* Already available somewhere? */
368         new = topology_phys_to_logical_die(die, cpu);
369         if (new >= 0)
370                 goto found;
371
372         new = logical_die++;
373         if (new != die) {
374                 pr_info("CPU %u Converting physical %u to logical die %u\n",
375                         cpu, die, new);
376         }
377 found:
378         cpu_data(cpu).logical_die_id = new;
379         return 0;
380 }
381
382 void __init smp_store_boot_cpu_info(void)
383 {
384         int id = 0; /* CPU 0 */
385         struct cpuinfo_x86 *c = &cpu_data(id);
386
387         *c = boot_cpu_data;
388         c->cpu_index = id;
389         topology_update_package_map(c->phys_proc_id, id);
390         topology_update_die_map(c->cpu_die_id, id);
391         c->initialized = true;
392 }
393
394 /*
395  * The bootstrap kernel entry code has set these up. Save them for
396  * a given CPU
397  */
398 void smp_store_cpu_info(int id)
399 {
400         struct cpuinfo_x86 *c = &cpu_data(id);
401
402         /* Copy boot_cpu_data only on the first bringup */
403         if (!c->initialized)
404                 *c = boot_cpu_data;
405         c->cpu_index = id;
406         /*
407          * During boot time, CPU0 has this setup already. Save the info when
408          * bringing up AP or offlined CPU0.
409          */
410         identify_secondary_cpu(c);
411         c->initialized = true;
412 }
413
414 static bool
415 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
416 {
417         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418
419         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
420 }
421
422 static bool
423 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
424 {
425         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
426
427         return !WARN_ONCE(!topology_same_node(c, o),
428                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
429                 "[node: %d != %d]. Ignoring dependency.\n",
430                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
431 }
432
433 #define link_mask(mfunc, c1, c2)                                        \
434 do {                                                                    \
435         cpumask_set_cpu((c1), mfunc(c2));                               \
436         cpumask_set_cpu((c2), mfunc(c1));                               \
437 } while (0)
438
439 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
440 {
441         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
442                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
443
444                 if (c->phys_proc_id == o->phys_proc_id &&
445                     c->cpu_die_id == o->cpu_die_id &&
446                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
447                         if (c->cpu_core_id == o->cpu_core_id)
448                                 return topology_sane(c, o, "smt");
449
450                         if ((c->cu_id != 0xff) &&
451                             (o->cu_id != 0xff) &&
452                             (c->cu_id == o->cu_id))
453                                 return topology_sane(c, o, "smt");
454                 }
455
456         } else if (c->phys_proc_id == o->phys_proc_id &&
457                    c->cpu_die_id == o->cpu_die_id &&
458                    c->cpu_core_id == o->cpu_core_id) {
459                 return topology_sane(c, o, "smt");
460         }
461
462         return false;
463 }
464
465 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
466 {
467         if (c->phys_proc_id == o->phys_proc_id &&
468             c->cpu_die_id == o->cpu_die_id)
469                 return true;
470         return false;
471 }
472
473 /*
474  * Unlike the other levels, we do not enforce keeping a
475  * multicore group inside a NUMA node.  If this happens, we will
476  * discard the MC level of the topology later.
477  */
478 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
479 {
480         if (c->phys_proc_id == o->phys_proc_id)
481                 return true;
482         return false;
483 }
484
485 /*
486  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
487  *
488  * Any Intel CPU that has multiple nodes per package and does not
489  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
490  *
491  * When in SNC mode, these CPUs enumerate an LLC that is shared
492  * by multiple NUMA nodes. The LLC is shared for off-package data
493  * access but private to the NUMA node (half of the package) for
494  * on-package access. CPUID (the source of the information about
495  * the LLC) can only enumerate the cache as shared or unshared,
496  * but not this particular configuration.
497  */
498
499 static const struct x86_cpu_id intel_cod_cpu[] = {
500         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),       /* COD */
501         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),     /* COD */
502         X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),             /* SNC */
503         {}
504 };
505
506 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
507 {
508         const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
509         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
510         bool intel_snc = id && id->driver_data;
511
512         /* Do not match if we do not have a valid APICID for cpu: */
513         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
514                 return false;
515
516         /* Do not match if LLC id does not match: */
517         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
518                 return false;
519
520         /*
521          * Allow the SNC topology without warning. Return of false
522          * means 'c' does not share the LLC of 'o'. This will be
523          * reflected to userspace.
524          */
525         if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
526                 return false;
527
528         return topology_sane(c, o, "llc");
529 }
530
531
532 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
533 static inline int x86_sched_itmt_flags(void)
534 {
535         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
536 }
537
538 #ifdef CONFIG_SCHED_MC
539 static int x86_core_flags(void)
540 {
541         return cpu_core_flags() | x86_sched_itmt_flags();
542 }
543 #endif
544 #ifdef CONFIG_SCHED_SMT
545 static int x86_smt_flags(void)
546 {
547         return cpu_smt_flags() | x86_sched_itmt_flags();
548 }
549 #endif
550 #endif
551
552 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
553 #ifdef CONFIG_SCHED_SMT
554         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
555 #endif
556 #ifdef CONFIG_SCHED_MC
557         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
558 #endif
559         { NULL, },
560 };
561
562 static struct sched_domain_topology_level x86_topology[] = {
563 #ifdef CONFIG_SCHED_SMT
564         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
565 #endif
566 #ifdef CONFIG_SCHED_MC
567         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
568 #endif
569         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
570         { NULL, },
571 };
572
573 /*
574  * Set if a package/die has multiple NUMA nodes inside.
575  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
576  * Sub-NUMA Clustering have this.
