GNU Linux-libre 4.9.290-gnu1
[releases.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30
31 #ifdef CONFIG_KEXEC_FILE
32 static struct kexec_file_ops *kexec_file_loaders[] = {
33                 &kexec_bzImage64_ops,
34 };
35 #endif
36
37 static void free_transition_pgtable(struct kimage *image)
38 {
39         free_page((unsigned long)image->arch.pud);
40         image->arch.pud = NULL;
41         free_page((unsigned long)image->arch.pmd);
42         image->arch.pmd = NULL;
43         free_page((unsigned long)image->arch.pte);
44         image->arch.pte = NULL;
45 }
46
47 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
48 {
49         pud_t *pud;
50         pmd_t *pmd;
51         pte_t *pte;
52         unsigned long vaddr, paddr;
53         int result = -ENOMEM;
54
55         vaddr = (unsigned long)relocate_kernel;
56         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
57         pgd += pgd_index(vaddr);
58         if (!pgd_present(*pgd)) {
59                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
60                 if (!pud)
61                         goto err;
62                 image->arch.pud = pud;
63                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
64         }
65         pud = pud_offset(pgd, vaddr);
66         if (!pud_present(*pud)) {
67                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
68                 if (!pmd)
69                         goto err;
70                 image->arch.pmd = pmd;
71                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
72         }
73         pmd = pmd_offset(pud, vaddr);
74         if (!pmd_present(*pmd)) {
75                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
76                 if (!pte)
77                         goto err;
78                 image->arch.pte = pte;
79                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
80         }
81         pte = pte_offset_kernel(pmd, vaddr);
82         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
83         return 0;
84 err:
85         return result;
86 }
87
88 static void *alloc_pgt_page(void *data)
89 {
90         struct kimage *image = (struct kimage *)data;
91         struct page *page;
92         void *p = NULL;
93
94         page = kimage_alloc_control_pages(image, 0);
95         if (page) {
96                 p = page_address(page);
97                 clear_page(p);
98         }
99
100         return p;
101 }
102
103 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
104 {
105         struct x86_mapping_info info = {
106                 .alloc_pgt_page = alloc_pgt_page,
107                 .context        = image,
108                 .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
109         };
110         unsigned long mstart, mend;
111         pgd_t *level4p;
112         int result;
113         int i;
114
115         level4p = (pgd_t *)__va(start_pgtable);
116         clear_page(level4p);
117         for (i = 0; i < nr_pfn_mapped; i++) {
118                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
119                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
120
121                 result = kernel_ident_mapping_init(&info,
122                                                  level4p, mstart, mend);
123                 if (result)
124                         return result;
125         }
126
127         /*
128          * segments's mem ranges could be outside 0 ~ max_pfn,
129          * for example when jump back to original kernel from kexeced kernel.
130          * or first kernel is booted with user mem map, and second kernel
131          * could be loaded out of that range.
132          */
133         for (i = 0; i < image->nr_segments; i++) {
134                 mstart = image->segment[i].mem;
135                 mend   = mstart + image->segment[i].memsz;
136
137                 result = kernel_ident_mapping_init(&info,
138                                                  level4p, mstart, mend);
139
140                 if (result)
141                         return result;
142         }
143
144         return init_transition_pgtable(image, level4p);
145 }
146
147 static void set_idt(void *newidt, u16 limit)
148 {
149         struct desc_ptr curidt;
150
151         /* x86-64 supports unaliged loads & stores */
152         curidt.size    = limit;
153         curidt.address = (unsigned long)newidt;
154
155         __asm__ __volatile__ (
156                 "lidtq %0\n"
157                 : : "m" (curidt)
158                 );
159 };
160
161
162 static void set_gdt(void *newgdt, u16 limit)
163 {
164         struct desc_ptr curgdt;
165
166         /* x86-64 supports unaligned loads & stores */
167         curgdt.size    = limit;
168         curgdt.address = (unsigned long)newgdt;
169
170         __asm__ __volatile__ (
171                 "lgdtq %0\n"
172                 : : "m" (curgdt)
173                 );
174 };
175
