GNU Linux-libre 4.14.332-gnu1
[releases.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
31
32 #ifdef CONFIG_KEXEC_FILE
33 static struct kexec_file_ops *kexec_file_loaders[] = {
34                 &kexec_bzImage64_ops,
35 };
36 #endif
37
38 static void free_transition_pgtable(struct kimage *image)
39 {
40         free_page((unsigned long)image->arch.p4d);
41         image->arch.p4d = NULL;
42         free_page((unsigned long)image->arch.pud);
43         image->arch.pud = NULL;
44         free_page((unsigned long)image->arch.pmd);
45         image->arch.pmd = NULL;
46         free_page((unsigned long)image->arch.pte);
47         image->arch.pte = NULL;
48 }
49
50 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
51 {
52         p4d_t *p4d;
53         pud_t *pud;
54         pmd_t *pmd;
55         pte_t *pte;
56         unsigned long vaddr, paddr;
57         int result = -ENOMEM;
58
59         vaddr = (unsigned long)relocate_kernel;
60         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
61         pgd += pgd_index(vaddr);
62         if (!pgd_present(*pgd)) {
63                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
64                 if (!p4d)
65                         goto err;
66                 image->arch.p4d = p4d;
67                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
68         }
69         p4d = p4d_offset(pgd, vaddr);
70         if (!p4d_present(*p4d)) {
71                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
72                 if (!pud)
73                         goto err;
74                 image->arch.pud = pud;
75                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
76         }
77         pud = pud_offset(p4d, vaddr);
78         if (!pud_present(*pud)) {
79                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
80                 if (!pmd)
81                         goto err;
82                 image->arch.pmd = pmd;
83                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
84         }
85         pmd = pmd_offset(pud, vaddr);
86         if (!pmd_present(*pmd)) {
87                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
88                 if (!pte)
89                         goto err;
90                 image->arch.pte = pte;
91                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
92         }
93         pte = pte_offset_kernel(pmd, vaddr);
94         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
95         return 0;
96 err:
97         return result;
98 }
99
100 static void *alloc_pgt_page(void *data)
101 {
102         struct kimage *image = (struct kimage *)data;
103         struct page *page;
104         void *p = NULL;
105
106         page = kimage_alloc_control_pages(image, 0);
107         if (page) {
108                 p = page_address(page);
109                 clear_page(p);
110         }
111
112         return p;
113 }
114
115 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
116 {
117         struct x86_mapping_info info = {
118                 .alloc_pgt_page = alloc_pgt_page,
119                 .context        = image,
120                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
121                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
122         };
123         unsigned long mstart, mend;
124         pgd_t *level4p;
125         int result;
126         int i;
127
128         level4p = (pgd_t *)__va(start_pgtable);
129         clear_page(level4p);
130
131         if (direct_gbpages)
132                 info.direct_gbpages = true;
133
134         for (i = 0; i < nr_pfn_mapped; i++) {
135                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
136                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
137
138                 result = kernel_ident_mapping_init(&info,
139                                                  level4p, mstart, mend);
140                 if (result)
141                         return result;
142         }
143
144         /*
145          * segments's mem ranges could be outside 0 ~ max_pfn,
146          * for example when jump back to original kernel from kexeced kernel.
147          * or first kernel is booted with user mem map, and second kernel
148          * could be loaded out of that range.
