GNU Linux-libre 5.15.137-gnu
[releases.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20
21 #include <asm/init.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/io_apic.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27 #include <asm/setup.h>
28 #include <asm/set_memory.h>
29
30 #ifdef CONFIG_ACPI
31 /*
32  * Used while adding mapping for ACPI tables.
33  * Can be reused when other iomem regions need be mapped
34  */
35 struct init_pgtable_data {
36         struct x86_mapping_info *info;
37         pgd_t *level4p;
38 };
39
40 static int mem_region_callback(struct resource *res, void *arg)
41 {
42         struct init_pgtable_data *data = arg;
43         unsigned long mstart, mend;
44
45         mstart = res->start;
46         mend = mstart + resource_size(res) - 1;
47
48         return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
49 }
50
51 static int
52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54         struct init_pgtable_data data;
55         unsigned long flags;
56         int ret;
57
58         data.info = info;
59         data.level4p = level4p;
60         flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61
62         ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63                                   &data, mem_region_callback);
64         if (ret && ret != -EINVAL)
65                 return ret;
66
67         /* ACPI tables could be located in ACPI Non-volatile Storage region */
68         ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69                                   &data, mem_region_callback);
70         if (ret && ret != -EINVAL)
71                 return ret;
72
73         return 0;
74 }
75 #else
76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81                 &kexec_bzImage64_ops,
82                 NULL
83 };
84 #endif
85
86 static int
87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90         unsigned long mstart, mend;
91
92         if (!efi_enabled(EFI_BOOT))
93                 return 0;
94
95         mstart = (boot_params.efi_info.efi_systab |
96                         ((u64)boot_params.efi_info.efi_systab_hi<<32));
97
98         if (efi_enabled(EFI_64BIT))
99                 mend = mstart + sizeof(efi_system_table_64_t);
100         else
101                 mend = mstart + sizeof(efi_system_table_32_t);
102
103         if (!mstart)
104                 return 0;
105
106         return kernel_ident_mapping_init(info, level4p, mstart, mend);
107 #endif
108         return 0;
109 }
110
111 static void free_transition_pgtable(struct kimage *image)
112 {
113         free_page((unsigned long)image->arch.p4d);
114         image->arch.p4d = NULL;
115         free_page((unsigned long)image->arch.pud);
116         image->arch.pud = NULL;
117         free_page((unsigned long)image->arch.pmd);
118         image->arch.pmd = NULL;
119         free_page((unsigned long)image->arch.pte);
120         image->arch.pte = NULL;
121 }
122
123 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124 {
125         pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126         unsigned long vaddr, paddr;
127         int result = -ENOMEM;
128         p4d_t *p4d;
129         pud_t *pud;
130         pmd_t *pmd;
131         pte_t *pte;
132
133         vaddr = (unsigned long)relocate_kernel;
134         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135         pgd += pgd_index(vaddr);
136         if (!pgd_present(*pgd)) {
137                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138                 if (!p4d)
139                         goto err;
140                 image->arch.p4d = p4d;
141                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142         }
143         p4d = p4d_offset(pgd, vaddr);
144         if (!p4d_present(*p4d)) {
145                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146                 if (!pud)
147                         goto err;
148                 image->arch.pud = pud;
149                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150         }
151         pud = pud_offset(p4d, vaddr);
152         if (!pud_present(*pud)) {
153                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154                 if (!pmd)
155                         goto err;
156                 image->arch.pmd = pmd;
157                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158         }
159         pmd = pmd_offset(pud, vaddr);
160         if (!pmd_present(*pmd)) {
161                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162                 if (!pte)
163                         goto err;
164                 image->arch.pte = pte;
165                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166         }
167         pte = pte_offset_kernel(pmd, vaddr);
168
169         if (sev_active())
170                 prot = PAGE_KERNEL_EXEC;
171
172         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173         return 0;
174 err:
175         return result;
176 }
177
178 static void *alloc_pgt_page(void *data)
179 {
180         struct kimage *image = (struct kimage *)data;
181         struct page *page;
182         void *p = NULL;
183
184         page = kimage_alloc_control_pages(image, 0);
185         if (page) {
186                 p = page_address(page);
187                 clear_page(p);
188         }
189
190         return p;
191 }
192
193 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194 {
195         struct x86_mapping_info info = {
196                 .alloc_pgt_page = alloc_pgt_page,
197                 .context        = image,
198                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
199                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
200         };
201         unsigned long mstart, mend;
202         pgd_t *level4p;
203         int result;
204         int i;
205
206         level4p = (pgd_t *)__va(start_pgtable);
207         clear_page(level4p);
208
209         if (sev_active()) {
210                 info.page_flag   |= _PAGE_ENC;
211                 info.kernpg_flag |= _PAGE_ENC;
212         }
213
214         if (direct_gbpages)
215                 info.direct_gbpages = true;
216
217         for (i = 0; i < nr_pfn_mapped; i++) {
218                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
219                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
220
221                 result = kernel_ident_mapping_init(&info,
222                                                  level4p, mstart, mend);
223                 if (result)
224                         return result;
225         }
226
227         /*
228          * segments's mem ranges could be outside 0 ~ max_pfn,
229          * for example when jump back to original kernel from kexeced kernel.