577  */
578 static bool x86_has_numa_in_package;
579
580 void set_cpu_sibling_map(int cpu)
581 {
582         bool has_smt = smp_num_siblings > 1;
583         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
584         struct cpuinfo_x86 *c = &cpu_data(cpu);
585         struct cpuinfo_x86 *o;
586         int i, threads;
587
588         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
589
590         if (!has_mp) {
591                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
592                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
593                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
594                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
595                 c->booted_cores = 1;
596                 return;
597         }
598
599         for_each_cpu(i, cpu_sibling_setup_mask) {
600                 o = &cpu_data(i);
601
602                 if (match_pkg(c, o) && !topology_same_node(c, o))
603                         x86_has_numa_in_package = true;
604
605                 if ((i == cpu) || (has_smt && match_smt(c, o)))
606                         link_mask(topology_sibling_cpumask, cpu, i);
607
608                 if ((i == cpu) || (has_mp && match_llc(c, o)))
609                         link_mask(cpu_llc_shared_mask, cpu, i);
610
611                 if ((i == cpu) || (has_mp && match_die(c, o)))
612                         link_mask(topology_die_cpumask, cpu, i);
613         }
614
615         threads = cpumask_weight(topology_sibling_cpumask(cpu));
616         if (threads > __max_smt_threads)
617                 __max_smt_threads = threads;
618
619         /*
620          * This needs a separate iteration over the cpus because we rely on all
621          * topology_sibling_cpumask links to be set-up.
622          */
623         for_each_cpu(i, cpu_sibling_setup_mask) {
624                 o = &cpu_data(i);
625
626                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
627                         link_mask(topology_core_cpumask, cpu, i);
628
629                         /*
630                          *  Does this new cpu bringup a new core?
631                          */
632                         if (threads == 1) {
633                                 /*
634                                  * for each core in package, increment
635                                  * the booted_cores for this new cpu
636                                  */
637                                 if (cpumask_first(
638                                     topology_sibling_cpumask(i)) == i)
639                                         c->booted_cores++;
640                                 /*
641                                  * increment the core count for all
642                                  * the other cpus in this package
643                                  */
644                                 if (i != cpu)
645                                         cpu_data(i).booted_cores++;
646                         } else if (i != cpu && !c->booted_cores)
647                                 c->booted_cores = cpu_data(i).booted_cores;
648                 }
649         }
650 }
651
652 /* maps the cpu to the sched domain representing multi-core */
653 const struct cpumask *cpu_coregroup_mask(int cpu)
654 {
655         return cpu_llc_shared_mask(cpu);
656 }
657
658 static void impress_friends(void)
659 {
660         int cpu;
661         unsigned long bogosum = 0;
662         /*
663          * Allow the user to impress friends.
664          */
665         pr_debug("Before bogomips\n");
666         for_each_possible_cpu(cpu)
667                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
668                         bogosum += cpu_data(cpu).loops_per_jiffy;
669         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
670                 num_online_cpus(),
671                 bogosum/(500000/HZ),
672                 (bogosum/(5000/HZ))%100);
673
674         pr_debug("Before bogocount - setting activated=1\n");
675 }
676
677 void __inquire_remote_apic(int apicid)
678 {
679         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
680         const char * const names[] = { "ID", "VERSION", "SPIV" };
681         int timeout;
682         u32 status;
683
684         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
685
686         for (i = 0; i < ARRAY_SIZE(regs); i++) {
687                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
688
689                 /*
690                  * Wait for idle.
691                  */
692                 status = safe_apic_wait_icr_idle();
693                 if (status)
694                         pr_cont("a previous APIC delivery may have failed\n");
695
696                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
697
698                 timeout = 0;
699                 do {
700                         udelay(100);
701                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
702                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
703
704                 switch (status) {
705                 case APIC_ICR_RR_VALID:
706                         status = apic_read(APIC_RRR);
707                         pr_cont("%08x\n", status);
708                         break;
709                 default:
710                         pr_cont("failed\n");
711                 }
712         }
713 }
714
715 /*
716  * The Multiprocessor Specification 1.4 (1997) example code suggests
717  * that there should be a 10ms delay between the BSP asserting INIT
718  * and de-asserting INIT, when starting a remote processor.
719  * But that slows boot and resume on modern processors, which include
720  * many cores and don't require that delay.
721  *
722  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
723  * Modern processor families are quirked to remove the delay entirely.
724  */
725 #define UDELAY_10MS_DEFAULT 10000
726
727 static unsigned int init_udelay = UINT_MAX;
728
729 static int __init cpu_init_udelay(char *str)
730 {
731         get_option(&str, &init_udelay);
732
733         return 0;
734 }
735 early_param("cpu_init_udelay", cpu_init_udelay);
736
737 static void __init smp_quirk_init_udelay(void)
738 {
739         /* if cmdline changed it from default, leave it alone */
740         if (init_udelay != UINT_MAX)
741                 return;
742
743         /* if modern processor, use no delay */
744         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
745             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
746             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
747                 init_udelay = 0;
748                 return;
749         }
750         /* else, use legacy delay */
751         init_udelay = UDELAY_10MS_DEFAULT;
752 }
753
754 /*
755  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
756  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
757  * won't ... remember to clear down the APIC, etc later.
758  */
759 int
760 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
761 {
762         unsigned long send_status, accept_status = 0;
763         int maxlvt;
764
765         /* Target chip */
766         /* Boot on the stack */
767         /* Kick the second */
768         apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
769
770         pr_debug("Waiting for send to finish...\n");
771         send_status = safe_apic_wait_icr_idle();
772
773         /*
774          * Give the other CPU some time to accept the IPI.
775          */
776         udelay(200);
777         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
778                 maxlvt = lapic_get_maxlvt();
779                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
780                         apic_write(APIC_ESR, 0);
781                 accept_status = (apic_read(APIC_ESR) & 0xEF);
782         }
783         pr_debug("NMI sent\n");
784
785         if (send_status)
786                 pr_err("APIC never delivered???\n");
787         if (accept_status)
788                 pr_err("APIC delivery error (%lx)\n", accept_status);
789
790         return (send_status | accept_status);
791 }
792
793 static int
794 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
795 {
796         unsigned long send_status = 0, accept_status = 0;
797         int maxlvt, num_starts, j;
798
799         maxlvt = lapic_get_maxlvt();
800
801         /*
802          * Be paranoid about clearing APIC errors.
