GNU Linux-libre 4.14.324-gnu1
[releases.git] / arch / x86 / kernel / irq.c
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 #include <linux/irq.h>
14
15 #include <asm/apic.h>
16 #include <asm/io_apic.h>
17 #include <asm/irq.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
26 EXPORT_PER_CPU_SYMBOL(irq_stat);
27
28 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
29 EXPORT_PER_CPU_SYMBOL(irq_regs);
30
31 atomic_t irq_err_count;
32
33 /*
34  * 'what should we do if we get a hw irq event on an illegal vector'.
35  * each architecture has to answer this themselves.
36  */
37 void ack_bad_irq(unsigned int irq)
38 {
39         if (printk_ratelimit())
40                 pr_err("unexpected IRQ trap at vector %02x\n", irq);
41
42         /*
43          * Currently unexpected vectors happen only on SMP and APIC.
44          * We _must_ ack these because every local APIC has only N
45          * irq slots per priority level, and a 'hanging, unacked' IRQ
46          * holds up an irq slot - in excessive cases (when multiple
47          * unexpected vectors occur) that might lock up the APIC
48          * completely.
49          * But only ack when the APIC is enabled -AK
50          */
51         ack_APIC_irq();
52 }
53
54 #define irq_stats(x)            (&per_cpu(irq_stat, x))
55 /*
56  * /proc/interrupts printing for arch specific interrupts
57  */
58 int arch_show_interrupts(struct seq_file *p, int prec)
59 {
60         int j;
61
62         seq_printf(p, "%*s: ", prec, "NMI");
63         for_each_online_cpu(j)
64                 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
65         seq_puts(p, "  Non-maskable interrupts\n");
66 #ifdef CONFIG_X86_LOCAL_APIC
67         seq_printf(p, "%*s: ", prec, "LOC");
68         for_each_online_cpu(j)
69                 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
70         seq_puts(p, "  Local timer interrupts\n");
71
72         seq_printf(p, "%*s: ", prec, "SPU");
73         for_each_online_cpu(j)
74                 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
75         seq_puts(p, "  Spurious interrupts\n");
76         seq_printf(p, "%*s: ", prec, "PMI");
77         for_each_online_cpu(j)
78                 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
79         seq_puts(p, "  Performance monitoring interrupts\n");
80         seq_printf(p, "%*s: ", prec, "IWI");
81         for_each_online_cpu(j)
82                 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
83         seq_puts(p, "  IRQ work interrupts\n");
84         seq_printf(p, "%*s: ", prec, "RTR");
85         for_each_online_cpu(j)
86                 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
87         seq_puts(p, "  APIC ICR read retries\n");
88         if (x86_platform_ipi_callback) {
89                 seq_printf(p, "%*s: ", prec, "PLT");
90                 for_each_online_cpu(j)
91                         seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
92                 seq_puts(p, "  Platform interrupts\n");
93         }
94 #endif
95 #ifdef CONFIG_SMP
96         seq_printf(p, "%*s: ", prec, "RES");
97         for_each_online_cpu(j)
98                 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
99         seq_puts(p, "  Rescheduling interrupts\n");
100         seq_printf(p, "%*s: ", prec, "CAL");
101         for_each_online_cpu(j)
102                 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
103         seq_puts(p, "  Function call interrupts\n");
104         seq_printf(p, "%*s: ", prec, "TLB");
105         for_each_online_cpu(j)
106                 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
107         seq_puts(p, "  TLB shootdowns\n");
108 #endif
109 #ifdef CONFIG_X86_THERMAL_VECTOR
110         seq_printf(p, "%*s: ", prec, "TRM");
111         for_each_online_cpu(j)
112                 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