149          */
150         for (i = 0; i < image->nr_segments; i++) {
151                 mstart = image->segment[i].mem;
152                 mend   = mstart + image->segment[i].memsz;
153
154                 result = kernel_ident_mapping_init(&info,
155                                                  level4p, mstart, mend);
156
157                 if (result)
158                         return result;
159         }
160
161         return init_transition_pgtable(image, level4p);
162 }
163
164 static void set_idt(void *newidt, u16 limit)
165 {
166         struct desc_ptr curidt;
167
168         /* x86-64 supports unaliged loads & stores */
169         curidt.size    = limit;
170         curidt.address = (unsigned long)newidt;
171
172         __asm__ __volatile__ (
173                 "lidtq %0\n"
174                 : : "m" (curidt)
175                 );
176 };
177
178
179 static void set_gdt(void *newgdt, u16 limit)
180 {
181         struct desc_ptr curgdt;
182
183         /* x86-64 supports unaligned loads & stores */
184         curgdt.size    = limit;
185         curgdt.address = (unsigned long)newgdt;
186
187         __asm__ __volatile__ (
188                 "lgdtq %0\n"
189                 : : "m" (curgdt)
190                 );
191 };
192
193 static void load_segments(void)
194 {
195         __asm__ __volatile__ (
196                 "\tmovl %0,%%ds\n"
197                 "\tmovl %0,%%es\n"
198                 "\tmovl %0,%%ss\n"
199                 "\tmovl %0,%%fs\n"
200                 "\tmovl %0,%%gs\n"
201                 : : "a" (__KERNEL_DS) : "memory"
202                 );
203 }
204
205 #ifdef CONFIG_KEXEC_FILE
206 /* Update purgatory as needed after various image segments have been prepared */
207 static int arch_update_purgatory(struct kimage *image)
208 {
209         int ret = 0;
210
211         if (!image->file_mode)
212                 return 0;
213
214         /* Setup copying of backup region */
215         if (image->type == KEXEC_TYPE_CRASH) {
216                 ret = kexec_purgatory_get_set_symbol(image,
217                                 "purgatory_backup_dest",
218                                 &image->arch.backup_load_addr,
219                                 sizeof(image->arch.backup_load_addr), 0);
220                 if (ret)
221                         return ret;
222
223                 ret = kexec_purgatory_get_set_symbol(image,
224                                 "purgatory_backup_src",
225                                 &image->arch.backup_src_start,
226                                 sizeof(image->arch.backup_src_start), 0);
227                 if (ret)
228                         return ret;
229
230                 ret = kexec_purgatory_get_set_symbol(image,
231                                 "purgatory_backup_sz",
232                                 &image->arch.backup_src_sz,
233                                 sizeof(image->arch.backup_src_sz), 0);
234                 if (ret)
235                         return ret;
236         }
237
238         return ret;
239 }
240 #else /* !CONFIG_KEXEC_FILE */
241 static inline int arch_update_purgatory(struct kimage *image)
242 {
243         return 0;
244 }
245 #endif /* CONFIG_KEXEC_FILE */
246
247 int machine_kexec_prepare(struct kimage *image)
248 {
249         unsigned long start_pgtable;
250         int result;
251
252         /* Calculate the offsets */
253         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
254
255         /* Setup the identity mapped 64bit page table */
256         result = init_pgtable(image, start_pgtable);
257         if (result)
258                 return result;
259
260         /* update purgatory as needed */
261         result = arch_update_purgatory(image);
262         if (result)
263                 return result;
264
265         return 0;
266 }
267
268 void machine_kexec_cleanup(struct kimage *image)
269 {
270         free_transition_pgtable(image);
271 }
272
273 /*
274  * Do not allocate memory (or fail in any way) in machine_kexec().
275  * We are past the point of no return, committed to rebooting now.
276  */
277 void machine_kexec(struct kimage *image)
278 {
279         unsigned long page_list[PAGES_NR];
280         void *control_page;
281         int save_ftrace_enabled;
282
283 #ifdef CONFIG_KEXEC_JUMP
284         if (image->preserve_context)
285                 save_processor_state();
286 #endif
287
288         save_ftrace_enabled = __ftrace_enabled_save();
289
290         /* Interrupts aren't acceptable while we reboot */
291         local_irq_disable();
292         hw_breakpoint_disable();
293
294         if (image->preserve_context) {
295 #ifdef CONFIG_X86_IO_APIC
296                 /*
297                  * We need to put APICs in legacy mode so that we can
298                  * get timer interrupts in second kernel. kexec/kdump
299                  * paths already have calls to disable_IO_APIC() in
300                  * one form or other. kexec jump path also need
301                  * one.
302                  */
303                 disable_IO_APIC();
304 #endif
305         }
306
307         control_page = page_address(image->control_code_page) + PAGE_SIZE;
308         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
309
310         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
311         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
312         page_list[PA_TABLE_PAGE] =
313           (unsigned long)__pa(page_address(image->control_code_page));
314
315         if (image->type == KEXEC_TYPE_DEFAULT)
316                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
317                                                 << PAGE_SHIFT);
318
319         /*
320          * The segment registers are funny things, they have both a
321          * visible and an invisible part.  Whenever the visible part is
322          * set to a specific selector, the invisible part is loaded
323          * with from a table in memory.  At no other time is the
324          * descriptor table in memory accessed.
325          *
326          * I take advantage of this here by force loading the
327          * segments, before I zap the gdt with an invalid value.
328          */
329         load_segments();
330         /*
331          * The gdt & idt are now invalid.
332          * If you want to load them you must set up your own idt & gdt.