803          */
804         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
805                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
806                         apic_write(APIC_ESR, 0);
807                 apic_read(APIC_ESR);
808         }
809
810         pr_debug("Asserting INIT\n");
811
812         /*
813          * Turn INIT on target chip
814          */
815         /*
816          * Send IPI
817          */
818         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
819                        phys_apicid);
820
821         pr_debug("Waiting for send to finish...\n");
822         send_status = safe_apic_wait_icr_idle();
823
824         udelay(init_udelay);
825
826         pr_debug("Deasserting INIT\n");
827
828         /* Target chip */
829         /* Send IPI */
830         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
831
832         pr_debug("Waiting for send to finish...\n");
833         send_status = safe_apic_wait_icr_idle();
834
835         mb();
836
837         /*
838          * Should we send STARTUP IPIs ?
839          *
840          * Determine this based on the APIC version.
841          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
842          */
843         if (APIC_INTEGRATED(boot_cpu_apic_version))
844                 num_starts = 2;
845         else
846                 num_starts = 0;
847
848         /*
849          * Run STARTUP IPI loop.
850          */
851         pr_debug("#startup loops: %d\n", num_starts);
852
853         for (j = 1; j <= num_starts; j++) {
854                 pr_debug("Sending STARTUP #%d\n", j);
855                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
856                         apic_write(APIC_ESR, 0);
857                 apic_read(APIC_ESR);
858                 pr_debug("After apic_write\n");
859
860                 /*
861                  * STARTUP IPI
862                  */
863
864                 /* Target chip */
865                 /* Boot on the stack */
866                 /* Kick the second */
867                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
868                                phys_apicid);
869
870                 /*
871                  * Give the other CPU some time to accept the IPI.
872                  */
873                 if (init_udelay == 0)
874                         udelay(10);
875                 else
876                         udelay(300);
877
878                 pr_debug("Startup point 1\n");
879
880                 pr_debug("Waiting for send to finish...\n");
881                 send_status = safe_apic_wait_icr_idle();
882
883                 /*
884                  * Give the other CPU some time to accept the IPI.
885                  */
886                 if (init_udelay == 0)
887                         udelay(10);
888                 else
889                         udelay(200);
890
891                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
892                         apic_write(APIC_ESR, 0);
893                 accept_status = (apic_read(APIC_ESR) & 0xEF);
894                 if (send_status || accept_status)
895                         break;
896         }
897         pr_debug("After Startup\n");
898
899         if (send_status)
900                 pr_err("APIC never delivered???\n");
901         if (accept_status)
902                 pr_err("APIC delivery error (%lx)\n", accept_status);
903
904         return (send_status | accept_status);
905 }
906
907 /* reduce the number of lines printed when booting a large cpu count system */
908 static void announce_cpu(int cpu, int apicid)
909 {
910         static int current_node = NUMA_NO_NODE;
911         int node = early_cpu_to_node(cpu);
912         static int width, node_width;
913
914         if (!width)
915                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
916
917         if (!node_width)
918                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
919
920         if (cpu == 1)
921                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
922
923         if (system_state < SYSTEM_RUNNING) {
924                 if (node != current_node) {
925                         if (current_node > (-1))
926                                 pr_cont("\n");
927                         current_node = node;
928
929                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
930                                node_width - num_digits(node), " ", node);
931                 }
932
933                 /* Add padding for the BSP */
934                 if (cpu == 1)
935                         pr_cont("%*s", width + 1, " ");
936
937                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
938
939         } else
940                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
941                         node, cpu, apicid);
942 }
943
944 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
945 {
946         int cpu;
947
948         cpu = smp_processor_id();
949         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
950                 return NMI_HANDLED;
951
952         return NMI_DONE;
953 }
954
955 /*
956  * Wake up AP by INIT, INIT, STARTUP sequence.
957  *
958  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
959  * boot-strap code which is not a desired behavior for waking up BSP. To
960  * void the boot-strap code, wake up CPU0 by NMI instead.
961  *
962  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
963  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
964  * We'll change this code in the future to wake up hard offlined CPU0 if
965  * real platform and request are available.
966  */
967 static int
968 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
969                int *cpu0_nmi_registered)
970 {
971         int id;
972         int boot_error;
973
974         preempt_disable();
975
976         /*
977          * Wake up AP by INIT, INIT, STARTUP sequence.
978          */
979         if (cpu) {
980                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
981                 goto out;
982         }
983
984         /*
985          * Wake up BSP by nmi.
986          *
987          * Register a NMI handler to help wake up CPU0.
988          */
989         boot_error = register_nmi_handler(NMI_LOCAL,
990                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
991
992         if (!boot_error) {
993                 enable_start_cpu0 = 1;
994                 *cpu0_nmi_registered = 1;
995                 if (apic->dest_logical == APIC_DEST_LOGICAL)
996                         id = cpu0_logical_apicid;
997                 else
998                         id = apicid;
999                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1000         }
1001
1002 out:
1003         preempt_enable();
1004
1005         return boot_error;
1006 }
1007
1008 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1009 {
1010         int ret;
1011
1012         /* Just in case we booted with a single CPU. */
1013         alternatives_enable_smp();
1014
1015         per_cpu(current_task, cpu) = idle;
1016         cpu_init_stack_canary(cpu, idle);
1017
1018         /* Initialize the interrupt stack(s) */
1019         ret = irq_init_percpu_irqstack(cpu);
1020         if (ret)
1021                 return ret;
1022
1023 #ifdef CONFIG_X86_32
1024         /* Stack for startup_32 can be just as for start_secondary onwards */
1025         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1026 #else
1027         initial_gs = per_cpu_offset(cpu);
1028 #endif
1029         return 0;
1030 }
1031
1032 /*
1033  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1034  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1035  * Returns zero if CPU booted OK, else error code from
1036  * ->wakeup_secondary_cpu.