176 static void load_segments(void)
177 {
178         __asm__ __volatile__ (
179                 "\tmovl %0,%%ds\n"
180                 "\tmovl %0,%%es\n"
181                 "\tmovl %0,%%ss\n"
182                 "\tmovl %0,%%fs\n"
183                 "\tmovl %0,%%gs\n"
184                 : : "a" (__KERNEL_DS) : "memory"
185                 );
186 }
187
188 #ifdef CONFIG_KEXEC_FILE
189 /* Update purgatory as needed after various image segments have been prepared */
190 static int arch_update_purgatory(struct kimage *image)
191 {
192         int ret = 0;
193
194         if (!image->file_mode)
195                 return 0;
196
197         /* Setup copying of backup region */
198         if (image->type == KEXEC_TYPE_CRASH) {
199                 ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
200                                 &image->arch.backup_load_addr,
201                                 sizeof(image->arch.backup_load_addr), 0);
202                 if (ret)
203                         return ret;
204
205                 ret = kexec_purgatory_get_set_symbol(image, "backup_src",
206                                 &image->arch.backup_src_start,
207                                 sizeof(image->arch.backup_src_start), 0);
208                 if (ret)
209                         return ret;
210
211                 ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
212                                 &image->arch.backup_src_sz,
213                                 sizeof(image->arch.backup_src_sz), 0);
214                 if (ret)
215                         return ret;
216         }
217
218         return ret;
219 }
220 #else /* !CONFIG_KEXEC_FILE */
221 static inline int arch_update_purgatory(struct kimage *image)
222 {
223         return 0;
224 }
225 #endif /* CONFIG_KEXEC_FILE */
226
227 int machine_kexec_prepare(struct kimage *image)
228 {
229         unsigned long start_pgtable;
230         int result;
231
232         /* Calculate the offsets */
233         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
234
235         /* Setup the identity mapped 64bit page table */
236         result = init_pgtable(image, start_pgtable);
237         if (result)
238                 return result;
239
240         /* update purgatory as needed */
241         result = arch_update_purgatory(image);
242         if (result)
243                 return result;
244
245         return 0;
246 }
247
248 void machine_kexec_cleanup(struct kimage *image)
249 {
250         free_transition_pgtable(image);
251 }
252
253 /*
254  * Do not allocate memory (or fail in any way) in machine_kexec().
255  * We are past the point of no return, committed to rebooting now.
256  */
257 void machine_kexec(struct kimage *image)
258 {
259         unsigned long page_list[PAGES_NR];
260         void *control_page;
261         int save_ftrace_enabled;
262
263 #ifdef CONFIG_KEXEC_JUMP
264         if (image->preserve_context)
265                 save_processor_state();
266 #endif
267
268         save_ftrace_enabled = __ftrace_enabled_save();
269
270         /* Interrupts aren't acceptable while we reboot */
271         local_irq_disable();
272         hw_breakpoint_disable();
273
274         if (image->preserve_context) {
275 #ifdef CONFIG_X86_IO_APIC
276                 /*
277                  * We need to put APICs in legacy mode so that we can
278                  * get timer interrupts in second kernel. kexec/kdump
279                  * paths already have calls to disable_IO_APIC() in
280                  * one form or other. kexec jump path also need
281                  * one.
282                  */
283                 disable_IO_APIC();
284 #endif
285         }
286
287         control_page = page_address(image->control_code_page) + PAGE_SIZE;
288         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
289
290         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
291         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
292         page_list[PA_TABLE_PAGE] =
293           (unsigned long)__pa(page_address(image->control_code_page));
294
295         if (image->type == KEXEC_TYPE_DEFAULT)
296                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
297                                                 << PAGE_SHIFT);
298
299         /*
300          * The segment registers are funny things, they have both a
301          * visible and an invisible part.  Whenever the visible part is
302          * set to a specific selector, the invisible part is loaded
303          * with from a table in memory.  At no other time is the
304          * descriptor table in memory accessed.
305          *
306          * I take advantage of this here by force loading the
307          * segments, before I zap the gdt with an invalid value.
308          */
309         load_segments();
310         /*
311          * The gdt & idt are now invalid.
312          * If you want to load them you must set up your own idt & gdt.