113         seq_puts(p, "  Thermal event interrupts\n");
114 #endif
115 #ifdef CONFIG_X86_MCE_THRESHOLD
116         seq_printf(p, "%*s: ", prec, "THR");
117         for_each_online_cpu(j)
118                 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
119         seq_puts(p, "  Threshold APIC interrupts\n");
120 #endif
121 #ifdef CONFIG_X86_MCE_AMD
122         seq_printf(p, "%*s: ", prec, "DFR");
123         for_each_online_cpu(j)
124                 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
125         seq_puts(p, "  Deferred Error APIC interrupts\n");
126 #endif
127 #ifdef CONFIG_X86_MCE
128         seq_printf(p, "%*s: ", prec, "MCE");
129         for_each_online_cpu(j)
130                 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
131         seq_puts(p, "  Machine check exceptions\n");
132         seq_printf(p, "%*s: ", prec, "MCP");
133         for_each_online_cpu(j)
134                 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
135         seq_puts(p, "  Machine check polls\n");
136 #endif
137 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
138         if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
139                 seq_printf(p, "%*s: ", prec, "HYP");
140                 for_each_online_cpu(j)
141                         seq_printf(p, "%10u ",
142                                    irq_stats(j)->irq_hv_callback_count);
143                 seq_puts(p, "  Hypervisor callback interrupts\n");
144         }
145 #endif
146         seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
147 #if defined(CONFIG_X86_IO_APIC)
148         seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
149 #endif
150 #ifdef CONFIG_HAVE_KVM
151         seq_printf(p, "%*s: ", prec, "PIN");
152         for_each_online_cpu(j)
153                 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
154         seq_puts(p, "  Posted-interrupt notification event\n");
155
156         seq_printf(p, "%*s: ", prec, "NPI");
157         for_each_online_cpu(j)
158                 seq_printf(p, "%10u ",
159                            irq_stats(j)->kvm_posted_intr_nested_ipis);
160         seq_puts(p, "  Nested posted-interrupt event\n");
161
162         seq_printf(p, "%*s: ", prec, "PIW");
163         for_each_online_cpu(j)
164                 seq_printf(p, "%10u ",
165                            irq_stats(j)->kvm_posted_intr_wakeup_ipis);
166         seq_puts(p, "  Posted-interrupt wakeup event\n");
167 #endif
168         return 0;
169 }
170
171 /*
172  * /proc/stat helpers
173  */
174 u64 arch_irq_stat_cpu(unsigned int cpu)
175 {
176         u64 sum = irq_stats(cpu)->__nmi_count;
177
178 #ifdef CONFIG_X86_LOCAL_APIC
179         sum += irq_stats(cpu)->apic_timer_irqs;
180         sum += irq_stats(cpu)->irq_spurious_count;
181         sum += irq_stats(cpu)->apic_perf_irqs;
182         sum += irq_stats(cpu)->apic_irq_work_irqs;
183         sum += irq_stats(cpu)->icr_read_retry_count;
184         if (x86_platform_ipi_callback)
185                 sum += irq_stats(cpu)->x86_platform_ipis;
186 #endif
187 #ifdef CONFIG_SMP
188         sum += irq_stats(cpu)->irq_resched_count;
189         sum += irq_stats(cpu)->irq_call_count;
190 #endif
191 #ifdef CONFIG_X86_THERMAL_VECTOR
192         sum += irq_stats(cpu)->irq_thermal_count;
193 #endif
194 #ifdef CONFIG_X86_MCE_THRESHOLD
195         sum += irq_stats(cpu)->irq_threshold_count;
196 #endif
197 #ifdef CONFIG_X86_MCE
198         sum += per_cpu(mce_exception_count, cpu);
199         sum += per_cpu(mce_poll_count, cpu);
200 #endif
201         return sum;
202 }
203
204 u64 arch_irq_stat(void)
205 {
206         u64 sum = atomic_read(&irq_err_count);
207         return sum;
208 }
209
210
211 /*
212  * do_IRQ handles all normal device IRQ's (the special
213  * SMP cross-CPU interrupts have their own specific
214  * handlers).