1037  */
1038 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1039                        int *cpu0_nmi_registered)
1040 {
1041         /* start_ip had better be page-aligned! */
1042         unsigned long start_ip = real_mode_header->trampoline_start;
1043
1044         unsigned long boot_error = 0;
1045         unsigned long timeout;
1046
1047         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1048         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1049         initial_code = (unsigned long)start_secondary;
1050         initial_stack  = idle->thread.sp;
1051
1052         /* Enable the espfix hack for this CPU */
1053         init_espfix_ap(cpu);
1054
1055         /* So we see what's up */
1056         announce_cpu(cpu, apicid);
1057
1058         /*
1059          * This grunge runs the startup process for
1060          * the targeted processor.
1061          */
1062
1063         if (x86_platform.legacy.warm_reset) {
1064
1065                 pr_debug("Setting warm reset code and vector.\n");
1066
1067                 smpboot_setup_warm_reset_vector(start_ip);
1068                 /*
1069                  * Be paranoid about clearing APIC errors.
1070                 */
1071                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1072                         apic_write(APIC_ESR, 0);
1073                         apic_read(APIC_ESR);
1074                 }
1075         }
1076
1077         /*
1078          * AP might wait on cpu_callout_mask in cpu_init() with
1079          * cpu_initialized_mask set if previous attempt to online
1080          * it timed-out. Clear cpu_initialized_mask so that after
1081          * INIT/SIPI it could start with a clean state.
1082          */
1083         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1084         smp_mb();
1085
1086         /*
1087          * Wake up a CPU in difference cases:
1088          * - Use the method in the APIC driver if it's defined
1089          * Otherwise,
1090          * - Use an INIT boot APIC message for APs or NMI for BSP.
1091          */
1092         if (apic->wakeup_secondary_cpu)
1093                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1094         else
1095                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1096                                                      cpu0_nmi_registered);
1097
1098         if (!boot_error) {
1099                 /*
1100                  * Wait 10s total for first sign of life from AP
1101                  */
1102                 boot_error = -1;
1103                 timeout = jiffies + 10*HZ;
1104                 while (time_before(jiffies, timeout)) {
1105                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1106                                 /*
1107                                  * Tell AP to proceed with initialization
1108                                  */
1109                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1110                                 boot_error = 0;
1111                                 break;
1112                         }
1113                         schedule();
1114                 }
1115         }
1116
1117         if (!boot_error) {
1118                 /*
1119                  * Wait till AP completes initial initialization
1120                  */
1121                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1122                         /*
1123                          * Allow other tasks to run while we wait for the
1124                          * AP to come online. This also gives a chance
1125                          * for the MTRR work(triggered by the AP coming online)
1126                          * to be completed in the stop machine context.
1127                          */
1128                         schedule();
1129                 }
1130         }
1131
1132         if (x86_platform.legacy.warm_reset) {
1133                 /*
1134                  * Cleanup possible dangling ends...
1135                  */
1136                 smpboot_restore_warm_reset_vector();
1137         }
1138
1139         return boot_error;
1140 }
1141
1142 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1143 {
1144         int apicid = apic->cpu_present_to_apicid(cpu);
1145         int cpu0_nmi_registered = 0;
1146         unsigned long flags;
1147         int err, ret = 0;
1148
1149         lockdep_assert_irqs_enabled();
1150
1151         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1152
1153         if (apicid == BAD_APICID ||
1154             !physid_isset(apicid, phys_cpu_present_map) ||
1155             !apic->apic_id_valid(apicid)) {
1156                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1157                 return -EINVAL;
1158         }
1159
1160         /*
1161          * Already booted CPU?
1162          */
1163         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1164                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1165                 return -ENOSYS;
1166         }
1167
1168         /*
1169          * Save current MTRR state in case it was changed since early boot
1170          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1171          */
1172         mtrr_save_state();
1173
1174         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1175         err = cpu_check_up_prepare(cpu);
1176         if (err && err != -EBUSY)
1177                 return err;
1178
1179         /* the FPU context is blank, nobody can own it */
1180         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1181
1182         err = common_cpu_up(cpu, tidle);
1183         if (err)
1184                 return err;
1185
1186         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1187         if (err) {
1188                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1189                 ret = -EIO;
1190                 goto unreg_nmi;
1191         }
1192
1193         /*
1194          * Check TSC synchronization with the AP (keep irqs disabled
1195          * while doing so):
1196          */
1197         local_irq_save(flags);
1198         check_tsc_sync_source(cpu);
1199         local_irq_restore(flags);
1200
1201         while (!cpu_online(cpu)) {
1202                 cpu_relax();
1203                 touch_nmi_watchdog();
1204         }
1205
1206 unreg_nmi:
1207         /*
1208          * Clean up the nmi handler. Do this after the callin and callout sync
1209          * to avoid impact of possible long unregister time.
1210          */
1211         if (cpu0_nmi_registered)
1212                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1213
1214         return ret;
1215 }
1216
1217 /**
1218  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1219  */
1220 void arch_disable_smp_support(void)
1221 {
1222         disable_ioapic_support();
1223 }
1224
1225 /*
1226  * Fall back to non SMP mode after errors.
1227  *
1228  * RED-PEN audit/test this more. I bet there is more state messed up here.
1229  */
1230 static __init void disable_smp(void)
1231 {
1232         pr_info("SMP disabled\n");
1233
1234         disable_ioapic_support();
1235
1236         init_cpu_present(cpumask_of(0));
1237         init_cpu_possible(cpumask_of(0));
1238
1239         if (smp_found_config)
1240                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1241         else
1242                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1243         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1244         cpumask_set_cpu(0, topology_core_cpumask(0));
1245         cpumask_set_cpu(0, topology_die_cpumask(0));
1246 }
1247
1248 /*
1249  * Various sanity checks.