230          * or first kernel is booted with user mem map, and second kernel
231          * could be loaded out of that range.
232          */
233         for (i = 0; i < image->nr_segments; i++) {
234                 mstart = image->segment[i].mem;
235                 mend   = mstart + image->segment[i].memsz;
236
237                 result = kernel_ident_mapping_init(&info,
238                                                  level4p, mstart, mend);
239
240                 if (result)
241                         return result;
242         }
243
244         /*
245          * Prepare EFI systab and ACPI tables for kexec kernel since they are
246          * not covered by pfn_mapped.
247          */
248         result = map_efi_systab(&info, level4p);
249         if (result)
250                 return result;
251
252         result = map_acpi_tables(&info, level4p);
253         if (result)
254                 return result;
255
256         return init_transition_pgtable(image, level4p);
257 }
258
259 static void load_segments(void)
260 {
261         __asm__ __volatile__ (
262                 "\tmovl %0,%%ds\n"
263                 "\tmovl %0,%%es\n"
264                 "\tmovl %0,%%ss\n"
265                 "\tmovl %0,%%fs\n"
266                 "\tmovl %0,%%gs\n"
267                 : : "a" (__KERNEL_DS) : "memory"
268                 );
269 }
270
271 int machine_kexec_prepare(struct kimage *image)
272 {
273         unsigned long start_pgtable;
274         int result;
275
276         /* Calculate the offsets */
277         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
278
279         /* Setup the identity mapped 64bit page table */
280         result = init_pgtable(image, start_pgtable);
281         if (result)
282                 return result;
283
284         return 0;
285 }
286
287 void machine_kexec_cleanup(struct kimage *image)
288 {
289         free_transition_pgtable(image);
290 }
291
292 /*
293  * Do not allocate memory (or fail in any way) in machine_kexec().
294  * We are past the point of no return, committed to rebooting now.
295  */
296 void machine_kexec(struct kimage *image)
297 {
298         unsigned long page_list[PAGES_NR];
299         void *control_page;
300         int save_ftrace_enabled;
301
302 #ifdef CONFIG_KEXEC_JUMP
303         if (image->preserve_context)
304                 save_processor_state();
305 #endif
306
307         save_ftrace_enabled = __ftrace_enabled_save();
308
309         /* Interrupts aren't acceptable while we reboot */
310         local_irq_disable();
311         hw_breakpoint_disable();
312
313         if (image->preserve_context) {
314 #ifdef CONFIG_X86_IO_APIC
315                 /*
316                  * We need to put APICs in legacy mode so that we can
317                  * get timer interrupts in second kernel. kexec/kdump
318                  * paths already have calls to restore_boot_irq_mode()
319                  * in one form or other. kexec jump path also need one.