215  */
216 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
217 {
218         struct pt_regs *old_regs = set_irq_regs(regs);
219         struct irq_desc * desc;
220         /* high bit used in ret_from_ code  */
221         unsigned vector = ~regs->orig_ax;
222
223         entering_irq();
224
225         /* entering_irq() tells RCU that we're not quiescent.  Check it. */
226         RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
227
228         desc = __this_cpu_read(vector_irq[vector]);
229
230         if (!handle_irq(desc, regs)) {
231                 ack_APIC_irq();
232
233                 if (desc != VECTOR_RETRIGGERED) {
234                         pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
235                                              __func__, smp_processor_id(),
236                                              vector);
237                 } else {
238                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
239                 }
240         }
241
242         exiting_irq();
243
244         set_irq_regs(old_regs);
245         return 1;
246 }
247
248 #ifdef CONFIG_X86_LOCAL_APIC
249 /* Function pointer for generic interrupt vector handling */
250 void (*x86_platform_ipi_callback)(void) = NULL;
251 /*
252  * Handler for X86_PLATFORM_IPI_VECTOR.
253  */
254 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
255 {
256         struct pt_regs *old_regs = set_irq_regs(regs);
257
258         entering_ack_irq();
259         trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
260         inc_irq_stat(x86_platform_ipis);
261         if (x86_platform_ipi_callback)
262                 x86_platform_ipi_callback();
263         trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
264         exiting_irq();
265         set_irq_regs(old_regs);
266 }
267 #endif
268
269 #ifdef CONFIG_HAVE_KVM
270 static void dummy_handler(void) {}
271 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
272
273 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
274 {
275         if (handler)
276                 kvm_posted_intr_wakeup_handler = handler;
277         else {
278                 kvm_posted_intr_wakeup_handler = dummy_handler;
279                 synchronize_rcu();
280         }
281 }
282 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
283
284 /*
285  * Handler for POSTED_INTERRUPT_VECTOR.
286  */
287 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
288 {
289         struct pt_regs *old_regs = set_irq_regs(regs);
290
291         entering_ack_irq();
292         inc_irq_stat(kvm_posted_intr_ipis);
293         exiting_irq();
294         set_irq_regs(old_regs);
295 }
296
297 /*
298  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
299  */
300 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
301 {
302         struct pt_regs *old_regs = set_irq_regs(regs);
303
304         entering_ack_irq();
305         inc_irq_stat(kvm_posted_intr_wakeup_ipis);
306         kvm_posted_intr_wakeup_handler();
307         exiting_irq();
308         set_irq_regs(old_regs);
309 }
310
311 /*
312  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
313  */
314 __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
315 {
316         struct pt_regs *old_regs = set_irq_regs(regs);
317
318         entering_ack_irq();
319         inc_irq_stat(kvm_posted_intr_nested_ipis);
320         exiting_irq();
321         set_irq_regs(old_regs);
322 }
323 #endif
324
325
326 #ifdef CONFIG_HOTPLUG_CPU
327
328 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
329  * below, which is protected by stop_machine().  Putting them on the stack
330  * results in a stack frame overflow.  Dynamically allocating could result in a
331  * failure so declare these two cpumasks as global.
332  */
333 static struct cpumask affinity_new, online_new;
334
335 /*
336  * This cpu is going to be removed and its vectors migrated to the remaining
337  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
338  * This function is protected by stop_machine().
339  */
340 int check_irq_vectors_for_cpu_disable(void)
341 {
342         unsigned int this_cpu, vector, this_count, count;
343         struct irq_desc *desc;
344         struct irq_data *data;
345         int cpu;
346
347         this_cpu = smp_processor_id();
348         cpumask_copy(&online_new, cpu_online_mask);
349         cpumask_clear_cpu(this_cpu, &online_new);
350
351         this_count = 0;
352         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
353                 desc = __this_cpu_read(vector_irq[vector]);
354                 if (IS_ERR_OR_NULL(desc))
355                         continue;
356                 /*
357                  * Protect against concurrent action removal, affinity
358                  * changes etc.