1250  */
1251 static void __init smp_sanity_check(void)
1252 {
1253         preempt_disable();
1254
1255 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1256         if (def_to_bigsmp && nr_cpu_ids > 8) {
1257                 unsigned int cpu;
1258                 unsigned nr;
1259
1260                 pr_warn("More than 8 CPUs detected - skipping them\n"
1261                         "Use CONFIG_X86_BIGSMP\n");
1262
1263                 nr = 0;
1264                 for_each_present_cpu(cpu) {
1265                         if (nr >= 8)
1266                                 set_cpu_present(cpu, false);
1267                         nr++;
1268                 }
1269
1270                 nr = 0;
1271                 for_each_possible_cpu(cpu) {
1272                         if (nr >= 8)
1273                                 set_cpu_possible(cpu, false);
1274                         nr++;
1275                 }
1276
1277                 nr_cpu_ids = 8;
1278         }
1279 #endif
1280
1281         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1282                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1283                         hard_smp_processor_id());
1284
1285                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1286         }
1287
1288         /*
1289          * Should not be necessary because the MP table should list the boot
1290          * CPU too, but we do it for the sake of robustness anyway.
1291          */
1292         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1293                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1294                           boot_cpu_physical_apicid);
1295                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1296         }
1297         preempt_enable();
1298 }
1299
1300 static void __init smp_cpu_index_default(void)
1301 {
1302         int i;
1303         struct cpuinfo_x86 *c;
1304
1305         for_each_possible_cpu(i) {
1306                 c = &cpu_data(i);
1307                 /* mark all to hotplug */
1308                 c->cpu_index = nr_cpu_ids;
1309         }
1310 }
1311
1312 static void __init smp_get_logical_apicid(void)
1313 {
1314         if (x2apic_mode)
1315                 cpu0_logical_apicid = apic_read(APIC_LDR);
1316         else
1317                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1318 }
1319
1320 /*
1321  * Prepare for SMP bootup.
1322  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1323  *            for common interface support.
1324  */
1325 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1326 {
1327         unsigned int i;
1328
1329         smp_cpu_index_default();
1330
1331         /*
1332          * Setup boot CPU information
1333          */
1334         smp_store_boot_cpu_info(); /* Final full version of the data */
1335         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1336         mb();
1337
1338         for_each_possible_cpu(i) {
1339                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1340                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1341                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1342                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1343         }
1344
1345         /*
1346          * Set 'default' x86 topology, this matches default_topology() in that
1347          * it has NUMA nodes as a topology level. See also
1348          * native_smp_cpus_done().
1349          *
1350          * Must be done before set_cpus_sibling_map() is ran.
1351          */
1352         set_sched_topology(x86_topology);
1353
1354         set_cpu_sibling_map(0);
1355         init_freq_invariance(false);
1356         smp_sanity_check();
1357
1358         switch (apic_intr_mode) {
1359         case APIC_PIC:
1360         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1361                 disable_smp();
1362                 return;
1363         case APIC_SYMMETRIC_IO_NO_ROUTING:
1364                 disable_smp();
1365                 /* Setup local timer */
1366                 x86_init.timers.setup_percpu_clockev();
1367                 return;
1368         case APIC_VIRTUAL_WIRE:
1369         case APIC_SYMMETRIC_IO:
1370                 break;
1371         }
1372
1373         /* Setup local timer */
1374         x86_init.timers.setup_percpu_clockev();
1375
1376         smp_get_logical_apicid();
1377
1378         pr_info("CPU0: ");
1379         print_cpu_info(&cpu_data(0));
1380
1381         uv_system_init();
1382
1383         set_mtrr_aps_delayed_init();
1384
1385         smp_quirk_init_udelay();
1386
1387         speculative_store_bypass_ht_init();
1388 }
1389
1390 void arch_thaw_secondary_cpus_begin(void)
1391 {
1392         set_mtrr_aps_delayed_init();
1393 }
1394
1395 void arch_thaw_secondary_cpus_end(void)
1396 {
1397         mtrr_aps_init();
1398 }
1399
1400 /*
1401  * Early setup to make printk work.
1402  */
1403 void __init native_smp_prepare_boot_cpu(void)
1404 {
1405         int me = smp_processor_id();
1406         switch_to_new_gdt(me);
1407         /* already set me in cpu_online_mask in boot_cpu_init() */
1408         cpumask_set_cpu(me, cpu_callout_mask);
1409         cpu_set_state_online(me);
1410         native_pv_lock_init();
1411 }
1412
1413 void __init calculate_max_logical_packages(void)
1414 {
1415         int ncpus;
1416
1417         /*
1418          * Today neither Intel nor AMD support heterogenous systems so
1419          * extrapolate the boot cpu's data to all packages.
1420          */
1421         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1422         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1423         pr_info("Max logical packages: %u\n", __max_logical_packages);
1424 }
1425
1426 void __init native_smp_cpus_done(unsigned int max_cpus)
1427 {
1428         pr_debug("Boot done\n");
1429
1430         calculate_max_logical_packages();
1431
1432         if (x86_has_numa_in_package)
1433                 set_sched_topology(x86_numa_in_package_topology);
1434
1435         nmi_selftest();
1436         impress_friends();
1437         mtrr_aps_init();
1438 }
1439
1440 static int __initdata setup_possible_cpus = -1;
1441 static int __init _setup_possible_cpus(char *str)
1442 {
1443         get_option(&str, &setup_possible_cpus);
1444         return 0;
1445 }
1446 early_param("possible_cpus", _setup_possible_cpus);
1447
1448
1449 /*
1450  * cpu_possible_mask should be static, it cannot change as cpu's
1451  * are onlined, or offlined. The reason is per-cpu data-structures
1452  * are allocated by some modules at init time, and don't expect to
1453  * do this dynamically on cpu arrival/departure.
1454  * cpu_present_mask on the other hand can change dynamically.
1455  * In case when cpu_hotplug is not compiled, then we resort to current
1456  * behaviour, which is cpu_possible == cpu_present.
1457  * - Ashok Raj
1458  *
1459  * Three ways to find out the number of additional hotplug CPUs:
1460  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1461  * - The user can overwrite it with possible_cpus=NUM
1462  * - Otherwise don't reserve additional CPUs.