320                  */
321                 clear_IO_APIC();
322                 restore_boot_irq_mode();
323 #endif
324         }
325
326         control_page = page_address(image->control_code_page) + PAGE_SIZE;
327         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331         page_list[PA_TABLE_PAGE] =
332           (unsigned long)__pa(page_address(image->control_code_page));
333
334         if (image->type == KEXEC_TYPE_DEFAULT)
335                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336                                                 << PAGE_SHIFT);
337
338         /*
339          * The segment registers are funny things, they have both a
340          * visible and an invisible part.  Whenever the visible part is
341          * set to a specific selector, the invisible part is loaded
342          * with from a table in memory.  At no other time is the
343          * descriptor table in memory accessed.
344          *
345          * I take advantage of this here by force loading the
346          * segments, before I zap the gdt with an invalid value.
347          */
348         load_segments();
349         /*
350          * The gdt & idt are now invalid.
351          * If you want to load them you must set up your own idt & gdt.
352          */
353         native_idt_invalidate();
354         native_gdt_invalidate();
355
356         /* now call it */
357         image->start = relocate_kernel((unsigned long)image->head,
358                                        (unsigned long)page_list,
359                                        image->start,
360                                        image->preserve_context,
361                                        sme_active());
362
363 #ifdef CONFIG_KEXEC_JUMP
364         if (image->preserve_context)
365                 restore_processor_state();
366 #endif
367
368         __ftrace_enabled_restore(save_ftrace_enabled);
369 }
370
371 /* arch-dependent functionality related to kexec file-based syscall */
372
373 #ifdef CONFIG_KEXEC_FILE
374 void *arch_kexec_kernel_image_load(struct kimage *image)
375 {
376         if (!image->fops || !image->fops->load)
377                 return ERR_PTR(-ENOEXEC);
378
379         return image->fops->load(image, image->kernel_buf,
380                                  image->kernel_buf_len, image->initrd_buf,
381                                  image->initrd_buf_len, image->cmdline_buf,
382                                  image->cmdline_buf_len);
383 }
384
385 /*
386  * Apply purgatory relocations.
387  *
388  * @pi:         Purgatory to be relocated.
389  * @section:    Section relocations applying to.
390  * @relsec:     Section containing RELAs.
391  * @symtabsec:  Corresponding symtab.
392  *
393  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
394  */
395 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
396                                      Elf_Shdr *section, const Elf_Shdr *relsec,
397                                      const Elf_Shdr *symtabsec)
398 {
399         unsigned int i;
400         Elf64_Rela *rel;
401         Elf64_Sym *sym;
402         void *location;
403         unsigned long address, sec_base, value;
404         const char *strtab, *name, *shstrtab;
405         const Elf_Shdr *sechdrs;
406
407         /* String & section header string table */
408         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
409         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
410         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
411
412         rel = (void *)pi->ehdr + relsec->sh_offset;
413
414         pr_debug("Applying relocate section %s to %u\n",
415                  shstrtab + relsec->sh_name, relsec->sh_info);
416
417         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
418
419                 /*
420                  * rel[i].r_offset contains byte offset from beginning
421                  * of section to the storage unit affected.
422                  *
423                  * This is location to update. This is temporary buffer
424                  * where section is currently loaded. This will finally be
425                  * loaded to a different address later, pointed to by
426                  * ->sh_addr. kexec takes care of moving it
427                  *  (kexec_load_segment()).
428                  */
429                 location = pi->purgatory_buf;
430                 location += section->sh_offset;
431                 location += rel[i].r_offset;
432
433                 /* Final address of the location */
434                 address = section->sh_addr + rel[i].r_offset;
435
436                 /*
437                  * rel[i].r_info contains information about symbol table index
438                  * w.r.t which relocation must be made and type of relocation
439                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
440                  * these respectively.