333          */
334         set_gdt(phys_to_virt(0), 0);
335         set_idt(phys_to_virt(0), 0);
336
337         /* now call it */
338         image->start = relocate_kernel((unsigned long)image->head,
339                                        (unsigned long)page_list,
340                                        image->start,
341                                        image->preserve_context,
342                                        sme_active());
343
344 #ifdef CONFIG_KEXEC_JUMP
345         if (image->preserve_context)
346                 restore_processor_state();
347 #endif
348
349         __ftrace_enabled_restore(save_ftrace_enabled);
350 }
351
352 void arch_crash_save_vmcoreinfo(void)
353 {
354         VMCOREINFO_NUMBER(phys_base);
355         VMCOREINFO_SYMBOL(init_top_pgt);
356
357 #ifdef CONFIG_NUMA
358         VMCOREINFO_SYMBOL(node_data);
359         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
360 #endif
361         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
362                               kaslr_offset());
363         VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
364 }
365
366 /* arch-dependent functionality related to kexec file-based syscall */
367
368 #ifdef CONFIG_KEXEC_FILE
369 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
370                                   unsigned long buf_len)
371 {
372         int i, ret = -ENOEXEC;
373         struct kexec_file_ops *fops;
374
375         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
376                 fops = kexec_file_loaders[i];
377                 if (!fops || !fops->probe)
378                         continue;
379
380                 ret = fops->probe(buf, buf_len);
381                 if (!ret) {
382                         image->fops = fops;
383                         return ret;
384                 }
385         }
386
387         return ret;
388 }
389
390 void *arch_kexec_kernel_image_load(struct kimage *image)
391 {
392         vfree(image->arch.elf_headers);
393         image->arch.elf_headers = NULL;
394
395         if (!image->fops || !image->fops->load)
396                 return ERR_PTR(-ENOEXEC);
397
398         return image->fops->load(image, image->kernel_buf,
399                                  image->kernel_buf_len, image->initrd_buf,
400                                  image->initrd_buf_len, image->cmdline_buf,
401                                  image->cmdline_buf_len);
402 }
403
404 int arch_kimage_file_post_load_cleanup(struct kimage *image)
405 {
406         if (!image->fops || !image->fops->cleanup)
407                 return 0;
408
409         return image->fops->cleanup(image->image_loader_data);
410 }
411
412 #ifdef CONFIG_KEXEC_VERIFY_SIG
413 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
414                                  unsigned long kernel_len)
415 {
416         if (!image->fops || !image->fops->verify_sig) {
417                 pr_debug("kernel loader does not support signature verification.");
418                 return -EKEYREJECTED;
419         }
420
421         return image->fops->verify_sig(kernel, kernel_len);
422 }
423 #endif
424
425 /*
426  * Apply purgatory relocations.
427  *
428  * ehdr: Pointer to elf headers
429  * sechdrs: Pointer to section headers.
430  * relsec: section index of SHT_RELA section.
431  *
432  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
433  */
434 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
435                                      Elf64_Shdr *sechdrs, unsigned int relsec)
436 {
437         unsigned int i;
438         Elf64_Rela *rel;
439         Elf64_Sym *sym;
440         void *location;
441         Elf64_Shdr *section, *symtabsec;
442         unsigned long address, sec_base, value;
443         const char *strtab, *name, *shstrtab;
444
445         /*
446          * ->sh_offset has been modified to keep the pointer to section
447          * contents in memory
448          */
449         rel = (void *)sechdrs[relsec].sh_offset;
450
451         /* Section to which relocations apply */
452         section = &sechdrs[sechdrs[relsec].sh_info];
453
454         pr_debug("Applying relocate section %u to %u\n", relsec,
455                  sechdrs[relsec].sh_info);
456
457         /* Associated symbol table */
458         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
459
460         /* String table */
461         if (symtabsec->sh_link >= ehdr->e_shnum) {
462                 /* Invalid strtab section number */
463                 pr_err("Invalid string table section index %d\n",
464                        symtabsec->sh_link);
465                 return -ENOEXEC;
466         }
467
468         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
469
470         /* section header string table */
471         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
472
473         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
474
475                 /*
476                  * rel[i].r_offset contains byte offset from beginning
477                  * of section to the storage unit affected.
478                  *
479                  * This is location to update (->sh_offset). This is temporary
480                  * buffer where section is currently loaded. This will finally
481                  * be loaded to a different address later, pointed to by
482                  * ->sh_addr. kexec takes care of moving it
483                  *  (kexec_load_segment()).