1463  * We do this because additional CPUs waste a lot of memory.
1464  * -AK
1465  */
1466 __init void prefill_possible_map(void)
1467 {
1468         int i, possible;
1469
1470         /* No boot processor was found in mptable or ACPI MADT */
1471         if (!num_processors) {
1472                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1473                         int apicid = boot_cpu_physical_apicid;
1474                         int cpu = hard_smp_processor_id();
1475
1476                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1477
1478                         /* Make sure boot cpu is enumerated */
1479                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1480                             apic->apic_id_valid(apicid))
1481                                 generic_processor_info(apicid, boot_cpu_apic_version);
1482                 }
1483
1484                 if (!num_processors)
1485                         num_processors = 1;
1486         }
1487
1488         i = setup_max_cpus ?: 1;
1489         if (setup_possible_cpus == -1) {
1490                 possible = num_processors;
1491 #ifdef CONFIG_HOTPLUG_CPU
1492                 if (setup_max_cpus)
1493                         possible += disabled_cpus;
1494 #else
1495                 if (possible > i)
1496                         possible = i;
1497 #endif
1498         } else
1499                 possible = setup_possible_cpus;
1500
1501         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1502
1503         /* nr_cpu_ids could be reduced via nr_cpus= */
1504         if (possible > nr_cpu_ids) {
1505                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1506                         possible, nr_cpu_ids);
1507                 possible = nr_cpu_ids;
1508         }
1509
1510 #ifdef CONFIG_HOTPLUG_CPU
1511         if (!setup_max_cpus)
1512 #endif
1513         if (possible > i) {
1514                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1515                         possible, setup_max_cpus);
1516                 possible = i;
1517         }
1518
1519         nr_cpu_ids = possible;
1520
1521         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1522                 possible, max_t(int, possible - num_processors, 0));
1523
1524         reset_cpu_possible_mask();
1525
1526         for (i = 0; i < possible; i++)
1527                 set_cpu_possible(i, true);
1528 }
1529
1530 #ifdef CONFIG_HOTPLUG_CPU
1531
1532 /* Recompute SMT state for all CPUs on offline */
1533 static void recompute_smt_state(void)
1534 {
1535         int max_threads, cpu;
1536
1537         max_threads = 0;
1538         for_each_online_cpu (cpu) {
1539                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1540
1541                 if (threads > max_threads)
1542                         max_threads = threads;
1543         }
1544         __max_smt_threads = max_threads;
1545 }
1546
1547 static void remove_siblinginfo(int cpu)
1548 {
1549         int sibling;
1550         struct cpuinfo_x86 *c = &cpu_data(cpu);
1551
1552         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1553                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1554                 /*/
1555                  * last thread sibling in this cpu core going down
1556                  */
1557                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1558                         cpu_data(sibling).booted_cores--;
1559         }
1560
1561         for_each_cpu(sibling, topology_die_cpumask(cpu))
1562                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1563         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1564                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1565         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1566                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1567         cpumask_clear(cpu_llc_shared_mask(cpu));
1568         cpumask_clear(topology_sibling_cpumask(cpu));
1569         cpumask_clear(topology_core_cpumask(cpu));
1570         cpumask_clear(topology_die_cpumask(cpu));
1571         c->cpu_core_id = 0;
1572         c->booted_cores = 0;
1573         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1574         recompute_smt_state();
1575 }
1576
1577 static void remove_cpu_from_maps(int cpu)
1578 {
1579         set_cpu_online(cpu, false);
1580         cpumask_clear_cpu(cpu, cpu_callout_mask);
1581         cpumask_clear_cpu(cpu, cpu_callin_mask);
1582         /* was set by cpu_init() */
1583         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1584         numa_remove_cpu(cpu);
1585 }
1586
1587 void cpu_disable_common(void)
1588 {
1589         int cpu = smp_processor_id();
1590
1591         remove_siblinginfo(cpu);
1592
1593         /* It's now safe to remove this processor from the online map */
1594         lock_vector_lock();
1595         remove_cpu_from_maps(cpu);
1596         unlock_vector_lock();
1597         fixup_irqs();
1598         lapic_offline();
1599 }
1600
1601 int native_cpu_disable(void)
1602 {
1603         int ret;
1604
1605         ret = lapic_can_unplug_cpu();
1606         if (ret)
1607                 return ret;
1608
1609         cpu_disable_common();
1610
1611         /*
1612          * Disable the local APIC. Otherwise IPI broadcasts will reach
1613          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1614          * messages.
1615          *
1616          * Disabling the APIC must happen after cpu_disable_common()
1617          * which invokes fixup_irqs().
1618          *
1619          * Disabling the APIC preserves already set bits in IRR, but
1620          * an interrupt arriving after disabling the local APIC does not
1621          * set the corresponding IRR bit.
1622          *
1623          * fixup_irqs() scans IRR for set bits so it can raise a not
1624          * yet handled interrupt on the new destination CPU via an IPI
1625          * but obviously it can't do so for IRR bits which are not set.
1626          * IOW, interrupts arriving after disabling the local APIC will
1627          * be lost.
1628          */
1629         apic_soft_disable();
1630
1631         return 0;
1632 }
1633
1634 int common_cpu_die(unsigned int cpu)
1635 {
1636         int ret = 0;
1637
1638         /* We don't do anything here: idle task is faking death itself. */
1639
1640         /* They ack this in play_dead() by setting CPU_DEAD */
1641         if (cpu_wait_death(cpu, 5)) {
1642                 if (system_state == SYSTEM_RUNNING)
1643                         pr_info("CPU %u is now offline\n", cpu);
1644         } else {
1645                 pr_err("CPU %u didn't die...\n", cpu);
1646                 ret = -1;
1647         }
1648
1649         return ret;
1650 }
1651
1652 void native_cpu_die(unsigned int cpu)
1653 {
1654         common_cpu_die(cpu);
1655 }
1656
1657 void play_dead_common(void)
1658 {
1659         idle_task_exit();
1660
1661         /* Ack it */
1662         (void)cpu_report_death();
1663
1664         /*
1665          * With physical CPU hotplug, we should halt the cpu
1666          */
1667         local_irq_disable();
1668 }
1669
1670 /**
1671  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1672  *
1673  * If NMI wants to wake up CPU0, start CPU0.