359                  */
360                 raw_spin_lock(&desc->lock);
361                 data = irq_desc_get_irq_data(desc);
362                 cpumask_copy(&affinity_new,
363                              irq_data_get_affinity_mask(data));
364                 cpumask_clear_cpu(this_cpu, &affinity_new);
365
366                 /* Do not count inactive or per-cpu irqs. */
367                 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
368                         raw_spin_unlock(&desc->lock);
369                         continue;
370                 }
371
372                 raw_spin_unlock(&desc->lock);
373                 /*
374                  * A single irq may be mapped to multiple cpu's
375                  * vector_irq[] (for example IOAPIC cluster mode).  In
376                  * this case we have two possibilities:
377                  *
378                  * 1) the resulting affinity mask is empty; that is
379                  * this the down'd cpu is the last cpu in the irq's
380                  * affinity mask, or
381                  *
382                  * 2) the resulting affinity mask is no longer a
383                  * subset of the online cpus but the affinity mask is
384                  * not zero; that is the down'd cpu is the last online
385                  * cpu in a user set affinity mask.
386                  */
387                 if (cpumask_empty(&affinity_new) ||
388                     !cpumask_subset(&affinity_new, &online_new))
389                         this_count++;
390         }
391         /* No need to check any further. */
392         if (!this_count)
393                 return 0;
394
395         count = 0;
396         for_each_online_cpu(cpu) {
397                 if (cpu == this_cpu)
398                         continue;
399                 /*
400                  * We scan from FIRST_EXTERNAL_VECTOR to first system
401                  * vector. If the vector is marked in the used vectors
402                  * bitmap or an irq is assigned to it, we don't count
403                  * it as available.
404                  *
405                  * As this is an inaccurate snapshot anyway, we can do
406                  * this w/o holding vector_lock.
407                  */
408                 for (vector = FIRST_EXTERNAL_VECTOR;
409                      vector < FIRST_SYSTEM_VECTOR; vector++) {
410                         if (!test_bit(vector, used_vectors) &&
411                             IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) {
412                                 if (++count == this_count)
413                                         return 0;
414                         }
415                 }
416         }
417
418         if (count < this_count) {
419                 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
420                         this_cpu, this_count, count);
421                 return -ERANGE;
422         }
423         return 0;
424 }
425
426 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
427 void fixup_irqs(void)
428 {
429         unsigned int irr, vector;
430         struct irq_desc *desc;
431         struct irq_data *data;
432         struct irq_chip *chip;
433
434         irq_migrate_all_off_this_cpu();
435
436         /*
437          * We can remove mdelay() and then send spuriuous interrupts to
438          * new cpu targets for all the irqs that were handled previously by
439          * this cpu. While it works, I have seen spurious interrupt messages
440          * (nothing wrong but still...).
441          *
442          * So for now, retain mdelay(1) and check the IRR and then send those
443          * interrupts to new targets as this cpu is already offlined...
444          */
445         mdelay(1);
446
447         /*
448          * We can walk the vector array of this cpu without holding
449          * vector_lock because the cpu is already marked !online, so
450          * nothing else will touch it.
451          */
452         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
453                 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
454                         continue;
455
456                 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
457                 if (irr  & (1 << (vector % 32))) {
458                         desc = __this_cpu_read(vector_irq[vector]);
459
460                         raw_spin_lock(&desc->lock);
461                         data = irq_desc_get_irq_data(desc);
462                         chip = irq_data_get_irq_chip(data);
463                         if (chip->irq_retrigger) {
464                                 chip->irq_retrigger(data);
465                                 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
466                         }
467                         raw_spin_unlock(&desc->lock);
468                 }
469                 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
470                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
471         }
472 }
473 #endif