441                  */
442                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
443                 sym += ELF64_R_SYM(rel[i].r_info);
444
445                 if (sym->st_name)
446                         name = strtab + sym->st_name;
447                 else
448                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
449
450                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
451                          name, sym->st_info, sym->st_shndx, sym->st_value,
452                          sym->st_size);
453
454                 if (sym->st_shndx == SHN_UNDEF) {
455                         pr_err("Undefined symbol: %s\n", name);
456                         return -ENOEXEC;
457                 }
458
459                 if (sym->st_shndx == SHN_COMMON) {
460                         pr_err("symbol '%s' in common section\n", name);
461                         return -ENOEXEC;
462                 }
463
464                 if (sym->st_shndx == SHN_ABS)
465                         sec_base = 0;
466                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
467                         pr_err("Invalid section %d for symbol %s\n",
468                                sym->st_shndx, name);
469                         return -ENOEXEC;
470                 } else
471                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
472
473                 value = sym->st_value;
474                 value += sec_base;
475                 value += rel[i].r_addend;
476
477                 switch (ELF64_R_TYPE(rel[i].r_info)) {
478                 case R_X86_64_NONE:
479                         break;
480                 case R_X86_64_64:
481                         *(u64 *)location = value;
482                         break;
483                 case R_X86_64_32:
484                         *(u32 *)location = value;
485                         if (value != *(u32 *)location)
486                                 goto overflow;
487                         break;
488                 case R_X86_64_32S:
489                         *(s32 *)location = value;
490                         if ((s64)value != *(s32 *)location)
491                                 goto overflow;
492                         break;
493                 case R_X86_64_PC32:
494                 case R_X86_64_PLT32:
495                         value -= (u64)address;
496                         *(u32 *)location = value;
497                         break;
498                 default:
499                         pr_err("Unknown rela relocation: %llu\n",
500                                ELF64_R_TYPE(rel[i].r_info));
501                         return -ENOEXEC;
502                 }
503         }
504         return 0;
505
506 overflow:
507         pr_err("Overflow in relocation type %d value 0x%lx\n",
508                (int)ELF64_R_TYPE(rel[i].r_info), value);
509         return -ENOEXEC;
510 }
511
512 int arch_kimage_file_post_load_cleanup(struct kimage *image)
513 {
514         vfree(image->elf_headers);
515         image->elf_headers = NULL;
516         image->elf_headers_sz = 0;
517
518         return kexec_image_post_load_cleanup_default(image);
519 }
520 #endif /* CONFIG_KEXEC_FILE */
521
522 static int
523 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
524 {
525         struct page *page;
526         unsigned int nr_pages;
527
528         /*
529          * For physical range: [start, end]. We must skip the unassigned
530          * crashk resource with zero-valued "end" member.
531          */
532         if (!end || start > end)
533                 return 0;
534
535         page = pfn_to_page(start >> PAGE_SHIFT);
536         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
537         if (protect)
538                 return set_pages_ro(page, nr_pages);
539         else
540                 return set_pages_rw(page, nr_pages);
541 }
542
543 static void kexec_mark_crashkres(bool protect)
544 {
545         unsigned long control;
546
547         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
548
549         /* Don't touch the control code page used in crash_kexec().*/
550         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
551         /* Control code page is located in the 2nd page. */
552         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
553         control += KEXEC_CONTROL_PAGE_SIZE;
554         kexec_mark_range(control, crashk_res.end, protect);
555 }
556
557 void arch_kexec_protect_crashkres(void)
558 {
559         kexec_mark_crashkres(true);
560 }
561
562 void arch_kexec_unprotect_crashkres(void)
563 {
564         kexec_mark_crashkres(false);
565 }
566
567 /*
568  * During a traditional boot under SME, SME will encrypt the kernel,
569  * so the SME kexec kernel also needs to be un-encrypted in order to
570  * replicate a normal SME boot.
571  *
572  * During a traditional boot under SEV, the kernel has already been
573  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
574  * order to replicate a normal SEV boot.
575  */
576 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
577 {
578         if (sev_active())
579                 return 0;
580
581         /*
582          * If SME is active we need to be sure that kexec pages are
583          * not encrypted because when we boot to the new kernel the
584          * pages won't be accessed encrypted (initially).
585          */
586         return set_memory_decrypted((unsigned long)vaddr, pages);
587 }
588
589 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
590 {
591         if (sev_active())
592                 return;
593
594         /*
595          * If SME is active we need to reset the pages back to being
596          * an encrypted mapping before freeing them.
597          */
598         set_memory_encrypted((unsigned long)vaddr, pages);
599 }