1674  */
1675 void cond_wakeup_cpu0(void)
1676 {
1677         if (smp_processor_id() == 0 && enable_start_cpu0)
1678                 start_cpu0();
1679 }
1680 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1681
1682 /*
1683  * We need to flush the caches before going to sleep, lest we have
1684  * dirty data in our caches when we come back up.
1685  */
1686 static inline void mwait_play_dead(void)
1687 {
1688         struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1689         unsigned int eax, ebx, ecx, edx;
1690         unsigned int highest_cstate = 0;
1691         unsigned int highest_subcstate = 0;
1692         int i;
1693
1694         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1695             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1696                 return;
1697         if (!this_cpu_has(X86_FEATURE_MWAIT))
1698                 return;
1699         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1700                 return;
1701         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1702                 return;
1703
1704         eax = CPUID_MWAIT_LEAF;
1705         ecx = 0;
1706         native_cpuid(&eax, &ebx, &ecx, &edx);
1707
1708         /*
1709          * eax will be 0 if EDX enumeration is not valid.
1710          * Initialized below to cstate, sub_cstate value when EDX is valid.
1711          */
1712         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1713                 eax = 0;
1714         } else {
1715                 edx >>= MWAIT_SUBSTATE_SIZE;
1716                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1717                         if (edx & MWAIT_SUBSTATE_MASK) {
1718                                 highest_cstate = i;
1719                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1720                         }
1721                 }
1722                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1723                         (highest_subcstate - 1);
1724         }
1725
1726         wbinvd();
1727
1728         while (1) {
1729                 /*
1730                  * The CLFLUSH is a workaround for erratum AAI65 for
1731                  * the Xeon 7400 series.  It's not clear it is actually
1732                  * needed, but it should be harmless in either case.
1733                  * The WBINVD is insufficient due to the spurious-wakeup
1734                  * case where we return around the loop.
1735                  */
1736                 mb();
1737                 clflush(md);
1738                 mb();
1739                 __monitor(md, 0, 0);
1740                 mb();
1741                 __mwait(eax, 0);
1742
1743                 cond_wakeup_cpu0();
1744         }
1745 }
1746
1747 void hlt_play_dead(void)
1748 {
1749         if (__this_cpu_read(cpu_info.x86) >= 4)
1750                 wbinvd();
1751
1752         while (1) {
1753                 native_halt();
1754
1755                 cond_wakeup_cpu0();
1756         }
1757 }
1758
1759 void native_play_dead(void)
1760 {
1761         play_dead_common();
1762         tboot_shutdown(TB_SHUTDOWN_WFS);
1763
1764         mwait_play_dead();      /* Only returns on failure */
1765         if (cpuidle_play_dead())
1766                 hlt_play_dead();
1767 }
1768
1769 #else /* ... !CONFIG_HOTPLUG_CPU */
1770 int native_cpu_disable(void)
1771 {
1772         return -ENOSYS;
1773 }
1774
1775 void native_cpu_die(unsigned int cpu)
1776 {
1777         /* We said "no" in __cpu_disable */
1778         BUG();
1779 }
1780
1781 void native_play_dead(void)
1782 {
1783         BUG();
1784 }
1785
1786 #endif
1787
1788 #ifdef CONFIG_X86_64
1789 /*
1790  * APERF/MPERF frequency ratio computation.
1791  *
1792  * The scheduler wants to do frequency invariant accounting and needs a <1
1793  * ratio to account for the 'current' frequency, corresponding to
1794  * freq_curr / freq_max.
1795  *
1796  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1797  * our P-state setting is little more than a request/hint, we need to observe
1798  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1799  * interval after discarding idle time. This is given by:
1800  *
1801  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1802  *
1803  * where freq_base is the max non-turbo P-state.
1804  *
1805  * The freq_max term has to be set to a somewhat arbitrary value, because we
1806  * can't know which turbo states will be available at a given point in time:
1807  * it all depends on the thermal headroom of the entire package. We set it to
1808  * the turbo level with 4 cores active.
1809  *
1810  * Benchmarks show that's a good compromise between the 1C turbo ratio
1811  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1812  * which would ignore the entire turbo range (a conspicuous part, making
1813  * freq_curr/freq_max always maxed out).
1814  *
1815  * An exception to the heuristic above is the Atom uarch, where we choose the
1816  * highest turbo level for freq_max since Atom's are generally oriented towards
1817  * power efficiency.