313          */
314         set_gdt(phys_to_virt(0), 0);
315         set_idt(phys_to_virt(0), 0);
316
317         /* now call it */
318         image->start = relocate_kernel((unsigned long)image->head,
319                                        (unsigned long)page_list,
320                                        image->start,
321                                        image->preserve_context);
322
323 #ifdef CONFIG_KEXEC_JUMP
324         if (image->preserve_context)
325                 restore_processor_state();
326 #endif
327
328         __ftrace_enabled_restore(save_ftrace_enabled);
329 }
330
331 void arch_crash_save_vmcoreinfo(void)
332 {
333         VMCOREINFO_SYMBOL(phys_base);
334         VMCOREINFO_SYMBOL(init_level4_pgt);
335
336 #ifdef CONFIG_NUMA
337         VMCOREINFO_SYMBOL(node_data);
338         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
339 #endif
340         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
341                               kaslr_offset());
342         VMCOREINFO_PAGE_OFFSET(PAGE_OFFSET);
343         VMCOREINFO_VMALLOC_START(VMALLOC_START);
344         VMCOREINFO_VMEMMAP_START(VMEMMAP_START);
345 }
346
347 /* arch-dependent functionality related to kexec file-based syscall */
348
349 #ifdef CONFIG_KEXEC_FILE
350 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
351                                   unsigned long buf_len)
352 {
353         int i, ret = -ENOEXEC;
354         struct kexec_file_ops *fops;
355
356         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
357                 fops = kexec_file_loaders[i];
358                 if (!fops || !fops->probe)
359                         continue;
360
361                 ret = fops->probe(buf, buf_len);
362                 if (!ret) {
363                         image->fops = fops;
364                         return ret;
365                 }
366         }
367
368         return ret;
369 }
370
371 void *arch_kexec_kernel_image_load(struct kimage *image)
372 {
373         vfree(image->arch.elf_headers);
374         image->arch.elf_headers = NULL;
375
376         if (!image->fops || !image->fops->load)
377                 return ERR_PTR(-ENOEXEC);
378
379         return image->fops->load(image, image->kernel_buf,
380                                  image->kernel_buf_len, image->initrd_buf,
381                                  image->initrd_buf_len, image->cmdline_buf,
382                                  image->cmdline_buf_len);
383 }
384
385 int arch_kimage_file_post_load_cleanup(struct kimage *image)
386 {
387         if (!image->fops || !image->fops->cleanup)
388                 return 0;
389
390         return image->fops->cleanup(image->image_loader_data);
391 }
392
393 #ifdef CONFIG_KEXEC_VERIFY_SIG
394 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
395                                  unsigned long kernel_len)
396 {
397         if (!image->fops || !image->fops->verify_sig) {
398                 pr_debug("kernel loader does not support signature verification.");
399                 return -EKEYREJECTED;
400         }
401
402         return image->fops->verify_sig(kernel, kernel_len);
403 }
404 #endif
405
406 /*
407  * Apply purgatory relocations.
408  *
409  * ehdr: Pointer to elf headers
410  * sechdrs: Pointer to section headers.
411  * relsec: section index of SHT_RELA section.
412  *
413  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
414  */
415 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
416                                      Elf64_Shdr *sechdrs, unsigned int relsec)
417 {
418         unsigned int i;
419         Elf64_Rela *rel;
420         Elf64_Sym *sym;
421         void *location;
422         Elf64_Shdr *section, *symtabsec;
423         unsigned long address, sec_base, value;
424         const char *strtab, *name, *shstrtab;
425
426         /*
427          * ->sh_offset has been modified to keep the pointer to section
428          * contents in memory
429          */
430         rel = (void *)sechdrs[relsec].sh_offset;
431
432         /* Section to which relocations apply */
433         section = &sechdrs[sechdrs[relsec].sh_info];
434
435         pr_debug("Applying relocate section %u to %u\n", relsec,
436                  sechdrs[relsec].sh_info);
437
438         /* Associated symbol table */
439         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
440
441         /* String table */
442         if (symtabsec->sh_link >= ehdr->e_shnum) {
443                 /* Invalid strtab section number */
444                 pr_err("Invalid string table section index %d\n",
445                        symtabsec->sh_link);
446                 return -ENOEXEC;
447         }
448
449         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
450
451         /* section header string table */
452         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
453
454         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
455
456                 /*
457                  * rel[i].r_offset contains byte offset from beginning
458                  * of section to the storage unit affected.