484                  */
485                 location = (void *)(section->sh_offset + rel[i].r_offset);
486
487                 /* Final address of the location */
488                 address = section->sh_addr + rel[i].r_offset;
489
490                 /*
491                  * rel[i].r_info contains information about symbol table index
492                  * w.r.t which relocation must be made and type of relocation
493                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
494                  * these respectively.
495                  */
496                 sym = (Elf64_Sym *)symtabsec->sh_offset +
497                                 ELF64_R_SYM(rel[i].r_info);
498
499                 if (sym->st_name)
500                         name = strtab + sym->st_name;
501                 else
502                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
503
504                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
505                          name, sym->st_info, sym->st_shndx, sym->st_value,
506                          sym->st_size);
507
508                 if (sym->st_shndx == SHN_UNDEF) {
509                         pr_err("Undefined symbol: %s\n", name);
510                         return -ENOEXEC;
511                 }
512
513                 if (sym->st_shndx == SHN_COMMON) {
514                         pr_err("symbol '%s' in common section\n", name);
515                         return -ENOEXEC;
516                 }
517
518                 if (sym->st_shndx == SHN_ABS)
519                         sec_base = 0;
520                 else if (sym->st_shndx >= ehdr->e_shnum) {
521                         pr_err("Invalid section %d for symbol %s\n",
522                                sym->st_shndx, name);
523                         return -ENOEXEC;
524                 } else
525                         sec_base = sechdrs[sym->st_shndx].sh_addr;
526
527                 value = sym->st_value;
528                 value += sec_base;
529                 value += rel[i].r_addend;
530
531                 switch (ELF64_R_TYPE(rel[i].r_info)) {
532                 case R_X86_64_NONE:
533                         break;
534                 case R_X86_64_64:
535                         *(u64 *)location = value;
536                         break;
537                 case R_X86_64_32:
538                         *(u32 *)location = value;
539                         if (value != *(u32 *)location)
540                                 goto overflow;
541                         break;
542                 case R_X86_64_32S:
543                         *(s32 *)location = value;
544                         if ((s64)value != *(s32 *)location)
545                                 goto overflow;
546                         break;
547                 case R_X86_64_PC32:
548                 case R_X86_64_PLT32:
549                         value -= (u64)address;
550                         *(u32 *)location = value;
551                         break;
552                 default:
553                         pr_err("Unknown rela relocation: %llu\n",
554                                ELF64_R_TYPE(rel[i].r_info));
555                         return -ENOEXEC;
556                 }
557         }
558         return 0;
559
560 overflow:
561         pr_err("Overflow in relocation type %d value 0x%lx\n",
562                (int)ELF64_R_TYPE(rel[i].r_info), value);
563         return -ENOEXEC;
564 }
565 #endif /* CONFIG_KEXEC_FILE */
566
567 static int
568 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
569 {
570         struct page *page;
571         unsigned int nr_pages;
572
573         /*
574          * For physical range: [start, end]. We must skip the unassigned
575          * crashk resource with zero-valued "end" member.
576          */
577         if (!end || start > end)
578                 return 0;
579
580         page = pfn_to_page(start >> PAGE_SHIFT);
581         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
582         if (protect)
583                 return set_pages_ro(page, nr_pages);
584         else
585                 return set_pages_rw(page, nr_pages);
586 }
587
588 static void kexec_mark_crashkres(bool protect)
589 {
590         unsigned long control;
591
592         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
593
594         /* Don't touch the control code page used in crash_kexec().*/
595         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
596         /* Control code page is located in the 2nd page. */
597         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
598         control += KEXEC_CONTROL_PAGE_SIZE;
599         kexec_mark_range(control, crashk_res.end, protect);
600 }
601
602 void arch_kexec_protect_crashkres(void)
603 {
604         kexec_mark_crashkres(true);
605 }
606
607 void arch_kexec_unprotect_crashkres(void)
608 {
609         kexec_mark_crashkres(false);
610 }
611
612 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
613 {
614         /*
615          * If SME is active we need to be sure that kexec pages are
616          * not encrypted because when we boot to the new kernel the
617          * pages won't be accessed encrypted (initially).
618          */
619         return set_memory_decrypted((unsigned long)vaddr, pages);
620 }
621
622 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
623 {
624         /*
625          * If SME is active we need to reset the pages back to being
626          * an encrypted mapping before freeing them.
627          */
628         set_memory_encrypted((unsigned long)vaddr, pages);
629 }