1818  *
1819  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1820  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1821  */
1822
1823 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1824
1825 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1826 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1827 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1828 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1829
1830 void arch_set_max_freq_ratio(bool turbo_disabled)
1831 {
1832         arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1833                                         arch_turbo_freq_ratio;
1834 }
1835 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1836
1837 static bool turbo_disabled(void)
1838 {
1839         u64 misc_en;
1840         int err;
1841
1842         err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1843         if (err)
1844                 return false;
1845
1846         return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1847 }
1848
1849 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1850 {
1851         int err;
1852
1853         err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1854         if (err)
1855                 return false;
1856
1857         err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1858         if (err)
1859                 return false;
1860
1861         *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1862         *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1863
1864         return true;
1865 }
1866
1867 #include <asm/cpu_device_id.h>
1868 #include <asm/intel-family.h>
1869
1870 #define X86_MATCH(model)                                        \
1871         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1872                 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1873
1874 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1875         X86_MATCH(XEON_PHI_KNL),
1876         X86_MATCH(XEON_PHI_KNM),
1877         {}
1878 };
1879
1880 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1881         X86_MATCH(SKYLAKE_X),
1882         {}
1883 };
1884
1885 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1886         X86_MATCH(ATOM_GOLDMONT),
1887         X86_MATCH(ATOM_GOLDMONT_D),
1888         X86_MATCH(ATOM_GOLDMONT_PLUS),
1889         {}
1890 };
1891
1892 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1893                                 int num_delta_fratio)
1894 {
1895         int fratio, delta_fratio, found;
1896         int err, i;
1897         u64 msr;
1898
1899         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1900         if (err)
1901                 return false;
1902
1903         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1904
1905         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1906         if (err)
1907                 return false;
1908
1909         fratio = (msr >> 8) & 0xFF;
1910         i = 16;
1911         found = 0;
1912         do {
1913                 if (found >= num_delta_fratio) {
1914                         *turbo_freq = fratio;
1915                         return true;
1916                 }
1917
1918                 delta_fratio = (msr >> (i + 5)) & 0x7;
1919
1920                 if (delta_fratio) {
1921                         found += 1;
1922                         fratio -= delta_fratio;
1923                 }
1924
1925                 i += 8;
1926         } while (i < 64);
1927
1928         return true;
1929 }
1930
1931 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1932 {
1933         u64 ratios, counts;
1934         u32 group_size;
1935         int err, i;
1936
1937         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1938         if (err)
1939                 return false;
1940
1941         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1942
1943         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1944         if (err)
1945                 return false;
1946
1947         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1948         if (err)
1949                 return false;
1950
1951         for (i = 0; i < 64; i += 8) {
1952                 group_size = (counts >> i) & 0xFF;
1953                 if (group_size >= size) {
1954                         *turbo_freq = (ratios >> i) & 0xFF;
1955                         return true;
1956                 }
1957         }
1958
1959         return false;
1960 }
1961
1962 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1963 {
1964         u64 msr;
1965         int err;
1966
1967         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1968         if (err)
1969                 return false;
1970
1971         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1972         if (err)
1973                 return false;
1974
1975         *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1976         *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1977
1978         /* The CPU may have less than 4 cores */
1979         if (!*turbo_freq)
1980                 *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1981
1982         return true;
1983 }
1984
1985 static bool intel_set_max_freq_ratio(void)
1986 {
1987         u64 base_freq, turbo_freq;
1988         u64 turbo_ratio;
1989
1990         if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1991                 goto out;
1992
1993         if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1994             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995                 goto out;
1996
1997         if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1998             knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1999                 goto out;
2000
2001         if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2002             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2003                 goto out;
2004
2005         if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2006                 goto out;
2007
2008         return false;
2009
2010 out:
2011         /*
2012          * Some hypervisors advertise X86_FEATURE_APERFMPERF
2013          * but then fill all MSR's with zeroes.
2014          * Some CPUs have turbo boost but don't declare any turbo ratio
2015          * in MSR_TURBO_RATIO_LIMIT.
2016          */
2017         if (!base_freq || !turbo_freq) {
2018                 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2019                 return false;
2020         }
2021
2022         turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2023         if (!turbo_ratio) {
2024                 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2025                 return false;
2026         }
2027
2028         arch_turbo_freq_ratio = turbo_ratio;
2029         arch_set_max_freq_ratio(turbo_disabled());
2030
2031         return true;
2032 }
2033
2034 static void init_counter_refs(void)
2035 {
2036         u64 aperf, mperf;
2037
2038         rdmsrl(MSR_IA32_APERF, aperf);
2039         rdmsrl(MSR_IA32_MPERF, mperf);
2040
2041         this_cpu_write(arch_prev_aperf, aperf);
2042         this_cpu_write(arch_prev_mperf, mperf);
2043 }
2044
2045 static void init_freq_invariance(bool secondary)
2046 {
2047         bool ret = false;
2048
2049         if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2050                 return;
2051
2052         if (secondary) {
2053                 if (static_branch_likely(&arch_scale_freq_key)) {
2054                         init_counter_refs();
2055                 }
2056                 return;
2057         }
2058
2059         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2060                 ret = intel_set_max_freq_ratio();
2061
2062         if (ret) {
2063                 init_counter_refs();
2064                 static_branch_enable(&arch_scale_freq_key);
2065         } else {
2066                 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2067         }
2068 }
2069
2070 static void disable_freq_invariance_workfn(struct work_struct *work)
2071 {
2072         static_branch_disable(&arch_scale_freq_key);
2073 }
2074
2075 static DECLARE_WORK(disable_freq_invariance_work,
2076                     disable_freq_invariance_workfn);
2077
2078 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2079
2080 void arch_scale_freq_tick(void)
2081 {
2082         u64 freq_scale = SCHED_CAPACITY_SCALE;
2083         u64 aperf, mperf;
2084         u64 acnt, mcnt;
2085
2086         if (!arch_scale_freq_invariant())
2087                 return;
2088
2089         rdmsrl(MSR_IA32_APERF, aperf);
2090         rdmsrl(MSR_IA32_MPERF, mperf);
2091
2092         acnt = aperf - this_cpu_read(arch_prev_aperf);
2093         mcnt = mperf - this_cpu_read(arch_prev_mperf);
2094
2095         this_cpu_write(arch_prev_aperf, aperf);
2096         this_cpu_write(arch_prev_mperf, mperf);
2097
2098         if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2099                 goto error;
2100
2101         if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2102                 goto error;
2103
2104         freq_scale = div64_u64(acnt, mcnt);
2105         if (!freq_scale)
2106                 goto error;
2107
2108         if (freq_scale > SCHED_CAPACITY_SCALE)
2109                 freq_scale = SCHED_CAPACITY_SCALE;
2110
2111         this_cpu_write(arch_freq_scale, freq_scale);
2112         return;
2113
2114 error:
2115         pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2116         schedule_work(&disable_freq_invariance_work);
2117 }
2118 #else
2119 static inline void init_freq_invariance(bool secondary)
2120 {
2121 }
2122 #endif /* CONFIG_X86_64 */