459                  *
460                  * This is location to update (->sh_offset). This is temporary
461                  * buffer where section is currently loaded. This will finally
462                  * be loaded to a different address later, pointed to by
463                  * ->sh_addr. kexec takes care of moving it
464                  *  (kexec_load_segment()).
465                  */
466                 location = (void *)(section->sh_offset + rel[i].r_offset);
467
468                 /* Final address of the location */
469                 address = section->sh_addr + rel[i].r_offset;
470
471                 /*
472                  * rel[i].r_info contains information about symbol table index
473                  * w.r.t which relocation must be made and type of relocation
474                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
475                  * these respectively.
476                  */
477                 sym = (Elf64_Sym *)symtabsec->sh_offset +
478                                 ELF64_R_SYM(rel[i].r_info);
479
480                 if (sym->st_name)
481                         name = strtab + sym->st_name;
482                 else
483                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
484
485                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
486                          name, sym->st_info, sym->st_shndx, sym->st_value,
487                          sym->st_size);
488
489                 if (sym->st_shndx == SHN_UNDEF) {
490                         pr_err("Undefined symbol: %s\n", name);
491                         return -ENOEXEC;
492                 }
493
494                 if (sym->st_shndx == SHN_COMMON) {
495                         pr_err("symbol '%s' in common section\n", name);
496                         return -ENOEXEC;
497                 }
498
499                 if (sym->st_shndx == SHN_ABS)
500                         sec_base = 0;
501                 else if (sym->st_shndx >= ehdr->e_shnum) {
502                         pr_err("Invalid section %d for symbol %s\n",
503                                sym->st_shndx, name);
504                         return -ENOEXEC;
505                 } else
506                         sec_base = sechdrs[sym->st_shndx].sh_addr;
507
508                 value = sym->st_value;
509                 value += sec_base;
510                 value += rel[i].r_addend;
511
512                 switch (ELF64_R_TYPE(rel[i].r_info)) {
513                 case R_X86_64_NONE:
514                         break;
515                 case R_X86_64_64:
516                         *(u64 *)location = value;
517                         break;
518                 case R_X86_64_32:
519                         *(u32 *)location = value;
520                         if (value != *(u32 *)location)
521                                 goto overflow;
522                         break;
523                 case R_X86_64_32S:
524                         *(s32 *)location = value;
525                         if ((s64)value != *(s32 *)location)
526                                 goto overflow;
527                         break;
528                 case R_X86_64_PC32:
529                 case R_X86_64_PLT32:
530                         value -= (u64)address;
531                         *(u32 *)location = value;
532                         break;
533                 default:
534                         pr_err("Unknown rela relocation: %llu\n",
535                                ELF64_R_TYPE(rel[i].r_info));
536                         return -ENOEXEC;
537                 }
538         }
539         return 0;
540
541 overflow:
542         pr_err("Overflow in relocation type %d value 0x%lx\n",
543                (int)ELF64_R_TYPE(rel[i].r_info), value);
544         return -ENOEXEC;
545 }
546 #endif /* CONFIG_KEXEC_FILE */
547
548 static int
549 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
550 {
551         struct page *page;
552         unsigned int nr_pages;
553
554         /*
555          * For physical range: [start, end]. We must skip the unassigned
556          * crashk resource with zero-valued "end" member.
557          */
558         if (!end || start > end)
559                 return 0;
560
561         page = pfn_to_page(start >> PAGE_SHIFT);
562         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
563         if (protect)
564                 return set_pages_ro(page, nr_pages);
565         else
566                 return set_pages_rw(page, nr_pages);
567 }
568
569 static void kexec_mark_crashkres(bool protect)
570 {
571         unsigned long control;
572
573         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
574
575         /* Don't touch the control code page used in crash_kexec().*/
576         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
577         /* Control code page is located in the 2nd page. */
578         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
579         control += KEXEC_CONTROL_PAGE_SIZE;
580         kexec_mark_range(control, crashk_res.end, protect);
581 }
582
583 void arch_kexec_protect_crashkres(void)
584 {
585         kexec_mark_crashkres(true);
586 }
587
588 void arch_kexec_unprotect_crashkres(void)
589 {
590         kexec_mark_crashkres(false);
591 }